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A central issue in the study of sustainable development is the interplay of growth and sacrifice 
in a dynamic economy. This paper investigates the relationship among current consumption, 
sacrifice, and sustainability improvement in a general context and in two canonical, stylized 
economies. We argue that the maximin value of utility measures what is sustainable and 
provides the limit to growth. Maximin value is interpreted as a dynamic environmental-
economic carrying capacity and current utility as an environmental-economic footprint. The 
time derivative of maximin value is interpreted as net investment in sustainability 
improvement. It is called durable savings to distinguish it from genuine savings, usually 
computed with discounted-utilitarian prices. 
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1 Introduction

Sustainable development describes growth out of poverty toward a developed state that

can be sustained for what Solow (1993) calls the very long run. What is sustained (sup-

ported from below) along a feasible path of the economy is the minimum level of utility

of any generation, looking forward from the present. The maximum attainable such min-

imum level, the so-called maximin value, is what we call the sustainable level.

Let social utility at time t be represented by Ut. The sustainable or maximin level of

utility at time t is given by

max Ū s.t. Us ≥ Ū , ∀s ≥ t . (1)

On a regular maximin path, utility remains constant and equal to the maximin value over

time (Burmeister and Hammond, 1977; Cairns and Long, 2006).

An important criticism of applying maximin as a social objective in a poor economy

is that future generations may be mired in a “poverty trap.” Poverty may be sustained.

This criticism implies that the sustainable (maximin) level of utility is considered to be

so low that economic development is called for. Development, or growth, entails the

diversion of resources from consumption by the current generation to investment that

will increase productivity in the future. For sustainable growth to occur the standard of

living of the present must be reduced to an even lower level than that of the poverty trap.

Moreover, the development path followed by the economy must be within environmental

and technological constraints. The issue is how to grow out of poverty while improving

what can be sustained.

The present paper formalizes the relationship among current consumption, sacrifice,

and sustainability improvement. Current decisions reduce what is sustainable if the max-

imin value decreases. Sustainable development is defined as non-decreasing of the current

maximin value.

We examine the conditions for the sacrifice of present generations to improve sustain-

ability. Except for a non-regular case, the current level of utility is unsustainable if it

is greater than the maximin value. Conversely, if the level of utility is lower than the

maximin value on an interval, sustainable growth is possible, with both current utility
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and the sustainable level of utility of the economy increasing through time. Once utility

catches up with the dynamic maximin indicator’s level, utility can be sustained only at

the maximin level.

Our results are illustrated in two canonical models that have been prominent in the

study of sustainability: the simple fishery and the Dasgupta-Heal-Solow (DHS) model

(Dasgupta and Heal, 1974; Solow, 1974). Each addresses a fundamental issue in envi-

ronmental economics. Each implies that growth is subject to environmental constraints.

Open access in the fishery leads to a tragedy of the commons. The DHS model illustrates

the fact that sustaining an economy may not involve a steady state. Each of open access

and growth can lead to unsustainability and to a poverty trap.

Future decisions are unpredictable and it is difficult to project the path of an economy.

Our results are related to the current generation’s decisions only; we make no assumptions

about decisions in the future. Our contribution to the economic analysis of sustainable

development is to use the current maximin value as the sustainability indicator along

any trajectory, optimal or not, efficient or not. This value, which depends only on the

stocks of resources available and not on the current economic decisions, characterizes the

dynamic limit to growth. Sustainability improvement is measured by non-negative net

invesment at maximin accounting prices.

2 Maximin value and sustainability

For a vector of available resource stocks X ∈ Rn
+ and a vector of decisions within the set

of feasible controls, c ∈ C(X) ⊆ Rp, let utility at time t be represented by U(X(t), c(t))

and maximin value by m(X(t)).1 Sustainability has sometimes been defined (e.g., Pezzey,

1997) as the requirement that utility be no greater than the maximal sustainable util-

1We restrict our analysis to economic models for which a maximin value function is well-defined. This

means that, if a maximin optimization problem is solved for such an economic model, an optimal maximin

path actually achieves the maximin value. Assuming that the maximin value is actually achieved allows

us to consider a max min problem instead of a sup inf problem. Mitra et al. (2013) provide conditions

on the technology for the existence of a maximin solution in the Dasgupta-Heal-Solow model.
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ity: U(X(t), c(t)) ≤ m(X(t)). We argue instead that sustainability is defined by non-

decreasing of the maximin value.

A formal juxtaposition of the two criteria is instructive in studying the properties

of sustainable as opposed to unsustainable development. Let M(X, c) ≡ dm(X)
dt
|c denote

the change in the maximin value for given current economic decisions c = (c1, . . . , cp).

The following table summarizes the nine possibilities of combinations of the conditions

U(X(t), c(t)) Q m(X(t)) and M(X(t), c(t)) Q 0.2

Table 1: Utility, maximin value, and net maximin investment

U(X, c) > m(X) U(X, c) = m(X) U(X, c) < m(X)

M(X, c) > 0 1. Impossibility 2. Non-regularity 6. Sustainability

“Bounded utility” improvement

M(X, c) = 0 3. Non-regularity 4. Regularity 7. Inefficiency

“Bounded investment” (or inefficiency)

M(X, c) < 0 5. Unsustainability 8. Unsustainability 9. Inefficiency and

(even with efficiency) due to inefficiency Unsustainability

We start by proving the impossibility of case 1 and then characterize the two non-

regular cases 2 and 3. Then, we characterize the sustainability and unsustainability of

the regular case. These are done given the transition equation for the stocks,

Ẋi = Fi (X, c) , i = 1, . . . , n . (2)

and the following three assumptions.

