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Reference Dependent Preferences and the EPK Puzzle ∗
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Abstract

Supported by several recent investigations, the empirical pricing kernel (EPK) puzzle might be

considered a stylized fact. Based on an economic model with state dependent preferences for the

financial investors, we want to emphasize a microeconomic view that succeeds in explaining the

puzzle. We retain the expected utility framework in a one period model and illustrate the case when

the state is defined with respect to a reference point. We further investigate how the model relates

the shape of the EPK to the economic conditions.
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1 Introduction

The empirical pricing kernel puzzle emerged as an empirical phenomenon in the financial markets,

particularly with respect to the prices of European options written on the underlying stock index. Sev-

eral authors have investigated if such patterns of the EPK can be justified in a general equilibrium set-

ting and if the observed prices can be the outcome of investors’ optimal behavior. The starting point

for many of the investigations is settled within similar economic models that assume a representative

agent in financial markets whose preferences have classical expected utility representation. Addition-

ally, the risk neutral valuation principle is supposed to be valid for the financial markets by means

of pricing kernels. If the pricing kernels represent state contingent equilibrium prices they might be

identified with the v. Neumann-Morgenstern marginal utility indices of the representative agent.

Starting with Ait-Sahalia and Lo (2000), Jackwerth (2000), Engle and Rosenberg (2002), different econo-

metric methods have been applied to estimate pricing kernels with varying underlying models for the

financial markets. It turned out as a common result, that the estimates, the so called empirical pricing

kernels (EPK), have non-monotonic shape regardless of the used data sets. Typically, we find either a

U-shaped pricing kernel or a hump-shaped pricing kernel. In either cases the empirical kernels fail to

be monotone, contrasting the standard theory of expected utility. This is what we shall call the EPK

puzzle. Based on conditional estimates of the risk neutral and physical densities, it appears that peri-

ods of unusual low and stable realized and risk neutral volatility feature a hump shaped EPK, whereas

during periods of high volatility the estimates look U-shaped. Several studies report the shape of the

pricing kernel as being hump-shaped for most months between 2004 and 2007. This holds for both

the German DAX 30 index Giacomini and Härdle (2008); Grith et al. (2012) and the American S&P 500

index Barone-Adesi et al. (2013); Beare and Schmidt (2012); Polkovnichenko and Zhao (2012).

Monotonicity tests for the EPK have been proposed by Golubev et al. (2008) who construct test for the

local concavity of the utility function and Härdle et al. (2012) who build uniform confidence bands for

the empirical pricing kernel; they apply the test to DAX 30 index EPK. Beare and Schmidt (2012) test the

concavity of the ordinal dominance curve associated with the risk neutral and physical distributions

associated with S&P 500 index. Typically, the null hypothesis of nonincreasing EPK was rejected.
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Recent econometric models point at volatility as a state variable, that help explain the observed non-

monotonicities in the pricing kernel. Chabi-Yo (2012); Song and Xiu (2012) find that, consistent with

economic theory, the pricing kernel decreases in the market index return, conditional on the market

volatility As such, unconditional estimates of the PK may appear U-shaped. Christoffersen et al. (2012),

propose an augmented Heston and Nandi (2000) model that allows for U-shaped pricing kernel in a

one period model by introducing a variance preference parameter.

There is a large body of literature that investigates the mechanisms through which a locally increasing

region in the pricing kernel can occur. Hens and Reichlin (2012) conduct a systematic analysis of the

EPK puzzle by relaxing in turn the assumptions embedded in the standard expected utility models:

complete markets, risk-averse investors and correct beliefs. They calibrate a hump-shaped pricing

kernel and find that incomplete markets can alone explain the puzzle. The authors rule out local risk-

proclivity, that works only as a ’pathological example with a few states’. With homogeneous agents,

misestimation of objective probability in isolations misses some essential features of the data. This

finding is in line with Ziegler (2007).

Closely related to the latter interpretation, heterogeneity in beliefs about the future realizations of the

returns occurs in several papers as a possible interpretation for the EPK puzzle. Bakshi and Madan

(2008); Bakshi et al. (2010) consider an equilibrium model with short and long equity investors that

is able to explain U-shaped pricing kernel; in particular, the positively sloped regions in the pricing

kernel occur when some investors are shorting equities. This model is able to explain some features

of the option data: decreasing negative returns in strikes of the OTM calls and the even pronounced

negative returns of put options, increasing in strike prices. However, it cannot capture the positive

returns of call options for high strikes as reported in Bondarenko (2003). Ziegler (2007) considers three

groups of heterogeneous agents with biased beliefs about the physical density but concludes that the

estimates of the mean are not realistic for the pessimistic groups. Optimism and pessimism reflect

biases in the first moment of the objective probabilities; Shefrin (2008) points out that one should

consider higher order biases in order to explain the empirical findings and emphases the bias in the

second moments that leads to risk neutral and physical distribution having different variance.
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Some studies argue that modifications of standard preferences are needed to explain the data. Depart-

ing from the expected utility framework, Polkovnichenko and Zhao (2012) propose a rank dependent

utility model and estimate probability weighting function nonparametrically. For most of the years

the estimates are inverse S-shaped, consistent with a U-shaped PK but they become S-shaped in the

years 2004-2007, suggesting a hump-shaped EPK. In line with experimental findings, inverse S-shaped

weighting function imply that investors tend to overweight low-probability events while underweight-

ing the likelihood of high-probability ones. The converse holds for the S-shaped probability weighting

function but the authors do not make further investigations about the differences in these treatments.

Hens and Reichlin (2012) show that a combination of reasonable pessimism and inverse S-shaped

weighting function can explain the hump shaped EPK.

Shefrin (2008) rationalizes the EPK puzzle in a model with mixed expected utility maximizers and

agents endowed with SP/A preferences - security, potential and aspiration theory, proposed by Lopes

(1987) and developed in Lopes and Oden (1999). The idea that investors are endowed with utilities

that mirror their concerns for portfolio maximization also pervades our paper.

