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Abstract
We investigate the extension of backward-induction to von Neumann exten-
sive games (where information sets have a synchronous structure) and pro-
vide an epistemic characterization of it. Extensions of the idea of backward-
induction were proposed by Penta (2009) and later by Perea (2013), who also
provided an epistemic characterization in terms of the notion of common
belief in future rationality. The epistemic characterization we propose, al-
though differently formulated, is conceptually the same as Perea’s and so is
the generalization of backward induction. The novelty of this contribution
lies in the epistemic models that we use, which are dynamic, behavioral
models where strategies play no role and the only beliefs that are specified
are the actual beliefs of the players at the time of choice. Thus our analysis
is free of (objective or subjective) counterfactuals.

1 Introduction

The notion of backward induction in dynamic games with perfect information
is well known and its epistemic foundations have been studied extensively.1

1For recent surveys of the literature see Brandenburger (2007), Perea (2007).
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We consider the extension of the backward-induction procedure to von Neu-
mann extensive games (where information sets have a synchronous structure;
we call this procedure generalized backward induction) and provide an epistemic
characterization of it. Neither of these two steps is new: extensions of the
idea of backward-induction were proposed by Penta (2009) and later by Perea
(2013), who also provided an epistemic characterization in terms of the notion
of common belief in future rationality.2 The epistemic characterization we pro-
pose, although differently formulated, is conceptually the same as Perea’s and
so is the generalization of backward induction. The novelty of this contribution
lies in the notion of epistemic model that we use, which was first introduced in
Bonanno (2013).

The epistemic models of dynamic games used in the literature3 are static
structures that postulate, for each player, a complex set of conditional belief
hierarchies. In these models, at every information set of his a player holds
a belief about (a) the opponents’ chosen strategies, (b) the beliefs that the
opponents have, at their information sets, about the other players’ chosen
strategies, (c) the beliefs that the opponents have, at their information sets,
about the beliefs their opponents have, at their information sets, about the other
players’ chosen strategies, and so on. These complex structures are needed to
capture intricate subjunctive conditionals such as “if I were to move across then
he would believe that I am such-and-such a player, and he will believe that if
he were to move across then I would move across again and consequently he
would move across.” (Skyrms et al. (1999), p. 276). Moreover, in the standard
models, subjunctive conditionals or counterfactuals are also implicit in the use
of strategies. For dynamic games with perfect information Bonanno (2013)
introduced a simpler kind of models that are explicitly dynamic and make no
use of (objective or subjective) counterfactuals or dispositional belief revision;
furthermore, these are “behavioral” models in which strategies play no role:
states are described in terms of the actual choices made by the players rather
than in terms of hypothetical plans.4 In these models there are no hypothetical
beliefs or belief revision: only the actual beliefs of a player when it is her turn
to move.

2Defined as follows: players are rational and always believe in their opponents’ future rationality
and believe that every opponent always believes in his opponents’ future rationality and that
every opponent always believes that every other player always believes in his opponents’ future
rationality, and so on. The first version of the paper was written in 2010 but we shall quote from
the most recent version (February 2013).

3See, for example, Baltag et al. (2009), Battigalli and Siniscalchi (2002), Perea (2013; 2012).
4Behavioral models were introduced by Samet (1996).



G Bonanno 3

We extend the epistemic models of Bonanno (2013) to games with imperfect
information. We use a dynamic framework where the rationality of a player’s
choice is judged on the basis of the actual beliefs that she has at the time she
makes that choice. The set of “possible worlds” is given by state-instant pairs
(ω, t), where each state ω specifies the entire play of the game. Given a state ω
and an instant t, there will be a unique player who makes a decision at (ω, t)
(unless the play of the game has already reached a terminal history, in which
case there are no decisions to be made). If h is the decision history reached at
state ω and time t and i is the active player there, then player i has to choose an
action from the set A(h) of available actions at h. In order to make this choice
player i will form some beliefs about (1) what happened up to this point in the
game (that is, which history in her information set has been reached) and (2)
what will happen if she chooses action a, for every a ∈ A(h). These beliefs are
then used to assess the rationality of the choice that she ends up making at state
ω. We use a very weak notion of rationality, known as “material rationality”
(Aumann (1998)): at every state-instant pair (ω, t) a player is rational if (1) either
she is not active there or (2) the action she ends up taking at (ω, t) is optimal
given her beliefs, in the sense that it is not the case that she believes that there
is another action that guarantees her a higher payoff.

The epistemic condition that we consider - which we call forward belief of
rationality - is expressed as an event and is defined as the set of states where, at
every date t, the active player (1) is rational, (2) believes that future players are
rational, (3) believes that future players believe that future players are rational,
(3) believes that future players believe that future players believe that future
players are rational, and so on. Call this event FBR. We show (Proposition
1) that in an arbitrary model of a game if ω is a state such that ω ∈ FBR then
the terminal history associated with ω belongs to the set of terminal histories
that are the output of the generalized backward induction algorithm, which is
defined as follows. Let `max denote the depth of the game, that is, the length of
its maximal histories. The algorithm starts at information sets at depth `max

− 1
(these information sets are followed only by terminal histories), deletes choices
that are strictly dominated there and then iterates backwards towards the root.5

We also show (Proposition 2) that, for any game, there exists a model of it such
that, for every terminal history z in the output of the algorithm there is a state
ω such that ω ∈ FBR and the terminal history associated with ω is z. Thus

5We restrict attention to von Neumann extensive games, where information sets have a syn-
chronous structure (decision histories that belong to the same information set have the same length).
In games with perfect information and no relevant ties this algorithm yields the unique backward
induction terminal history.
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the notion of forward belief of rationality characterizes the (non-empty) set of
terminal histories that are the output of the generalized backward induction
algorithm.

Section 2 introduces the notion of dynamic, behavioral model of an ex-
tensive game, Section 3 contains the definitions of rationality and of general-
ized backward induction and Section 4 provides the epistemic characterization.
Note that, since the word ’epistemic’ refers to knowledge, while we deal with
the more general notion of - possibly erroneous - belief, a better expression
would be ’doxastic characterization’. Indeed, unlike the condition provided in
Bonanno (2013) which involves the hypothesis of locally correct beliefs, FBR
is completely “Truth-free” (that is, purely doxastic) and thus, as a corollary,
provides an alternative characterization of backward induction in perfect in-
formation games with no relevant ties. Section 4 concludes with a discussion
of of the proposed approach and of relevant literature. The proofs are given in
the Appendix.

2 Models of extensive games

We shall use the history-based definition of extensive-form game (see, for ex-
ample, Osborne and Rubinstein (1994)). If A is a set, we denote by A∗ the set
of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and 1 ≤ i ≤ k, the sequence
h′ = 〈a1, ..., ai〉 is called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗ and a ∈ A, we denote
the sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

A finite extensive form without chance moves is a tuple 〈A,H,N, ι, {≈i}i∈N〉whose
elements are:

• A finite set of actions A.

• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is,
if h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The null history 〈〉 ,
denoted by ∅, is an element of H and is a prefix of every history. A history
h ∈ H such that, for every a ∈ A, ha < H, is called a terminal history. The
set of terminal histories is denoted by Z. D = H\Z denotes the set of
non-terminal or decision histories. For every history h ∈ H, we denote by
A(h) the set of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}. Thus
A(h) , ∅ if and only if h ∈ D.

• A finite set N = {1, ...,n} of players.
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• A function ι : D→ N that assigns a player to each decision history. Thus
ι(h) is the player who moves at history h. For every i ∈ N, let Di = ι−1(i)
be the set of histories assigned to player i.

• For every player i ∈ N, ≈i is an equivalence relation on Di. The interpre-
tation of h ≈i h′ is that, when choosing an action at history h ∈ Di, player i
does not know whether she is moving at h or at h′. The equivalence class
of h ∈ Di is denoted by Ii(h) and is called an information set of player i; thus
Ii(h) = {h′ ∈ Di : h ≈i h′}. The following restriction applies: if h′ ∈ Ii(h)
then A(h′) = A(h), that is, the set of actions available to a player is the
same at any two histories that belong to the same information set of that
player.6

Notation. If h and h′ are decision histories, we write h′ ∈ I(h) as a short-hand for
h′ ∈ Iι(h)(h). Thus h′ ∈ I(h) means that h and h′ belong to the same information
set (of the player who moves at h and h′).

Given an extensive form, one obtains an extensive game with ordinal payoffs by
adding, for every player i ∈ N, a preference relation%i over the set Z of terminal
histories (the interpretation of z %i z′ is that player i considers terminal history
z to be at least as good as terminal history z′). It is customary to replace the
preference ranking %i with a utility (or payoff ) function Ui : Z → R (where R
denotes the set of real numbers) satisfying the property that Ui(z) ≥ Ui(z′) if
and only if z %i z′.

Remark 1. We will only consider ordinal payoffs and qualitative beliefs in order to
highlight the novel features of our approach in as simple a framework as possible. The
analysis can be extended to the case where the players’ preferences are represented by
von Neumann-Morgenstern utility functions and beliefs are probabilistic.7

6 It is common to impose a further requirement, known as perfect recall, according to which a
player always remembers her own past moves. Since perfect recall is not needed for our results we
are not assuming it.

7 The traditional approach postulates that every player has a preference relation over the set of
lotteries over terminal histories that satisfies the axioms of expected utility. This is not an innocuous
assumption, since the game under consideration is implicitly taken to be common knowledge
among the players. Thus not only is it commonly known who the players are, what choices
they have available and what the possible outcomes are, but also how each player ranks those
outcomes. While it is certainly reasonable to postulate that a player knows his own preferences,
it is much more demanding to assume that a player knows the preferences of his opponents. If
those preferences are expressed as ordinal rankings, this assumption is less troublesome than in the
case where preferences also incorporate attitudes to risk (that is, the utility functions that represent
those preferences are von Neumann-Morgenstern utility functions).
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Given a history h ∈ H, we denoted by `(h) the length of h, which is defined
recursively as follows: `(∅) = 0 and if h ∈ D and a ∈ A(h) then `(ha) = `(h) + 1.
Thus `(h) is equal to the number of actions that appear in h; for example, if
h = 〈∅, a1, a2, a3〉 then `(h) = 3. We denote by `max the length of the maximal
histories in H: `max = maxh∈H{`(h)}. Clearly, if `(h) = `max then h ∈ Z. Given a
history h ∈ H and an integer t with 0 ≤ t ≤ `max, we denote by ht the prefix of h
of length t. For example, if h = 〈∅, a, b, c, d〉, then h0 = ∅, h2 = 〈∅, a, b〉 , etc.

From now on histories will be denoted more succinctly by listing the cor-
responding actions, without brackets and without commas: thus instead of
writing 〈∅, a1, a2, a3, a4〉we will simply write a1a2a3a4.

We shall restrict attention to the class of von Neumann extensive forms,
which is defined as follows.8

Definition 2.1. An extensive form is a von Neumann extensive form if, for every
player i ∈ N and for every two decision histories h, h′ ∈ Di, if h′ ∈ Ii(h) (that
is, h and h′ belong to the same information set of player i) then `(h) = `(h′).
Thus any two decision histories that belong to the same information set have
the same length.

Let Ω be a set of states and T = {0, 1, . . .m} a set of instants or dates. We call
Ω × T the set of state-instant pairs.

Definition 2.2. Given a von Neumann extensive form G, a state-time represen-
tation of G is a triple 〈Ω,T, ζ〉 where Ω is a set of states, T = {0, 1, ...,m} with
m ≥ `max

− 1 (recall that `max is the depth of the game) and ζ : Ω → Z is a
function that assigns to every state a terminal history. Given a state-instant pair
(ω, t) ∈ Ω × T, let

ζt(ω) =

{
the prefix of ζ(ω) of length t if t < `(ζ(ω))
ζ(ω) if t ≥ `(ζ(ω)).

Interpretation: the play of the game unfolds over time; the first move is
made at date 0, the second move at date 1, etc. Since the extensive form is von
Neumann, whenever a player has to move she “knows the time”, that is, she
knows how many moves have been made so far. A state ω ∈ Ω specifies a
particular play of the game (that is, a complete sequence of moves leading to
terminal history ζ(ω)); ζt(ω) denotes the “state of play at time t” at state ω, that

8Other authors impose the seemingly weaker assumption that there is an unambiguous ordering
of the information sets (see, for example, Perea (2013)). However such games can be trivially
transformed into von Neumann games by adding a fictitious player who always has singleton
information sets and only one choice at each history assigned to him.
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is, the partial history of the play up to date t [if t is less than the length of ζ(ω),
otherwise - once the play is completed - the state of the system remains at ζ(ω)].

e f e fe f

ca

α          β          γ          δ          ε          η          θ

ζ :

state:

time:

0

1

2

1

2

b

d

d        ce        ae        be       af         bf       cf

d          c         a          b        a          b         c

d         ce        ae        be       af         bf       cf

∅     ∅     ∅     ∅    ∅     ∅     ∅

1   Player 1's payoff
0   Player 2's payoff

2            0        1           2       0            2
0            1        1           0       2            1

Figure 1: An extensive-form game and a state-time representation of it.

Figure 1 shows an extensive form and a state-time representation of it. For
every ω ∈ Ω = {α, β, γ, δ, ε, η, θ} and t ∈ T = {0, 1, 2} we have indicated the
(partial) history ζt(ω) (recall that ∅ denotes the empty history). For example,
ζ2(α) = d, ζ1(β) = c, etc.

