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1 Introduction

In economics and industrial organization (IO), the Bertrand paradox describes a situation
in which the competing firms in a duopoly reach a Nash equilibrium where their price
equals marginal cost. This result is characterized as a paradox because, typically, one
would expect the price to equal marginal cost only in markets with a large number of
firms. One resolution to the paradox, that has been emphasized by the theoretical IO
literature, is the existence of constraints in the firms’ capacity: if a firm sets its price at
marginal cost and cannot meet the market demand, the rival firm has an incentive to de-
viate to a higher price, since it will still be able to attract some customers. In this paper,
I study a model of oligopolistic competition in a market characterized by search frictions.
I show that, despite the emphasis that has been placed by the literature on the capacity
constraint resolution, the existence of such constraints is only a subcase of a more general
market description where the Bertrand paradox fails to hold. In particular, I prove that
Bertrand’s paradox is resolved so long as the customers’ expected utility from visiting a
certain store is a decreasing function of the realized demand at that store.

I arrive at this generalization by building on a model that provides micro-foundations
on the demand side of the market, namely the directed search model. In this model,
strategic buyers, who want to consume one unit of an indivisible good, observe the prices
of all sellers and visit the seller who promises them the highest expected utility. Search
frictions are captured by the fact that buyers cannot coordinate their visiting strategies,
and it is costly to visit more than one seller. I augment the baseline model with three
ingredients: generalized capacity constraints, congestion effects, and pricing that is con-
tingent on ex post realized demand.1 I show that, as long as any one of these three
ingredients is present in the model, the Bertrand paradox ceases to exist, and this is true
because the different ingredients share a common feature: they all lead to setups in which
customers tend to dislike crowded stores. As a result, buyers do not necessarily visit the
seller with the lowest price, which, in turn, relaxes the price war that typically leads to
the Bertrand outcome.

The result described above offers a new way of looking at the role of capacity con-
straints in the resolution of Bertrand’s paradox. With capacity constraints, buyers dislike
crowded stores because these stores are associated with a higher chance of getting ra-
tioned. But other things might be going on. Perhaps sellers can serve all the visiting
customers, but the buyers’ valuation of the good diminishes when the store is crowded.
Alternatively, if sellers can price based on ex post realized demand, they might charge
more in the event that many customers show up. In all three scenarios, the paradox
breaks down because buyers exert externalities on one another when visiting the same
location, thus providing sellers with an incentive to charge higher prices in equilibrium.
Somewhat surprisingly, this simple idea has not been formally described in the literature.

1 A detailed description of these ingredients will follow. In short, the first ingredient simply means
that sellers can produce up to a certain number of units of the good. The second ingredient intends to
capture the fact that the consumers’ valuation of the good might depend on the number of customers
who get served at a certain store (e.g. people tend to dislike crowded restaurants or big lines). The third
ingredient allows sellers to charge prices that depend on how many buyers show up at their store.
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In the baseline directed search model, m sellers, usually assumed to possess only one
unit of an indivisible good, post prices in order to attract some of the n buyers in the
market, and buyers get to visit exactly one seller. The first way in which I depart from
the standard model, is by assuming that all sellers can serve up to k ≤ n customers, at a
constant marginal cost. I treat k as given and describe the symmetric equilibrium price
and profit for its various realizations. I show that the equilibrium price exceeds marginal
cost if and only if there are some capacity constraints, i.e. k < n. Since k captures the
intensity of frictions in the market, it is interesting to study how the equilibrium profit
depends on this parameter.2 An increase in k implies a higher expected number of sales
but, on the other hand, it decreases the local monopoly power of sellers. I show that the
symmetric equilibrium price is strictly decreasing in k, and the profit is hump-shaped,
eventually reaching zero when k = n.

The second way in which I depart from the baseline model, is by assuming that buyers’
utility from consuming the good depends negatively on the number of customers served
by a certain seller. For instance, consumers tend to dislike crowded stores, restaurants,
or amusement parks (too little space or too long waiting lines). In many cases, this type
of externality might be more relevant than capacity constraints. For example, companies
that provide live streaming of sporting events typically do not ration any customers who
want to buy their services. Nevertheless, the quality of streaming for any given customer
depends crucially (and negatively) on the total number of customers served. I show that
in the presence of such congestion effects, the symmetric equilibrium price will always
exceed the marginal cost, even if sellers face no capacity constraints. Surprisingly, the
more severe the negative externality, the higher the equilibrium price and profit.

The third ingredient that I incorporate into the standard directed search model, is
the possibility of pricing based on ex post realized demand, first studied by Coles and
Eeckhout (2003). An example of such pricing behavior is an auction, where the price
paid by the buyer ultimately depends on the total number of participants (and their val-
uation of the good).3 Assuming that sellers can price based on ex post realized demand,
and that they do not face capacity constraints, I show that there exists a continuum of
equilibrium prices that exceed marginal cost. This indeterminacy of equilibrium has also
been documented by Coles and Eeckhout (2003). In their model, each seller has only one
unit of the good available. Here, I highlight that this important result also holds true in
environments where sellers’ capacity is unconstrained.

The discussion above reveals that the three ingredients introduced in the model serve
as collusion devices that weaken competition among sellers and help them boost equilib-

2 As mentioned earlier, the search frictions in the directed search model are captured by the fact that
buyers cannot coordinate their visiting strategies, and it is costly to visit more than one sellers. Hence, the
element of frictions is present even if k = n. The case in which k < n is particularly interesting because
then, some sellers will be visited by more buyers than they can accommodate, while others might have
idle capacity. In this case, the definition of the term “frictions” is close in spirit to Lagos (2000), who
defines frictions as the coexistence of excess supply and excess demand within the same market.

3 A more recent example of a company that follows pricing based on ex post realized demand is
Groupon. This web-based company offers “deals of the day”, but the deals are valid only if a certain
number of customers participate.
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rium profits. Hence, sellers might have an incentive to create conditions in the market
that resemble these ingredients, especially when doing so does not violate any anti-trust
laws. My model has some interesting policy implications, since the welfare properties of
equilibrium, under the three ingredients, are significantly different. Pricing based on ex
post demand can generate high profits, but does not affect the market surplus. In this
case, authorities should intervene only if they judge that the sharing rule of the surplus is
unfair. On the other hand, if sellers could “fix capacities” or artificially generate conges-
tion effects at their stores, the total surplus in the market would be reduced, but sellers
would pursue these actions, since they would both lead to higher equilibrium profits.

Conceptually, the present paper is closely related to Lester (2011), who also revisits
a traditional question in economics through the lens of a directed search model. In that
paper, the author studies the relationship between the price setting behavior of sellers
and the extent to which consumers can observe these prices before visiting a seller. He
shows that the conventional wisdom, according to which in a market with more informed
buyers the equilibrium price will be lower, does not necessarily hold in his model. The
channel through which this important result emerges, is one that plays a crucial role in
my analysis too: in the directed search model, due to capacity constraints, buyers do not
necessarily visit the seller with the lowest price.

