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Abstract

This paper considers estimation and inference for varying-coefficient models with nonstation-

ary regressors. We propose a nonparametric estimation method using penalized splines, which

achieves the same optimal convergence rate as kernel-based methods, but enjoys computation

advantages. Utilizing the mixed model representation of penalized splines, we develop a likeli-

hood ratio test statistic for checking the stability of the regression coefficients. We derive both

the exact and the asymptotic null distributions of this test statistic. We also demonstrate its op-

timality by examining its local power performance. These theoretical findings are well supported

by simulation studies.
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1 Introduction

Regression models with nonstationary regressors have received much attention in the liter-

ature of theoretical and applied econometrics since the seminal work by Nelson and Plosser

(1982). Amongst the popular research in this field has been the study of cointegration.

The traditional framework of Engle and Granger (1987), assuming constant cointegrating

coefficients, provides an appealing analytical framework to characterize the long-run equilib-

rium relationship. However, very few empirical studies support the presence of cointegration

with constant coefficients. Such an empirical frustration is due to the lack of flexibility of

traditional cointegration models in accommodating the time-varying long-run equilibrium

relationship.

There are many empirical examples in economics and finance demonstrating time-varying

features in cointegrating relationships. For example, Goldfajn and Baig (1998) argue that,

during the Asian currency crisis, the cointegrating relation between the spot exchange rate

and the interest rate differential is not fixed but depends on the level of the interest rate.

Another example is in the literature of stock return predictability, where one of the theoretical

and practical issues is to answer whether we could predict the asset return from fundamental

variables such as the dividend-price ratio and the earning-price ratio, which are well known

nonstationary time series variables (Campbell and Yogo 2006). Although linear prediction

models have been extensively used, Lettau and Ludvigsson (2001), Goyal and Welch (2003)

and Paye and Timmermann (2006) find empirical evidence that the cointegrating stock return

forecasting models might be instable.

Many studies adopt nonparametric methods to capture the time-varying relation with

nonstationary variables. The latest research include Wang and Phillips (2009a, 2009b) and

Cai, Li and Park (2009), among others. Wang and Phillips (2009b) construct asymptotic

theories for the local time density estimation in nonparametric cointegrating regression. They

find that the so called ill-posed inverse problem does not exist in nonparametric regression
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with nonstationary endogenous regressors. Cai et al. (2009) investigate the asymptotic

property of local linear estimators in a varying-coefficient model when the smoothing variable

is nonstationary but the covariates are either stationary.

Testing the stability of varying coefficients becomes another important issue in this litera-

ture. For example, Park and Hahn (1999) construct two residual-based statistics to test the

constancy of the cointegrating coefficients based on the series estimation. Kasparis (2008)

develops two residual-based statistics for testing the functional form misspecification in coin-

tegrating relations. Bierens and Martins (2010) propose a vector error correction model with

cointegration coefficients estimated by Chebyshev polynomials, and conduct a likelihood ratio

test on the stability by examining whether all Chebyshev polynomial coefficients are jointly

zero. Juhl (2005) and Xiao (2009) further extend the studies to the case where cointegration

coefficients are general smooth stochastic functions depending on some stationary covari-

ates. Xiao (2009) considers both kernel and local polynomial estimators and establish their

asymptotics. Moreover, he proposes a test statistic by comparing the functional-coefficient

estimates to a fixed value estimated under the null. 1

In this paper, we consider varying-coefficient regression models with nonstationary regres-

sors. Our model setting is similar to Cai et al. (2009) and Xiao (2009). However, we propose

to estimate the varying coefficients by penalized splines and construct a likelihood ratio test

(LRT) for the stability of the varying coefficients. The basic idea of spline methods is to ap-

proximate the unknown regression function by splines, which are piecewise polynomials, and

then estimate the spline coefficients by the least squares method. In order to maintain a good

balance between the goodness of fit and the model variability, a large number of basis func-
1Other contributions to the literature on the stability tests in cointegrating regression includes Hansen

(1992), Hao (1996), Quintos (1997), Kuo (1998), Hansen and Johansen (1999), Johansen, Mosconi and Nielsen

(2000), Harris, McCabe and Leybourne (2002), and among others. Furthermore, Hong and Phillips (2010)

propose a modified RESET test for testing linearity in the cointegration model. Gao, King, Lu and Tjøstheim

(2009) consider a nonparametric specification test for a nonparametric time series model with nonstationary

variables.
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tions are employed and a penalty term is imposed to avoid overfitting (Eilers and Marx, 1996).

There are several prominent features of such a penalized splines approach. First, this method

is simple and easy to implement. Its computation is usually less time-consuming compared

to other nonparametric methods such as kernel or local polynomials. Second, it could easily

incorporate correlation structure to improve the efficiency of estimator or to account for longi-

tudinal and spatial effects (Ruppert, Wand and Carroll 2003). Third, it has close connections

with Ridge regression, Bayesian methods and mixed model representation, thus allowing fit-

ting and testing to be conducted through the paradigm of likelihood (Crainiceanu, Ruppert,

Claeskens and Wand 2005). However, theoretical explorations of penalized splines were less

well developed until recently. Li and Ruppert (2008) establish the asymptotic normality of

the penalized splines estimation. Claeskens, Krivobokova and Opsomer (2009) systematically

compare the asymptotics of penalized splines, regression splines and smoothing splines. All

these studies are under the univariate nonparametric model assumption yt = θ(zt) + vt for

stationary covariate zt’s.

