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Abstract

The classical Heckman (1976, 1979) selection correction estimator (heckit) is

misspecified and inconsistent if an interaction of the outcome variable and an

explanatory variable matters for selection. To address this specification prob-

lem, a full information maximum likelihood estimator and a simple two-step

estimator are developed. Monte-Carlo simulations illustrate that the bias of

the ordinary heckit estimator is removed by these generalized estimation pro-

cedures. Along with OLS and the ordinary heckit procedure, we apply these

estimators to data from a randomized trial that evaluates the effectiveness of fi-

nancial incentives for weight loss among the obese. Estimation results indicate

that the choice of the estimation procedure clearly matters.
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1 Introduction

The Heckman (1976, 1979) selection correction (heckit) estimator is a workhorse of
applied econometrics, commonly used for removing possible bias due to selection
on unobservables.1 In many applications, selection into the subsample of obser-
vations with an observed outcome is directly affected by the value of the outcome
variable itself. Think, for instance, of estimating a wage equation. Here, wages are
only observed for individuals who have accepted a wage offer. Yet, the likelihood
of accepting the offer increases with the offered wage. The regular specification
of the heckit estimator implicitly accounts for a possible impact of the outcome on
selection, given that all exogenous variables enter the selection part of the model.2

However, unlike the above case, the regular heckit estimator is misspecified and
biased if the offered pay is of differential relevance depending on individual char-
acteristics such as gender. That is, heterogeneous effects of the outcome variable
on selection are not accommodated by the regular heckit approach. In order to
allow for heterogeneity with respect to a certain individual characteristic, any se-
lection correction estimator must take the interaction of the outcome variable with
the relevant covariate into account. The present paper develops generalizations of
the regular heckit estimator that overcome the inconsistency of the ordinary heckit
model in the presence of heterogeneous effects of the outcome on selection. In par-
ticular, we suggest a full information maximum likelihood (FIML) estimator and a
computationally very simple two-step approach.

We test the performance of the suggested estimators using Monte Carlo simu-
lations. We also apply the estimators to data gathered from a randomized field
experiment, which was conducted to examine the effectiveness of financial incen-
tives to induce weight loss in obese individuals. This experiment represents an
exemplary application of the proposed generalized selection-correction estimators
because the design of the monetary rewards makes favorable outcomes more likely
to be reported than unfavorable ones. Thus, a link between the outcome variable
and the probability of observing the outcome is first of all expected for those par-

1The model’s popularity notwithstanding, it has been criticized for being very vulnerable to var-
ious kinds of misspecification (e.g. Puhani, 2000; Grasdal, 2001), and less restrictive semi-parametric
alternatives have been proposed (e.g. Ichimura and Lee, 1991; Ahn and Powell, 1993); see Vella
(1998) for a survey.

2The commonly used tobit (type 1) (Tobin, 1958) model represents an extreme case with selection
exclusively depending on the outcome.
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ticipants who were offered a reward for weight loss, but not for members of the
control group who were not exposed to financial incentives.

The remainder of the paper is organized as follows. Section 2 develops the gen-
eralized heckit estimators. Section 3 compares the performance of the different esti-
mators using a Monte Carlo experiment. Section 4 provides a real data application
and Section 5 concludes.

2 A Generalized Heckit Model

Consider a familiar linear regression model, where the focus of the econometric
analysis is on estimating the coefficient vector β:

Yi = β′Xi + εi. (1)

Here i indexes observations, and Yi, εi, and Xi denote the outcome variable, a ran-
dom error, and the vector of exogenous explanatory variables, respectively. The
latter includes the variable Di, which is of special relevance to the analysis.

However, Yi is observed only for a subsample of observation. In the present
application, selection into this subsample, indicated by Si = 1, is modeled as sug-
gested by Heckman (1979). Yet, besides a K-dimensional vector Zi that includes Xi

and some further exogenous variables, Yi as well as the interaction term YiDi are
allowed to enter the selection equation:

Si =

{
1 if θ′Zi + τYi + γYiDi + υi > 0
0 else.

(2)

As in the ordinary heckit model, joint normality N(0, 0, σ2
ε , σ2

υ , σευ) is assumed for
the error terms εi and υi. θ1, . . . , θK, τ, and γ denote unknown coefficients. Substi-
tuting Yi by (1) and rearranging terms leads to

Si =

{
1 if υ̃i > −α′Zi − γβ′XiDi

0 else
(3)

υ̃i = υi + (τ + γDi) εi, (4)

where αk = θk + τβk holds for any regressor k included in Xi and αk = θk holds for
those variables that enter Zi but do not enter Xi. Evidently, the coefficient τ has no
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impact on the general structure of the model.3 Hence, for the special case γ = 0,
(1), (3), and (4) represent the standard Heckman (1979) selection model.