We want to define the notion of rational behavior in a game and examine
its implications. Player i chooses rationally at a decision history of hers if the
choice she makes there is optimal given the beliefs that she holds at the time
at which she makes that choice. These beliefs might be different from her initial
beliefs about what would happen in the game and thus might be revised beliefs
in light of the information she has at the moment. However, her prior beliefs
are not relevant in assessing the rationality of her choice: what counts is what
she believes at the time she makes the decision. Thus in order to assess the
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rationality of the actual behavior of the players all we need to specify, at every
state-instant pair (ω, t), are the actual beliefs of the active player. This can be
done within a state-time representation of the game, as follows. Given a state
ω and an instant t, there will be a unique player who makes a decision at (ω, t)
(unless the play of the game has already reached a terminal history, in which
case there are no decisions to be made). If ζt(ω) is a decision history, the active
player is ι (ζt(ω)); denote ζt(ω) by h and ι (ζt(ω)) by i. Then player i has to choose
an action from the set A(h). In order to make this choice she will form some
beliefs about (1) what happened up to this point in the game (that is, which
history in her information set has been reached) and (2) what will happen if
she chooses action a, for every a ∈ A(h). These beliefs will be used to assess
the rationality of the choice that the player ends up making at state ω. We will
describe a player’s beliefs about the consequences of taking alternative actions
by means of an accessibility relation. Thus we use Kripke frames and represent
qualitative, rather than probabilistic, beliefs.9 In order to simplify the notation,
we will assign beliefs also to the non-active players, but in a trivial way by
making those players believe everything.

We recall the following facts about Kripke frames. If Ω is a set of states and
Bi ⊆ Ω ×Ω a binary relation on Ω (representing the beliefs of individual i), for
everyω ∈ Ω we denote byBi(ω) the set of states that are reachable fromω using
Bi, that is, Bi(ω) = {ω′ ∈ Ω : ωBiω′}.10

Bi is serial if Bi(ω) , ∅, for every ω ∈ Ω;
it is transitive if ω′ ∈ Bi(ω) impliesBi(ω′) ⊆ Bi(ω) and it is euclidean if ω′ ∈ Bi(ω)
implies Bi(ω) ⊆ Bi(ω′). Subsets of Ω are called events. If E ⊆ Ω is an event, we
say that at ω ∈ Ω individual i believes E if and only if Bi(ω) ⊆ E. Thus one can
define a belief operator Bi : 2Ω

→ 2Ω as follows: BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. Hence
BiE is the event that individual i believes E.11 It is well known that seriality
of Bi corresponds to consistency of beliefs (if the individual believes E then it
is not the case that she believes not E : BiE ⊆ ¬Bi¬E, where, for every event
F, ¬F denotes the complement of F in Ω), transitivity corresponds to positive
introspection (if the individual believes E then she believes that she believes
E : BiE ⊆ BiBiE) and euclideanness corresponds to negative introspection (if

9 We restrict attention to qualitative beliefs since we are focusing on games with ordinal payoffs.
As noted above (Remark 1), this is motivated by the desire to highlight the novelty of our approach
without the more complex notation required by probabilistic beliefs and expected utility.

10 In the economics and game theory literature the function Bi : Ω → 2Ω is called a possibility
correspondence (or information correspondence). The two notions of accessibility relation and
possibility correspondence are equivalent.

11 In a probabilistic setting the interpretation of the event BiE would be “the set of states where
player i attaches probability 1 to event E”.
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the individual does not believe E then she believes that she does not believe E:
¬BiE ⊆ Bi¬BiE) (for more details see Battigalli and Bonanno (1999)).

Definition 2.3. Given a von Neumann extensive form G, a model of G is a
tuple

〈
Ω,T, ζ,

{
Bi,t

}
i∈N,t∈T

〉
where 〈Ω,T, ζ〉 is a state-time representation of G (see

Definition 2.2) and, for every player i ∈ N and instant t ∈ T, Bi,t ⊆ Ω × Ω is a
binary relation on the set of states (representing the beliefs of player i at time t)
that satisfies the following properties: ∀ω ∈ Ω,

1. If i , ι(ζt(ω)), that is, if ζt(ω) is not a decision history of player i,
then Bi,t(ω) = ∅.

2. If i = ι(ζt(ω)), that is, if ζt(ω) is a decision history of player i, then
2.1. Bi,t is locally serial, transitive and euclidean

[that is, Bi,t(ω) , ∅ and if ω′ ∈ Bi,t(ω) then Bi,t(ω′) = Bi,t(ω)].
2.2. If ω′ ∈ Bi,t(ω) then ζt(ω′) ∈ Ii(ζt(ω))

[that is, ζt(ω′) belongs to the same information set as ζt(ω)].
2.3. If ω′ ∈ Bi,t(ω) then, for every a ∈ A(ζt(ω′)) there exists an

ω̃ ∈ Bi,t(ω) such that ζt+1(ω̃) = ζt(ω′)a.

Condition 1 says that a player has trivial beliefs (that is, she believes ev-
erything) at all the state-instant pairs where she is not active. We impose this
condition only for notational convenience, to eliminate the need to keep track,
at every state-instant pair, of who the active player is.12

To understand Condition 2, fix a state-instant pair (ω, t), let h = ζt(ω) and sup-
pose that h is a decision history of player i where she has to choose an action
from the set A(h).
Condition 2.1 says that player i has beliefs with standard properties; note that
these properties (consistency, positive and negative introspection) are only as-
sumed to hold locally, that is, at state ω.13

Condition 2.2 says that every state ω′ which is accessible from ω byBi,t (that is,
every state that player i considers possible at state ω and instant t) is such that
the history h′ associated with state ω′ at time t (that is, h′ = ζt(ω′)) belongs to

12As explained below, by defining Bt =
⋃

i∈N Bi,t, we can take the relation Bt to be a description
of the beliefs of the active player at date t (whose identity can change from state to state). As noted
above, the beliefs of inactive players are not relevant and thus there is no conceptual loss in letting
those players believe everything.

13Note also that transitivity and euclideanness (positive and negative introspection) are not needed
for our results. We have imposed these properties because they are considered in the literature to be
necessary properties of “rational” beliefs and because they simplify the graphical representation
of beliefs.
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the same information set to which history h belongs (that is, h′ ∈ Ii(h)); in other
words, player i at time t knows that her information set Ii(h) has been reached
(although she might have erroneous beliefs concerning the history in Ii(h) at
which she is making her choice).
Condition 2.3 says that if player i considers it possible that she is at history
h′(that is, ω′ ∈ Bi,t(ω) and h′ = ζt(ω′)) then for every action a available at h′,
there is a state ω̃ that player i considers possible at (ω, t) (that is, ω̃ ∈ Bi,t(ω))
where she takes action a at h′; that is, the truncation of ζ(ω̃) at time t+1 (namely
ζt+1(ω̃)) is equal to h′a (recall that, by Condition 2.2, h′ ∈ Ii(h) where h = ζt(ω)).
This means that, for every decision history that she considers possible and for
every available action, player i has a belief about what will (or might) happen
if she chooses that action at that decision history.