Another stream of literature that tries to rationalize the EPK puzzle considers state dependence. State

dependence has been traditionally used to explain the asset pricing puzzles in equilibrium models

mainly based on two utility classes: habit formation, see Constantinides (1990), Campbell and Cochrane

(1999), or recursive utilities, see Epstein and Zin (2001). In these papers, one typically assumes a

Markov switching process for the evolution of states and derive asset related characteristics in a con-

sumption based model. Garcia et al. (2003) investigate recursive utility functions with state depen-

dency in the fundamentals. Melino and Yang (2003) disentangle the roles played by state dependent

intertemporal substitution and time preference in explaining the risk aversion puzzle in a model with

state dependent recursive preferences. Veronesi (2004) extends the state dependent utility by assum-

ing that the agents possess a probability distribution over their state and introduces the concept of

’belief-dependent preferences’. A first explanation for the empirical pricing kernel puzzle via state de-

pendence has been offered by Chabi-Yo et al. (2008), who generalize the setup of Melino and Yang

(2003). The crucial idea of the authors is to suppose that regime switches are inherent of the price
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process of the stock market. More specifically, within a discrete time period {0,1, ...,T }, there are two

types of price processes (S0
t )t∈{0,...,T }, (S1

t )t∈{0,...,T } for the risky asset which have joint continuous distri-

butions, and constitute separately together with the riskless bond arbitrage free financial markets in

the sense of section 2. Furthermore, they assume a latent regime switching variables in terms of an

unobservable Markov-chain (Ut )t∈{0,1,...,T } of Bernoulli-distributed random variables. The observable

price process (St )t∈{0,1,...,T } is then modeled by St =Ut S1
t + (1−Ut )S0

t for t ∈ {0, ...,T }. Assuming the risk

neutral valuation principle for the latent two basic financial markets and for the observable one, the

authors drew a comparison of the associated pricing kernels via a simulation study. Indeed it turned

out that the empirical pricing kernels in the separated financial market were nonincreasing whereas

the empirical pricing kernel in the integrated financial market failed to have the property of mono-

tonicity. Therefore the empirical pricing kernel might be explained by a switch of the price processes

of the underlying in the financial market. The authors also investigate what type of conditioning - in

preferences, economic fundamentals or beliefs - are more likely to explain the EPK puzzle over time.

The time variant shape of the EPK is explained in Barone-Adesi et al. (2013) through optimism/pessimism

and overconfidence/underconfidence defined as the difference in the first and second moments of the

physical and risk neutral distribution. In this sense the authors find that the hump-shaped pricing ker-

nel stems from a mix of optimistic overconfident and pessimistic underconfident agents.

Grith et al. (2012) use the shape invariant model, a semi-parametric approach for multiple curves

with shape-related nonlinear variation, to model the dynamics of the empirical pricing kernel (EPK)

based on the hump feature. The approach allows to summarize the nonlinear variability with a few

interpretable parameters that can be used to conduct a further analysis that links the shape of the

pricing kernel to the business condition. They find that over periods of concerted negative evolution

of the economic indicators, the EPK hump will move to the right in the returns space, increase its

spread and shrink in vertical direction.

Based on the initializing thought that regime switching is caused by changes of the investors’ prefer-

ences our aim is to make the influence of these changes on the shape of the pricing kernels more ex-

plicit. We conjecture that the existing models with variance dependent component can be improved
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by exploiting the time varying and possible nonmonotone relationship between returns and volatil-

ity. We apply the concept of reference points in a different context that it has been previously used in

prospect theory, underlying another type of behavior that is not focused on loss aversion but perfor-

mance comparative to a benchmark.

We propose a model that can accommodate both shapes of the EPK observed in the empirical liter-

ature while retaining the expected utility framework in a one period model and endow the financial

investors with preferences that might be state sensitive. More technically, investors switch between

two utility indexes - over terminal wealth sets - at a point that projected on the market index space we

call ’reference point’. As a consequence, while the individual utility indices are concave, the market

utility may have jumps in the aggregate wealth space. In equilibrium, this renders pricing kernel non-

monotonic. Agents’ heterogeneity with respect to their ’reference point’ is summarized in the model

by a distribution of the reference points. This, together with preference parameters will characterize

the shape of PK.

2 Financial Market and Preferences

We consider a simple one period two-dates exchange economy model. Let [0,T ] be the time interval

of investment in the financial market, where t = 0 denotes the present time and t = T ∈]0,∞[ the time

of maturity. It is assumed that a riskless bond and a risky asset are traded in the financial market as

basic securities. The price process of the riskless bond (Bt ){t∈[0,T ]} is defined by Bt = exp(−∫ t
0 rx d x) via

a deterministic Riemannian-integrable interest process (rt )t∈[0,T ]. The price process of the risky asset

(St )t∈[0,T ] is taken to be a nonnegative semimartingale with continuously distributed marginals St .

Discrete time models may be also subsumed to this setting. Let us further suppose that the financial

market is arbitrage free in the sense that there exists an equivalent martingale measure. We further

assume that the risk neutral valuation principle is valid for nonnegative payoffs ψ(ST ). Hence there is

an unknown Radon-Nikodym density π of a martingale measure such that the price of any random

payoffs ψ(ST ) is characterized by
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E
[
B−1

T ψ(ST )π
]

. (1)

By factorization with some Borel-measurable K π, that we call Kπ pricing kernel (w.r.t. π) withE[π|ST ] =
Kπ(ST ) we obtain ∫ ∞

0
B−1

T ψ(x)Kπ(x) pST (x) d x, (2)

where pST denotes a density function of the distribution of ST .

We will consider a portfolio choice problem that links risk attitudes of investors to the pricing rule of

the financial markets. Within the classical framework, that assumes a representative agent, investor

preferences may be represented by expected utilities E[u {w̄(ST )}] depending on the aggregate final

wealth w̄(ST ), with v. Neumann-Morgenstern utility index u. Under some further technical conditions

one can show that there is some positive β such that

du

d x

∣∣
x=w̄(sT )=βKπ (sT )

for every realization sT of ST . Within this framework the pricing kernel has to be nonincreasing due to

concavity of the utility index u. We shall provide a simple economic model where the pricing kernel

need not to be nonincreasing. The key idea is to consider the investors preferences representable by

state dependent utilities. An axiomatic justification for this concept of state dependent preferences is

provided by Karni et al. (1983).

3 A Microeconomic View on the EPK puzzle

3.1 State Dependent Preferences

Let us assume that we have m investors who have exogenous initial wealth w10, ..., wm0 > 0 and stochas-

tic financial wealth in form of nonnegative random variables e1(ST ), ...,em(ST ). Without loss of gener-

ality we assume that the numeraire bond equals one. This means that all the prices are discounted.