Assumption 1 The functions Fi (X, c) are continuous and differentiable.

Assumption 2 Utility U(X, c) is continuous and differentiable.

Assumption 3 A maximin-value function m(X) exists and is differentiable.

2For the sake of simplicity, the time argument is omitted in what follows.
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We do not assume that the economy follows the maximin path, or any other optimal

or efficient path. We study the evolution of the maximin value over time for any feasible

vector of decisions.

Let µi(X) ≡ ∂m(X)
∂Xi

. Cairns and Long (2006, Proposition 1) show that these partial

derivatives are the co-state variables, or shadow-values, of a maximin problem. They are

defined with respect to a potential maximin path and depend only on the current state

X and not the decisions c. They are independent of the trajectory determined by the

functions Fi(X, c). The maximin shadow values are the accounting prices of the present

paper.

Definition 1 (Net maximin investment) The time derivative of the maximin value

measures net maximin investment:

M(X, c) =
n∑
i=1

∂m(X)

∂Xi

Ẋi =
n∑
i=1

µi(X)Fi(X, c) . (3)

This definition of net investment applies to any feasible vector of decisions

c = (c1, . . . , cp).

The following lemma characterizes maximin decisions.

Lemma 1 (Maximin decisions) Any vector of decisions c such that U(X, c) ≥ m(X)

and M(X, c) ≥ 0 is consistent with a maximin path and thus corresponds to maximin

decisions.

Proof of Lemma 1 Consider a state X(t) and the associated maximin value m(X(t)),

as well as a vector of decisions c(t) such that U(X(t), c(t)) ≥ m(X(t)) and

M(X(t), c(t)) ≥ 0. For an arbitrarily small time interval dt, the condition

M(X(t), c(t)) ≥ 0 implies m(X(t + dt)) ≥ m(X(t)). From time t + dt, there ex-

ists a maximin path determined by some decisions c∗(·) : [t + dt;∞[→ Rp such that

U(X(s), c∗(s)) ≥ m(X(t + dt)) ≥ m(X(t)) for all s ≥ t + dt. Now, consider the path

starting from X(t) and generated by the decision vectors c(s), s ∈ [t, t + dt] and c∗(s),

s ∈]t + dt;∞[, with dt → 0. This paths satisfies U(X(s), c(s)) ≥ m(X(t)), for all s ≥ t.

Decisions c(t) are thus maximin decisions.
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Cases 1 to 4 in Table 1 correspond to maximin decisions. We show in Theorem 1 that

it is not possible to have both a utility level greater than the maximin value and a positive

net maximin investment. This impossibility theorem is key to the discussion of the other

cases in Table 1.

Theorem 1 (Maximin impossibility theorem) : Under Assumptions 1-3, for any

state X, there is no vector of decisions c such that U(X, c) > m(X) and M(X, c) > 0.

Proof of Theorem 1 Consider any state vector X0 at time t0 and the associated

maximin value m(X0) ≡ max[c(t)]∞t0
mint≥t0 U(X(t), c(t)), given the dynamics Ẋ(t) =

F (X(t), c(t)) starting from state X0. Suppose that there exists a vector of decisions c such

that U(X0, c) > m(X0) and M(X0, c) > 0. Let U(X0, c)−m(X0) = ε0 > 0. There is a time

t̃ > t0 along the continuous path generated by decisions c such that m(X(t̃)) > m(X0).

From time t̃, there is thus ε1 > 0 such that U(X(t), c(t)) ≥ m(X0) + ε1, ∀t ≥ t̃. It is thus

possible to define a path starting from X0 such that U(X(t), c(t)) ≥ m(X0) + min(ε0, ε1)

at all t ≥ t0. This contradicts the definition of m(X0).

We now turn to case 2, which is non-regular. Proposition 2 states that the maximin

value can increase when utility is equal to the maximin value only if it is not possible at

the margin to increase the utility above the maximin value.3

Proposition 2 (Non-regularity due to locally bounded utility) : It is possible to

have both U(X, c) = m(X) and M(X, c) > 0 only if ∂U(X,c)
∂cj

= 0 for all cj ∈ c, wherever

these partial derivatives are defined.

Proof of Proposition 2 Consider a state vector X and a vector of decisions c such

that U(X, c) = m(X) and M(X, c) > 0. Suppose that there is a decision cj ∈ c such that
∂U(X,c)
∂cj

6= 0 and cj is not on the boundary of C(X), so that it is possible to increase utility

3Utility is not necessarily globally bounded from above. There may be decisions such that U(X, c) >

m(X), but these decisions cannot be marginally close to maximin decisions, and they necessarily imply

M(X, c) ≤ 0, in accordance with Theorem 1.
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above m(X) by marginally changing decision cj.
4 Even if ∂M(X,c)

∂cj
=
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

<

0, by continuity of the Fi(X, c) and of U(X, c), there is a vector of decisions c̃ such that

U(X, c̃) > m(X) while M(X, c̃) > 0. This contradicts Theorem 1.

In this case, for the given state, utility is locally bounded from above in the neigh-

borhood of the maximin decisions considered. This corresponds to a particular case of

non-regularity in maximin problems. An example has been described by Cairns and Tian

(2010).5

Corollary 2 In case 2, it is not possible to increase U(X, c) by decreasing M(X, c) at

the margin.

Proof of Corollary 2 Obvious since ∂U(X,c)
∂cj

= 0 for all cj.