Our studies contribute to the literature through the following aspects. First, we propose

the penalized spline estimation method for varying-coefficient models with nonstationary

regressors. We establish the consistency as well as the optimal convergence rate of the

penalized splines estimators. In our study, the choice of the spline basis is not crucial,

but the penalty parameter plays the key role of smoothing. To our best knowledge, this

is the first work in establishing the asymptotics of penalized splines estimators for varying-

coefficient models with nonstationary regressors. Second, we consider testing the stability of

the regression coefficients. By utilizing the mixed model representation of penalized splines,

we relate this problem to testing zero variance component of the spline coefficients. We then

adopt the likelihood ratio test (LRT) procedure and derive the exact and the asymptotic null

distribution. Since the exact null distribution is non-standard, we provide a fast algorithm

to simulate its critical values when the sample size is small. By assuming both the sample

size and the number of spline functions grow to infinity, we, for the first time, show that
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the limiting null distribution of the proposed LRT statistic follows a simple χ2 distribution

rather than a mixture of χ2 distributions. We also study the local power of the proposed

LRT by deriving the asymptotic distribution under the local alternative. Simulations show

that our method works very well.

The rest of the paper is organized as follows. In Section 2, we introduce the varying-

coefficient regression model with nonstationary regressors and discuss some regularity as-

sumptions. The penalized splines estimation of the varying coefficients and its asymptotics

are presented in Section 3. In Section 4, we construct the LRT for the stability of the varying

coefficients. Both the exact distribution and the asymptotic null distribution are derived.

The local power property is examined as well. Simulations are conducted in Section 5 to

demonstrate the finite sample performance of our procedure, while Section 6 concludes.

In matters of notations, D= denotes equality in distribution, =: denotes definition,⇒ denotes

convergence in distribution, a.s.→ denotes almost sure convergence, a ∼ b denotes that a and b

has the same order, [Ts] denotes the integer part of Ts and
∫

denotes the integration from

0 to 1.

2 The Model and Assumptions

Consider the following varying-coefficient regression model without intercept and time trends

yt = xtθ(zt) + ut, (1)

where θ(·) is a smooth function of unknown form, yt can be either stationary or nonstationary,

zt and ut are stationary, and xt is an integrated process of order one, whose generating

mechanism is given by

xt = xt−1 + vt, for t = 1, 2, ...T,

with vt being stationary. We set x0 = 0 to avoid some unnecessary complications in exposi-

tion, although x0 = oa.s.(
√

T ) is sufficient for the asymptotic results.2

2To save notations, we only consider the simple case when zt is univariate.
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Compared to traditional varying-coefficient models, which usually deals with independent

and identically distributed (iid) or stationary time series, Model (1) allows the regressors to

be highly persistent variables, such as interest rate, GDP growth rate and unemployment

rates. On the other hand, compared to traditional linear cointegration models, which are

widely used in the literature to capture the long term equilibrium among highly persistent

economic variables, Model (1) affords more flexibility as it allows the relationship to be

varying according to some state variable zt.

Before describing our estimating and testing procedures, we first discuss some regularity

assumptions for our Model (1).

Assumption 1: The sequence {vt} is stationary α −mixing with E(|vt|ρ) < ∞ for some

ρ > 2+r1 with 0 < r1 ≤ 2 and the mixing coefficients αm satisfying
∑∞

m=1 α
1/(2+r1)−1/ρ
m < ∞.

Assumption 2:

i) The error term ut is a general linear process satisfying

ut =
∞∑

i=0

ciet−i = Cu(L)et,

where {et}∞t=−∞ are i.i.d N(0, σ2
e) with σ2

e > 0 and {ci}∞i=0 satisfies the summability

conditions
∑∞

i=0 i|ci| < ∞ with Cu(1) 6= 0.

ii) ut is independent of zt and vt.

Assumption 3:

i) The sequence {zt} is strictly stationary, ergodic and α−mixing with mixing coefficients

αm satisfying
∑∞

m=1 α
1/2−1/r2
m < ∞ for some r2 > 2.

ii) zt has a marginal density fz(z) on a finite support [0, 1]. fz(z) is continuously differen-

tiable and bounded away from 0.

iii) θ(z) belongs to the Sobolev space of the m-th order Wm[0, 1], i.e. θ(z) is (m − 1)-th

continuously differentiable and
∫ 1
0 {θ(m)(z)}2dz < ∞.
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Assumption 1 and Assumption 2 i) provide sufficient conditions of strong approximations

for the partial sum ( 1√
T

∑[Ts]
t=1 ut,

1√
T

∑[Ts]
t=1 vt),

sup
s∈[0,1]

||( 1√
T

[Ts]∑

t=1

ut,
1√
T

[Ts]∑

t=1

vt)− {Bu(s), Bv(s)} || a.s.→ 0, as T →∞,

where {Bu(s), Bv(s)} are two Brownian motions defined on D[0, 1], the space of cadlag func-

tions defined in the unit interval [0, 1]. Note that the strong approximation is stronger than

the multivariate invariance principle, but it is commonly used in the literature of nonlinear

regression model with nonstationary regressors, including Park and Hahn (1999), Park and

Phillips (2001), Kasparis (2008), Wang and Phillips (2009a, 2009b), Cai et al. (2009), Shi

and Phillips (2012) among others. Sufficient conditions to derive strong approximations for

dependent random variables are also well established in the literature. For example, Lemma

1 in Park and Hahn (1999) establish conditions of strong approximations for a general linear

process ut and Theorem 4.1 in Shao and Lu (1987) give conditions of strong approximations

for an α−mixing process vt.

Assumption 2 i) also defines ut as an invertible Gaussian moving average process. The

normality assumption is somewhat restrictive but it is for the purpose of employing likelihood

principles. Define the vector u = (u1, ..., uT )T and denote var(u) = σ2
∑

u . At the current

point, we assume that
∑

u is known so that the full likelihood function could be constructed.

In practice,
∑

u can be posited to be of a particular form
∑

u(φ), where φ is a vector of

parameters that could be estimated from the data. A simple example is to treat ut as an

AR(1) process. Then
∑

u is a function of the first order coefficient ρ. One could apply a

two-step procedure to obtain the estimate ρ̂ and replace Σu by its estimate Σu(ρ̂).