The terminal wealth wi (ST ) fulfills the individual budget constraint:
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∫ ∞

0
wi (x)Kπ(x)pST (x) d x ≤ wi 0 +

∫ ∞

0
ei (x)Kπ(x)pST (x) d x, i = 1, . . . ,m. (3)

Financial wealth ei (ST ) at t = T depends on the initial holdings of securities and the investment choice

at t = 0. If we denote by δi the fraction of the portfolio invested in the risky asset, ei (ST ) = δi (ST −1)+1

and δi expresses the risk exposure given initial wealth wi 0.

The consumers are assumed to have state dependent utilities in terms of extended expected utility

preferences within the terminology of Mas-Colell et al. (1995). In particular, this means that consumer

i has numerical representation of her preferences as:

ui {ST , w(sT )}

where ui : R+×R+ → R∪ {−∞} denotes a state dependent v. Neumann-Morgenstern utility index sat-

isfying:

ui (x, y) ∈R for x ≥ 0, y > 0, (4)

ui (x, ·) is strictly increasing and strictly concave for any x ≥ 0, (5)

ui (·, y) is Borel-measurable for every y ≥ 0. (6)

If ui (x, ·) is continuously differentiable the usual Inada conditions are assumed to hold for i = 1, ...,m

lim
y→0

dui (x, ·)
d y

∣∣
y =∞, lim

y→∞
dui (x, ·)

d y

∣∣
y = 0. (7)

Investors choose their optimal wealth (w̄1(ST ), ..., w̄m(ST )) such that the following properties are ful-

filled.

(ii) individual optimization: For each consumer i , w̄i (ST ) solves

max
wi (ST )

E

[
ui {ST , wi (ST )}

]
(8)

s.t. wi (ST ) satisfies individual budget constraint (3).
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(i) market clearing:
m∑

i=1
w̄i (ST ) = w̄(ST ). (9)

The conditions (8) and (9) describe a weak version of a contingent Arrow Debreu equilibrium (Dana and

Jeanblanc (2003), sect. 7.1). As a by product w̄1(ST ), ..., w̄m(ST ) are Pareto optimum too, i.e. there are

no w1(ST ), ..., wm(ST ) with U i {wi (ST )} ≥U i {w̄i (ST )} for every i and such that U i {wi (ST )} >U i {w̄i (ST )}

for at least one i . By Negeishi method cf. Dana and Jeanblanc (2003) we may find nonnegative weight

vector α s.t. the aggregate preferences have extended expected utility representation

E [uα {ST , w̄(ST )}] ,

for the aggregate state dependent utility uα :R2+ →R∪ {−∞,∞} defined by

uα(x, y)
def= sup

{yi }m
i=1

{
m∑

i=1
αi ui (x, yi ) | y1, ..., ym ≥ 0,

m∑
i=1

yi ≤ y

}
.

These can be concluded from Lemma B.1, B.2 (cf. Appendix B). We impose a further condition on

the asymptotic elasticity of the utilities that represents a minimal requirement to describe the optimal

investment in terms of the marginal utilities and a pricing kernel.

limsup
y→∞

dui (x, ·)
d y

∣∣
y< 1 for any x ≥ 0 and every i ∈ {1, . . . ,m}. (10)

The condition follows the guidelines of Kramkov and Schachermayer (1999); a similar condition ap-

pears in Dana and Jeanblanc (2003), Duffie (1996), Karatzas and Shreve (1998). We find this formula-

tion more convenient to establish the following theorem.

Theorem 3.1 In addition to (4) – (10) let u1(x, ·), ...,um(x, ·) be twice continuously differentiable for x ≥
0. Then uα(x, ·) is continuously differentiable for every realization sT of ST . Furthermore for any αi > 0

there exists some βi > 0 such that

duα(sT , ·)
d y

∣∣
y=w̄(ST ) =αi

dui (sT , ·)
d y

∣∣
y=w̄i (ST ) =αiβi Kπ(sT ) =βKπ(sT )

for every realization sT .
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The proof of Theorem 3.1 is delegated to the end of Appendix A.

Theorem 3.1 is the corner stone for linking aggregated individual preferences to the market pricing

kernel with its potential nonmonotonicities. If we assume that the initial aggregate wealth sums up

to zero it is reasonable to conclude that market final wealth specializes to w̄(ST ) = ST if the bond is

in zero net supply. Let RT = ST

S0
be the return at maturity. Theorem 3.1 reads as follows in terms of

relative price.

Corollary 3.2 Let w̄(RT ) = RT and let u1(x, ·), ...,um(x, ·) be twice continuously differentiable for x ≥ 0.

Then under (4) – (10), uα(x, ·) is continuously differentiable for every realization rT , of RT and for any

αi > 0 there exists some βi > 0 such that

duα(rT , ·)
d y

∣∣
y=rT

=αi
dui (rT , ·)

d y

∣∣
y=w̄i (rT ) =βKπ(rT )

def= K̃π(rT ),

for w̄(RT ) = RT . Without loss of generality we can assume that β= 1.

3.2 Reference Dependent Preferences

The framework of state dependent utilities of the investors allows us to describe a switching behavior

of them when facing a threshold or a reference. We will consider a simple case when the reference

is with respect to the future realization of the market return RT . In more detail, let us assume that

each investor i is disposed of two basic continuous, strictly increasing and strictly concave utility in-

dices u0
i ,u1

i : [0,∞[→ R∪ {−∞} with u0
i (y),u1

i (y) ∈ R for y > 0. She is changing between these indices

dependent on a threshold xi > 0 in the space of future returns i.e.

ui {rT , wi (rT )} = u0
i {wi (rT )}I {rT ∈ [0, xi ]}+u1

i {wi (rT )}I {rT ∈ (xi ,∞)} (11)

for every realization rT of RT . The reader may think of u0
i ,u1

i as utility indices representing bearish

and bullish risk attitudes of investor i , and that her revealed attitudes are adapted to the prices of the

financial market.

In order to simplify notations, let us assume that the thresholds are ordered by x1 ≤ ... ≤ xm . There

exist different competing potential representative agent groups in the market with representations of

aggregate utility indices defined by
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u j
α {w̄ (RT )} =

m∑
k=1

αk u0
k {w̄k (RT )}I

{
k ≥ j

}+ m∑
k=1

αk u1
k {w̄k (RT )}I

{
k < j

}
(12)

In view of Lemma B.1, B.2 in Appendix B they have expected utility representations

E

[
u j
α{w̄ (RT )}

]
,

j = 1, . . . ,m +1. It is now a routine exercise to verify that

uα(x, y) = u1
α(y)I {x ∈ [0, x1]}+

m−1∑
i=1

u j+1
α (y)I

{
x ∈ (x j , x j+1]

}+um+1
α (y)I {x ∈ ( xm ,∞) } for x, y ≥ 0.