The fact that Bertrand’s paradox will fail to hold in a directed search model, where
sellers’ capacity is constrained, is well established in the literature (for instance, see Peters
(1984)). Here, I argue that the paradox will not arise in any environment where buyers
tend to dislike crowded stores, and that the existence of capacity constraints is just one
example of such environments. Most papers in the directed search literature make an
extreme, but convenient, assumption on sellers’ capacity constraints: they simply assume
that sellers possess one unit of the good. Some exceptions are Lester (2010), Tan (2010),
and Watanabe (2010). The idea that buyers’ valuation of the good depends on the number
of customers who get served at a certain store is also exploited in Geromichalos (2009).
There is also a number of papers which study pricing based on ex post realized demand,
a la Coles and Eeckhout (2003). Examples of such papers include Julien, Kennes, and
King (2000), Virag (2007), and Jacquet and Tan (2012).

Finally, this paper is related to a number of papers, in the theoretical IO literature,
which have proposed various resolutions to Bertrand’s paradox.4 One strand of the lit-
erature focuses on product differentiation (for example, see Shaked and Sutton (1982)).
Another strand suggests that the Bertrand paradox breaks down if sellers interact re-
peatedly (for example, see Dudey (1992)). In static environments with a homogeneous
good, the resolution that has attracted the greatest share of attention is the existence of
capacity constraints. This idea dates back to Edgeworth (1897). In other notable work,
Kreps and Scheinkman (1983) consider a game where sellers choose their capacity and
their prices sequentially, and show that the resulting equilibrium coincides with Cournot’s
(Cournot (1838)) outcome. The present paper attempts to offer a new perspective, by
arguing that the existence of capacity constraints is just a special case of a general class
of environments where the paradox fails to hold.

4 I do not attempt to provide a complete survey of this literature here.
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The rest of this paper is organized as follows. In Section 2, I present a directed
search model, extended to incorporate general capacity constraints, congestion effects,
and pricing based on ex post realized demand. Sections 3, 4, and 5 describe equilibrium
in environments containing the ingredients described above, in isolation. In Section 6, I
compare the welfare properties of equilibrium in the three environments and discuss the
model’s policy implications. Section 7 concludes.

2 The Model

In this section, in the interest of generality, I describe a model of price posting and
consumer search with the following three ingredients: 1) sellers face capacity constraints,
2) buyers’ valuation of the good depends negatively on the total number of customers
who get served at a certain store, and 3) sellers are able to post prices that depend on ex
post realized demand. In the sections that follow, these three ingredients are not present
simultaneously. This is intentional. The purpose is to highlight that only one of them is
necessary in order to generate equilibria where the Bertrand Paradox fails to hold.

My model builds on Burdett, Shi, and Wright (2001). I consider a market with n
buyers and m sellers, n,m ≥ 2 and finite. All agents are risk neutral. All buyers are
identical and anonymous, and each wishes to purchase one unit of an indivisible good.
Each seller can produce i ≤ k units of the good at a linear cost c(i) = ci, c > 0. Hence,
k is the capacity constraint that sellers face. I treat this parameter as given and describe
the pricing decisions of sellers based on the various realizations of k. As it is common in
the directed search literature, I assume that that buyers can only visit one seller, and they
cannot coordinate their visiting strategies. It is the combination of these two assumptions
that captures the notion of search frictions in my model.

Buyers’ utility from consuming the good depends on the number of customers who
get served at a certain location: if a seller serves i ≤ n customers, the utility enjoyed by
each customer is u(i), and for any h < i, u(h) ≥ u(i). This assumption aims to capture
the existence of negative consumption externalities (people dislike to eat in over-crowded
restaurants), or congestion effects, such as lines or long waiting times. Furthermore, define
σ(i) ≡ i[u(i) − c], i.e. the net surplus generated by a seller who serves i customers. I
assume that σ(i) is non-decreasing for all i ≤ k. This assumption guarantees that it is
optimal for sellers to serve as many buyers as their capacity allows. Hence, rationing will
occur only if the number of visiting buyers exceeds k.

The exchange process consists of two stages. At the first stage, given the value of k
(which is common for all sellers), each seller posts a price advertisement, taking as given
the strategies of her m − 1 competitors. A price announcement for seller j is a vector
pj =

(
pj1, ..., p

j
n

)
, where pji is the price paid to seller j by customers who get served if that

seller gets visited by i buyers. At the second stage, buyers observe all the advertisements
and choose a probability of visiting each seller, taking as given the strategies of other
buyers. Let i represent the number of buyers who show up at seller j. If i ≤ k, all buyers
get served, but if i > k, the seller serves exactly k buyers chosen at random. The buyers
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who get served enjoy a net utility of u(min{k, i}) − pji , and those who get rationed (if
any) get a payoff of zero. I assume that sellers commit to their advertisements.

In order to have all agents participate in the trading process, the expected utility
and profit generated by the posted pricing schemes have to be non-negative. Moreover,
I assume that buyers can walk away from the trading process at any time and obtain
utility equal to zero. Hence, I require that in every contingency, the price paid by buyers
who get served cannot exceed their valuation of the good, i.e. for all i ≤ n, pji ≤
u(min{k, i}).5 I refer to these inequalities as ex post participation constraints. I do not
impose any assumptions that prevent prices from being smaller than the marginal cost, or
even negative, in some states, provided that they lead to a non-negative expected profit.

As it is common in the directed search literature, I focus on symmetric equilibria
in which buyers play mixed strategies in the subgame. A rich set of equilibria in pure
strategies exist, but they are considered implausible since they require an unreasonable
degree of coordination among the buyers, in the sense that a buyer needs to know where
other buyers are going.6 Equilibria in mixed strategies have gained popularity in the
literature, precisely because they are consistent with the frictions that directed search
models were designed to capture in the first place.

Consider ex ante payoffs. Suppose that seller j, who announces pj, gets visited by an
arbitrary buyer with probability θ. The expected utility of a buyer who visits seller j is

U j
(
pj, θ

)
=

n∑
i=1

(
n− 1

i− 1

)
(1− θ)n−i θ i−1min{i, k}

i

[
u (min{i, k})− pji

]
,

where
(
n−1
i−1

)
denotes the binomial coefficient, and the expected profit of seller j is

πj
(
pj, θ

)
=

n∑
i=1

(
n

i

)
(1− θ)n−iθ imin{i, k}

(
pji − c

)
.

For future reference, it is useful to define the function7

H(i, n, θ) ≡
(
n− 1

i− 1

)
(1− θ)n−i θ i−11

i
. (1)

Given the definition in (1) and noticing that
(
n
i

)
= (n/i)

(
n−1
i−1

)
, allows one to re-write the

expected utility and profit functions above as

U j
(
pj, θ

)
=

n∑
i=1

H(i, n, θ)min{i, k}
[
u (min{i, k})− pji

]
, (2)

πj
(
pj, θ

)
= nθ

n∑
i=1

H(i, n, θ)min{i, k}
(
pji − c

)
. (3)

5 For reasons that will become apparent later, in Section 4, I adopt a stronger assumption in order to
guarantee existence of equilibrium for all parameter values.

6 For a more detailed discussion on pure strategy equilibria see Burdett, Shi, and Wright (2001).
7 The term H(i, n, θ) represents the probability with which a buyer who visits seller j gets served,

when seller j has only one unit of the good available and a total number of i customers show up.
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Notice that the term
∑n

i=1H(i, n, θ)min{i, k} pji appears in both (2) and (3). This obser-
vation will be key for solving the sellers’ profit maximization problem.