A main result below is that, apart from the non-regular case 2, net maximin investment

cannot be positive unless current utility is lower than the maximin value. There must be

a sacrifice of utility by present generations to increase the sustainable level of utility.

We now characterize another type of non-regularity. Proposition 3 states that utility

can exceed the maximin value without implying a decrease in that value only if no decision

cj marginally affects net maximin investment.

Proposition 3 (Non-regularity due to locally bounded investment) : It is pos-

sible to have both U(X, c) > m(X) and M(X, c) = 0 only if ∂M(X,c)
∂cj

= 0 for all cj ∈ c.

Proof of Proposition 3 Consider a state vector X and a vector of decisions c such

that U(X, c) > m(X) and M(X, c) = 0. Suppose that there is a decision cj ∈ c such that

4If some controls are on the boundary of the admissibility set C (X), the derivatives of these controls

are defined on only one side. The condition is then that the derivative is non-positive (resp. non-negative)

on the right-hand (resp. left-hand) side when the control is bounded from below (resp. above).
5In Cairns and Tian (2010), non-regularity arises in states for which the utility is locally bounded from

above. The maximin value is equal to the maximal utility given the state vector, and the maximin path

corresponds to a myopic behavior of instantaneous utility maximization. Along this path, the maximin

value increases as the state evolves.
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∂M(X,c)
∂cj

=
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

6= 0 and cj is not on the boundary of C(X), so that it is

possible to increase net maximin investment above zero by marginally changing decision

cj. Even if marginally changing cj reduces utility, by continuity of the Fi(X, c) and of

U(X, c), there is a vector of decisions c̃ such that M(X, c̃) > 0 while U(X, c̃) > m(X).

This contradicts Theorem 1.

This type of non regularity includes as a main particular case the situation in which

all the elements of the sum
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

are equal to zero, i.e., µi(X) = 0 for any Xi

for which ∂Fi(X,c)
∂cj

6= 0 for some control cj. All the capital stocks that are locally influenced

by (at least) a decision have no marginal contribution to the maximin value. These stocks

are redundant from a maximin point of view.6 This particular case was studied by Asako

(1980).

Corollary 3 In case 3, it is not possible to increase M(X, c) above zero by reducing utility

at the margin.

Proof of Corollary 3 Obvious since ∂M(X,c)
∂cj

= 0 for all cj.

If the two types of non-regularity are ruled out, maximin decisions belong to case 4

and are regular, as stated in the following proposition.7

Proposition 4 (Regularity) For a state vector X and a vector of maximin decisions

c, if there is a decision cj such that ∂U(X,c)
∂cj

6= 0 and a decision ck such that ∂M(X,c)
∂ck

6= 0,

then the vector of decisions c necessarily satisfies U(X, c) = m(X) and M(X, c) = 0.

Proof of Proposition 4 Consider a state vector X and any associated vector of max-

imin decisions c. One has U(X, c) ≥ m(X) and M(X, c) ≥ 0 (Lemma 1). It is not possible

to have U(X, c) > m(X) and M(X, c) > 0 (Theorem 1). If there is a decision cj ∈ c such

6An even more restrictive case is when all the maximin shadow values are equal to zero at the consid-

ered state. This is the case in the simple fishery or in the Ramsey (1928) model when the single capital

stock is above the golden rule level.
7Case 4 could also occur if there is inefficiency in non-regular cases, in the sense that potential maximin

investment is wasted (case 2) or potential utility is wasted (case 3).
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that ∂U(X,c)
∂cj

6= 0, one cannot have U(X, c) = m(X) and M(X, c) > 0 (Proposition 2). If

there is a decision ck ∈ c such that ∂M(X,c)
∂ck

6= 0, one cannot have U(X, c) > m(X) and

M(X, c) = 0 (Proposition 3). One necessarily has U(X, c) = m(X) and M(X, c) = 0.

Regularity has been understood as the ability “to spread” utility equally over time

(Solow, 1974; Burmeister and Hammond, 1977; Cairns and Long, 2006). The two types

of non-regularity arise if spreading is restricted locally. The restriction in case 2 is that

current utility cannot be increased by reducing the positive net maximin investment

(Corollary 2). The restriction in case 3 is that net maximin investment cannot be increased

by marginally reducing utility (Corollary 3). These two conditions allow the deducing of

local conditions for regularity: maximin decisions must be able to influence both current

utility and net maximin investment. Corrollary 4 formalizes this property.8

Corollary 4 For any state vector X, if for any vector of maximin decisions c, there is a

decision cj such that ∂U(X,c)
∂cj

6= 0 and a decision ck such that ∂M(X,c)
∂ck

6= 0, then ∂U(X,c)
∂ck

6= 0

and ∂M(X,c)
∂cj

6= 0, and it is possible to smooth the current utility to the maximin value.

Proof of Corollary 4 Assume that ∂U(X,c)
∂cj

6= 0 and ∂M(X,c)
∂cj

=
∑n

i=1 µi(X)∂Fi(X,c)
∂cj

= 0.

By continuity of the Fi(X, c) and U(X, c), it would be possible to increase current utility

(by changing decisions cj and ck) and the maximin investment (by changing decision ck)

to define a vector of decisions c̃ such that U(X, c̃) > m(X) and M(X, c̃) > 0. This

contradicts Theorem 1. (A similar argument holds if ∂M(X,c)
∂ck

6= 0 and ∂U(X,c)
∂ck

= 0.)