As a consequence the aggregate utility index might be interpreted as expressing the hegemony of dif-

ferent potential representative agents. Moreover, via Corollary 3.2 we obtain for some β > 0 and any

realisation rT of RT the expresion for K̃π(rT ) is

du1
α(y)

d y

∣∣
y=rT

I {rT ∈ [0, x1]}+
m−1∑
i=1

du j+1
α (y)

d y

∣∣
y=rT

I
{
rT ∈ (x j , x j+1]

}+ dum+1
α (y)

d y

∣∣
y=rT

I {rT ∈ ( xm ,∞) }

From this observation it becomes clear that the pricing kernel is nonincreasing separately on the in-

tervals [0, x1[, ]x1, x2[, ..., ]xm ,∞[, but it might fail to be monotone just at the switching points x1, ..., xm .

3.3 Reference Points and Pricing Kernel

To illustrate this point let us assume that the distribution of RT has [0,∞[ as support, and that the

investors have an identical switching point say x1; the market pricing kernel has the following repre-

sentation
du1

α(y)

d y

∣∣
y=rT

I {rT ∈ [0, x1]}+ dum+1
α (y)

d y

∣∣
y=rT

I {rT ∈ ( x1,∞) } = K̃π(rT ) (13)

for every realization rT of RT .

From (12) one can show that u j
α inherits the properties of utility indices u0

i and u0
i : it is continuous,

strictly increasing and strictly concave and fulfills the Inada conditions. Its first derivative has an in-

verse F j
α that is continuously differentiable and strictly decreasing. The application of Lemma B.1 and

Proposition B.3 in Appendix B yields

rT = F 1
(

du1
α(y)

d y

∣∣
y=rT

)
= F m+1

(
dum+1

α (y)

d y

∣∣
y=rT

)
11



for any positive realization rT ,.

For example, let us suppose that each investor i switches between CRRA utilities u j
i (y) = y

1−γ j
i

1−γ j
i

with

y > 0 and Arrow-Pratt coefficients of relative risk aversion γ
j
i ( j = 0,1;1 > γ0

i > γ1
i > 0). It follows that

u0
1, ...,u0

m represent more risk averse attitudes than u1
1, ...,u1

m . In particular for stock returns lower or

equal x1 we have a bullish market, whereas we obtain a bearish market when stock returns exceed x1.

For this parametrization of the utility indices, the mappings F j : [0,∞) → [0,∞) are defined

F j (z) =
m+1∑

i=1
αi >0

(
z

αi

) 1

γ
j
i ( j = 0,1)

If x1 is larger than the intersection of F 1 and F m+1 then

F 1
(

du1
α(y)

d y

∣∣
y=x1

)
= x1 = F m+1

(
dum+1

α (y)

d y

∣∣
y=x1

)
> F 1

(
dum+1

α (y)

d y

∣∣
y=x1

)
.

for any realization rT ≥ x1. Therefore

dum+1
α (y)

d y

∣∣
y=x1

> du1
α(y)

d y

∣∣
y=x1

That means that K̃π is not monotone at x1.

We illustrate the case of a single reference point for the following cases.

Example 1. Market utility indexes have u1
α and um+1

α have power representation with different aggre-

gate constant coefficients of relative risk aversion γ0
α and γ1

α.

r
−γ0

α

T I {rT ∈ [0, x1]}+ r
−γ1

α

T I {rT ∈ ( x1,∞) } = K̃π(rT )

Example 2. Market utility indexes u1
α and um+1

α have power representation with equal aggregate con-

stant coefficients of relative risk aversion γα but differ by a multiplicative constant b > 1.

r−γα
T I {rT ∈ [0, x1]}+br−γα

T I {rT ∈ ( x1,∞) } = K̃π(rT )

12
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Figure 1: duα(rT )
drT

(solid), du
j
α(rT )

drT
(dotted),

du1
α(rT )

drT
(dashed-dotted) and

dum+1
α (rT )
drT

(dashed)
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A graphical illustration for these example is in figure 1: left panel top for γ0
α = 0.75 and γ1

α = 0.25 and

x1 = 1.2; a jump of similar size is depicted in the right upper panel of the same figure for the case when

utilities differ just by a constant u1
i = bu0

i with b = 1.2 and γα = 0.75.

Next, we exemplify the case of investors with heterogeneous reference points xi . For exposition pur-

poses we will assume that the investors are equally important, that is α1 =α2 = ·· · =αm =α. In a sim-

ple case, we assume that all agents switch between the same two utility indices u j
i (y) = u j (y), ( j = 0,1)

for all i = 1, · · · ,m. Let us denote

F (rT ) = 1

m

m∑
i=1

I {rT ∈ (0, xi ]}

the cumulative distribution function of the reference points; F is basically the share of agents that have

preferences described by u1 at the realization rT . The interpretation of the ordered reference points is

the following: for x1 < x2 we will say the investor 1 is more optimistic than the agent 2. The degree of

heterogeneity of the agents with respect to their reference points is an indicator for market uncertainty.

This point will be extended upon in section 6.

Example 3. We exemplify with the individual utility functions u j , j = 0,1.

u j (y) =


b j

y1−γ

1−γ if γ> 0 and γ 6= 1

b j log(y) if γ= 1

The positive constants b0 < b1 retain the relationship between u0 and u1 in the previous example; in

that sense b1 represent bullish attitudes. Given our parametric specifications for the utility indices and

F we can rewrite the formulas for K̃π(rT ) developed in section 3.2 as

K̃π(rT ) =

 rT

{1−F (rT )}b
1
γ

0 +F (rT )b
1
γ

1


−γ

, (14)

14



for every possible realization rT of RT . We illustrate the results in Figure 1 for γ0 = γ1 = 0.5, b0 = 1,

b1 = 1.2 and m = 2 (lower panel left) and m = 5 respectively (lower panel right).

Example 4. If agents have homogeneous, state dependent CRRA preferences

u j (y) =


y1−γ j

1−γ j
if γ j > 0 and γ j 6= 1

log(y) if γ j = 1

the market pricing kernel can be written as a power function

K̃π(rT ) = b(rt )r−γα(rT )
T (15)

with non-constant coefficient of relative risk aversion γα(rT )

γα(rT ) = rT

[
{1−F (rT )}

w̄ 0

γ1
+F (rT )

w̄ 1

γ0

]−1

and

b(rT ) =
[{

1−F (rT )b
1
γ0
0

}
w̄ 0

rT
+F (rT )b

1
γ1
1

w̄ 1

rT
)

]γα(rT )

for w̄ j the optimal wealth path in state j , j = 0,1.