To conclude this section, I present two important algebraic facts, that I will use re-
peatedly in the paper. Recall the definition of H(i, n, θ) in (1) and also define the function

F (i, n, θ) ≡ i− nθ

1− θ
. (4)

The following relationships hold true:

Fact 1:
n∑

i=1

H(i, n, θ) i = 1,

Fact 2:
n∑

i=1

H(i, n, θ)F (i, n, θ) i = 1.

Fact 1 is obvious.8 Fact 2 is not too hard to show with pencil and paper, but it can
also be easily verified using some software such as Mathematica or Maple. Interestingly,
although the functions H,F look quite complex when taken individually, the sum of their
product, also multiplied by i, turns out to be equal to the unit.

3 Capacity Constraints

In this section, I assume that sellers can accommodate only up to k ≤ n buyers, and I
ignore congestion effects and sophisticated pricing mechanisms. As I mentioned above,
the purpose of this strategy is to stress that only one of the three ingredients of the model
described in Section 2 is necessary in order to generate equilibria where the Bertrand
Paradox is resolved. More precisely, I assume that u(i) = u > c, for all i ≤ k.9 Also,
the typical seller j can only advertise a unique price, pji = pj, for all i ≤ n. Under these
specifications, equations (2) and (3) become

U j
(
pj, θ

)
=

(
u− pj

) n∑
i=1

H(i, n, θ)min{i, k}, (5)

πj
(
pj, θ

)
= nθ

(
pj − c

) n∑
i=1

H(i, n, θ)min{i, k}. (6)

The term πj (pj, θ) is the expected profit of seller j, when she announces pj and gets
visited by an arbitrary buyer with probability θ. The term U j (pj, θ) is the expected
utility of a buyer who visits seller j.

8 The expression H(i, n, θ)i is the probability with which a buyer’s preferred seller gets visited by a
total of i buyers. Hence, the sum over all possible events must add up to 1.

9 One of the assumptions adopted in Section 2 required the function σ to be non-decreasing for all
i ≤ k. Here, σ(i) = i(u− c) and, therefore, u > c guarantees that σ(i) is strictly increasing.
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The typical seller chooses her price, taking as given the prices of her rival sellers.
Since, the goal here is to construct symmetric equilibria, I assume that all other sellers
post the (same) price p̃. Seller j sets pj understanding that, in the second stage, buyers
will observe pj, p̃ and will determine the probabilities with which they visit each seller,
such that they are indifferent among all sellers (recall that buyers are assumed to play
mixed strategies in the subgame). Hence, if θ represents the probability with which an
arbitrary buyer visits seller j, then the probability with which that buyer visits any other
seller is given by θ̃ = θ̃(θ) = (1− θ)/(m− 1).10 Formally, seller j solves

max
pj

πj
(
pj, θ

)
s.t. U j

(
pj, θ

)
= U l(p̃, θ̃).

The term U l(p̃, θ̃) is the expected utility that buyers obtain if they visit any seller l ̸= j.
It is described by (5), if one substitutes pj with p̃ and θ with θ̃, i.e. the price and visiting
probability associated with seller l.

Having established the sellers’ problem, I now state the first main result of this section.

Lemma 1. In the unique symmetric equilibrium, every buyer visits each seller with prob-
ability θ∗ = 1/m, and all sellers announce the price

p∗(n,m; k) =

∑n
i=1 H

(
i, n, 1

m

)
min{i, k}

{
m

m−1

[
1− F

(
i, n, 1

m

)]
u+ F

(
i, n, 1

m

)
c
}

1
m−1

∑n
i=1H

(
i, n, 1

m

)
min{i, k}

[
m− F

(
i, n, 1

m

)] , (7)

where the functions H and F are defined in (1) and (4), respectively.

Proof. A key observation is that the term pj
∑n

i=1H(i, n, θ)min{i, k} appears in both
πj (pj, θ) and U j (pj, θ). Solving the constraint in the seller’s problem with respect to this
term and substituting into the profit, reveals that seller j’s objective function is

max
θ

nθ

[
(u− c)

n∑
i=1

H(i, n, θ)min{i, k} − U l(p̃, θ̃)

]
.

Hence, the seller’s objective can be written as a function of the variable θ only. Seller j’s
best response satisfies the first-order condition

(u− c)
n∑

i=1

H(i, n, θ)min{i, k} − U l(p̃, θ̃) +

+θ

[
(u− c)

n∑
i=1

∂H(i, n, θ)

∂θ
min{i, k} − (u− p̃)

n∑
i=1

∂H(i, n, θ̃)

∂θ̃

dθ̃

dθ
min{i, k}

]
= 0. (8)

10 Notice that the analysis is consistent with the fact that the market studied here is an oligopoly. The
number of sellers, m, is small enough so that when a seller chooses her price, she understands that this
will affect not only the probability with which buyers visit her store in the second stage, but also the
probability with which buyers visit her rivals. If m is very large, the effect of pj on θ̃ is so small that
can be safely ignored. This is equivalent to the market utility approach often employed in the literature.
Under this approach, sellers maximize profits subject to the constraint of providing visiting buyers with
a certain level of utility, which they take as given. Examples of papers which build on this method are
Montgomery (1991), Lang (1991), Acemoglu and Shimer (1999), and Galenianos and Kircher (2009).
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Notice a few important points. First, dθ̃/dθ = −1/(m− 1). Second,

∂H(i, n, x)

∂x
= H(i, n, x)

(
i− 1

x
− n− i

1− x

)
.

Third, since the focus is on symmetric equilibria, one can now (after obtaining the first-
order condition) impose symmetry: all sellers must post the same price, pj = p̃ = p∗,
which, in turn, implies that all buyers will visit each seller with the same probability,
θ = θ̃ = θ∗ = 1/m. Once these three observations are incorporated into (8), we are left
with one equation in one unknown, p∗. Solving with respect to this term, after some
manipulations, yields the desired result.

Lemma 1 provides a closed form solution for the unique symmetric equilibrium price,
for any n,m, k. Naturally, p∗ is increasing in n and decreasing in m. More interestingly,
p∗ is strictly decreasing in the capacity of sellers. Intuitively, given the frictions in the
environment (inability of buyers to coordinate), a lower k implies a higher probability of
rationing. This provides sellers with a greater local monopoly power, and allows them
to charge a higher per unit price. The monotonicity of p∗ in k is an important finding,
which, to my knowledge, has not been shown in any other paper in the directed search
literature.11 Since the proof contains some technical details that are not essential for
the understanding of the model, it is relegated to the appendix. To illustrate (7), let
n = m = 2 and k = 1. Then, one can easily show that p∗(2, 2; 1) = 0.5(u + c). Compare
this result to the one found in Burdett, Shi, and Wright (2001). In that paper, sellers
have one unit of the good (k = 1), and the parameters u, c are normalized to 1 and 0,
respectively. For n = m = 2, the authors find p∗ = 0.5. Thus, the two results coincide.

I now focus on the equilibrium profits and state the main result of this section. From
(6), in the symmetric equilibrium, each seller has an expected profit equal to

π∗(n,m; k) =
n

m
[p∗(n,m; k)− c]

n∑
i=1

H

(
i, n,

1

m

)
min{i, k}. (9)

Since every term inside the summation is positive, sellers make a positive profit if and
only if p∗ is greater than the marginal cost. The next proposition establishes that this is
indeed the case as long as sellers face some capacity constraints.