To simplify the derivation of the LRT, Assumption 2 ii) assumes the independence con-

dition between the error term ut and xt, though this might be further relaxed. Following

Saikkonen (1991) and Saikkonen and Choi (2004), we might remove the endogeneity between

ut and xt by adding leads and lags of the term {vt}∞t=1 in the regression. On the other hand,

we assume the independence between ut and zt, which rules out the ill-posed inverse problems
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in the nonparametric estimation with stationary smoothing variables.

Assumption 3 i) guarantees that zt is strictly stationary and imposes some conditions on its

dependency and moments. In this paper, we do not consider the case when zt is nonstationary.

Assumption 3 ii) requires that zt has a bounded support. In practice, one can always conduct

some transformations, such as the probability integral transform, to satisfy this assumption.

We also assume that the marginal density of z is continuously differentiable and bounded away

from 0, thus ensuring there are enough observations for estimation. Finally, Assumption 3

iii) imposes some smoothness conditions on the unknown function θ(z), which is a standard

assumption in nonparametric regression analysis.

3 Penalized Splines Estimation

We employ the penalized splines approach to estimate the varying-coefficient regression model

with nonstationary regressors. First, we approximate the unknown varying coefficient by

splines basis. A popular choice is the uniform B-splines family defined by a set of equally

spaced knots κk = k/K, for k = 0, · · · ,K. The simplest case is the zero degree B-splines,

which are indicator functions between κk−1 and κk. In general, we could use the iterative

algorithm proposed by de Boor (1978) to calculate the p-th degree B-splines and express θ(z)

as

θ(z) =
K+p∑

k=1

Ψ[p]
k (z)βk + O(K−1).

Following the idea of penalized least squares, we could estimate the spline coefficients β by

minimizing the following criterion:

T∑

t=1

(
yt − xt

K+p∑

k=1

βkΨ
[p]
k (z)

)2

+ λ̃−1

∫
{θ(m)(z)}2dz. (2)

In a discrete version, this could be written as

T∑

t=1

(
yt − xt

K+p∑

k=1

βkΨ
[p]
k (z)

)2

+ λ̃−1K−1
K∑

k=m+1

(
∆mβk

K−m
)2, (3)
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where ∆ is the differencing operator such that ∆βk = βk − βk−1, m is a positive integer

indicating the order of differencing with ∆m = ∆(∆m−1). Let Y = (y1, · · · , yT )T and X be

the diagonal matrix whose (i, i)th element is xi, and Ψ be the matrix3 whose (i, j)-th element

is Ψ[p]
i (zj). Define Dm as the differencing matrix such that the j-th element of Dmβ is ∆mβj .

Then the above minimization criterion could be written in a matrix form as

(Y −XΨβ)T (Y −XΨβ) + λ̃−1K2m−1βT DT
mDmβ.

In general, if we take into account the correlation among ut and the fact that var(u) = σ2Σu,

we could incorporate the weighted penalized splines approach and estimate β̂ by minimizing

(Y −XΨβ)T Σ−1
u (Y −XΨβ) + λ̃−1K2m−1βT DT

mDmβ. (4)

A direct calculation shows that the solution to (4) is

β̂ = (ΨT XΣ−1
u XΨ + λ̃−1K2m−1DT

mDm)−1ΨT XΣ−1
u Y. (5)

Then the penalized spline estimator of θ(z) for model (1) is defined as

θ̂(z) =
K+p∑

k=1

Ψ[p]
k (x)β̂k.

The methodology and applications of penalized splines are discussed extensively in Ruppert

et al. (2003), but its theoretical studies had been largely absent until recently. For the

univariate nonparametric model, Hall and Opsomer (2005) establish the consistency of the

penalized splines estimators. Li and Ruppert (2008) derive the asymptotic normality and

they were the first to obtain explicit formula for the asymptotic bias and variance. Claeskens

et al. (2009) study the convergence rate of the penalized spline estimation and discussed the

impact of the number of knots. However, all of these results are not directly applicable for

varying-coefficient models with nonstationary regressors.

The following theorem establishes the consistency of the penalized spline estimator. Please

note that all proofs of the theorems are relegated to the appendix.
3The dimensions of Ψ and β both depend on the degree of splines p and the number of knots K. For

notation simplicity, we suppress the subscripts p and K.
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Theorem 3.1. Suppose that Assumptions 1-3 hold. In addition, assume that

i) The pth degree uniform B-splines are used to model θ(z). The number of knots satisfies

K ∼ T r1 with 2m
2m+1 < r1 < 1.

ii) The mth order penalty is used and the penalty parameter λ̃ satisfies that λ̃ → 0 and

T 2λ̃ →∞.

Then for z ∈ (0, 1), the penalized spline estimator θ̂(z) satisfies

θ̂(z)− θ(z) = Op(T−1λ̃−1/2) + Op(T−1+1/(2m)λ̃1/(4m)) + Op(K−1). (6)

REMARK 3.1. Theorem 3.1 establishes the consistency of the penalized splines estimator

for varying-coefficient models with nonstationary regressors. The term Op(T−1λ̃−1/2) reflects

the order of asymptotic bias due to smoothing. The term Op(K−1) is the design bias due to

the use of splines in approximating the smooth functions θ(z). These results are standard.

However, the order of asymptotic variance becomes Op(T−2+1/mλ̃1/(2m)) when xt is an inte-

grated process of order one, compared to a slower rate Op(T−1+1/2mλ̃1/(2m)) for stationary

xt. Correspondingly, when λ̃ satisfies λ̃ ∼ T−2/(2m+1), our estimator achieves the optimal

convergence rate T
2m

2m+1 , faster than the Tm/(2m+1) convergence rate with λ̃ ∼ T−1/(2m+1) for

stationary xt. In particular, when θ(z) ∈ W 2[0, 1], i.e. m = 2, the optimal convergence rate

of θ̂(z) is T 4/5 when xt is integrated with order one. Such a result is consistent with Cai et

al. (2009) and Xiao (2009).

REMARK 3.2. Penalized splines allow one to flexibly select the degree of splines p, the

number of knots K, and the amount of penalty λ̃−1. Our results have the following implica-

tions. First, the degree of splines p has no impact in the convergence rate of the estimator.