Remark 2. Note that this modeling choice for beliefs is a departure from the standard
approach in the literature, where it is assumed that if a player takes a particular action
at a state then she knows that she takes that action. The standard approach thus requires
the use of either objective or subjective counterfactuals in order to represent a player’s
beliefs about the consequences of taking alternative actions.14 In our approach a player’s
beliefs refer to the deliberation or pre-choice stage, where the player considers the
consequences of all her actions, without pre-judging her subsequent decision.15 Since
the state encodes the player’s actual choice, that choice can be judged to be rational or
irrational by relating it to the player’s pre-choice beliefs. Thus it is possible for a player
to have the same beliefs at two different states, say α and β, and be labeled as rational
at state α and irrational at state β, because the action she ends up taking at state α is
optimal given those beliefs, while the action she ends up taking at state β is not optimal
given those same beliefs.

Figure 2 shows a von Neumann game and model of it. We represent a belief
relation B as follows: for any two states ω and ω′, ω′ ∈ B(ω) if and only if
either ω and ω′ are enclosed in the same rectangle or there is an arrow from ω
to the rectangle containing ω′.16 The relations shown in Figure 2 are those of
the active players: the relation at date 0 is that of Player 1 (B1,0), the relation

14The role of counterfactuals in the standard approach is discussed in details in Bonanno (forth-
coming)

15An implication of this point of view is that, since - at the time of deliberation - the agent does not
know what choice she is going to make, she cannot know that her forthcoming choice is rational.
Note that, while we do not endow a player with pre-knowledge of his forthcoming choice, the
player is allowed to have beliefs about what choice she will make at a later time (if any). For an
extensive discussion of this point see Section 4 in ?.

16In other words, for any two states ω and ω′ that are enclosed in a rectangle,
{(ω,ω), (ω,ω′), (ω′, ω), (ω′, ω′)} ⊆ B (that is, the relation is total on the set of states contained in
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Figure 2: An von Neumann extensive game and a model of it.

at date 1 for states α, β, γ and δ is that of Player 2 (B2,1), the relation at date 1
for states ε, η, θ and λ is that of Player 3 (B3,1) and the relation at date 2 for
states other than δ and ε, is that of Player 4 (B4,2).17 Consider a state, say η.
State η describes the following beliefs: at date 0 Player 1 believes - incorrectly
- that if she takes action b Player 3 will follow (at date 1) with f (state ε) and

the rectangle) and if there is an arrow from a state ω to a rectangle then, for every ω′ in the
rectangle, (ω,ω′) ∈ B.

17Thus B1,0(ω) = {δ, ε} for every ω ∈ Ω, B2,1(ω) = {γ, δ} for every ω ∈ {α, β, γ, δ}, B3,1(ω) = {ε, η}
for every ω ∈ {ε, η, θ, λ}, B4,2(ω) = {α, β, γ, η, θ, λ} for every ω ∈ {α, β, γ, η, θ, λ}; for every remaining
state ω, player i and date t, Bi,t(ω) = ∅.



12 generalized backward induction

she also believes that if she takes action a then Player 2 will follow (at date 1)
with c (state δ); at date 1 Player 3 (knows that Player 1 played b and) believes -
correctly - that if he plays e then Player 4 will follow (at date 2) with h (and if he
plays f the game will end); at date 2 Player 4 considers it possible that Player 1
played a and Player 2 followed with d and also considers it possible that Player
1 played b and Player 3 followed with e. At state η Player 1 ends up playing
b, Player 3 ends up playing e and Player 4 ends up playing h (while Player 2 is
not active at any date). The numbers marked under the rectangles in Figure 2
are the payoffs of the active player at the relevant states.

It is worth stressing that the notion of model that we are using allows
for erroneous beliefs (since the belief relations have not been assumed to be
reflexive).

Remark 3. Definition 2.3 allows for “irrational” beliefs. For example, consider a
model of the game of Figure 1 where, for every ω ∈ Ω, B1,0(ω) = {α, γ, δ, θ}, capturing
the following beliefs of Player 1 at time 0: “if I play a or b, Player 2 will play e, while if
I play c then he will play f ”. Such beliefs can be considered irrational on the grounds
that the choice of Player 2 cannot be influenced by what Player 1 chooses, since Player
2 does not get to observe Player 1’s choice; thus a rational belief for Player 1 would
require that the predicted choice(s) of Player 2 be the same, no matter what Player 1
does (provided that she gives the move to Player 2). However, this restriction on beliefs
is not needed for our results and thus we do not impose it.

3 Rationality

We shall use a very weak notion of rationality, which has been referred to in
the literature as “material rationality” (see, for example, Aumann (1995; 1998),
Battigalli et al. (2013), Samet (1996)). We say that at a state-instant pair (ω, t) a
player is rational if either she is not active at ζt(ω) (that is, ζt(ω) is not a decision
history of hers) or the action that she ends up choosing at ω is “optimal” given
her beliefs, in the sense that it is not the case that - according to her beliefs -
there is another action of hers that guarantees higher utility. Thus a player is
irrational at a state-instant pair (ω, t) if she is active at history ζt(ω), she ends up
taking action a at ω and she believes that, at every history in her information
set that she considers possible, her maximum utility if she takes action a is less
than the minimum utility that she gets if she takes some other action b.

Note that rationality in the traditional sense of expected utility maximiza-
tion implies rationality in our sense; thus anything that is implied by our weak
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notion will also be implied by the stronger notion of expected utility maximiza-
tion.

Definition 3.1. Fix a state-instant pair (ω, t) and suppose that ζt(ω) is a decision
history of player i. Let a, b ∈ A(ζt(ω)) be two actions available at ζt(ω). We say
that at (ω, t) player i believes that b is better than a if ∀ω1, ω2 ∈ Bi,t(ω) such that
ζt(ω1) = ζt(ω2) and ζt+1(ω1) = ζt(ω1)a and ζt+1(ω2) = ζt(ω2)b,
Ui(ζ(ω1)) < Ui(ζ(ω2)) (recall that Ui : Z→ R is player i’s utility function on the
set of terminal histories).

Thus, at a decision history h of hers, player i believes that action b is better
than action a if, for any history h′ ∈ Ii(h) that - according to her beliefs - might
have been reached, taking action b at h′ leads to terminal histories that she
prefers to any terminal history that can be reached - again according to her
beliefs - if she takes action a at h′ [recall that, by Condition 2.3 of Definition 2.3,
she must consider it possible that she takes any of her available actions at h′).