Decision cj thus satisfies ∂U(X,c)
∂cj

∂M(X,c)
∂cj

6= 0. The product cannot be strictly positive

(again, by Theorem 1). Therefore, if ∂U(X,c)
∂cj

> 0, one has ∂M(X,c)
∂cj

< 0, and vice versa. It is

possible to increase (decrease) current utility and decrease (increase) maximin investment

at the margin.

We now characterize unsustainability (case 5). Except in the non-regular case 3,

realizing a utility greater than the maximin value necessarily reduces maximin value, i.e.,

comes at the cost of reducing the sustainable level.

8The condition we derive in Corollary 4 is related to the concept of “eventual productivity” (Asheim

et al., 2001).
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Proposition 5 (Unsustainability) : If there is a control cj such that ∂M(X,c)
∂cj

6= 0, then

U(X, c) > m(X)⇒M(X, c) < 0.

Proof of Proposition 5 A direct consequence of Theorem 1 and Proposition 3.

We now characterize sustainability improvement (case 6). Except in the non-regular

case 2, to increase the maximin value (M(X, c) > 0), there must be a sacrifice of utility

by the current generation (U(X, c) < m(X)). This is stated in part i) of Theorem 6. This

condition is not sufficient, however. The sacrifice results in a sustainability improvement

only if the applied decisions result in a positive net maximin investment, as stated in part

ii) of Theorem 6, which rules out case 3.9

Theorem 6 (Sustainability improvement) :

i) If, for a state vector X and vector of decisions c, there is a decision cj ∈ c such

that ∂U(X,c)
∂cj

6= 0, then M(X, c) > 0⇒ U(X, c) < m(X).

ii) Let a vector of maximin decisions for state X be denoted by cm(X) =

(cm1 , . . . , c
m
p ). If there is a decision cj such that, on an interval I containing cmj , one

has
∂U(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0 and

∂M(X,(cm1 ,...,cj ,...,c
m
p ))

∂cj
6= 0, then there are decisions c̃ by which

U(X, c̃) < m(X) and M(X, c̃) > 0 on that interval. The result holds also if the two signs

are reversed.

Proof of Theorem 6 i) A direct consequence of Theorem 1 and Proposition 2.

ii) We demonstrate that is it possible to deviate from a maximin path by reducing current

utility and increasing maximin investment.

Consider a vector of maximin decisions cm(X) =
(
cm1 , . . . , c

m
p

)
for which there is a

decision cj such that, on an interval I containing cmj , one has
∂U(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0

and
∂M(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0. In particular, ∂U(X,cm)

∂cj
6= 0 and ∂M(X,cm)

∂cj
6= 0. According to

Proposition 4, cm is a vector of regular maximin decisions and satisfies U(X, cm) = m(X)

and M(X, cm) = 0. Moreover, ∂U(X,cm)
∂cj

∂M(X,cm)
∂cj

< 0.10

9A sacrifice cannot increase the maximin value in case 3 (e.g., in a fishery), as stated in Corollary 3.

Note, however, that part ii) of Theorem 6 holds for non-regular case 2.
10See the proof of Corollary 4.
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Because
∂U(X,(cm1 ,...,cj ,...,c

m
p ))

∂cj
6= 0 on the interval, as U(X, c) is continuous in cj, U(X, c)

is also monotone in cj on the interval. The same holds for M(X, c). Since cj has an

opposite effect on U(X, cm) and M(X, cm) and the functions are monotone, this opposite

effect holds on the whole interval. By choosing c̃j − cmj > 0 if ∂U(X,cm)
∂cj

< 0 and c̃j − cmj <

0 if ∂U(X,cm)
∂cj

> 0, one can define a vector of decisions c̃ = (cm1 , . . . , c̃j, . . . , c
m
p ) such

that U(X, c̃) < m(X) and M(X, c̃) > 0. A reversal of the sign of c̃j − cmj entails that

U(X, c̃) > m(X) and M(X, c̃) < 0.

According to Theorem 6, in the regular case, it is possible to improve sustainability (to

increase m(X) over time) by reducing utility. This is not a sufficient condition, however,

as the resources freed up by utility reduction have to be reinvested so as to increase the

maximin value, i.e., net maximin investment must be positive. Depending on the sacrifice

of utility, there may be many different vectors of decisions for which M(X, c) > 0. The

notion of sustainability improvement is not limited to efficient paths.11

The remaining three cases in Table 1 are inefficient. The following Proposition is

obvious from Theorems 1 and 6 and Propositions 2 to 5.

Proposition 7 (Inefficiency) :

i) Sustainable inefficiency (Case 7): A sacrifice of current utility with respect to the

maximin sustainable level (U(X, c) < m(X)) may not result in sustainability improvement

if investment decisions are such that M(X, c) = 0 (including the non-regular case 3).

ii) Unsustainability due to inefficiency (Case 8): Current decisions may result in a

reduction of the maximin value (M(X, c) < 0) even if utility is equal to the maximin value

(U(X, c) = m(X)). Inefficiency may induce non-sustainability.

11The assumption that ∂U(X,cm)
∂cj

6= 0 rules out non-regular case 2 of part ii) in Theorem 6. If ∂U(X,cm)
∂cj

=

0, net maximin investment can be positive (M(X, cm) > 0) without decreasing utility in Case 2. The

result on sustainability improvement may, however, hold even for this non-regular case if ∂U(X,c̃)
∂cj

6= 0 for

c̃j ∈ I−{cmj }. A sacrifice of utility makes it possible to increase net investment more than the non-regular

maximin decision, i.e., M(X, c̃) > M(X, cm) > 0.
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iii) Unsustainability and inefficiency (Case 9): A sacrifice of current utility with re-

spect to the maximin sustainable level (U(X, c) < m(X)) may result in unsustainability if

investment decisions are inefficient (M(X, c) < 0).