Example 5. Introducing state dependence in both b and γ results in a pricing kernel of the form (15)

with b(rT ) =
[

{1−F (rT )} w̄0

rT
+F (rT ) w̄1

rT
)
]γα(rT )

.

A further generalization of the previous examples is possible if we consider heterogeneity of agents in

CRRA, γ j
i and/or constants b j

i . However, then the link to F is lost. We will use notations Kθ,F = K̃π(rT )

for the models described in Examples 3 through 5, for θ = (b,γ)> a parameters vector describing pref-

erences.

15



4 Investors’ Portfolio Choice

From Corrolary 3.2 and Appendix A we can establish the relationship between the optimal terminal

wealth of investor i and the market pricing kernel

w̄i (rT ) = Ii {rT ,
1

αi
K̃π(rT )} for i = 1, . . . ,m (16)

More explicitly, given the reference dependent utility specification in equation (11)

Ii {rT ,
1

αi
K̃π(rT )} = w̄ 0

i (rT )I {rT ∈ [0, xi ]}+ w̄ 1
i (rT )I {rT ∈ (xi ,∞)} (17)

where w̄ j
i (rT ) = I j

i { 1
αi

K̃π(rT )}, for I j
i (·) continuously differentiable, strictly decreasing on ]0,∞[, the

inverse functions of
du j

i (y)

d y
, j = 0,1.

At the same time, the optimal wealth w̄i (rT ) also satisfies

w̄i (rT ) = wi 0 +δi (rT −1)+1. (18)

for every realization rT of RT . Equating the right hand side of equations (16) and (18), and taking

expectations we can derive the optimal weight invested in the risky asset

δ∗i = E
[
w̄ 0

i (rT )I {rT ∈ [0, xi ]}
]+E[

w̄ 1
i (rT )I {rT ∈ (xi ,∞)}

]−wi 0 −1

E(rT )−1
(19)

For u0
i denoting bearish and u1

i bullish attitudes, in the sense that there exists a threshold x so that for

du1
i (y)

d y
> du0

i (y)

d y
for y ≥ x,

the investors invest a higher fraction of wealth in the risky assets when xi ≥ x is small.

This is because w̄ 1
i (rT ) > w̄ 0

i (rT ) for rT ≥ x. The risk attitudes induced by a relatively smaller reference

point xi we will call ’optimism’. Obviously, the higher δ∗i is the higher is investors’s expected wealth

E [w̄i (rT )]. These are typically the agents that will take a long position in the risky assets, while short

selling might occur for agents that have their reference points further to the right. Bakshi et al. (2010)
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Figure 2: Market pricing kernel and (scaled) final wealth of three type of agents: mixed agent (upper

right); optimistic agent (lower left) and pessimistic agents (lower right); mw̄i (rT ) (solid), mw̄ 0
i (rT ) and

mw̄ 1
i (rT ) (dotted)
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suggest that investors shorting equities possibly generate a positively sloped region in the pricing ker-

nel.

Terminal wealth for three types of agents is illustrated in figure 2. The 45 degree line depicts the wealth

of the aggregate agent contrasting to the optimal wealth allocated to the individual investors. The port-

folio of an ’optimistic’ investor ’beats’ the market for realizations of rT at the right of its reference point

for the increasing region of the pricing kernel, whereas the portfolio of a pessimistic agents underper-

forms compared to the benchmark at the left of the reference points for the mixed and pessimistic

type.

5 Simulation Study

5.1 Comparative Statics

According to section 2, the price of the risky asset at t = 0 is given by

S0 =
∫ ∞

0
sT K̃π(sT ) psT (sT ) d sT . (20)

For a fixed probability density function pST the pricing kernel Kπ has a direct effect on the price at

t = 0 through the way it weights the possible realizations of sT . For Kθ,F = K̃π we analyze the effects

that the model’s F and θ have on the price S0. The baseline model given by equation (14) for b = b1/b0

and b0 = 1 is marked with solid line in figure (3).

We parametrize F to be N(1,0.05) and we investigate the effect that the change in the mean and vari-

ance of the distribution has on the price in the upper panels of figure (3). A decrease in the mean results

in higher weights associated with higher realizations for nonzero values of dF (·), while a decrease in

the variance makes the hump more pronounced by simultaneously lowering the weights of lower re-

alizations and increasing those of higher realizations around the nonzero values of dF (·). In the first

case this is due to the prevalence of optimistic investors that tilt their portfolios towards the risky asset,

triggering an increase in price S0; in the second case, the heterogeneity of investors’reference points
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Figure 3: Impact of model parameters on the shape of PK: baseline model (solid): γ= 0.5, b = 1.2, F =
N(1,0.05); comparative models (dashed) left panel up F = N(1.2,0.05); right panel up F = N(1,0.15);

left panel middle b = 1.4; right panel middle γ = 0.25;; left panel down γ1 = 0.25; right panel down

F = 1/2N(1,0.05)
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xi -s is lower; this increases the slope of the upward region without significant effects on the price. We

also observe that for small mean and large variance of F the humped feature disappears.

The next two panels depict the shape of the pricing kernel under various b-s and γ-s. We notice that

for higher b the weights associated with higher returns are higher and hence large price S0. In this

example, varying γ makes pricing kernel ’rotate’ around the value of rT corresponding to the mean of

F . Lower CRRA results in higher weights for higher returns and lower rates for lower returns realiza-

tions, over all domain of rT . The overall effect is an increase in the price in a similar fashion it produces

in state independent preferences case, by reducing the price per unit of probability of bad states and

conversely for the good states. If we let CRRA to vary between the two states and apply pricing kernel

specification in equation (15) we can see how the divergence between γ1 and γ2 affect the shape of the

pricing kernel and consequently the price S0.

Finally, in the lower panel right, we allow for a ratio of investors to have state independent preferences

of type u0(as specified in the baseline model). These influence the price S0 in a negative and this effect

is more pronounced the higher the ratio of agents with preferences u0 is. Obviously, the predictions

for the change in S0 will be in the opposite direction for state independent preferences of type u1.