Definition 3.2. Fix an arbitrary player i and an arbitrary state-instant pair (ω, t).
We say that player i is rational at (ω, t) if and only if either

(1) ζt(ω) is not a decision history of player i, or

(2) ζt(ω) is a decision history of player i and if a is the action chosen by
player i at ω (that is, ζt+1(ω) = ζt(ω)a) then, for every b ∈ A(ζt(ω)), it is not the
case that player i believes at (ω, t) that b is better than a (see Definition 3.1).

For example, in the model of Figure 2, Player 1 is rational at date 0 and states
α, β, γ and δ, because she believes that if she takes action a then her payoff will
be 2 (according to her beliefs, Player 2 will follow with c) and if she takes action
b her payoff will be 1 (according to her beliefs, Player 3 will follow with f ) and
at those states she actually ends up taking action a; Player 2 is rational at date 1
and state δ (but not at states α, β and γ); Player 3 is rational at date 1 and state
ε (but not at states η, θ and λ) and Player 4 is rational at date 2 and every state
except α and λ (because she takes action k there, which is strictly dominated by
action h). Furthermore, a player is rational at any state-instant pair where she
is not active (for example, Player 2 is rational at state ε and time 1).

We denote by Rt ⊆ Ω the event that (that is, the set of states at which) the
active player (if there is one) is rational at date t.18 Thus ω ∈ Rt if and only
if either ζt(ω) is a terminal history [that is, ζt(ω) = ζ(ω)] or ζt(ω) is a decision

18By Definition 3.2 inactive players are always rational; thus Rt can also be described as the event
that “every player is rational at date t”.
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history and the active player at ζt(ω) is rational at (ω, t) (see Definition 3.2).
Note that, in general, the identity of the active player can vary across states,
that is, the active player at (ω, t) can be different from the active player at (ω′, t).
In the model of Figure 2 we have that R0 = {α, β, γ, δ}, and R1 = {δ, ε} and
R2 = {β, γ, δ, ε, η, θ}.

Let Bi,t : 2Ω
→ 2Ω be the belief operator of player i at date t. Thus, for every

event E ⊆ Ω, Bi,tE = {ω ∈ Ω : Bi,t(ω) ⊆ E}. By Condition 1 of Definition 2.3, if
player i is not active at (ω, t) then Bi,t(ω) = ∅ and thus ω ∈ Bi,tE for every event
E. Let Bt : 2Ω

→ 2Ω be the operator defined by BtE =
⋂

i∈N Bi,tE (thus ω ∈ BtE
if and only if

⋃
i∈N Bi,t(ω) ⊆ E). Then BtE is the event that “the active player

believes E at time t” (which is trivially equivalent to the event that “everybody
believes E at time t” ).

We summarize this in the following remark.

Remark 4. For everyω ∈ Ω and t ∈ T, defineBt(ω) =
⋃

i∈N Bi,t(ω) and Bt : 2Ω
→ 2Ω

by BtE =
⋂

i∈N Bi,tE (thus ω ∈ Bt(E) if and only if Bt(ω) ⊆ E.) It follows that if j is
the active player at ζt(ω), then Bt(ω) = B j,t(ω) and, for every event E, ω ∈ Bt(E) if
and only if B j,t(ω) ⊆ E.

For example, in the model of Figure 2, we have that B0R1 = B0R2 = Ω, that
is, at every state the active player at date 0 (Player 1) believes that the active
player at time 1 (Player 2 at state δ and Player 3 at state ε) will be rational and
also believes that the active player at time 2 will be rational (this is true trivially,
because at states δ and ε there is no active player at date 2: see Definition 3.2).
We also have that B1R2 = B0B1R2 = Ω, that is, at every state the active player
at time 1 believes that the active player at time 2 will be rational and the active
player at date 0 believes that the active player at date 1 believes that the active
player at time 2 will be rational.

Note that the models that we are considering allow for the possibility that a
player may ascribe to a future mover beliefs that are different from the beliefs
that that player will actually have. In other words, a player may have erroneous
beliefs about the future beliefs of other players (or even about her own future
beliefs).

4 Forward belief of rationality

Fix a von Neumann extensive game and let m = `max (recall that `max is the depth
of the game, that is, the length of the maximal histories). We shall investigate
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the implications of a doxastic condition that we call forward belief of rationality,
defined as the intersection of the following events:19

1. At every date the active player is rational: R0 ∩ R1 ∩ R2 ∩ ... ∩ Rm−1.
2. At very date the active player believes that future players are rational:

B0 (R1 ∩ R2 ∩ ... ∩ Rm−1)
⋂

B1 (R2 ∩ ... ∩ Rm−1)
⋂
· · ·

⋂
Bm−2Rm−1.

3. At very date the active player believes that future players believe
that future players are rational:
B0B1 (R2 ∩ ... ∩ Rm−1)

⋂
B1B2 (R3 ∩ ... ∩ Rm−1)

⋂
· · ·

⋂
Bm−3Bm−2Rm−1.

4. At very date the active player believes that future players believe
that future players believe that future players are rational:
B0B1B2 (R3 ∩ · · · ∩ Rm−1)

⋂
· · ·

⋂
Bm−4Bm−3Bm−2Rm−1.

. . . and so on, up to B0B1 . . .Bm−2Rm−1.

Remark 5. Note that it is unnecessary to go beyond t = m−1, since, by Definition 3.2,
for every k ≥ m, Rk = Ω and thus Bt1 Bt2 . . .Btr Rk = Ω for every sequence 〈t1, t2, . . . tr〉

in T (r ≥ 1) with tr , k.

The formal definition is as follows. First, for 0 ≤ k ≤ m − 1 define FBRk
recursively by:

FBRm−1 = Rm−1, and, for k < m − 1,

FBRk = Rk ∩ Bk(FBRk+1) ∩ FBRk+1.

Thus, for example, FBRm−2 = Rm−1 ∩ Bm−2(Rm−1) ∩ Rm−1 and
FBRm−3 = Rm−3∩Bm−3(Rm−1∩Bm−2(Rm−1)∩Rm−1)∩Rm−1∩Bm−2(Rm−1)∩Rm−1.20

Finally, define

FBR = FBR0 (1)

Example 1. In the model of Figure 2, FBR = R0∩R1∩R2∩B0R1∩B0R2∩B1R2∩

B0B1R2 = {δ}. Now consider the perfect information game and model shown in
Figure 3 . Also for this game FBR = R0∩R1∩R2∩B0R1∩B0R2∩B1R2∩B0B1R2.
In this model we have that R0 = Ω,R1 = {γ, δ, ε},R2 = {β, γ, ε},B0R1 = B1R2 =

19 For example, when the depth of the game is 3 (`max = 3), the event Forward Belief of Rationality,
denoted by FBR, is given by FBR = R0 ∩R1 ∩R2 ∩B0(R1 ∩R2)∩B1R2 ∩B0B1R2 and when `max = 4
FBR = R0 ∩ R1 ∩ R2 ∩ R3 ∩ B0(R1 ∩ R2 ∩ R3) ∩ B1(R2 ∩ R3) ∩ B2R3 ∩ B0B1(R2 ∩ R3) ∩ B0B2R3 ∩