Second, the number of knots K is not crucial as long as it exceeds a certain minimum bound.

Third, the penalty parameter λ̃ could serve as the key smoother and it determines the conver-

gence rate of the estimator. These three conclusions are consistent with the results obtained

10



in Li and Ruppert (2008). However, when xt is stationary, the term (λ̃−1/T )1/(2m) serves as

the equivalent bandwidth used in a Nadaraya-Watson kernel estimator. In contrast, when xt

is integrated with order 1, the term (λ̃−1/T 2)1/(2m) serves as the equivalent bandwidth used

in a Nadaraya-Watson kernel estimator.

Besides the B-spline family, another popular choice of the basis is the p-th degree truncated

power polynomial basis (TPS) defined as

{1, z, · · · , zp, (z − κ1)
p
+, · · · , (z − κK)p

+},

where (z − a)p
+ = {max(0, z − a)}p. Note that the p-th degree TPS and the p-th degree

B-splines span the same linear space. For any given βk’s, there exists γj ’s and bk’s such that

K+p∑

k=1

Ψk(z)βk =
p∑

j=0

γjz
j +

K∑

k=1

(z − κk)
p
+bk.

Moreover, a direct calculation shows that the coefficients of TPS and B-splines satisfy bk+1 =

(−K)p∆p+1βk (de Boor, 1978). Hence imposing penalty on
∑

k b2
k is equivalent to imposing

the (p + 1)-th order differencing penalty on the B-splines coefficients βk’s. In general, we

could define the penalty matrix4 Λ such that λ̃−1K2m−1βT DT
mDmβ = λ̃−1K2m−2p−1bT Λb.

Equivalently, we could rewrite the minimization criterion (4) for TPS as

(Y −XZ1γ −XZ2b)T Σ−1
u (Y −XZ1γ −XZ2b) + λ̃−1K2m−2p−1bT Λb, (7)

where Z1 and Z2 are matrices whose i-th row are (1, z, · · · , zp) and {(z−κ1)
p
+, · · · , (z−κK)p

+}
respectively, and γ = (γ0, · · · , γp)T . Because of the equivalence between TPS and B-splines of

the same degree, the penalized spline estimator based on TPS could achieve the same optimal

convergence rate T 2m/(2m+1) when the penalty parameter satisfies λ̃ ∼ T−2/(2m+1). Since the

choice of p will not affect the convergence rate of the spline estimator, a conventional choice

is to let p = 1 for θ(z) ∈ W 2[0, 1], i.e. m = 2. In this case, Λ becomes the identity matrix
4The choice of Λ depends on both the degree of splines p and the order of penalty m. For notation

simplicity, we suppress the subscripts p and m.
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IK . If we denote λ−1 = λ̃−1K, then the minimization criterion (7) could be written as

(Y −XZ1γ −XZ2b)T Σ−1
u (Y −XZ1γ −XZ2b) + λ−1bT b, (8)

and the optimal rate of λ is of the order T−2/5K−1.

4 Inference using Likelihood Ratio Tests

In this section, we consider testing whether the functional coefficients θ(z) is time-invariant.

The null hypothesis is H0: θ(z) ≡ θ0. Under the alternative, θ(z) is a smooth function of

unknown form. Such a stability test is of both theoretical and empirical importance. For

example, when a linear cointegration model is misspecified, the resulting estimation of θ̂0

would not be consistent and neither of the equilibrium residuals. As a result, the traditional

cointegration tests might fail to detect the cointegrating relationship.

In the literature of nonparametric regression, there are also lots of discussions on checking

whether there is enough evidence to support the use of the general nonparametric method

rather than a simple linear cointegration model. In general, traditional approaches often rely

on i) comparing the discrepancy measures between the estimates obtained under the null

and the alternative, see Härdle and Mammen (1993); or ii) constructing the F -test statistic

based on the sum of residuals, see Hong and White (1995); or iii) conducting the generalized

likelihood ratio test using a reasonable smooth estimate under the alternative, see Fan, Zhang

and Zhang (2001). In any of these methods, it is crucial to select the smoothing parameter

under the nonparametric alternative. In practice, the power of the test is likely to be affected

by the smoothing parameter, especially when it is chosen by some ad hoc methods.

In contrast, we are going to propose a likelihood ratio test procedure that could circumvent

this difficulty as we use maximum likelihood principles for both estimation and inference.

First, we model θ(z) by the p-th degree splines in order to define a general nonparametric

alternative. As we show in the section above, there is not much difference to estimate θ(z)

by using either the B-splines family or the TPS family. Moreover, the choice of p is not
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important. Therefore, we mainly focus on using the linear TPS family in this section. Since

we could view the spline coefficients bk’s, associated with (z − κk)+’s, as the deviations from

the linear function. Hence testing the stability of θ(z) is equivalent to testing both the linear

coefficient and the spline coefficients being 0, i.e.

H0 : γ1 = 0 and b1 = · · · = bK = 0,

against

HA : γ1 6= 0 or ∃ k, s.t. bk 6= 0.

Note that this is a multiple testing problem and the number of restrictions under H0 grows

as the sample size does. To circumvent this difficulty, a new idea is to utilize the mixed model

representation for spline estimates based on TPS by treating bk’s as random coefficients with

a common variance component, and then relate the null hypothesis above to the significance

test of zero variance. More details are given below.

Note that minimizing (7) is equivalent to solving a system of equations



AT
1 Σ−1

u A1 AT
1 Σ−1

u A2

AT
2 Σ−1

u A1 AT
2 Σ−1

u A2 + λ−1Λ







γ̂

b̂


 =




AT
1 Σ−1

u Y

AT
2 Σ−1

u Y


 ,

where A1 = XZ1 and A2 = XZ2. The above equation is essentially Henderson’s mixed model

equations, which motivates us to utilize the mixed model representation to obtain γ̂ and b̂

as the best linear unbiased predictors (BLUP) in the following model. To be specific, let

Y = A1γ + A2b + u, where γ is the 2× 1 vector of fixed effect coefficients and b is the K × 1

vector of random effect coefficients with mean 0 and variance λσ2Λ−1, with Λ = IK when

m = 2 and p = 1. The parameter λ controls the amount of smoothing and it could be viewed

as the signal to noise ratio. Following Crainiceanu and Ruppert (2004), we could treat Y as

Y |b, A1, A2
D= N(A1γ + A2b, σ

2Σu), b
D= N(0K×1, λσ2Λ−1).