For γ 6= 0, however, the model deviates from the standard case for two reasons:
(i) a full set of interaction terms XiDi enters the selection equation and (ii), more im-
portant, Di enters the error υ̃i, rendering the the error variance-covariance structure
heterogeneous with respect to Di:

var(υ̃i|Di) = σ2
υ + 2 (τ + γDi) σευ + (τ + γDi)

2 σ2
ε (5)

cov(εi, υ̃i|Di) = σευ + (τ + γDi) σ2
ε . (6)

Ignored heteroscedasticity in the probit and, hence, in the selection part of the heckit
model, is well known to render probit estimation inconsistent (Wooldridge, 2002;
Harvey, 1976). Thus, a generalized estimator is required.

2.1 FIML Estimation

In oder to develop a FIML estimator that accounts for the model structure, with no
loss of generality, we introduce the normalization

σ2
υ + 2τσευ + τ2σ2

ε = 1. (7)

That is, we assume standard normality for υ̃i conditional on Di = 0. This is equiv-
alent to the familiar normalization required for identifying the coefficients of any
probit model. We re-parameterize as follows:

ρ ≡ cor(εi, υ̃i|Di = 0) =
σευ

σε
+ τσε. (8)

Then the individual log-likelihood li reads as

li =



log Φ
(

−α′Zi−γβ′XiDi√
1+2ρσεγDi+σ2

ε γ2D2
i

)
if Si = 0

log Φ
(

α′Zi+γβ′XiDi+(Yi−β′Xi)(
ρ
σε
+γDi)√

1−ρ2

)
−1

2

(
Yi−β′Xi

σε

)2
− log

(
σε

√
2π
) if Si = 1.

(9)

3Effectively, τ only changes the unknown error variance-covariance structure, which is subject to
estimation. Hence, τ is not identified.
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See Appendix A.1 for how (9) is derived from the log-likelihood function of the
ordinary heckit model. Besides the coefficient vectors α and β, the scalar parameters
γ, σε, and ρ are subject to estimation.4 Note that Di may either be continuous, a
count, or binary.

The model is straightforwardly transferred to the case where the effect of Yi on
selection differs across M + 1 mutually exclusive groups, indexed by m = 0, . . . , M.
For group membership being indicated by a set of binary indicators D0i, . . . , DMi,
the log-likelihood conditional on Dmi = 1 is identical to (9), besides Di is substituted
by the value one and γ is replaced by γm.5 Here, γ0 has to be restricted to zero in
order to render the model identified.

2.2 Two-Step Estimation

The model (9) is, however, difficult to fit and may cause problems in the optimiza-
tion procedure. Yet, for a binary variable Di and, more general, group-wise het-
erogeneity, a computationally very simple two-step estimator is available. Here,
the heterogeneity in the selection mechanism is accounted for by estimating group-
wise probit models at the first stage. For each group m, a specific coefficient vector
αm is estimated, where the coefficients attached to D1i, . . . , DMi need to be restricted
to the value of zero. At the second stage a vector of group-specific inverse Mills-
ratios λ(·) enter as additional regressors

Yi = β′Xi +
M

∑
m=0

δmλ(α̂′mZi)Dmi + ε̃i if Si = 1. (10)

The attached coefficients δm, subject to estimation, capture σε cor(εi, υ̃i|Dmi = 1).
Two-step estimation, however, comes at the cost of efficiency loss. As in the case of
the two-step estimator for the ordinary heckit model, The present model is less ef-
ficient than FIML. Moreover, it ignores many parameter restrictions that stem from
the structural model, inflating the number of parameters subject to estimation by
M(K− 1)−M2. The model in (10) may also suffer from near-collinearity of correc-
tion terms and group indicators. On the other hand, two-step estimating involves

4Technically, atanh(ρ) and log(σε) are estimated in the optimization procedure in order to avoid
a bounded valid parameter space.

5Typically, all dummies Dmi, except for D0i indicating the reference category, enter Xi and Zi.
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less assumptions about the selection mechanism than FIML and, hence, also accom-
modates types of heterogeneity in selection that render (9) misspecified.