Notwithstanding the non-regular case 3 in which consumption is wasted, the outcome

of both cases 7 and 9 is driven by (poor) investment choices that are harmful for society

and lead to M(X, c) ≤ 0 while M(X, c) > 0 is possible. It has no link with the condition

U Q m(X). Cases 8 and 9 emphasize that the condition U(X, c) ≤ m(X) fails to char-

acterize sustainability when net investment at maximin shadow values is not efficient.12

The condition U Q m(X) is a property of sustainability or unsustainability only for op-

timal paths in regular cases. For non-regular cases, and more importantly for inefficient

economies, this is a misleading indicator. In a non-efficient or non-optimal setting, the

sign of M(X, c) is the authentic sustainability indicator.

3 Sustainability and unsustainability in two canoni-

cal economies

3.1 The Fishery

The simple fishery model involves one renewable resource stock S and one economic

decision, the fishing effort E ≥ 0. This model illustrates cases 3, 4, 5 and 6, including

regular and non-regular cases.13

The natural rate of growth of the stock is given by S(1 − S) and the consumption

(catch level) by C = SE. The evolution of the stock is then given by Ṡ = S(1−S)−SE.

The highest sustainable level of consumption is called the “maximum sustainable yield”

(MSY); its value is CMSY = maxS [S (1− S)] = 1
4
. The associated stock is SMSY = 1

2
and

the level of effort is EMSY = 1
2
.

12The condition U(t) > m(t) also fails to characterize unsustainability for non-regular case 3.
13As a single decision determines consumption (the catch) and investment (the growth rate of the

stock) simultaneously, there is no possible inefficiency. We cannot use this model to illustrate cases 7–9.
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If the initial stock S0 is less than SMSY , the maximin criterion (1) prescribes a constant

harvest, C(t) = S0 (1− S0). If the initial stock is greater than SMSY , the maximin value

is CMSY . The maximin value is thus given by

m(S) =

{
SMSY (1− SMSY ) if S > SMSY ,

S(1− S) if S ≤ SMSY .

Consider a harvesting schedule with four time intervals which correspond with the

conditions of cases 3, 5, 4 and 6, respectively. Let S(0) = 1. For simplicity, let the fishing

effort be constant within each interval.14 The four intervals are defined as follows and

depicted in Fig. 1.
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Figure 1: Sustainability and unsustainability in the fishery

• (Case 3): The first interval is characterized by a constant fishing effort E0 > EMSY

(E0 = 0.9 in Fig. 1) and by a fish stock S(t) > SMSY . Consumption is C(t) =

14Along a constant-effort path with effort E0 ∈]0, 1[, consumption at time t is given by C(t) = E0S(t)

and the dynamics of the resource by Ṡ(t) = S(t) (1− E0 − S(t)). The stock evolves as S(t) =[
1

1−E0
+
(

1
S0
− 1

1−E0

)
e−(1−E0)t

]−1
. The stock tends toward a limit S∞ = 1 − E0 if the effort is main-

tained.
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E0S(t) > CMSY . The stock declines over time to SMSY at the end of the interval.

As long as S(t) > SMSY , one has dm(S)
dS

= 0: the maximin value remains constant

at the MSY level. In this non-regular case, consuming more than the maximin

value does not reduce this value (Proposition 3). At the end of the interval, t1,

S(t1) = SMSY = 1
2

and m(S(t1)) = 1
4
.

• (Case 5): Once the MSY stock is overshot, the maximin value decreases. The second

interval begins at t1, where the stock declines below SMSY . The effort level is kept

constant at E0 and the stock keeps decreasing. Also, dm(S)
dS

> 0. The maximin

value decreases as the stock decreases. This interval illustrates the unsustainability

described in Proposition 5. It corresponds to the “tragedy of the commons” for a

fishery in open access.

• (Case 4): At the beginning of the third time interval, t2, a limitation of the fishing

effort is implemented to maintain the stock at S(t2). On the interval, the trajectory

follows the maximin path. Net investment is Ṡ(t) = 0 (the catch equals natural

growth). The catch stays constant at m(S(t2)). This part of the path illustrates

sustainability as described in Proposition 4. If the catch is low, this part of the

program corresponds to a poverty trap.

• (Case 6): On the last time interval, beginning at t3, a recovery strategy is adopted.

Effort is set at E(t) = EMSY , which is lower than the maximin level of effort Emm ≡
1−S(t) > 1/2 for S < 1/2. The stock size increases toward SMSY and the maximin

value increases toward m(SMSY ). Consumption is C(t) = 1
2
S(t) < m(S(t)). It

increases toward CMSY as the stock increases. This part of the path illustrates

sustainability improvement as described in Theorem 6.

In intervals 2 and 4, where the program deviates from the maximin path, an optimum

is not defined. All that is required in intervals 1 and 2 is that the level of effort remain

greater than 1/2. In this case, interval 1 is part of a maximin path whatever the level of

effort; the maximin path is not unique. Also, except on interval 3, where the maximin

path is regular and is followed, the levels of effort need not be constant. The times t2 and

14



t3 are arbitrary but t2 determines the stock size in interval 3. In interval 4, effort could

have been chosen in the interval [1/2, Emm(S(t))] and, say, tend to a limit. The paths of

C(t) and S(t) would be determined by these choices.