Proposition 1. a) If k = n, then p∗(n,m; k) = c and, hence, π∗(n,m; k) = 0.
b) If k < n, then p∗(n,m; k) > c and, hence, π∗(n,m; k) > 0.

Proof. a) For the economy of space, I writeH(i) forH(i, n, 1/m) and F (i) for F (i, n, 1/m).
First, notice that if k = n, one can write

p∗(n,m; k) =

∑n
i=1H(i)i

{
m

m−1
[1− F (i)]u+ F (i) c

}
1

m−1

∑n
i=1H(i)i [m− F (i)]

=

11 As mentioned in the Introduction, most papers in the directed search literature assume that k is
fixed, and usually equal to one.
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=
m

m−1
u
∑n

i=1H(i)i[1− F (i)] + c
∑n

i=1 H(i)iF (i)
1

m−1
[m

∑n
i=1H(i)i−

∑n
i=1H(i)F (i)i]

= c,

where the last equality follows directly from Facts 1 and 2. Thus, if k = n, the equilibrium
profit for sellers is zero, and the Bertrand result emerges.

b) To see why any k < n is sufficient for p∗(n,m; k) > c, recall that p∗(n,m; k) is
strictly decreasing in k, for all k = 1, ..., n (see proof in the appendix). In other words,
for all k = 1, ..., n − 1, p∗(n,m; k) > p∗(n,m; k + 1). Since p∗(n,m;n) = c, we have that
p∗(n,m; k) > c for all k < n.

As long as sellers face some capacity constraints (k < n), they achieve strictly positive
profit in the symmetric equilibrium. The equilibrium profit is the product of the mark-
up term p∗(n,m; k) − c and the expected number of sales.12 Clearly, expected sales
increase in k. However, these increases get very small as k gets close to n. On the
other hand, p∗(n,m; k) is decreasing in k. Typically, π∗(n,m; k) is increasing for small
values of k, and eventually it decreases until π∗(n,m;n) = 0. One exception to this
rule occurs when the market tightness n/m is very small. In this case, the increase in
expected sales, following a rise of k from 1 to 2, is already very small. Thus, the negative
effect of increasing k (lower price) is dominant even for very small values of k, and the
symmetric equilibrium profit is maximized for k = 1. For example, if n = 5,m = 3,
π∗(5, 3; 1) = 0.493 > 0.438 = π∗(5, 3; 2).

4 Consumption Externalities

In this section, I assume that sellers can accommodate all the buyers who visit their
store. Also, like in the previous section, seller j can post a unique price, pji = pj, for
all i ≤ n. The interesting feature of this section is that buyers’ valuation of the good
depends on the number of customers who get served at their preferred location. If the
seller serves i customers, the utility enjoyed by each is given by u(i), and I assume that for
any h < i, u(h) ≥ u(i). Hence, this environment is characterized by negative consumption
externalities or, alternatively, congestion effects.

In this section (only), I relax the ex post participation assumption, that is, I do not
assume that the posted price should be no greater than the buyer’s valuation in every
single contingency. The reason is straightforward. Here, k = n, u(i) is non-increasing in
i, and sellers can only post one price. If n is large and u(n) is strictly decreasing (say
u(i) = 1/i), there will always exist events in which the buyer’s valuation for the good is
tiny. Hence, it might be impossible to find a single equilibrium price, p∗, that satisfies
p∗ ≤ u(i) for very large i’s. To guarantee existence of equilibrium, I will only require that
the posted prices lead to a non-negative expected utility for the buyers. In some sense,

12 This follows from (9): (n/m)H(i, n, 1/m) is the probability of getting i customers. These visits will
translate into sales as long as i ≤ k. Hence, the number of expected sales is (n/m)H(i, n, 1/m)min{i, k}.
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this is equivalent to assuming that the buyer commits to paying the posted price at the
location she picked. Notice that doing so is in fact optimal, if the buyer is assumed to
not know the total number of visiting customers when she makes the payment.13

Under these specifications, and using Fact 1, one can re-write equations (2),(3) as14

U j
(
pj, θ

)
=

n∑
i=1

H(i, n, θ)iu(i)− pj, (10)

πj
(
pj, θ

)
= nθ

(
pj − c

)
. (11)

The term πj (pj, θ) is the expected profit of seller j, when she announces pj and gets
visited by an arbitrary buyer with probability θ. The term U j (pj, θ) is the expected
utility of a buyer who visits seller j. As in the previous section, suppose that all sellers
but j post p̃, and let θ̃ = θ̃(θ) = (1 − θ)/(m − 1) denote the probability with which the
arbitrary buyer visits each of these sellers. Then, seller j solves

max
pj

πj
(
pj, θ

)
s.t. U j

(
pj, θ

)
= U l(p̃, θ̃).

In words, seller j chooses pj taking p̃ as given and realizing that, in the second stage, θ
and θ̃ will adjust so that buyers are indifferent between visiting seller j or any other seller
l. The next lemma describes the equilibrium prices.

Lemma 2. In the unique symmetric equilibrium, every buyer visits each seller with prob-
ability θ∗ = 1/m, and all sellers announce the price

p∗(n,m) = c+
m

m− 1

n∑
i=1

H

(
i, n,

1

m

)
i

[
1− F

(
i, n,

1

m

)]
u(i), (12)

where the functions H and F are defined in (1) and (4), respectively.

Proof. The proof follows the same steps as that of Lemma 1. One can replace pj from the
constraint of the seller’s problem into the profit function, and re-write seller j’s objective
only as a function of the probability θ,

max
θ

nθ
{ n∑

i=1

[H(i, n, θ)−H(i, n, θ̃)]i u(i) + p̃− c
}
.

13 Relaxing the ex post participation assumption guarantees existence of a symmetric equilibrium, but
it does not affect the properties of this equilibrium. Put differently, if this assumption is maintained,
existence of equilibrium is not guaranteed for all parameter values. However, when equilibrium does exist,
it still satisfies the property highlighted in the forthcoming Proposition 2, i.e. p∗ > c. Hence, relaxing
the ex post participation requirement does not change the nature of the main result.

14 Since here k = n, the buyer pays pj with certainty, and her net expected utility depends on the total
number of buyers who visit seller j. The seller’s profit is equal to the number of expected sales, nθ, times
the per unit mark-up pj − c.
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Taking the first-order condition with respect to θ, imposing the usual conditions of sym-
metry, and solving with respect to the price yields

p∗(n,m) =

∑n
i=1H

(
i, n, 1

m

)
i
{

m
m−1

[
1− F

(
i, n, 1

m

)]
u(i) + F

(
i, n, 1

m

)
c
}

1
m−1

∑n
i=1H

(
i, n, 1

m

)
i
[
m− F

(
i, n, 1

m

)] .

The formula reported in (12) follows from using Facts 1 and 2 in the expression above.