Note that E(Y ) = A1γ and var(Y ) = σ2(Σu + λA2Λ−1AT
2 ) =: σ2Ωλ. Hence we could define

13



a twice of the log-likelihood of Y as

2l(γ, λ, σ2) = −(Y −A1γ)(σ2Ωλ)−1(Y −A1γ)− log |σ2Ωλ| − T log(2π). (9)

By maximizing (9), we could estimate the variance components by σ̂2 and λ̂. Define Ω̂λ =

Σu + λ̂A2Λ−1AT
2 . The BLUP of γ and b are then obtained as

γ̂ = (AT
1 Ω̂−1

λ A1)−1AT
1 Ω̂−1

λ Y, and b̂ = λ̂Λ−1AT
2 Ω̂−1

λ (Y −A1γ̂), (10)

and we could estimate θ(z) by

θ̂(z) =
p∑

k=0

γ̂kz
k +

K∑

k=1

b̂k(z − κk)
p
+.

For the same λ, minimizing equation (7) yields the same solution as (10). However, the use

of the mixed model representation allows us to adopt the maximum likelihood principle to

make estimation as well as inference on λ. In particular, λ = 0 implies bk = 0 for all k. Hence

the hypothesis test of θ(z) being constant is equivalent to testing

H0 : γ1 = 0 and λ = 0.

against

HA : γ1 6= 0 or λ 6= 0.

Then it is straightforward to rely on the LRT statistic for inference, where

LRTT = sup
HA

2 log l(γ, λ, σ2)− sup
H0

2 log l(γ, λ, σ2).

Note that the null distribution of the LRT statistic is not standard as the parameter λ is

always non-negative and it lies on the boundary of the parameter space under H0. Therefore,

we derive the exact and the limiting null distributions of our test statistic below.

First we consider the exact case, where both T and K are relatively small and could be

treated as fixed. Let P be the projection matrix P = IT − Σ−1/2
u A1(AT

1 Σ−1
u A1)−1AT

1 Σ−1/2
u .

Define ξs,T and ηs,T as the s-th eigenvalues of the K ×K matrices Λ−1/2AT
2 Σ−1

u A2Λ−1/2 and

Λ−1/2AT
2 Σ−1/2

u PΣ−1/2
u A2Λ−1/2 respectively. We have the following results.
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Theorem 4.1. Suppose that Assumptions 1-3 hold and the linear TPS with equi-spaced knots

are used. Then under H0 : θ(z) ≡ θ0,

LRTT
D= sup

λ≥0
[T log{1 +

NT (λ)
DT (λ)

} −
K∑

s=1

log(1 + λξs,T )] + T log{1 +
w2

T−1∑T−2
s=1 w2

s

}, (11)

where NT (λ) =
∑K

s=1
ληs,T

1+ληs,T
w2

s , DT =
∑K

s=1
w2

s
1+ληs,T

+
∑T−2

s=K+1 w2
s and ws

D= iidN(0, 1).

Theorem 4.1 derives the exact null distribution of the LRT statistic when the sample size

T is finite. Although equation (11) does not have a close form, we could efficiently simulate

this distribution using the following Algorithm A.

Step 1. define a grid 0 = λ1 < λ2 < · · · < λL of possible values for λ.

Step 2. simulate K independent χ2
1 random variables w2

1, · · · , w2
K .

Step 3. simulate a random variable ν1 that follows χ2
T−2−K .

Step 4. simulate a random variable ν0 that follows χ2
1.

Step 5. for every λi, compute fT (λi) = T log{1 + NT (λi)
DT (λi)

} −∑K
s=1(1 + λξs,T ).

Step 6. determine λmax which maximizes fT (λi) over λi’s.

Step 7. compute fT (λmax) + T log{1 + ν0∑K
s=1 w2

s+ν1
}.

Step 8. repeat steps 2–7.

If we treat K as fixed and let T grow to infinity, we have the following results.

Theorem 4.2. Suppose that Assumptions 1-3 hold and the linear TPS with equi-spaced knots

are used. Then there exist ηs and ξs, for s = 1, · · · ,K, such that

T−2ηs,T ⇒ ηs, T−2ξs,T ⇒ ξs, as T →∞. (12)

Moreover, under H0 : θ(z) ≡ θ0,

LRTT ⇒ sup
d≥0

{
K∑

s=1

dηs

1 + dηs
w2

s −
K∑

s=1

log(1 + dξs)}+ χ2
1. (13)
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REMARK 4.1. In Theorem 4.2, we have explicitly derived that the convergence rate

of the eigenvalues ηs,T and ξs,T is T 2, which is faster than the T convergence rate due

to nonstationarity. When K is fixed, the part corresponding to testing λ = 0 converges

to the term supd≥0{
∑K

s=1
dηs

1+dηs
w2

s −
∑K

s=1 log(1 + dξs)}. Since this limiting distribution is

nonstandard, one could simulate it by modifying Algorithm A described above.

Furthermore, if we assume K and T both grow to infinity, the null distribution of LRTT

approaches to a simple χ2 distribution.