3.2 The Dasgupta-Heal-Solow model

The DHS model can be used to illustrate cases 4, 5, and 6, as well as case 9 on inefficiency

and unsustainability. Consider a society that has stocks of a nonrenewable resource, S,

and of a manufactured capital good, K, at its disposal. It produces output (consumption

c and investment K̇) by using the capital stock and depleting the resource stock at rate

Ṡ(t) = −r(t), according to a Cobb-Douglas production function,

c+ K̇ = F (K, r) = K αr β, with 0 < β < α, and α + β ≤ 1 .

If the discounted-utility criterion with a constant, positive discount rate is applied

to this economy, consumption decreases asymptotically toward zero (Dasgupta and Heal

1974, 1979). Analysis of how consumption can be sustained requires a different approach.

For given levels of the capital and resource stocks, Solow (1974) and Dasgupta and

Heal (1979) show that the maximin consumption is given by

m(S,K) = (1− β) (α− β)
β

1−β S
β

1−βK
α−β
1−β . (4)

This increasing function of the two stocks measures the capacity of the economy to sus-

tain the standard of living m(S,K) for the long term. Sustaining consumption at this

level requires that investment in manufactured capital offset the depletion of the resource

(Hartwick, 1977).

To illustrate the interplay of consumption, investment and maximin value, we choose

a feasible trajectory and study the evolution of the maximin value. The path depicted in

Fig. 2 is composed of four time intervals, corresponding to the conditions of cases 5, 9, 6

and 4, respectively. Each interval is characterized by an illustrative consumption pattern

and extraction rule. For simplicity, we consider a constant rate of change of consumption

in each interval.
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Figure 2: Sustainability and unsustainability in the DHS model

• (Case 5): At first let consumption be greater than the maximin value (c0 >

m(S0, K0)) and decrease at a constant rate γ > 0, so that c(t) = c0e
−γt. Ex-

traction is determined such that production is equal to consumption.15 Investment

in manufactured capital, K̇, is zero but the resource stock is depleted; therefore, net

investment dm(S,K)
dt

= M((S,K), (r, c)) is negative. The maximin value decreases

in accordance with Proposition 5. This program is inefficient: the same level of

consumption could be maintained with a higher level of net investment, so that the

maximin value would not fall so fast. But overconsumption alone would have also

led to a decrease of the maximin value and unsustainability.

• (Case 9): The second time interval starts once the consumption decreases below the

maximin value, at t1. The consumption and extraction decisions are unchanged.

Consumption is lower than the maximin value, but still net investment is negative

and the maximin value continues to decrease. This interval illustrates Proposition

7, where unsustainability is not related to overconsumption but to inadequate in-

15We thus have the feedback rule r(c,K) = c1/βK−α/β . As there is no investment in manufactured

capital, we can express the extraction as an open-loop decision, r(t) = c0e
−γtK

−α/β
0 .
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vestment.

• (Case 6): At the beginning of the third interval, t2, consumption has reached a

low level, c(t2) = c0e
−γt2 . A decision is made to improve the level of sustainability.

Having a positive level of net investment can improve sustainability in accordance

with Theorem 6. The consumption pattern changes; it is now defined by a positive

growth rate g, so that c(t) = c(t2)e
g(t−t2). Since c(t) < m(S(t), K(t)), net investment

can be positive. The extraction rule is modified so that production is sufficient to

have a positive net investment.16 Consumption growth can be maintained as long

as the consumption remains below the maximin value.

• (Case 4): The fourth time interval starts once consumption has caught up with

the maximin value, at t3. To avoid the unsustainability of interval 1, the consump-

tion pattern must change from the constant-growth path to the maximin path with

consumption constant at cm(t) = m(S(t3), K(t3)). Net investment is nil. Extrac-

tion and investment in capital are determined by the maximin solution. This is a

sustainable path as described in Proposition 4.

At any time, the society can choose to follow a regular maximin path with a maximin

value determined by the stocks at that time, or to deviate from it. We have examined

some particular cases that are illustrative. On intervals 1, 2 and 3, society deviates from

the maximin paths at each point of the intervals and hence from optimality as defined by

maximin. On intervals 1 and 2, “degrowth” (negative growth) is an unsustainable policy.

On interval 2, the maximin value decreases even though consumption is lower than the

sustainable level. On interval 3, the maximin value increases even though consumption

is growing at a constant, positive rate. Growth may be sustainable.

The analysis of these two models illustrates that the maximin value can be used as

an indicator of sustainability, even when the policy objective is not to sustain utility by

16In Fig. 2, the extraction rule is arbitrarily defined so as to maximize M((S,K), (r, c)) given the

current stock levels and current consumption. It is in fact the feedback extraction rule of a maximin

program.
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following the maximin path. What is sustainable in the long-run is enventually defined

by the maximin value, which is dynamic and depends on investment. Unsustainability

occurs when the maximin value decreases.

4 A General Measure of Sustainability

4.1 Sustainable growth

The path of the economy can be said to be a sustainable growth at time t if M(X(t), c(t)) ≥
0 and dU(X(t),c(t))

dt
≥ 0.

Sustainability improvement and unsustainability are departures from the maximin

path that have implications for the maximin value. The following propositions show that

it is possible in regular cases for utility to improve and to catch up with the maximin

value under sustainable growth and to reduce utility faster than the maximin value, until

the former catches the latter, in an unsustainable economy.