5.2 Identifiability

In this subsection, we discuss some aspects related to the applicability of the model proposed in the

previous section in practice, when we try to fit it to empirical pricing kernel K̂ . If we denote K̂ (s j ) = y j

the estimates of the pricing kernel at observation points s j , for j = 1, . . . ,n and assume that

y j =Kθ,F +ε j , with ε j ∼ (0,σ2) (21)

the fitting problem involves finding θ∗ and F∗ that minimize

n∑
j=1

{
y j −Kθ,F

(
s j

)}2, (22)

or a weighted version of it. We demonstrate the inverse problem in a simulation exercise, for Kθ,F
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given by (14) and zero error term. The pricing kernel in figure 4 was generated for parameters γ0 =
γ1 = 0.5, b = 1.2 and F a ed f of 400 random reference points from a normal distribution N(1,1.2). The

two panels on the left depict the pricing kernel and F; the dashed line marks the regions where F takes

values 0 or 1. These are the regions that allow us to identify parameters b and γ, and consequently

F . However, if the probability density function associated with F doesn’t have compact support on

the observed domain, these components can not be identified without further restrictions. The right

panel up in figure 4 zooms in the pricing kernel at its left side so that the dashed lines are no more

visible. This allows us to illustrate the case of non-identifiably of the model; underneath this panel

we plot different combinations for γ, b and F that give a perfect fit of the PK above. For instance, the

top fascicle of dotted curves depicts F for b = 1.2 and γ = (0.46,0.47,0.48,0.49,0.50,0.52), and for the

next two bundles of curves we vary b to 1.3 and 1.5 respectively. Obviously, these combinations of

parameters will determine the shape of the pricing kernel in the tails, where they diverge from the true

pricing kernel in various degrees.

This exercise is relevant in practice;in particular, observations in the tails are sparse and the pointwise

confidence intervals (or confidence bands) for the EPK are wider in the tails regions. This means that

when trying to fit the model to the real data there will be a set of possible solutions that minimize the

objective function (22). The characterization of these solutions are beyond the scope of this paper and

constitutes the object of future work.

6 Real Data Analysis

Due to the identification problems explained in section 5.2, a quantitative analysis in terms of θ and

F over time is not feasible due to the multiplicity of solutions. The authors are investigating possible

solutions under suitable constraints in a concurring study. However, the comparative statics analysis

in subsection 5.1 allows us to make a qualitative evaluation of the model for dynamically estimated PK.

Further on, we refer to the results of Grith et al. (2012), GHP as of now. Their EPK estimates relate to

the European call and put options written on the German DAX 30 index, between June 2003 and May
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2006, at a monthly frequency. The authors assume that the conditional physical density is stationary,

that is, pSt evolves slowly and most of the variation in the pricing kernel is due to qSt . If we extend the

equation 20 to the contingent claims, we can explain the time variable patterns of the option prices

through the changes in the pricing kernel. GHP relate the time variability of the pricing kernel hump

to the economic conditions; in table 4 they report significant correlations between the changes in the

shape of the EPK and the business indicators.

The changes in the height of the hump varies positively with the return on the index. The increase in

the ’peak’ in our model can be induced either via F or through a larger b (b1) or lower γ (γ1). The later

causes an increase in the hump’s spread, which is at odds with another finding of the GHP paper that

suggests that the spread and the height of the peak are negatively related. It means, that in terms of our

model, the mechanism that triggers an increase in the peak works through b and/or F . This suggestion

is supported in the model proposed by Basak and Pavlova (2012), who add to the utility function of

their institutional investors a state dependent component that is directly related to the performance of

the index; while the retail investors have standard preferences. The fraction of institutional investors is

a key parameter in their model and its increase exercises pressure on the stock index pushing it up; the

same effect is present in our model by increasing the number of agents that have u1 type of preferences

(or have reference dependent preferences).

The hight of the EPK hump might respond to the business conditions as well, as suggested by the

correlations with the credit spread - the difference between the yield on the corporate bond, based on

the German CORPTOP Bond maturing in 3-5 years, and the government bond maturing in 5 years. Its

countercyclical relation to the economic conditions and the negative relation to the height of the peak

imply that its decrease pushes up the level of the peak. It is not yet clear how co-movements between b

and F happen in the dynamics but the evidence so far seems to suggest that b may be interpreted as a

magnitude parameter, that is increasing in St over time, while the overall economic conditions impact

F .

The scale and shape parameters that modify the PK in the horizontal direction respond to changes in

the yield term slope. The slope, computed as the difference between the 30-year government bond
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yield and three-month interbank rate, has been shown to be pro-cyclical in Estrella and Hardouvelis

(1991). A smaller slope shifts the increasing region of the PK to the right and widens its spread. These

effects become effective in our model through the positive changes in the first two moments of F ,

meaning an increase in the pessimism and diversion of investors’ reference points on the domain of

future returns.

The arguments above suggest that our model delivers sensible mechanisms of PK’s dynamics. We ob-

serve that at least what the changes in the EPK shape are concerned, they do not necessarily involve γ.

It is possible that through this parameter, models that mimic other features of the pricing kernels, that

are not consistent with the PK puzzle - e.g. generalized disappointment aversion model in Routledge

and Zin (2010) - be reproduced; such generalizations necessitate further efforts and constitute material

for new studies. On the other hand, it is possible that the mechanism that we suggest only manifests in

certain circumstances while agents have permanent structural biases; explanation of inverse S-shaped

weighting function Polkovnichenko and Zhao (2012) may practically hold for all periods but cease to

capture some features in the data during some economic conditions. We do not rule out the possibility

that the asset prices depend on investors’ subjective beliefs regarding future realizations of ST and our

model can incorporate such extensions. Based on our analysis, we find that the investors incorporate

information from the other part of the economy when making investment decisions. Our explanation

of reference dependent preferences seems a plausible explanation for the time varying shape of the

EPK.

7 Conclusions

Based on our specification for the marginal investors’ preferences, the v. Neumann-Morgenstern util-

ity index of the aggregate agent might switch between different ’regimes’, meaning possible jumps in

the pricing kernel. We empirically investigate its switching behavior in a simulation study and inter-

pret the time varying patterns of real data in connection to our model. The theoretical model encom-

passes a fixed investment horizon, since we are only taking a snapshot of the market and try to explain
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the observed shape in the pricing kernel. The natural extension for building a dynamic equilibrium

model, starting from the static approach is to endogenize the formation of reference points. ’Keep-

ing up with the Joneses’ or status concerns Hong et al. (2012), the history of previous gains and losses

Barberis et al. (2001), learning Benzoni et al. (2011), performance relative to a benchmark Basak and

Pavlova (2012); Tang and Xiong (2012) are further possible explanations and extensions that need to

be investigated and that come close to our approach. The model can be extended to other markets:

commodities, interest rate and credit derivatives, in order to investigate if similar behavior occurs.