Theorem 4.3. Suppose that Assumptions 1-3 hold and the linear TPS with equi-spaced knots

are used. Let the number of knots K satisfying K ∼ T r with 4/5 < r < 1. Then there exist

η̄ and ξ̄ such that

K−1T−2
K∑

k=1

ηk,T ⇒ η̄, K−1T−2
K∑

k=1

ξk,T ⇒ ξ̄. (14)

Under H0 : θ(z) ≡ θ0, we have,

LRTT ⇒ χ2
1. (15)

REMARK 4.2. Theorem 4.3 assumes that K grows as T does. Compared to the fixed K

case, the amount of penalty λ−1 is expected to be larger, and the probability of obtaining

the maximum likelihood estimate (MLE) of λ at its actual value 0 approaches to 1 provided

that H0 is true. Therefore, the part corresponding to testing λ = 0 degenerates and we have

a simple χ2 distribution.

For the local alternatives, we assume that θ(z) = θ0 + T−αθ1(z), where θ1(z) is a nonzero

smooth function that belongs to W 2[0, 1]. Suppose we span θ1(z) with the first degree TPS

as γ̄0 + γ̄1z +
∑K

k=1 b̄k(z − κk)+. Utilizing the mixed model representation, we treat the

spline coefficients b̄ = (b̄1, · · · , b̄K)T as random with mean 0 and variance λ̄0σ
2Λ−1. It has

been shown in Section 3 that λ̄0 converges to 0 at the rate of T 2/5K. Therefore, we denote

λ̄0 = d̄0T
−2/5K−1 for some constant d̄0 ≥ 0. Recall that our LRT test will examine both the

fixed part γ̄1 and the variance part d̄0. Therefore, we will consider two different cases in the
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local alternatives. In Case 1, θ1(z) is a linear function with nonzero slope. i.e. γ̄1 6= 0 but

d̄0 = 0. The local alternative is then set as H01 : θ(z) = θ0 + T−1θ1(z). In Case 2, θ1(z) has

γ̄1 = 0 but d̄0 6= 0. The local alternative is set as H02 : θ(z) = θ0 + T−4/5θ1(z).

Theorem 4.4. Suppose that Assumptions 1-3 hold and the linear TPS with equi-spaced knots

are used. Let the number of knots K satisfying K ∼ T r with 4/5 < r < 1.

Under the local alternative H01, the LRT statistic converges to a noncentral χ2
1, i.e.

LRTT ⇒ (w1 + γ̄1π̄2)2,

where w1
D= N(0, 1) and π̄2 is defined right before equation (52).

Under the local alternative H02,

LRTT ⇒ max
d∈[0,d̄0]

{d̄0η̄ + ḡ3(d)− ḡ2(d)}+ (1 + d̄0%)w2
1,

where w1
D= N(0, 1), η̄ and ḡ2(d) are defined as in Theorem 4.3, ḡ3(d) is defined right after

equation (53) and % is defined right before equation (55).

REMARK 4.3. Strictly speaking, we should also consider Case 3 where neither γ̄1 or d̄0

equals 0. For this case, the local alternative could be set as H03 : θ(z) = θ0 + T−1θ1(z).

Notice that such a local alternative converges with a rate faster than T 4/5. The nonzero

variance component will not affect the asymptotic distribution. Hence in Case 3, the LRT

statistic still converges to a noncentral χ2 distribution as in Case 1. To save the length of

this paper, we omit the detailed discussions of Case 3.

REMARK 4.4. Under H02, the asymptotic distribution of LRTT has two components,

where the first part is nonnegative and the second part is a scaled χ2
1. In summary, our

penalized spline estimator of θ(z) has the T 4/5 convergence rate, while our test statistics

could detect an alternative whose convergence rate is not faster than T 4/5. On the other

hand, for any sequence such that H0A : θ(z) ≡ θ0 + T−αθ1(z) and α < 4/5, LRTT diverges

and the power function satisfies

P (LRTT > χ2
1,α/2) → 1,
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where χ2
1,α/2 is the upper α/2 quantile of χ2

1 distribution. Hence the proposed likelihood ratio

test could achieve the optimality.

5 Finite Sample Performance

Monte Carlo simulations are conducted in this section to examine the finite sample perfor-

mance of the proposed LRT test. The data generating process is

yt = θ(zt)xt + ut,

where xt = xt−1 + vt, ut = ρut−1 + εt, vt’s and εt’s are iid N(0, 1), and they are independent

of each other. The initial values are set to be zero. In particular, four cases for the parameter

values are considered: i) θ(zt) = 0.25, ρ = 0; ii) θ(zt) = 0.25, ρ = 0.5; iii) θ(zt) = (zt −
0.5)2, ρ = 0; iv) θ(zt) = (zt−0.5)2, ρ = 0.5, where the first two cases are related to calculating

the size of the test and the last two are related to calculating the power of the test. The

simulation designs above are similar to those in Xiao (2009). The sample sizes we consider

are T = 100 and 300. In particular, we would like to examine the impact of the number of

knots K. Hence when T = 100, we consider three situations, K = 10, K = 20 and K = 40;

when T = 300, we consider K = 20, K = 40, and K = 80. All reported results are based on

2000 replications.

Table 1 report the size of the proposed likelihood ratio test when ρ is given, i.e. the true

covariance matrix Σu is known. The five columns on the left use the critical values based on

the finite distribution derived in Theorem 4.1, while the five columns on the right use the

critical values based on the asymptotic distribution χ2
1 as indicated in Theorem 4.3. From

Table 1, we find that both the finite distribution and the χ2 limiting distribution work very

well. For example, consider Panel A1 with K chosen as 10. Even though the sample size

is just 100, the actual rejection rates based on the asymptotic χ2 distribution are 0.1995,

0.1490, 0.0995, 0.0465 and 0.0100, very close to the nominal sizes 0.2, 0.15, 0.10, 0.05 and

0.01 respectively. Moreover, we find that the number of knots does not have much impact on
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the size performance. For a given nominal level in any reported panel, the absolute differences

in the rejection rates associated with different K are not greater than 0.005. This is consistent

with the empirical conclusions that the number of knots is not important, provided that it

is above some minimum threshold (Ruppert, 2002).

Table 2 repeats all designs in Table 1, except that the covariance matrix Σu is treated as

unknown and replaced by an estimate. We find that the our LRT procedure still performs

well and is less likely to be affected by the fact that the covariance is unknown.