B1B2R3 ∩ B0B1B2R3.
20In the model of Figure 2, FBR2 = R2 = {β, γ, δ, ε, η, θ}, FBR1 = {δ, ε} and FBR0 = {δ}. In the

model of Figure 3, FBR2 = R2 = {β, γ, ε}, FBR1 = {γ, ε} and FBR0 = ∅.
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B0B1R2 = Ω but B0R2 = ∅ and thus FBR = ∅. On the other hand, if we change
the model by modifying the beliefs of the root player from B0(ω) = {γ, δ, ε} to
B0(ω) = {γ, ε}, for everyω ∈ Ω, (that is, we drop state δ) then R0 = {α, β, γ, δ} and
B0R2 = Ω (while everything else remains the same), so that FBR = {γ}. Note
that ζ(γ) = a1a2b3, which is the unique backward induction terminal history. As
shown in Proposition 1 below, this is not a coincidence.

0 1 1 0

2 3

3 1 2

1 2 3a a a1 2 3a b c

α β γ δ

time:

1a

1 2 3a a b

state:

1 2 3a b d

1a

0

1

2

1a

2a
2b

1b

1 2a a1 2a b

2

1
1
0

3
3
1

1
2
1

4
0
0

1

3 3

3a 3b 3c
3d

∅           ∅           ∅           ∅           ∅ 

ε

1b

1b1a 1a

1 2a a1 2a b

2
2
0

ζ :

1b

Figure 3: A perfect-information game and a model of it.

Next we introduce an algorithm that, for every von Neumann extensive-
form game, selects a non-empty set of terminal histories. We call this procedure
generalized backward induction, since it coincides with backward induction in
perfect-information games with no relevant ties.21 The procedure starts at

21 If the output of backward induction is thought of as a terminal history rather than a strategy
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information sets at depth `max
− 1 (these information sets are followed only by

terminal histories), deletes choices that are strictly dominated there and then
continues backwards towards the root. First we give an iterative definition of
the set of strictly dominated choices at a decision history h, denoted by D(h). Fix a
von Neumann extensive-form game, a decision history h and let i be the player
who moves at h. The set D(h) ⊆ A(h) is defined recursively as follows:

1. If `(h) = `max
− 1 then a ∈ D(h) if and only if a ∈ A(h) and there exists a

b ∈ A(h) such that, for every h′ ∈ Ii(h), Ui(h′a) < Ui(h′b) [that is, if there is
another choice b which yields a higher utility than a at every history in
the information set containing h; in other words, if a is strictly dominated
by some other choice at Ii(h)].

2. Having defined D(h) for every decision history h such that `(h) = k, with
0 < k ≤ `max

− 1, define D(h) for a decision history h such that `(h) = k − 1
as follows: a ∈ D(h) if and only if a ∈ A(h) and there exists a b ∈ A(h)
such that, for every h′ ∈ Ii(h), the following holds: if z′, z′′ ∈ Z are such
that z′ = h′aa1 . . . ap (p ≥ 0) and z′′ = h′bb1 . . . bq (q ≥ 0) and, for all
j = 1, . . . , p and k = 1, . . . , q, a j < D(h′aa1 . . . a j−1) and bk < D(h′bb1 . . . bk−1)
(taking a0 = a and b0 = b) then Ui(z′) < Ui(z′′) [that is, if there exists
another choice that yields a higher utility than a at Ii(h) assuming that
only undominated actions are played after the choice at Ii(h)].

Next we define the following function fBI : H→ 2Z : (1) if h ∈ Z then fBI(h) = {h}
and (2) if h is a decision history then (defining ha0 as h)

fBI(h) = {z ∈ Z : z = ha1a2...am and, ∀i = 1, ...,m, ai < D(ha1...ai−1)}.

Thus fBI(h) is the set of terminal histories that can be reached from h by following
only undominated choices.

Finally define the set BI ⊆ Z as follows:

BI = fBI(∅). (BI)

Thus BI is the set of terminal histories that can be reached from the empty
history (the root of the tree) by following only undominated choices.

Example 2. In the game of Part A of Figure 4, D(b) = D(∅) = ∅ and thus fBI(b) =
{bc, bd} and BI = fBI(∅) = {a, bc, bd}. In the game of Part B of Figure 4, D(a) = {c},

profile.
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D(b) = { f }, D(∅) = {b} and thus fBI(a) = {ad}, fBI(b) = {be} and BI = fBI(∅) = {ad}.
In the game of Part C of Figure 4, D(bd) = D(be) = D(cd) = D(ce) = {u}, D(b) =
D(c) = {e}, D(∅) = {c} and thus fBI(b) = fBI(bd) = {bds, bdt}, fBI(be) = {bes, bet},
fBI(c) = fBI(cd) = {cds, cdt}, fBI(ce) = {ces, cet} and BI = fBI(∅) = {a, bds, bdt}.22

Remark 6. In a model of a game, for every state ω ∈ Ω and for every date t with
0 ≤ t ≤ m − 1, ζ(ω) ∈ fBI (ζt(ω)) if and only if (1) if a ∈ A (ζt(ω)) is such that
ζt+1(ω) = ζt(ω)a then a < D (ζt(ω)) and (2) ζ(ω) ∈ fBI (ζt+1(ω)) .
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Figure 4: Three extensive games.

The following propositions state that the notion of forward belief of rational-
ity characterizes the output of the generalized backward induction procedure.
The proofs are given in the Appendix.

Proposition 1. Fix an arbitrary von Neumann extensive game and an arbitrary model
of it. Then, for every ω ∈ Ω, if ω ∈ FBR then ζ(ω) ∈ BI.

Proposition 2. Fix an arbitrary von Neumann extensive game G. Then there exists
a model of G such that, for every z ∈ BI, there is a state ω such that ω ∈ FBR and
ζ(ω) = z.

22 In the game of Figure 2, D(ad) = D(be) = {k}, D(a) = D(b) = D(∅) = ∅ and thus
fBI(ad) = {adg, adh}, fBI(be) = {beg, beh}, fBI(a) = {ac, adg, adh}, fBI(b) = {b f , beg, beh}, fBI(∅) =
{ac, adg, adh, b f , beg, beh}. In the game of Figure 3, D(a1a2) = {a3}, D(a1b2) = {d3}, D(a1) = {b2},
D(∅) = {b1} and thus fBI(∅) = fBI(a1) = fBI(a1a2) = {a1a2b3} and fBI(a1b2) = {a1b2c3}.
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An extensive game has a perfect information if and only if every information
set is a singleton, that is, if h ∈ D then I(h) = {h}. A perfect-information game
has no relevant ties if, ∀i ∈ N, ∀h ∈ Di, ∀a, a′ ∈ A(h) with a , a′, ∀z, z′ ∈ Z, if ha is
a prefix of z and ha′ is a prefix of z′ then Ui(z) , Ui(z′). In a perfect-information
game without relevant ties BI is a singleton and consists of the unique terminal
history that is associated with the backward-induction solution.