A Appendix

The aim of this section is to provide a proof for Theorem 3.1. We continue with the model of sec-

tion 3, retaking all assumptions and notations. Firstly, we characterize the optimal terminal wealth

w̄1(ST ), ..., w̄m(ST ) of the individual investor.

The Inada conditions together with (5) imply that for any i ∈ {1, ...,m} and every x ≥ 0 the mapping
dui (x, ·)

d y

∣∣]0,∞[ is injective onto ]0,∞[ with continuously differentiable, strictly decreasing inverse say

Ii (x, ·). This enables us to apply the dominated convergence theorem to show

(A1) continuity of mappings

g i
st

:]0,∞[→R, y 7→ Ii {sT , yKπ(sT )}Kπ(sT ) (sT ≥ 0, i ∈ {1, ...,m}).

(A2) lim
y→0

g i
sT

(y) =∞ and lim
y→∞g i

sT
(y) = 0.

We are now ready to extend the classical characterization of the optimal terminal wealth to the case of

extended expected utility preferences.

Theorem A.1 Assuming (4) – (10), there exists yi > 0 such that

w̄i (ST ) = Ii {ST , yi Kπ(ST )} for every i = 1, . . . ,m
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Proof:

Let us fix i ∈ {1, ...,m} and denote zi
def= w i

0 +E[ei (ST )Kπ(ST )]. Since zi > 0 we may find in view of (A1),

(A2) some yi > 0 with g (yi ) = xi .

Let w(ST ) be a nonnegative random variable with E[w(St )Kπ(ST )] ≤ zi . Then

E[u{ST , w(ST )}]+ yi {zi −E[w(ST )Kπ(ST )]} = yi zi +E[u{ST , w(ST )}− yi w(ST )Kπ(ST )] ≤
yi zi + sup

x≥0
E[u(ST , x)− yi xKπ(ST )] =

yi zi +E[u[ST , Ii {ST , yi Kπ(ST )}]− yi Ii {ST , yi Kπ(ST )}Kπ(ST )] =E[u{ST , Ii (ST , yi Kπ(ST ))}].

Therefore Ii (ST , yi Kπ(ST )) solves the optimization problem of investor i . Moreover, the numerical

representation Ui of investor’s i preferences is strictly concave in view of strict concavity of ui (x, ·) for

every x ≥ 0. In particular Ii (ST , yi Kπ(ST )) is the unique solution, hence being identical with w̄i (ST ). �

Before starting with the proof of Theorem 3.1 let us consider for purposes of reference the classical

case of the investor being expected utility maximizer. Indeed as an additional corollary of Theorem

3.1, we may retain the folk result concerning the risk neutral price valuation and the v. Neumann-

Morgenstern utility index of the representative agent. More precisely, let us assume that there exist

mappings u1, ...,ur from R+ into R∪ {−∞} satisfying u1(x, ·) = u1, ...,um(x, ·) = um for x ≥ 0, and

(A3) u1(y), ...,um(y) ∈R for y > 0,

(A4) u1, ...,um are continuous, strictly increasing as well as strictly concave.

Then

u(y)
def= sup

{
m∑

i=1
αi ui (yi ) | y1, ..., ym ≥ 0,

m∑
i=1

yi ≤ y

}
= uα(x, y) for x, y ≥ 0.

We shall impose the so called Inada conditions on the state independent utility indices u1, ...,um , i.e.

(A5) u1|]0,∞[, ...,um |]0,∞[ are assumed to be continuously differentiable satisfying

lim
e→0

dui

d y

∣∣
y=e =∞, lim

e→∞
dui

d y

∣∣
y=e = 0 (i = 1, ...,m).
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(A6) E[I1(yKπ(ST ))], . . . ,E[Im(yKπ(ST ))] < ∞ for any y > 0, where I1, ..., Ir denote the inverses of
du1

d y
, ...,

dum

d y
respectively.

We may conclude immediately from Theorem 3.1 the announced result.

Proof of Theorem 3.1:

Without loss of generality let us set {1, ...,r }
def= {

i ∈ {1, ...,m} |αi > 0}. Then, defining gi
def= αi ui , we have

uα =
r∑

i=1
gi , and we may apply Lemma B.1, B.2 and Proposition B.3 (cf. Appendix B). Then, in view of

Lemma B.1, B.2 and B.3, we obtain

uα {sT , w̄(sT )} =
r∑

i=1
αi ui

(
sT , w̄ i (sT )

)
for every realization sT of ST .

On one hand by Theorem A.1, there exist y1, ..., ym > 0 such that

w̄i (ST ) = Ii (ST , yi Kπ(ST )) > 0 for i = 1, ...,r.

On the other hand, due to Proposition B.3, uα(sT , ·)|]0,∞[ is differentiable for every realization sT ,

satisfying

αi
dui (sT , ·)

d y

∣∣
y=w̄ i (sT )=

duα(sT , ·)
d y

∣∣
y=w̄(sT )

for i ∈ {1, ...,r } and any realization sT . Notice that by construction the random variable w̄(ST ) has

strictly positive outcomes only. Now, the statement of Theorem 3.1 is clear.

B Appendix

Throughout this section let the mappings g1, ...gr :R2+ →R∪ {−∞} satisfy the following conditions:

(B0) g1(x, y), ..., gr (x, y) ∈R for x ≥ 0, y > 0;

(B1) g1(x, ·), ..., gr (x, ·) are continuous, strictly increasing and strictly concave for x ≥ 0;

(B2) g1(·, y), ..., gr (·, y) are Borel-measurable for y ≥ 0.
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Furthermore, let g :R2+ →R∪ {−∞,∞} be defined by

g (x, y) = sup

{
r∑

i=1
gi (x, yi ) | y1, ..., yr ≥ 0,

r∑
i=1

yi ≤ y

}
.

Indeed g (x,0) =
r∑

i=1
gi (x,0) ∈R∪ {−∞} for x ≥ 0, and

−∞<
r∑

i=1
gi (x,

y

r
) ≤ g (x, y) ≤

r∑
i=1

gi (x, y) <∞

for x ≥ 0, y > 0 due to (B0), (B1).

Lemma B.1 For any x, y ≥ 0 there is some uniqueφ(x, y) = (φ1(x, y), ...,φr (x, y)) ∈Rr+ such that
r∑

i=1
φi (x, y) ≤

y and
r∑

i=1
gi

{
x,φi (x, y)

}= g (x, y).