Lemma 2 provides a closed form solution for the equilibrium price, for any n,m, and
for any function u(i). As an example, suppose that n = m = 2. Since k = n, we know
from the analysis of Section 3 that, if u(i) = u for all i, then p∗(2, 2; 2) = c. But now
suppose that if both buyers show up at the same seller, their utility from consuming the
good is cut down by half, i.e. u(1) = u and u(2) = u/2. Under this specification, it is
easy to verify that p∗ = c+ u/2, and the equilibrium price exceeds the marginal cost. In
what follows I generalize this result for any parameter values. Notice that, from (11), the
symmetric equilibrium profit, π∗(n,m), will be positive if and only if p∗ > c.

Proposition 2. a) If u(i) = u for all i, then p∗(n,m) = c and, therefore, π∗(n,m) = 0.
b) If for all i ∈ {1, ..., n − 1}, u(i) ≥ u(i + 1), with strict inequality for some i, then

p∗(n,m) > c and, therefore, π∗(n,m) > 0.

Proof. It is understood that H(i) = H(i, n, 1/m) and F (i) = F (i, n, 1/m).
a) If u(i) = u, one can write

p∗(n,m) = c+
m

m− 1
u

n∑
i=1

H (i) i [1− F (i)] = c,

since, from Facts 1 and 2,
∑n

i=1H (i) i [1− F (i)] = 0.
b) If u(i) ̸= u, p∗(n,m) is given by (12). As pointed out earlier,

∑n
i=1H(i)i[1−F (i)] =

0. Moreover, the function 1 − F (i) is strictly decreasing in i, for all i ≤ n, and satisfies
1 − F (1) = (n − 1)/(m − 1) > 0, and 1 − F (n) = 1 − n < 0. Therefore, as long as
u(i) is decreasing (in the precise sense that u(i) ≥ u(i + 1), with strict inequality for
some i), multiplying the terms H(i)i[1 − F (i)] with u(i), i = 1, ..., n, assigns greater
weights on the relatively greater values. Since

∑n
i=1 H(i)i[1− F (i)] = 0, it must be that∑n

i=1H(i)i[1− F (i)]u(i) > 0. Then, from (12), p∗(n,m) > c follows immediately.

Proposition 2 indicates that when the buyers’ valuation of the good depends on the
total number of customers who visit a certain location, sellers can achieve positive profits
in the symmetric equilibrium, even in the absence of any capacity constraints. To my
knowledge, this result has not been documented in the directed search (or any other)
literature. It highlights that sellers can use the state dependent valuation of the good
as a collusion device in order to increase equilibrium profits. In Section 6, I argue that
this result has some important policy implications, since it indicates that sellers have an
incentive to make the buyers’ valuation dependent on ex post realized demand artificially
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(for example, by allowing big lines at their stores).
I now illustrate Proposition 2 using a concrete example. Let u(i) = v − κ(i − 1),

with κ > 0 and v > c. Hence, the buyer’s valuation decreases linearly in the number of
other buyers that visit the same store. To guarantee that σ(i) = i[v − c − κ(i − 1)] is
non-decreasing, I impose the restriction κ ≤ (v − c)/(2n − 1). Under this specification,
the equilibrium price becomes

p∗(n,m) = c+ κ
m

m− 1

n∑
i=1

H

(
i, n,

1

m

)[
F

(
i, n,

1

m

)
− 1

]
i2,

and one can show that
∑n

i=1H (i, n, 1/m) [F (i, n, 1/m)− 1] i2 = (n−1)/m, implying that

p∗(n,m) = c+ κ
n− 1

m− 1
.

Clearly, the equilibrium price and the profit, π∗ = κ[n(n − 1)][m(m − 1)]−1, are
increasing in the parameter κ, which captures the reduction in the valuation of the good
when one additional buyer visits a certain store. When κ is large, the expected utility from
visiting a store with many customers is diminished. Thus, buyers are willing to choose
a seller with a higher price, hoping that this seller will be visited by fewer customers.
This, in turn, gives an incentive to sellers to post higher prices. Of course, in symmetric
equilibrium, all sellers get the same number of expected buyers. However, the existence
of congestion effects serves as a collusion device allowing sellers to achieve positive profit,
even if k = n.

5 Pricing Based on Ex Post Realized Demand

In this section, I maintain the assumption k = n. Also, like in Section 3, I assume that
u(i) = u > c, for all i ≤ n. The interesting results of this section are driven by the fact
that sellers can post prices that are contingent on ex post realized demand. More precisely,
the typical seller j can advertise a vector pj =

(
pj1, ..., p

j
n

)
, where pji is the price paid to

seller j by all customers when i of them show up. Ex post participation of the buyers
requires that, for all i ≤ n, pji ≤ u. Prices in some states can be smaller than the marginal
cost, or even negative (and sellers are committed to honor these announcements), as long
as they lead to a non-negative expected profit.

Under these specifications, equations (2) and (3) become15

U j
(
pj, θ

)
= u−

n∑
i=1

H(i, n, θ) i pji ,

πj
(
pj, θ

)
= nθ

[
n∑

i=1

H(i, n, θ) i pji − c

]
.

15 In this environment, buyers enjoy utility u with certainty, and they pay a price that depends on the
total number of customers who visit seller j. This is in contrast with Section 4 (equation (10)), where
buyers pay a certain price, and the valuation of the good depends on ex post realized demand.
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The term πj (pj, θ) is the expected profit of seller j, when she posts the price vector pj and
gets visited by an arbitrary buyer with probability θ. The term U j (pj, θ) is the expected
utility of a buyer who visits seller j. As in the previous sections, suppose that all sellers
but j post p̃ = (p̃1, ..., p̃n), and let θ̃ = θ̃(θ) = (1− θ)/(m−1) denote the probability with
which the arbitrary buyer visits each of these sellers. Seller j solves

max
pj

πj
(
pj, θ

)
s.t. U j

(
pj, θ

)
= U l(p̃, θ̃).

In words, seller j advertises a pricing schedule pj taking p̃ as given and realizing that, in
the second stage, θ and θ̃ will adjust so that buyers are indifferent between visiting seller
j or any other seller l. The next lemma describes equilibrium prices.

Lemma 3. Every price vector p∗ = (p∗1, ..., p
∗
n) that satisfies

1

m− 1

n∑
i=1

H

(
i, n,

1

m

)
i

[
m− F

(
i, n,

1

m

)]
p∗i = c, (13)

n

m

[
n∑

i=1

H

(
i, n,

1

m

)
i p∗i − c

]
≥ 0, (14)

and p∗i ≤ u, for all i = {1, ..., n}, together with a strategy for the buyers to visit each seller
with probability θ∗ = 1/m, constitutes a symmetric equilibrium.

Proof. The proof follows the same steps as those of Lemmas 1 and 2. One can replace
the term

∑n
i=1H(i, n, θ) i pji from the constraint of the seller’s problem into the profit

function, and re-write seller j’s objective only as a function of θ,

max
θ

nθ

[
n∑

i=1

H
(
i, n, θ̃

)
i p̃i − c

]
. (15)

Taking the first-order condition in (15) with respect to θ and imposing the usual con-
ditions of symmetry yields (13). The left-hand side in (14) is the equilibrium expected
profit. Hence, (14) guarantees that expected profit is non-negative. Expected net utility
is guaranteed to be non-negative by the ex post participation constraints.