Corollary 1. For perfect-information games with no relevant ties, FBR provides a
doxastic characterization of the backward induction outcome.23

5 Discussion

As noted in the introduction, the content of this paper is closely related to the
ideas put forward in Penta (2009), Perea (2013). However the class of models
used and the general philosophy is different. Below we highlight the main
differences between our approach and Perea’s approach in terms of the models
used, the epistemic condition and the corresponding algorithm.

As noted in the introduction, the standard models used in the literature
(for example, Battigalli and Siniscalchi (2002), Baltag et al. (2009), Penta (2009),
Perea (2013; 2012)), are static structures where players are modeled as choosing
strategies (that is, complete hypothetical plans) and are endowed with complex
hierarchies of conditional beliefs. Such models incorporate a complex web of
subjunctive conditionals referring to (1) the players’ behavior (through strate-
gies: “if I were to find myself at information set I then I would choose action
a”), (2) the players’ belief revision policies (“I do not expect that my information
set I will be reached, but if it were to happen then I would have such and such
beliefs”) and (3) hierarchical constructions involving them (“I believe that if I
were to play a then Player 2 would be surprised and would form the belief that
I am of such-and-such a type and would then play b believing that I would
subsequently believe that he played c and therefore I would react by playing
d”).

Is this complexity really necessary? The purpose of this paper was to
show that the answer is negative. The models proposed here are much less
demanding. First of all, strategies do not play any role in these models: a state

23Bonanno (2013) provides an alternative epistemic characterization of backward induction for
perfect-information games in the class of models considered here, which is in terms of the beliefs
of the root player and involves the hypothesis of locally correct beliefs. Thus FBR provides
an alternative, ‘“Truth-free”, characterization of backward induction (it can be shown that the
condition given in Bonanno (2013) implies FBR).
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only specifies what moves are actually made in the game and thus is silent about
what players who were not called upon to move would have done if the play of
the game had been different (those players might or might not have formulated
hypothetical plans, but those plans are not part of the description of the state).
Secondly, the only beliefs that are used in these models are the beliefs of the
active players at the time of choice. No belief revision is postulated nor necessary.
Thirdly, conditionals do enter into the analysis, but they are conditionals of
deliberation for which the indicative mood seems more appropriate than the
subjunctive mood (see DeRose (2010)). These conditionals are meant to capture
the “exploratory” beliefs of the active player (“what will happen if I play a?
what will happen if I play b?”) and are modeled by taking beliefs to be pre-choice
beliefs and thus not endowing the active player with a belief concerning what
he is about to do (see Remark 2 above and the discussion of the philosophical
literature on this point contained in Section 4 of Bonanno (2013)).

The fact that strategies play no role in our models reflects a different philos-
ophy about the nature of theoretical predictions in game theory. Proposition 1
shows that the implications of a particular epistemic hypothesis is an outcome
or terminal history not a set of strategies. To illustrate this point, consider a game
where the player who moves at the root, call her Player 1, has two choices:
choice a ends the game with a payoff of 2 for her, while choice b is followed
by several choices of her opponents, perhaps with a very complex pattern of
imperfect information; however, at every terminal history that follows choice
b Player 1 gets a payoff strictly less than 2. In a model of such a game in the
sense of Definition 2.3, at any state where Player 1 is rational she will end the
game by playing a: there is no attempt to obtain secondary predictions about what
the other players would do, should Player 1 end up playing b. On the other hand,
Perea’s notion of common belief in future rationality is much more ambitious
in that it determines also a set of strategies for every other player. Indeed,
while our Corollary 1 states that forward belief of rationality in an arbitrary
perfect-information game with no relevant ties implies the backward-induction
outcome, the corresponding result in Perea (2013) (namely Theorem 6.1, p. 25)
states that “every player has exactly one strategy he can rationally choose under
common belief in future rationality, namely his backward induction strategy”.
Thus the prediction is in terms not only of what will be observed, but also in
terms of a set of counterfactuals about what the various players would do in
circumstances that ought not to arise given the predicted outcome.24 It is not

24Aumann (1995) also derives the entire backward-induction strategy profile from the hypothesis
of common knowledge of rationality [as noted in (Samet forthcoming, Footnote 4, p. 4), Aumann
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clear that any game-theoretic solution concept should be so ambitious in its
reach. Furthermore, there does not seem to be an obvious criterion for judging
one type of counterfactual prediction as better or more reasonable than another.
For example, Perea (2013) provides an example where his notion of common
belief in future rationality and the notion of extensive-form rationalizability
(Pearce (1984), Battigalli (1997), Battigalli and Siniscalchi (2002)) yield the same
prediction in terms of outcome but different counterfactual predictions at un-
reached information sets.25 Do we really need to address those counterfactuals?
Do the players need to engage in such counterfactual reasoning?26

The generalized backward induction (GBI) algorithm proposed here is con-
ceptually very similar to the backward dominance (BD) procedure proposed
by Perea (2013).27 The latter can be described as follows: “start with the deci-
sion problems at the end of the game, apply the procedure there until we can
eliminate nothing more, then turn to decision problems that come just before,
apply the procedure there until we can eliminate nothing more, and so on”
((Perea 2013, p. 24)).28 The main difference is that, while the BD procedure
operates on strategies and its output is a set of strategies for each player, the GBI
procedure operates on choices and its output (the set BI = fBI(∅)) is a set of
terminal histories.29 The BD procedure yields only a superset of the strategies
that can rationally be chosen under common belief in future rationality: in

proves that common knowledge of substantive rationality implies the backward-induction strategies
but states the weaker claim that it implies the backward-induction outcome].

25In Chapter 9 of Perea (2012) the author shows that every outcome which can be realized under
extensive form rationalizability can also be realized under common belief in future rationality.

26In the game described above, presumably the other players will expect Player 1 to play a and
yet in the standard approach they will be modeled as engaging in counterfactual speculations and
hypothetical plans concerning the eventuality that Player 1 decides to play b.

27Related and similar procedures are the “backwards procedure“of Penta (2009) and the iterated
conditional dominance procedure of Shimoji and Watson (1998) (see also Chen and Micali (2013)), which
selects the strategies that correspond to the notion of extensive-form rationalizability (Pearce (1984),
Battigalli (1997), Battigalli and Siniscalchi (2002)). For a detailed discussion of how they relate to
each other see (Perea 2013, Section 7).

28On the other hand, the backward rationalizability procedure of Penta (2009) is applied not to
strategies but to the conjunction of strategies and conditional belief vectors. The author uses this
procedure also for games with incomplete information and applies it to issues of mechanism design
and implementation.