Table 3 reports the power of our test statistic. Once again, we find that the choice of

the number of knots K is not important and the procedure is robust against the use of an

estimated covariance. When the sample size increase from 100 to 300, the rejection rates are

all greater than 0.98, implying very good power performance of our testing procedure.

6 Conclusions

Varying-coefficient regression models with nonstationary regressors have received heated in-

terests in recent years. This paper proposes a penalized splines approach to estimate the

varying coefficients. Compared to kernel-based methods, penalized splines estimation not

only achieves the same optimal convergence rate, but also enjoys the advantage of fast com-

putation. Utilizing the mixed model representation of penalized splines, we construct a

likelihood ratio test for the stability of the varying coefficient. We derive the exact and lim-

iting distributions of the proposed test statistic. When the number of knots is treated as

fixed, the null distribution is non-standard, but could be simulated via a proposed algorithm

using spectral decomposition. When the number of knots grows as the sample size does,

the limiting null distribution converges to a simple χ2 distribution. Our test is less likely to

be suffered from the mis-selection of the smoothing parameters. Simulations show that the

asymptotic distribution works very well even for the finite sample case.
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There are some issues worth of future studies. One potential analysis is to extend the

current setting to the case allowing for dependence between ut and vt. Another natural ex-

tension is to consider a more general varying-coefficient cointegrating regression model which

includes both the stochastic and the deterministic functional coefficients in the cointegrating

relationship.

Appendix A: Proofs

Proof of Theorem 3.1: Note that our model could be written as Y = XΨβ + u. If Σu 6= IT ,

we could always multiply Σ−1/2
u and consider instead Ỹ = X̃Ψβ + ũ, where Ỹ = Σ−1/2

u Y ,

X̃ = Σ−1/2
u X is an integrated process and the elements of ũ = Σ−1/2

u u are uncorrelated.

Hence without loss of generality, we only need to show that equation (6) holds when ut’s are

uncorrelated, i.e. Σu is the identity matrix.

Recall that the penalized spline estimator θ̂(z) could be written as in equation (5), i.e.

θ̂(z) = Ψz(ΨT X2Ψ + λ̃−1K2m−1DT
mDm)−1ΨT XY, (16)

where Ψz = {Ψ[p]
1 (z), · · · ,Ψ[p]

K+p(z)}. First consider the (i, j)th element of the term ΨT X2Ψ.

Define R0 =: T−2
∑T

t=1 x2
t [Ψ

[p]
i (zt)Ψ

[p]
j (zt)−E{Ψ[p]

i (zt)Ψ
[p]
j (zt)}]. By subtracting and adding

the mean, we have,

T−2(ΨT X2Ψ)i,j = T−2
T∑

t=1

x2
t Ψ

[p]
i (zt)Ψ

[p]
j (zt) = R0 + T−2

T∑

t=1

E{Ψ[p]
i (zt)Ψ

[p]
j (zt)}x2

t .

Recall that Ψ[p]
i (z) is nonzero only in a small interval of length (p + 1)/K. For example,

when zero degree splines are used, Ψ[0]
i (z) is the indicator function I(i−1)/K<z≤i/K . Hence

E{Ψ[p]
i (zt)Ψ

[p]
j (zt)} = O(K−1) and var{Ψ[p]

i (zt)Ψ
[p]
j (zt)} = O(K−1). Moreover,

T−2
T∑

t=1

E{Ψ[p]
i (zt)Ψ

[p]
j (zt)}x2

t = E{Ψ[p]
i (zt)Ψ

[p]
j (zt)}T−1

T∑

t=1

(
xt√
T

)2 = Op(K−1),

and hence

R0 = T−1
T∑

t=1

(
xt√
T

)2

[Ψ[p]
i (zt)Ψ

[p]
j (zt)− E{Ψ[p]

i (zt)Ψ
[p]
j (zt)}] = Op{(TK)−1/2} = op(K−1),
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where the last equality holds as K = o(T ). Denote qij as the limit of KE{Ψ[p]
i (zt)Ψ

[p]
j (zt)}.

Then

KT−2(ΨT XXΨ)ij = K[T−2
T∑

t=1

x2
t E{Ψ[p]

i (zt)Ψ
[p]
j (zt)}+ R0] ⇒ qij

∫
B2

v(s)ds. (17)

Therefore,

θ̂(z) = Ψz(ΨT X2Ψ + λ̃−1K2m−1DT
mDm)−1ΨT XY,

= Ψz(ΨT X2Ψ + λ̃−1K2m−1DT
mDm)−1ΨT X2Ψβ

+Ψz(ΨT X2Ψ + λ̃−1K2m−1DT
mDm)−1ΨT Xu + Op(K−1)

=: R1 + R2 + Op(K−1), (18)

where the term Op(K−1) comes from the bias due to splines approximation,

R1 =: Ψz

{
K

T 2
(ΨT X2Ψ + λ̃−1K2m−1DT

mDm)
}−1 K

T 2
ΨT X2Ψβ

= Ψz

{
(
K

T 2
ΨT X2Ψ) + λ̄K2mDT

mDm

}−1

(
K

T 2
ΨT X2Ψ)β,

R2 =: Ψz

{
K

T 2
(ΨT X2Ψ + λ̃−1K2m−1DT

mDm)
}−1 K

T 2
ΨT Xu

=
1√
T

Ψz

{
(
K

T 2
ΨT X2Ψ) + λ̄K2mDT

mDm

}−1
{

ΨT (T−1/2Xu)
T/K

}
,

and λ̄ = λ̃−1/T 2. By equation (17), the term K
T 2 ΨT X2Ψ converges. Using a similar technique

as in Li and Ruppert (2008), we can show that the term λ̄1/(2m) serves equivalently as the

bandwidth h used in a Nadaraya-Watson kernel estimator. Therefore,

R1 −Ψzβ = Op(hm) = Op{λ̄m/(2m)} = Op(T−1λ̃−1/2). (19)