Proposition 10 (Sustainable growth) Assume that there is a control cj such that
∂U(X,c)
∂cj

6= 0. If current utility is less than the maximin value (U(X, c) < m(X)),

it is possible to choose controls such that utility rises faster than the maximin value

(dU (X, c) /dt ≥M (X, c) ≥ 0).

Proof of Proposition 10 The change in U (X, c) is given by

dU(X, c)

dt
=

n∑
i=1

∂U(X, c)

∂Xi

Fi(X, c) +

p∑
j=1

∂U(X, c)

∂cj
ċj .

The first summation on the RHS is dependent only on the values of c and X at time

t, and not on the ċj. Let sgn ċj = sgn∂U(X,c)
∂cj

for any cj for which ∂U(X,c)
∂cj

6= 0. Then∑p
j=1

∂U(X,c)
∂cj

ċj > 0. If cj is not on the boundary of C(X) then there is no bound on

ċj. (There are necessarily such cj as U(X, c) = m(X) is feasible and U(X, c) < m(X).)

Choose the ċj such that dU(X,c)
dt
≥M(X, c) ≥ 0.

Since it assumes that U(X, c) < m(X), Proposition 10 is not restricted by the non-

regularity considerations of Propositions 2 and 3 that apply to maximin decisions defined
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in Lemma 1. Once utility catches up with the dynamic maximin indicator’s level, utility

can be sustained only at the maximin level.

Our results can also be used to give a rigorous meaning to the notion of “sustainable

degrowth” from an initial utility level that is larger than the maximin value. So long as

the utility level remains above the maximin level, the latter decreases. The utility level

can be decreased fast enough that it reaches the maximin level, and thereafter can be

held constant at the maximin level. Sustainable degrowth consists of decreasing utility

until it reaches the maximin value.

Corollary 11 (Sustainable degrowth) If current utility is greater than the maximin

value, it is possible to choose controls such that utility falls faster than the maximin value.

Proof of Corollary 11 Let sgn ċj = −sgn∂U(X,c)
∂cj

for any j for which ∂U(X,c)
∂cj

6= 0. The

same proof as that of Proposition 10 goes through for appropriate choices of ċj.

Obviously, on inefficient paths there is scope to reduce the inefficiency.17 The model

can also be extended to include uncertainty, including technological progress or regress,

following Cairns and Long (2006).

We have not stressed technological progress, which is often viewed as a major source

of continuing improvement in the human condition. In the general model of this paper,

endogenous or exogenous technological progress can be introduced by defining stocks of

knowledge or R&D among the n states. Investments in the associated stocks then have

maximin prices. Technological progress is thus factored into the maximin value.18

Propositions 6 shows that apart from case 3, so long as utility is less than the maximin

value, the maximin value can be increased. It is possible to choose the vector of decisions

17Llavador et al. (2011) find that sustainable consumption for the USA was higher than actual con-

sumption in 2000. A possible reason is inefficiency. For them, the long-term solution is to address the

inefficiency, not necessarily to invest more in the present. Our results stress that the two issues are linked.
18As regards unanticipated exogenous technological change, it is not possible to include it directly in a

deterministic approach. The possibility of such technological progress, however, does not invalidate our

results. Such technological progress acts like manna from heaven. When occurring, there is a “jump” in

the maximin value, offering room for growth by increasing the limit to growth.
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c such that both utility and the maximin value increase (Proposition 10). The path so

followed can be considered to be sustainable growth.19

4.2 Practical implications for sustainability accounting based on

investment at maximin shadow values

The maximin indicator is a very-long-run indicator of what is sustainable, of the sort

that Solow (1993) seeks. At least two other indicators have been proposed to evaluate

sustainability, namely the ecological footprint and genuine savings.

The ecological footprint has been proposed as an indicator of the environmental limit

to sustainable output. It seeks to compare the level of current utilization of environmental

resources (the ecological footprint) with the available flow of environmental services (the

ecological carrying capacity), evaluated in terms of land of a given quality. If the level

of utilization is greater than the flow of available services, the society depletes the stock

and is considered to be unsustainable at its current level of utilization. The ecological

footprint has no explicit objective, although an implicit objective is some form of ecolog-

ical sustainability. This lack of an explicit objective is what leads to the derivation of

accounting prices from the (natural) constraints facing the society.20

Maximin analysis puts the insights of the ecological footprint on a sounder, more com-

prehensive footing, based not on land capacity but on “generalized capacity to produce

economic well-being” (Solow, 1993). In the present paper, the idea of the footprint is made

more comprehensive through the analysis of evolving environmental and technological con-

straints. The current level of utility corresponds with the environmental-economic foot-

print. The maximin value may be considered to be a dynamic, environmental-economic

19In the DHS model of section 3.2, a deviation downward from maximin path can allow for growth at

a parametric rate through investment (d’Autume and Schubert, 2008). Asheim et al. (2007) show that

it is possible, with what they call quasi-arithmetic growth, for the maximin value to increase indefinitely

and for the consumption level to approach it asymptotically. It would also be possible for the utility level

to catch up with the maximin value in finite time. Once U (X, c) = m (X), the only sustainable program

is for current utility to remain equal to the maximin value, forever.
20Through its set of explicit trade-offs that make land the numeraire, ecological footprint analysis has

implied a form of substitutability among natural and other stocks.
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limit to growth. Current decisions modify this limit. In regular cases, as predicted by

analyses of the ecological footprint, society faces diminishing long-run prospects, or di-

minishing sustainability, if utility exceeds the limit.