3 Monte Carlo Analysis

In order to illustrate the performance of the FIML and the two-step estimators and
to compare them with those of ordinary heckit and simple OLS estimation, we run a
Monte-Carlo (MC) experiment, where the endogenous variables Yi and Si are gen-
erated according to (1) and (2). The exogenous variables, i.e. the vector Zi, are
drawn once and then kept fixed. We draw the binary indicator Di from the B(1, 0.5)
distribution and two continuous control variables from the uniform U(−1, 1) dis-
tribution. One of the latter is excluded from the vector Xi, while Di enters (2) not
only through Zi but also interacted with Yi. For all coefficients βk and θk, we choose
the value of one, except for the constant terms, which both are set to zero. With
respect to the variance-covariance matrix of the normal errors, we choose σ2

ε = 2,
σ2

υ = 1, and σευ = 0.75. We run six different simulations, varying the experimental
setup with respect to: (i) γ, for which we use the values −1, 0, and 1; and (ii) τ,
for which we use the two values consistent with (7), i.e., −0.75 and 0. The sample
size is 10 000 and the size of the simulations is 2 000 repetitions. Our focus is on the
estimators’ performance in estimating the coefficients β. Hence, for each estimator,
we report estimates for bias(β̂) and MSE(β̂).

As predicted by theory, MC-results display no significant (warranted by simu-
lation based tests on joint unbiasedness of β̂) bias for the FIML and the Two-Step
estimator, while OLS is biased in any simulation; see Table 1. Furthermore, the
ordinary heckit estimator does not exhibit a significant bias for γ = 0, while it is
severely biased for γ 6= 0. Focussing on the coefficient attached to Di, depending
on the sign of γ, an upward or an downward bias may occur. Interestingly, for
γ 6= 0, the ordinary heckit does not perform much better than OLS in terms of the
estimated bias. In simulation (vi), it even performs worse. This means that cor-
recting parametrically for selection bias but misspecifying the selection mechanism
may not be an improvement compared to simply ignoring selectivity. As expected,
in terms of the estimated MSE, Two-Step estimation performs worse than FIML.6

6For simulations based on a small sample (N = 400), this shortcoming of two-step estimation
becomes even more prominent. There, in terms of the MSE, two-step estimation may even be out-
performed by the biased ordinary heckit estimator.
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Table 1: Monte-Carlo Simulation Results
FIML Two-Step Ordinary Heckit OLS

Bias MSE Bias MSE Bias MSE Bias MSE

simulation (i): γ = −1; τ = −0.75
D 0.001 0.002 0.005 0.024 −0.496 0.248 −0.756 0.573
control 0.000 0.001 0.001 0.001 −0.035 0.002 0.927 0.861
constant −0.001 0.003 −0.001 0.004 0.272 0.077 −0.506 0.257

simulation (ii): γ = −1; τ = 0
D 0.001 0.004 0.001 0.009 −1.223 1.496 −1.225 1.501
control 0.000 0.001 0.000 0.001 −0.197 0.040 0.841 0.709
constant 0.000 0.002 0.001 0.004 0.612 0.379 0.494 0.244

simulation (iii): γ = 0; τ = −0.75
D −0.002 0.002 0.000 0.008 −0.003 0.001 0.082 0.008
control 0.001 0.001 0.001 0.001 0.001 0.001 1.082 1.172
constant 0.002 0.002 0.000 0.004 0.002 0.002 −0.512 0.263

simulation (iv): γ = 0; τ = 0
D 0.000 0.002 0.002 0.004 0.001 0.002 −0.268 0.073
control 0.002 0.001 0.002 0.002 0.002 0.001 0.737 0.545
constant 0.000 0.002 −0.001 0.004 0.000 0.002 0.515 0.266

simulation (v): γ = 1; τ = −0.75
D −0.001 0.003 −0.002 0.006 0.724 0.526 0.811 0.659
control 0.000 0.001 0.000 0.001 −0.209 0.045 0.842 0.709
constant 0.001 0.002 0.002 0.004 −0.336 0.117 −0.501 0.251

simulation (vi): γ = 1; τ = 0
D −0.001 0.002 −0.002 0.004 0.238 0.058 −0.099 0.011
control −0.002 0.001 −0.001 0.002 −0.058 0.005 0.600 0.361
constant 0.002 0.002 0.001 0.004 −0.102 0.013 0.544 0.297

Notes: results based on 2 000 replications; sample size N = 10 000; exogenous variables drawn once and then kept fixed; true
coefficient values: βD = 1, βcontrol = 1, and βconst = 0.

Even for γ = 0 (simulations iii and iv), FIML exhibits an MSE that just marginally
exceeds the MSE of the ordinary heckit model.