Lemma 3 reveals that there are n−1 degrees of freedom in determining the equilibrium
objects p∗1, ..., p

∗
n. Hence, equilibrium prices are not uniquely pinned down. This result is

not unique to my model. It was first established by Coles and Eeckhout (2003). However,
in that paper, sellers have only one unit of the good available. This paper demonstrates
that the well-known indeterminacy result, documented by Coles and Eeckhout (2003),
also holds true in environments without capacity constraints. To my knowledge, this
important extension has not been pointed out in the literature. I will return to explain
the intuition behind this finding after describing equilibrium profits.
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Let π∗(n,m;p∗) denote the symmetric equilibrium expected profit if price p∗ prevails,
and let U∗(n,m;p∗) be the analogue expression for equilibrium net expected utility. Thus,

π∗ (n,m;p∗) =
n

m

[
n∑

i=1

H

(
i, n,

1

m

)
i p∗i − c

]
, (16)

U∗ (n,m;p∗) = u−
n∑

i=1

H

(
i, n,

1

m

)
i p∗i . (17)

The following proposition states the most important results of this section.

Proposition 3. a) If sellers cannot apply state-contingent pricing, then the unique sym-
metric equilibrium has p∗i = c for all i = {1, ..., n} and π∗(n,m;p∗) = 0.

b) If sellers can apply state-contingent pricing, there exists a continuum of positive
profit levels that can be supported in the symmetric equilibrium.

c) In all symmetric equilibria, U∗(n,m;p∗) > 0.

Proof. a) When sellers cannot price based on ex post realized demand, it must be that
p∗i = p∗, for all i. Using this fact in (13), together with Facts 1 and 2, immediately implies
that p∗ = c. Then, imposing p∗ = c in (16) yields π∗(n,m;p∗) = 0.

b) The result is an immediate consequence of the price indeterminacy. Clearly, one
can find an infinite combination of prices, p∗1, ..., p

∗
n, such that (13) holds, p∗i ≤ u for all

i = {1, ..., n}, and (14) is satisfied with strict inequality. I just illustrate one: suppose
that sellers can choose a price, p1, that they will charge if only one customer visits their
store, and another price, p2, that they will charge if two or more customers show up.
Consider the prices p1 = u + (c− u)(m− 1){[m− F (1, n,m)]H(1, n,m)}−1, and p2 = u,
and let p̄∗ = (p1, p2, ..., p2). First, notice that the candidate prices satisfy (13). Moreover,

π∗(n,m; p̄∗) =
n

m

[
p1H(1, n,m) + p2

n∑
i=2

H(i, n,m)i− c

]
=

= (u− c)
n(n− 1)

m [(m− 1)2 + n− 1]
> 0.

Finally, notice that p1 < u, since, in the definition of p1, all the terms multiplying c−u are
positive. Thus, I have shown that the candidate prices constitute a symmetric equilibrium
associated with positive profit.

c) Suppose, by way of contradiction, that an equilibrium with U∗(n,m;p∗) > 0 exists.
Since p∗i ≤ u for all i, (17) indicates that this can only happen if p∗i = u for all i. However,
plugging this fact into (13) implies u = c, which is a contradiction.

Proposition 3 indicates that, in the absence of state-contingent pricing, the unique
equilibrium satisfies p∗ = c, and the Bertrand paradox emerges. If sellers can post prices
based on ex post realized demand, a continuum of equilibria exist, that are not payoff
equivalent. To see this point, fix the strategy of all sellers but j, and consider this seller’s
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best response. When seller j has access to a pricing scheme pji , she can advertise more
buyer surplus in some states and less in other states, leaving expected payoffs of other
players unaffected.16 Intuitively, given any price announcement by her rivals, seller j has a
best response correspondence (rather than function), which, by symmetry, gives rise to a
continuum of equilibrium prices. More importantly, in the small market, the various best
responses are associated with different levels of expected utility in the subgame (since
market utility is not fixed), which implies that the sharing rule of the surplus is not
uniquely pinned down. The last part of Proposition 3 states that sellers cannot extract
the whole surplus in symmetric equilibrium. This would require setting p∗i = u for all i.
However, according to part (a), a constant price necessarily leads to π∗(n,m;p∗) = 0.

One can describe equilibrium profits in more detail. Replacing the term c from the
equilibrium condition (13) into (16), yields

π∗ (n,m;p∗) =
n

m(m− 1)

n∑
i=1

H

(
i, n,

1

m

)
i

[
F

(
i, n,

1

m

)
− 1

]
p∗i . (18)

Clearly, the best equilibrium for the buyers is the Bertrand equilibrium, where p∗i = c
for all i, and π∗ (n,m;p∗) = 0. The best equilibrium for the sellers is achieved under a
price scheme p∗ that maximizes (18), subject to the constraint that p∗ respects (13), and
p∗i ≤ u for all i. Typically, the function G(i) ≡ H(i, n, 1/m)i[F (i, n, 1/m)− 1] is negative
for small values of i, it becomes positive as i increases, and eventually reaches zero as i
gets close to n. Hence, an equilibrium p∗ associated with high profits tends to assign a
greater weight (i.e. a higher value of p∗i ) on the terms G(i) that are positive and large,
without violating (13) and ex post participation.

As the discussion above reveals, when sellers can advertise prices that differ in each
state i = 1, ..., n, the set of possible equilibria is very rich. However, it is important to
highlight that all one needs in order to support equilibria with positive profits is some
price differentiation among states (i.e. a price schedule that is not fixed). As an example,
let m = 2, n = 10, and assume that sellers only have access to the following mechanism:
they can choose a price, p−, to be charged when five or less buyers show up, and a price,
p+, to be charged when six or more buyers show up. Then, any (p−, p+) that satisfies

443

256
p− − 187

256
p+ = c,

5

(
1

2
p− +

1

2
p+ − c

)
≥ 0,

and p−, p+ ≤ u, constitutes a symmetric equilibrium. In Figure 1, the bold red line
illustrates the set of all possible equilibrium prices, for u = 1, c = 0.2. Equilibrium
profits increase as one moves northwest along this line. The highest equilibrium profit is
achieved when p+ = 1 and p− = 0.537. The best equilibrium for the buyers is represented
by the point where the equilibrium line intersects with the 45 degree line, implying that
p− = p+ = 0.2 and, hence, π∗ = 0.

16 This is highlighted by the fact that, although the seller has n control variables, her best response
can be summarized by a choice of only one variable: the probability with which the arbitrary buyer visits
her store. See, in particular, equation (15).
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Figure 1: All p−, p+ on the bold red line are consistent with equilibrium.

6 Comparison of the Three Environments

In Sections 3, 4, and 5, I illustrated how the directed search model, augmented with
capacity constraints, congestion effects, or state-contingent pricing, respectively, can gen-
erate equilibria where the Bertrand paradox does not emerge. In this section, I highlight
that these different ingredients lead to the same result (failure of the Bertrand paradox),
because they share a common feature. Moreover, I compare equilibrium welfare under
the three environments and discuss potential policy implications of my model.

From Section 2, recall equation (2), which I repeat here for convenience,

U j
(
pj, θ

)
=

n∑
i=1

H(i, n, θ)min{i, k}
[
u (min{i, k})− pji

]
.