The indicator in Definition 1 closely resembles the genuine-savings indicator as deter-

mined from the extension of the national accounts (e.g., World Bank, 2006; Dasgupta,

2009). Genuine savings (sometimes called genuine investment) generalizes the concept

of savings in the national accounts to include changes in the quantities of capital goods,

especially environmental goods, that do not have market prices. It is equal to the current

change in social welfare, defined to be the integral of discounted utility. An increase in

this integral implies that genuine savings computed at competitive prices is positive at a

given instant. Non-negative genuine-savings is sometimes considered to be an indicator

of sustainability because current welfare does not decrease. For example, the World Bank

(2006: 41) argues that “Economic theory tells us that there is a strong link between

changes in wealth and the sustainability of development – if a country (or a household,

for that matter) is running down its assets, it is not on a sustainable path. For the link

to hold, however, the notion of wealth must be truly comprehensive.”

The issue regarding sustainability turns not solely on the assets to be included but

also on the shadow or accounting prices at which investment is evaluated.21 If there is a

suspicion that the market is not producing a sustainable result, the prices derived from

national accounts should not be used for sustainability accounting. An increase of welfare

signaled by positive genuine savings may not be lasting or durable. Rather, the genuine

savings indicator can be positive along a competitive path even though consumption is

not sustainable (Asheim, 1994). The welfare integral can increase at the current moment

but eventually decrease, even if the environment is incorporated into optimal decisions

(Dasgupta and Heal, 1979, Pezzey, 2004). Genuine savings with a discounted utility

objective functional is not the long-run measure sought in considering sustainability.

According to the generalized concept of genuine savings indicator formalized by

21The comprehensive vector of capital stocks accounted for in the genuine savings approach is the same

as the vector of capital stocks used to define the maximin value. The value of each stock is, however,

different.
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Asheim (2007), non-negative net investment, accounted at the shadow values of a given

welfare function, is associated with non-decreasing welfare at the current time.22 Maxi-

mizing discounted utility though time does not require non-negative investment. There

is thus no normative reason to pursue a non-negative net investment when welfare is de-

fined as discounted utility. Non-negative investment at maximin prices is a characteristic

of the maximin approach.23 Pursuing non-negative investment at maximin prices, even in

a sub-optimal economy, is consistent with sustainability and with the optimality concept

of maximin.

We distinguish genuine investment, be it applied to maximized social welfare or the

level of welfare generated by a resource–allocation mechanism describing the economy

(Dasgupta and Mäler, 2000), from investment calculated from the maximin value by

calling the latter maximin or durable investment (from the French term, développement

durable). Durable investment is the indicator of the current change in sustainability. It is

comprehensive investment evaluated at maximin shadow prices, along any particular path

of the economy. It is the statistic that is appropriate in expressing sustainability improve-

ment. For sustainable development at time t the economy must have M(X(t), c(t)) ≥ 0.

This condition means that the maximal sustainable utility does not decrease at the cur-

rent time. Sustainable growth requires dU(X(t),c(t)
dt

≥ 0 and M(X(t), c(t)) ≥ 0. Current

growth does not jeopardize the capacity of future generations to sustain utility.

22If the welfare function is denoted by W (X), the associated shadow values are ∂W (X)
∂Xi

, and generalized

genuine savings is defined as
∑n
i=1

∂W (X)
∂Xi

Ẋi. When welfare is defined as discounted utility, i.e., W (X) ≡
V (X) = maxc(·)

∫∞
0
U(X(t), c(t))e−δtdt, where δ is the positive, constant utility discount rate, the shadow

values are ∂V (X)
∂Xi

, and genuine savings correspond to the usual genuine savings indicator. When welfare is

defined as the maximin value, i.e., W (X) ≡ m(X), one obtains net maximin investment as characterized

in Definition 1.
23The objective of a maximin problem can mathematically be expressed as the maximization of the

Hamiltonian H(X, c) ≡
∑n
i=1 µiẊi, subject to the constraint U(X, c) ≥ m(X) (Cairns and Long, 2006).

The maximin problem is thus tantamount to maximizing the net investment at maximin shadow values,

i.e., M(X, c), subject to the constraint that consumption is no less than the maximin value.
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5 Conclusion

Our discussion stresses a property of a growth path that is not stressed by proponents of

sustainable development out of poverty. If the maximin path is not pursued, but instead

some growth path is followed, then earlier generations must be deprived in order to divert

toward investment the resources needed to development. Growth is possible only at a

cost. Open access, which in abstract terms is the main environmental problem facing

humanity, is an inefficiency that cannot be overcome without current sacrifice. Growth is

possible only within limits given by the technology and the environment. Otherwise, it

can cause overshooting.

Our contribution to the literature on sustainability is to use the maximin value as an

indicator of sustainability along any development path (efficient or not, optimal or not).

The maximin value is a dynamic environmental and economic indicator of the prospect

for sustainable growth, which, when increasing, indicates sustainability improvement.

The definition of durable savings holds for any resource-allocation mechanism. Durable

savings must be evaluated at “the right prices,” the maximin shadow values. How to get

the maximin prices is a difficult question, even in simple models. The difficulty is no

reason to use genuine savings with discounted utilitarian prices to measure long-term

sustainability. This practice can be misleading and send an incorrect message, as genuine

savings can be positive even if current utility exceeds the maximal sustainable utility and

the maximin value indicator is decreasing.

The indicator of sustainability on any program, optimal or not, is the maximin value.

Durable investment, the change in the maximin value, is the indicator of whether or not

the level of well-being that can be sustained is increasing or decreasing.
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