29A further difference is that the BD procedure allows for the elimination of strategies that are
strictly dominated by mixed strategies, while the GBI procedure does not allow the elimination
of choices that are strictly dominated by mixed choices. This difference, however, is due to the
fact that we only postulated ordinal payoffs and qualitative beliefs, but it would disappear if we
re-formulated the problem in terms of probabilistic beliefs, von Neumann-Morgenstern utility
functions and rationality as expected utility maximization.
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order to get precisely those strategies it is necessary to impose common belief
in Bayesian updating. In our approach Bayesian updating is not relevant and
the GBI procedure yields precisely the set of outcomes that are compatible with
the notion of forward belief of rationality.

We conclude by reiterating that the conceptual content of the notion of
forward belief of rationality is the same as that of the notion of common belief
in future rationality proposed by Perea (2013).30 The main difference is in the
framework used: Perea uses the standard static “type” models with conditional
belief hierarchies and strategies, while we use simpler dynamic “state-space”
models that do not require the use of (objective or subjective) counterfactuals.

A Proofs

Proof of Proposition 1. Fix a von Neumann extensive game and a model of it.
Let m = `max be the depth of the game. First we prove that

For every t with 0 ≤ t ≤ m − 1 and for every ω ∈ Ω,
if ω ∈ FBRt then ζ(ω) ∈ fBI(ζt(ω)). (2)

We prove this by induction.
Base step: t = m − 1. Fix an arbitrary ω ∈ FBRm−1 = Rm−1. If ζm−1(ω) is

a terminal history, then ζm−1(ω) = ζ(ω) (see Definition 2.2) and, by definition
of fBI(·), fBI(ζ(ω)) = {ζ(ω)} . Thus ζ(ω) ∈ fBI(ζm−1(ω)). Suppose, therefore, that
ζm−1(ω) is a decision history. Let i be the active player, that is, the player who
moves at ζm−1(ω). Fix an arbitrary ω′ ∈ Bm−1(ω).31 Then, by Definition 2.3,
ζm−1(ω′) ∈ Ii (ζm−1(ω)). Since the depth of the game is m, after player i’s move at
ζm−1(ω′) the game ends and thus ζm(ω′) = ζ(ω′). Since ω ∈ Rm−1, that is, player
i is rational at state ω and time m− 1, the choice made by player i at state ω and
time m − 1 is not strictly dominated at the information set containing ζm−1(ω),
that is, if ζ(ω) = ζm−1(ω)a then a < D (ζm−1(ω)) and thus, by definition of fBI(·),
ζ(ω) ∈ fBI(ζm−1(ω)).

Induction step: suppose that (2) is true for t = k with 1 < k ≤ m−1.We want
to show that it is true for t = k − 1. Fix an arbitrary state β and suppose that

β ∈ FBRk−1 = Rk−1 ∩ Bk−1FBRk ∩ FBRk. (3)

30A related notion is that of sequential rationalizability (Asheim and Perea (2005), Dekel et al.
(1999; 2002)). For a detailed discussion of how they relate to each other see (Perea 2013, Section 7).

31Note that Bm−1(ω) , ∅, since, by Definition 2.3, Bi,m−1(ω) , ∅ and by Remark 4, Bm−1(ω) =
Bi,m−1(ω).
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If ζk−1(β) is a terminal history, then ζk−1(β) = ζ(β) and, by definition of fBI(·),
fBI(ζ(β)) =

{
ζ(β)

}
, so that ζ(β) ∈ fBI(ζk−1(β)). Suppose, therefore, that ζk−1(β) is

a decision history. Let i be the active player, that is, the player who moves at
ζk−1(β). Fix an arbitrary ω ∈ Bk−1(β) (by Definition 2.3, Bk−1(β) , ∅). Since, by
(3), β ∈ Bk−1FBRk (that is, Bk−1(β) ⊆ FBRk), ω ∈ FBRk. Hence, by the induction
hypothesis, ζ(ω) ∈ fBI(ζk(ω)). Thus at state β and time k − 1 player i believes
that after every choice at her information set Ii

(
ζk−1(β)

)
only terminal histories

selected by the function fBI can be reached. Since, by (3), β ∈ Rk−1, it follows that
the choice made by player i at state β and time k − 1 is not strictly dominated
conditional on the belief that future choices by the future players (if any) are
not strictly dominated, that is, if ζk(β) = ζk−1(β)a then a < D

(
ζk−1(β)

)
. By (3)

β ∈ FBRk and thus, by the induction hypothesis, ζ(β) ∈ fBI(ζk(β)).32 Hence
ζ(β) ∈ fBI(ζk−1(β)) (see Remark 6). This completes the proof of (2).
Now fix an arbitrary state α and suppose that α ∈ FBR. We need to show
that ζ(α) ∈ BI = fBI(∅). But this is an immediate consequence of (2), since
FBR = FBR0 and ζ0(α) = ∅.

a            a            a            a           b             b            b           b

α          β          γ         δ          ε          η          θ         λ

ζ :

state:

time:

0

1

2

adk    adh     adg       ac       bf       beh       beg    bek

ad          ad          ad          ac         af            be          be          be

∅       ∅      ∅      ∅       ∅       ∅      ∅      ∅

Figure 5: The model described in the proof of Proposition 2 for the game of
Figure 2.

Proof of Proposition 2. Fix a von Neumann extensive-form game and define

32Note that this last step is crucial, since it is possible that β < Bk−1(β). For example, in the
model shown in Figure 3, we have that δ ∈ R1 ∩ B1FRB2 = R1 ∩ B1R2 = {γ, δ, ε} ∩Ω = {γ, δ, ε} but
δ < FBR2 = R2 = {β, γ, ε} and indeed ζ(δ) = a1a2a3 < fBI(ζ1(δ)) = fBI(a1) = {a1a2b3}.
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the following model of it: Ω = Z (recall that Z is the set of terminal histories),
T = {0, 1, ...,m = `max

− 1} (recall that `max is the depth of the game) and ζ is the
identity function (that is, ζ(z) = z, for every z ∈ Z). Fix an arbitrary (z, t). If zt
is a terminal history set B j,t(z) = ∅ for every player j ∈ N. If zt is a decision
history of player i set B j,t(z) = ∅ for every player j , i and define Bi,t(z) as
follows: z′ ∈ Bi,t(z) if and only if (1) z′t = Ii(zt) and (2) z′ ∈ fBI(z′t+1). Figure 5
shows the model just described for the game of Figure 2. By construction of
the belief relations, at any state z and date t, if player i is active at zt then he is
rational there if and only if the following holds: if a is the action at zt such that
zt+1 = zta then a < D(zt). Now fix an arbitrary z ∈ BI. Then, by construction, for
every t ∈ T, z ∈ fBI(zt), so that z ∈ FBRt. Hence z ∈ FBR0 = FBR.
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