This is the expected utility of a buyer who visits seller j, when that seller announces
a price schedule pj and gets visited by an arbitrary buyer with probability θ. If there
are no capacity constraints, then min{i, k} = i for all i ≤ n. If there are no congestion
effects, then u (min{i, k}) = u. Finally, if seller j cannot post state-contingent prices,
then pji = pj. In an environment where these three scenarios hold true simultaneously,
equation (2) becomes U j (pj, θ) = u − pj. In words, buyers get served with certainty
at every location, and they pay the announced price. As a result, sellers who announce
prices higher than the competition get no customers. This leads to a price war that will
end only when all sellers set p∗ = c, so that the Bertrand equilibrium arises.
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It is now clear that the three different ingredients introduced in the model share a
common feature. They make a buyer’s expected utility, from visiting a certain seller, a
function of the total number of visitors at that seller. More precisely, in the presence of
any of the three ingredients, buyers tend to dislike sellers with many customers: when
k < n, many customers could imply rationing; when there are congestion effects, the valu-
ation of the good diminishes in crowded stores; and when sellers can post state-contingent
prices, they will tend to charge more when ex post realized demand is high.17 In all cases,
buyers are willing to visit sellers with higher prices because these sellers will tend to have
fewer customers. Sellers accept the offer and indeed charge higher prices in equilibrium.
To use the game theory jargon, the existence of (any of) the three ingredients studied in
this paper, serves as a collusion device that allows sellers to achieve positive profits.

I believe that this finding is of great importance. The IO literature has emphasized the
existence of capacity constraints as the most prominent resolution to the Bertrand para-
dox, at least in markets with homogeneous good and sellers. This paper highlights that
the existence of capacity constraints is just a subcase of a more general market descrip-
tion in which the Bertrand paradox fails to hold: equilibrium profits will be positive in
markets where the buyers’ expected utility from visiting a seller is a (decreasing) function
of that seller’s ex post realized demand. This negative relationship (between expected
utility and the number of customers) will be satisfied if sellers face capacity constraints,
but it will also be satisfied if there are congestion effects and/or if sellers have access to
state-contingent pricing. It should be pointed out that the choice to study oligopolistic
competition in a directed search model is crucial in order to arrive at this generalization.

I now examine the welfare properties of equilibria under the three environments. De-
fine the expected total surplus, S∗ ≡ nU∗ +mπ∗, where π∗ is expected profit per seller,
and U∗ is expected net utility per buyer, in the symmetric equilibrium. One can show that
in the model with capacity constraints, congestion effects, and state-contingent pricing,
respectively, the expected total surplus is given by

S∗(n,m; k) = n(u− c)
n∑

i=1

H

(
i, n,

1

m

)
min{i, k},

S∗(n,m;u) = n
n∑

i=1

H

(
i, n,

1

m

)
i [u(i)− c] ,

S∗(n,m;p∗) = n(u− c).

In the model with capacity constraints, every match generates a surplus equal to u−c,
but matches are not guaranteed. Since

∑n
i=1 H (i, n, 1/m)min{i, k} is the probability with

which a buyer gets served in the symmetric equilibrium, multiplying that term with n
yields the total number of expected matches in the economy (or the matching function).
Clearly, S∗(n,m; k) is strictly increasing in k, for all k ≤ n. In the model with congestion

17 To be more exact, in this paper I document the existence of multiple equilibria, but I do not claim
that equilibria with higher profits will emerge with higher probability. This statement just draws on the
discussion of Section 5, where I showed that higher equilibrium profits are linked to higher prices in states
where ex post realized demand is high.
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effects, all buyers get served. A buyer finds herself at a store with a total of i customers
with probability H(i, n, 1/m)i. In this event, a surplus u(i) − c per person is generated.
Stronger congestion effects imply a lower value of S∗(n,m;u). Finally, in the model with
state-contingent pricing, all buyers get served, and their valuation of the good does not
depend on the number of visiting customers (although the price they pay does).

Most modern economies enforce antitrust laws whose main objective is to prevent anti-
competitive practices, most notably price fixing.18 This paper highlights that sellers can
boost profits above the Bertrand level, without directly fixing prices. More importantly,
the practices that help sellers sustain prices above marginal cost, have different conse-
quences on social welfare. For example, state-contingent pricing is a practice that allows
sellers achieve positive equilibrium profits, but does not affect total welfare. Therefore,
in this environment, the authorities should intervene only if they judge that the sharing
rule of the surplus is unfair, e.g. sellers are making excessive profits.

Now consider the model with capacity constraints. The total surplus, S∗, is strictly
increasing in k. However, the discussion in Section 3 reveals that there exists a unique
ι < n, such that π∗(n,m; k) is decreasing in k, for all k ≥ ι. Hence, if sellers can fix ca-
pacities, typically, they will not choose the socially optimal k. As an example, consider a
market with m = 5, n = 50, u = 1, and c = 0.2. Suppose that sellers can silently agree on
a value of k, and then, given that k, they legitimately compete over prices. Sellers would
set k = 7 since, under this value, the per seller equilibrium profit is maximized and equals
π∗(50, 5; 7) = 4.692. At the same time, S∗(50, 5; 7) = 27.29. If the authorities could en-
force an increase of k by just one unit, the surplus would increase to S∗(50, 5; 8) = 30.53,
and this would lead to π∗(50, 5; 8) = 4.690. If k = 9, then S∗(50, 5; 9) = 33.30, and if
k = 10, then S∗(50, 5; 10) = 35.525.19

Finally, consider the policy implications for the model with congestion effects. For
concreteness, consider the numerical example introduced in Section 4, i.e. assume that
u(i) = v−κ(i− 1), with κ > 0, v > c, and κ ≤ (v− c)/(2n− 1). Under this specification,
the expected total surplus becomes

S∗(n,m;u) = n
n∑

i=1

H

(
i, n,

1

m

)
i [v − κ(i− 1)− c] =

n[m(v − c)− κ(n− 1)]

m
.

This expression is decreasing in the size of the congestion effect, κ. However, recall from
the discussion in Section 4, that π∗ = κ[n(n − 1)][m(m − 1)]−1, which is increasing in
κ. Hence, in this market, there is a clear conflict: sellers are better off when κ is large,
but social welfare is maximized when κ = 0. The authorities should be concerned about
this conflict, since sellers have a clear incentive to agree on practices that increase κ and,
thus, decrease S∗ artificially (and -importantly- do not violate any antitrust laws). Such
practices could include allowing big queues at the stores or hiring too few employees who
cannot provide quality services when many customers show up.

18 Other practices that antitrust laws aim to prevent include formation of cartels, barriers to entry, bid
rigging, product bundling, exclusive dealing, and misuse of patents and copyrights.

19 For these values of k the equilibrium profits become π∗(50, 5; 9) = 4.352 and π∗(50, 5; 10) = 3.727.
Also, notice that k does not need to be too close to n for S∗ to reach its upper bound, n(u − c). Here
n = 50, but for a k as low as 13, one obtains S∗(50, 5; 13) = 39.1, which is very close to n(u− c) = 40.
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7 Conclusions

In this paper, I revisit the Bertrand Paradox through the lens of a directed search model.
I augment the baseline model with three ingredients, capacity constraints, consumption
externalities, and state-contingent pricing, in isolation, and I show that in each case the
Bertrand Paradox does not arise. The three different ingredients share a common feature:
they make a buyer’s expected utility from visiting a specific seller, a decreasing function
of that seller’s ex post realized demand. In all three cases, buyers dislike stores with many
customers and, thus, are willing to visit sellers with higher prices. This economic force
leads to equilibria where sellers indeed post prices higher than the marginal cost. The
directed search model offers a new perspective of looking at the Bertrand Paradox, by
highlighting that the existence of capacity constraints is just a subcase of a more general
class of environments where the paradox fails to hold.