4 Real Data Application

We further apply the estimators to data from a randomized trial; see Augurzky
et al. (2012) for a detailed description and a comprehensive empirical analysis. This
experiment aims at analyzing the effectiveness of financial incentives for assisting
obese individuals in losing body weight. By the end of a rehab hospital stay, 698
overweight individuals were given an individual weight-loss target of 6 to 8 percent
of current body weight, which they were prompted to realize within four months.
Participants were then randomly assigned to two incentive groups and one con-
trol group. Contingent on success, a reward of up to e 150 (group 150) and e 300
(group 300), respectively, was offered to members of the treatment groups. The con-
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trol group received no financial incentive. Rewards were offered as a function of the
degree of target achievement, i.e., participants who lost some weight but failed to
realize the weight-loss target received less than the maximum reward. After four
months, participants were requested to visit an assigned pharmacy for verifying
actual weight loss, but a substantial number of participants failed to show up at the
weigh-in. More precisely, 178 individuals selected themselves out of the trial, while
520 complied and attended the weigh-in. The compliance rate varied substantially
between groups: it was 66.5 percent for the control group, 72.9 percent for group
150, and 84.3 for group 300. This nicely meets our prior expectation that the prob-
ability of reporting weight is affected by the interaction of actual weight loss and
group membership, as only those who were both successful and members of one of
the treatment groups had a financial incentive to attend the weigh-in.

In the present empirical analysis, the degree of target achievement, i.e., actual
weight-loss divided by targeted weight loss, serves as the dependent variable.7 In-
dicators for group membership are the key explanatory variables, with the control
group serving as the reference. In addition, age and indicators for being female and
being born in Germany enter the regression equation as controls. A further dummy
indicating that a participant had to visit a nearby pharmacy, i.e., one within the
same zip-code area as the place of residence, exclusively enters the selection equa-
tion. This exclusion restriction is justified by travel time representing a likely de-
terminant for the decision of whether to show up at the weigh-in, but having no
obvious link to success.

Table 2 displays regression results for FIML, two-step, ordinary heckit, and OLS.
Test results do not clearly argue for selection on unobservables since the estimate for
ρ does not significantly deviate from zero, neither for ordinary heckit nor for FIML
estimation. This equivalently holds for the two-step approach, where the group-
specific Mill’s ratios are jointly insignificant. Yet, conditional on selection correc-
tion, both FIML and two-step are clearly favored over ordinary heckit by Wald-test
of the respective restrictions (p-values 0.03 and 0.01).

Focussing on the estimated treatment effects, the choice of estimation method
clearly matters. OLS and ordinary heckit both suggest that receiving a financial in-
centive increases the success rate by roughly 40 to 50 percentage points. Yet, the
amount of the financial reward seems to be immaterial. FIML and two-step estima-

7Since participants may gain weight or exceed the weigh-reduction target, the dependent vari-
able has support over the entire real line.
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Table 2: Results for Weight-Loss Experiment
FIML Two-Step Ordinary Heckit OLS

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

Main equation:
e 150 0.215 0.143 0.238 0.373 0.429∗∗ 0.091 0.408∗∗ 0.088
e 300 0.470∗∗ 0.154 0.272 0.392 0.506∗∗ 0.104 0.452∗∗ 0.086
age −0.001 0.004 −0.001 0.006 −0.003 0.004 −0.005 0.004
female −0.160∗∗ 0.079 −0.147∗ 0.085 −0.172∗∗ 0.077 −0.178∗∗ 0.076
native 0.020 0.088 0.020 0.091 0.013 0.087 0.008 0.087
δcontrol - - 0.059 0.687 - - - -
δe 150 - - 0.470 0.425 - - - -
δe 300 - - 0.762 0.903 - - - -
constant 0.340 0.255 0.409 0.577 0.445 0.302 0.655∗∗ 0.201

Selection equation:
e 150 −0.077 0.206 - - 0.200 0.124 - -
e 300 0.521∗ 0.277 - - 0.595∗∗ 0.133 - -
age 0.020∗∗ 0.005 - - 0.019∗∗ 0.005 - -
female 0.115 0.128 - - 0.076 0.116 - -
native 0.039 0.143 - - 0.057 0.129 - -
nearby pharmacy 0.332∗∗ 0.122 - - 0.309∗∗ 0.108 - -
constant −0.817∗∗ 0.326 - - −0.741∗∗ 0.278 - -

Selection equation control group:
age - - 0.016∗∗ 0.008 - - - -
female - - −0.042 0.198 - - - -
native - - 0.075 0.216 - - - -
nearby pharmacy - - 0.300∗ 0.179 - - - -
constant - - −0.569 0.489 - - - -