Furthermore,
r∑

i=1
φi (x, y) = y.

Proof:

Let x, y ≥ 0. For y = 0 the statement of Lemma B.1 is obvious. So let y > 0, which means g (x, y) ∈ R.

Due to (B1), the mapping

f :

{
(y1, ..., yr ) ∈Rr

+
∣∣∣ r∑

i=1
yi ≤ y,

r∑
i=1

gi (x, yi ) ≥ g (x, y)−1

}
→R, (y1, ..., yr ) 7→

r∑
i=1

gi (x, yi )

is continuous, strictly concave, and defined on a nonvoid convex compact set. Therefore f attains it

maximum at a unique φ(x, y). Obviously,
r∑

i=1
φi (x, y) = y because f is strictly increasing too by (B1).

The proof is complete.

Lemma B.1 defines a mapping φ= (φ1, ...,φr ) :R2+ →Rr+. It is Borel-measurable as will be shown now.

Lemma B.2 φ is Borel-measurable.

Proof:

It suffices to show thatφ−1
(

i=1

r
[0, ai ]

)
is a Borel-subset ofR2+. For this purpose define for any (a1, ..., ar )

from Rr+ the mapping ga1...ar :R+×R+ →R∪ {−∞} by

ga1...ar (x, y) = sup

{
r∑

i=1
gi (x, yi ) | (y1, ..., yr ) ∈

i=1

r
[0, ai ],

r∑
i=1

yi ≤ y

}
.
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Notice that ga1...ar (x, y) ∈ R for x ≥ 0, y > 0, analogously to g (x, y) ∈ R for x ≥ 0, y > 0. Furthermore

g1(x, ·), ..., gr (x, ·) are continuous for any x ≥ 0. Hence, setting Ra1...ar = i=1

r
[0, ai ] × Qm ,

g−1
a1...ar

(]z,∞[) = ⋃
(y1,...,yr )∈Ra1...ar

(
r∑

i=1
αi gi (·, yi )

)−1 (
]z,∞[

)
×

[
r∑

i=1
yi ,∞

[
(z ∈R).

Thus g−1
a1...ar

(]z,∞[) is a Borel-subset of R2+ for every z ∈R by assumption (B2). Then we may conclude

that

φ−1
(

i=1

r
[0, ai ]

)
=

(
sup

(b1,...,br )∈Qr+
gb1...br − ga1...ar

)−1

({0})

is a Borel subset of R2+ for any (a1, ..., ar ) ∈Rr+, which completes the proof.

In order to characterize the mapping φ in terms of derivatives of the functions g1(x, ·), ..., gr (x, ·), it is

customary to impose the Inada conditions, i.e.

(B3) for any x ≥ 0 the mappings g1(x, ·)|]0,∞[, ..., gr (x, ·)|]0,∞[ are assumed to be continuously differ-

entiable satisfying

lim
ε→0

∂g i (x, ·)
∂y

∣∣
y=ε =∞, lim

ε→∞
∂gi (x, ·)
∂y

∣∣
y=e = 0, i = 1, . . . ,r.

The Inada conditions together with condition (B1) imply that for any i ∈ {1, ...,r } and every x ≥ 0 the

mapping
∂gi (x, ·)
∂y

∣∣]0,∞[ is injective onto ]0,∞[ with continuously differentiable, strictly decreasing

inverse say Ii (x, ·).

Proposition B.3 Let the assumptions (B0) - (B3) be fulfilled, and let g1(x, ·)|]0,∞[, ..., gr (x, ·)|]0,∞[ be

twice continuously differentiable.

Then for any x ≥ 0 the mapping g (x, ·) ∣∣]0,∞[ is differentiable satisfying

φ(x, y) =
[

I1

{
x,
∂g (x, ·)
∂y

∣∣
y

}
, . . . , Ir

{
x,
∂g (x, ·)
∂y

∣∣
y

}]
for y > 0.

Proof:

Let for x ≥ 0 the mapping Fx : ]0,∞[×]0,∞[→R be defined by Fx(y, z) =
r∑

i=1
Ii (x, z)− y.

Since the mappings g1(x, ·)|]0,∞[, ..., gr (x, ·)|]0,∞[ are assumed to be strictly concave and twice con-

tinuously differentiable, their second derivatives are strictly negative. Then by local inverse theorem
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the mappings I1(x, ·), ..., Ir (x, ·) are continuously differentiable, having strictly negative derivatives. In

particular Fx is continuously differentiable, satisfying

∂Fx

∂z

∣∣
(y,z) 6= 0 for y, z > 0.

Furthermore, since I1(x, ·), ..., Ir (x, ·) are continuous and strictly decreasing mappings onto ]0,∞[, we

may find for any y > 0 a uniqueϕ(y) > 0 with F (y,ϕ(y)) = 0. Drawing on the implicit function theorem,

y 7→ϕ(y) defines a differentiable mapping ϕ :]0,∞[→]0,∞[.

Moreover, for y > 0 and y1, ..., yr ≥ 0 with
r∑

i=1
yi ≤ y, we may conclude

r∑
i=1

gi (x, yi )+ϕ(y)(y −
r∑

i=1
yi ) = ϕ(y)y +

r∑
i=1

{
gi (x, yi )+ϕ(y)yi

}≤
ϕ(y)y +

r∑
i=1

sup
z≥0

{
gi (x, z)+ϕ(y)z

}=
ϕ(y)y +

r∑
i=1

[gi {x, Ii (x,ϕ(y))}+ϕ(y)Ii {x,ϕ(y)}] =
r∑

i=1
gi [x, Ii {x,ϕ(y)}]−Fx{y,ϕ(y)} =

r∑
i=1

gi [x, Ii {x,ϕ(y)}].

This means

g (x, y) =
r∑

i=1
gi [x, Ii {x,ϕ(y)}],

and hence by Lemma B.1

(*) φ(x, y) = (I1[x,ϕ(y)], ..., Ir [x,ϕ(y)]).

As a further consequence g (x, ·)|]0,∞[ is differentiable satisfying

d g (x, ·)
d y

∣∣
y=

r∑
i=1

ϕ(y)
d Ii (x, ·)◦ϕ

d y

∣∣
y=ϕ(y)

d

(
r∑

i=1
Ii (x, ·)◦ϕ

)
d y

∣∣
y=ϕ(y).

For the last equation notice that
r∑

i=1
Ii (x, ·) ◦ϕ is just the identity on ]0,∞[. In view of (*) the proof is

complete.
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