A Appendix

Proof of the fact that p∗(n,m; k) is strictly decreasing in k. For the economy of space, I
write H(i) for H(i, n, 1/m) and F (i) for F (i, n, 1/m). I show that for all k = 1, ..., n− 1,
Dp∗(k) ≡ p∗(n,m; k)− p∗(n,m; k + 1) > 0. To start, add and subtract the term m(m−
1)−1c

∑n
i=1H(i)min{i, k}[1 − F (i)] in the numerator of p∗ in (7). This allows one to

re-write the equilibrium price as

p∗(n,m; k) = c+m(u− c)

∑n
i=1H (i)min{i, k}[1− F (i)]∑n
i=1H (i)min{i, k}[m− F (i)]

. (a.1)

Using (a.1), for any k < n− 1,

Dp∗(k) =
m (u− c) Ω∑n

i=1H (i)min{i, k}[m− F (i)]
∑n

i=1H (i)min{i, k + 1}[m− F (i)]
, (a.2)

where I have defined the term

Ω ≡
n∑

i=1

H (i)min{i, k}[1− F (i)]
n∑

i=1

H (i)min{i, k + 1}[m− F (i)]

−
n∑

i=1

H (i)min{i, k + 1}[1− F (i)]
n∑

i=1

H (i)min{i, k}[m− F (i)].

The proof of monotonicity of p∗ will be complete, if I can show that the denominator of
the expression on the right-hand side of (a.2) and the term Ω share the same sign. I claim
that they are both positive, and I prove this claim below.

Claim 1: Both summations in the denominator of (a.2) are positive. I show
the result in detail for the first term. The proof is identical for the second term. Since
m ≥ 2, and H (i) > 0 for all i = 1, ..., n, it is true that

∑n
i=1H (i)min{i, k}[m− F (i)] >

20



∑n
i=1H (i)min{i, k}[1− F (i)]. I will now show that

∑n
i=1H (i)min{i, k}[1− F (i)] > 0.

It follows from Facts 1,2 that
∑n

i=1H(i)i[1−F (i)] = 0. Moreover, the function 1−F (i)
is strictly decreasing in i, for all i ≤ n, and satisfies 1 − F (1) = (n − 1)/(m − 1) > 0,
and 1 − F (n) = 1 − n < 0. Hence, there exists a unique ν ∈ {1, ..., n − 1}, such that
H(i)i[1− F (i)] ≥ 0 iff i ≤ ν, and one can write

ν∑
i=1

H(i)i[1− F (i)] = −
n∑

i=ν+1

H(i)i[1− F (i)]. (a.3)

Assume, without loss of generality, that k ≥ ν and notice that all terms on the
right-hand side of (a.3) are positive. This allows me to write

ν∑
i=1

H(i)i[1− F (i)] > −
k∑

i=ν+1

H(i)i[1− F (i)]− k

n∑
i=k+1

H(i)[1− F (i)] ⇔

n∑
i=1

H(i)[1− F (i)]min{i, k} > 0.

This concludes the proof of the first claim.20

Claim 2: Ω is positive. After a series of manipulations, one can obtain

Ω = (m− 1)

[
k∑

i=1

H (i) i
n∑

i=k+1

H (i)F (i)−
k∑

i=1

H (i)F (i)i
n∑

i=k+1

H (i)

]
,

and it suffices to show that

k∑
i=1

H (i) i
n∑

i=k+1

H (i)F (i) >
k∑

i=1

H (i)F (i)i
n∑

i=k+1

H (i) .

After multiplying throughout with i, the last inequality becomes

k∑
i=1

H (i) i
n∑

i=k+1

H (i)F (i)i >
k∑

i=1

H (i)F (i)i
n∑

i=k+1

H (i) i. (a.4)

Finally, use Facts 1 and 2 to replace
∑n

i=k+1H (i)F (i)i and
∑n

i=k+1 H (i) i in (a.4). My
original claim, that Ω > 0, will hold if and only if

k∑
i=1

H (i) i[1− F (i)] > 0.

This inequality holds for every parameter value, since
∑n

i=1H(i)i[1− F (i)] = 0, and the
function 1− F (i) is strictly decreasing in i. Hence, the proof is complete.

20 The intuition of this proof can be summarized as follows. Since the summation (for i = 1 to n) of
the terms H(i)i[1− F (i)] adds up to zero, and the terms associated with larger values of i are negative,
the expression

∑n
i=1 H(i)[1 − F (i)]min{i, k} tends to assign a smaller “weight” on the negative terms,

thus adding up to a value bigger than zero.
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richesses/par Augustin Cournot. L. Hachette.

Dudey, M. (1992): “Dynamic Edgeworth-Bertrand competition,” The Quarterly Journal
of Economics, 107(4), 1461–1477.

Edgeworth, F. (1897): “La teoria pura del monopolio,” Giornale degli economisti, 40,
13–31.

Galenianos, M., and P. Kircher (2009): “Directed search with multiple job appli-
cations,” Journal of Economic Theory, 144(2), 445–471.

Geromichalos, A. (2009): “Directed search and optimal production,” .

Jacquet, N., and S. Tan (2012): “Wage-vacancy contracts and coordination frictions,”
Journal of Economic Theory.

Julien, B., J. Kennes, and I. King (2000): “Bidding for labor,” Review of Economic
Dynamics, 3(4), 619–649.

Kreps, D., and J. Scheinkman (1983): “Quantity precommitment and Bertrand com-
petition yield Cournot outcomes,” The Bell Journal of Economics, pp. 326–337.

Lagos, R. (2000): “An Alternative Approach to Search Frictions,” Journal of Political
Economy, 108(5), 851–873.

Lang, K. (1991): “Persistent wage dispersion and involuntary unemployment,” The
Quarterly Journal of Economics, 106(1), 181–202.

Lester, B. (2010): “Directed search with multi-vacancy firms,” Journal of Economic
Theory.

(2011): “Information and prices with capacity constraints,” The American Eco-
nomic Review, 101(4), 1591–1600.

Montgomery, J. D. (1991): “Equilibrium Wage Dispersion and Interindustry Wage
Differentials,” The Quarterly Journal of Economics, 106(1), 163–79.

22



Peters, M. (1984): “Bertrand equilibrium with capacity constraints and restricted mo-
bility,” Econometrica: Journal of the Econometric Society, pp. 1117–1127.

Shaked, A., and J. Sutton (1982): “Relaxing price competition through product
differentiation,” The Review of Economic Studies, pp. 3–13.

Tan, S. (2010): “Directed Search and Firm Size,” National University of Singapore
mimeo.

Virag, G. (2007): “Collusive equilibria in directed search models,” University of
Rochester mimeo.

Watanabe, M. (2010): “Middlemen: A Directed Search Equilibrium Approach,” Uni-
versidad Carlos III de Madrid mimeo.

23