Selection equation e 150 group:
age - - 0.024∗∗ 0.008 - - - -
female - - 0.023 0.195 - - - -
native - - −0.018 0.208 - - - -
nearby pharmacy - - 0.537∗∗ 0.183 - - - -
constant - - −0.836∗∗ 0.424 - - - -

Selection equation e 300 group:
age - - 0.019∗∗ 0.009 - - - -
female - - 0.308 0.231 - - - -
native - - 0.175 0.274 - - - -
nearby pharmacy - - −0.056 0.215 - - - -
constant - - −0.077 0.522 - - - -

γe 150 1.206∗∗ 0.484 - - - - - -
γe 300 0.142 0.495 - - - - - -
σε 0.836∗∗ 0.034 - - 0.802∗∗ 0.036 0.795
ρ 0.199 0.252 - - 0.260 0.271 -

Notes: ∗∗ significant at 5%; ∗ significant at 10%; total number of obs. is 698; for 178 obs. weight-loss information is missing.

tion of the generalized model, however, yield a different picture. For the latter, no
significant incentive effect is found. Here, the inefficiency of two-step estimation
is underpinned by rather large standard errors. For FMIL, the estimated treatment
effect for group 300 is similar to its counterpart from OLS and ordinary heckit es-
timation. Yet, the estimated effect for group 150 is substantially smaller and even
becomes statistically insignificant. Hence, on basis of FIML, one concludes that the
amount of the reward matters for weight loss. The estimates for γe 150 and γe 300
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have the expected positive sign. However – contrary to expectations – the latter
is much smaller. Moreover, a large standard error renders the estimate for γe 300

statistically insignificant. This may be explained by the small number of dropouts
in group 300, which makes the identification of γe 300 difficult.

5 Conclusions

In this article we demonstrate that the classical Heckman (1976, 1979) selection cor-
rection estimator is misspecified and inconsistent when an interaction of the out-
come with an explanatory variable matters for selection. Randomized trials assess-
ing the effects of an incentive scheme may serve as a typical example for this kind
of sample selection problem. A FIML and a simple two-step estimator that both ad-
dress this specification problem are developed. Monte-Carlo simulations illustrate
that the bias of the ordinary Heckman (1976, 1979) estimator is removed by these
generalized estimation procedures. Finally, the suggested estimators are applied to
data from a randomized trial that evaluates the effectiveness of financial incentives
for assisting obese in their attempt to lose weight. Estimation results indicate that
the choice of the estimation procedure clearly matters.
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A Appendix

A.1 Generalizing the Log-Likelihood Function

In order to generalize the log-likelihood function of the ordinary heckit model (see
e.g. Amemiya, 1985, p. 386), we augment the index function α′Zi by γβ′XiDi and
replace the scalar parameters σ2

υ and σευ by the functions (5) and (6), respectively:

li =



log Φ
(
−α′Zi−γβ′XiDi√

var(υ̃i|Di)

)
if Si = 0

log Φ

 α′Zi+γβ′XiDi+(Yi−β′Xi)

(
cov(εi ,υ̃|Di)

σ2
ε

)
√

var(υ̃i|Di)

(
1− cov(εi ,υ̃i |Di)

2

σ2
ε var(υ̃i |Di)

)


−1
2

(
Yi−β′Xi

σε

)2
− log

(
σε

√
2π
) if Si = 1.

(11)

Then we apply the normalization (7) to (5), and eliminate τ and σευ by entering
(8) into the equation, yielding

var(υ̃i|Di) = 1 + 2γ(σευ + τσ2
ε )Di + σ2

ε γ2D2
i (12)

= 1 + 2ρσεγDi + σ2
ε γ2D2

i ,

which is nonnegative, because ρ is bounded in the [−1, 1] interval. Further, using
(6) and eliminating τ and σευ by entering (8) into the equation yields

cov(εi, υ̃i|Di)

σ2
ε

=
σευ + (τ + γDi) σ2

ε

σ2
ε

=
ρ

σε
+ γDi. (13)

Finally, using (13) and (12) we simplify

var(υ̃i|Di)

(
1− cov(εi, υ̃i|Di)

2

σ2
ε var(υ̃i|Di)

)
= var(υ̃i|Di)− σ2

ε

(
ρ

σε
+ γDi

)2

(14)

= var(υ̃i|Di)− ρ2 − 2ρσεγDi − σ2
ε γ2D2

i

= 1− ρ2,

and substitute (12), (13), and (14) into (11), yielding (9).
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