Now consider the second term R2. Note that ER2 = 0 and the i-th element of ΨT Xu satisfies

ΨT (T−1/2Xu)i

T/K
=

∑T
t=1{Ψ[p]

i (zt) xt√
T

ut}
T/K

= Op(
1√
T/K

). (20)

By the fact that λ̄ = λ̃−1/T 2 and λ̄1/(2m) serves as the bandwidth used in Nadaraya-Watson

kernel estimate, we have

var(
√

TR2) = O(
1

Kh

1
T/K

) = O(
1

Th
) = O(

1
T λ̄1/(2m)

) = O(T−1+1/mλ̃1/(2m)),
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and hence

R2 =
1√
T

Op(T−1/2+1/(2m)λ̃1/(4m)) = Op(T−1+1/(2m)λ̃1/(4m)). (21)

Together with equation (18), (19) and (21),

θ̂(z)− θ(z) = Op(T−1λ̃−1/2) + Op(T−1+1/(2m)λ̃1/(4m)) + Op(K−1),

and Theorem 3.1 holds. ¤

Note that the proofs of Theorem 4.1–4.4 share lots of similarity. Thus we first provide a

general description and four useful propositions which could be applied to all these theorems.

Recall that twice of the log-likelihood of Y is defined as in equation (9), i.e.

2l(γ, λ, σ2) = −(Y −A1γ)(σ2Ωλ)−1(Y −A1γ)− log |σ2Ωλ| − T log(2π).

where Ωλ = Σu + λA2Λ−1AT
2 and σ2Ωλ = var(Y ). Instead of maximizing 2l(γ, λ, σ2) over

the parameter space (γ, λ, σ2), we consider maximizing the profile log-likelihood function

2 log L(λ) = 2l(γ̂λ, λ, σ̂2
λ) over the parameter space λ ≥ 0, where γ̂λ and σ̂2

λ are the profile

maximum likelihood estimates (MLE) for γ and σ2 when λ is given. Specifically, they satisfy

γ̂λ = (AT
1 Ω−1

λ A1)−1AT
1 Ω−1

λ Y and σ̂2
λ = T−1(Y −A1γ̂λ)T Ω−1

λ (Y −A1γ̂λ).

By plugging γ̂λ and σ̂2
λ into equation (9), we could simplify the profile log-likelihood as

2 log L(λ) = −T − log |σ̂2
λΩλ| − T log(2π). (22)

Denote log L0 as the maximum log-likelihood under the null hypothesis. Then we can

decompose 2LRTT into two parts by adding and subtracting 2 log L(0), i.e.

2LRTT = sup
λ≥0

{2 log L(λ)− 2 log L(0)}+ {2 log L(0)− 2 log L0},

where the first part corresponds to testing λ = 0 and the second part corresponds to testing

the linear coefficient γ1 = 0 given that λ = 0. The following propositions establish some
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useful preliminary results. In particular, Proposition 6.1–Proposition 6.3 studies the property

related to the first part, while Proposition 6.4 studies the property of the second part.

Proposition 6.1. Denote Ỹ = Σ−1/2
u Y , Ã1 = Σ−1/2

u A1, Ã2 = Σ−1/2
u A2. We have

2 log L(λ)− 2 log L(0) = T log(1 +
λR3/σ2

T σ̂2
λ/σ2

)−
K∑

k=1

log(1 + λξk,T ). (23)

where R3 is given right below equation (29), and ξk,T ’s are defined right before Theorem 4.1.

Proof of Proposition 6.1: Define Vλ =: IT + λÃ2Λ−1ÃT
2 . With the notations of Ỹ , Ã1 and

Ã2, we have Ωλ = Σ1/2
u VλΣ1/2

u . Correspondingly, the profile MLE can be rewritten as

γ̂λ = (ÃT
1 V −1

λ Ã1)−1Ã1V
−1
λ Ỹ and σ̂2

λ = T−1(Ỹ − Ã1γ̂λ)T V −1
λ (Ỹ − Ã1γ̂λ).

By Patterson and Thompson (1971), it is well-known that there exists a matrix W satisfying

WW T = P = IT − Ã1(ÃT
1 Ã1)−1ÃT

1 , W T W = IT−2, (24)

and that

T σ̂2
λ = (Ỹ − Ã1γ̂λ)T V −1

λ (Ỹ − Ã1γ̂λ) = Ỹ T W (W T VλW )−1W T Ỹ .

By equation (22) and that |Ωλ| = |Σ1/2
u ||Vλ||Σ1/2

u | = |Vλ||Σu|, we have

−2 log L(λ) = log |σ̂2
λΩλ|+ T{1 + log(2π)}

= T log(σ̂2
λ) + log |Vλ|+ log |Σu|+ T{1 + log(2π)}

= T log(
T σ̂2

λ

σ2
) + log |Vλ|+ C0. (25)

where C0 = log |Σu|+ T{1 + log(2π)} − T log(T/σ2).

Note that for any p1 × p2 matrices A and B, it holds that |Ip1 + AT B| = |Ip2 + BT A|.
Moreover, |A| equals the product of its eigenvalues. Hence

log |Vλ| = log |IT + λÃ2Λ−1ÃT
2 | = log |IK + λΛ−1/2ÃT

2 Ã2Λ−1/2| =
K∑

k=1

log(1 + λξk,T ).

Together with equation (25), we have

−2 log L(λ) = T log(
T σ̂2

λ

σ2
) +

K∑

k=1

log(1 + λξk,T ) + C0. (26)
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When λ = 0, we have V0 = IT , W T V0W = W T W = IT−2 and T σ̂2
0 = Ỹ T WW T Ỹ . Thus,

−2 log L(0) = T log(
Ỹ T WW T Ỹ

σ2
) + C0. (27)

It follows that

2 log L(λ)− 2 log L(0) = T log{1 +
(Ỹ T WW T Ỹ − T σ̂2

λ)/σ2

T σ̂2
λ/σ2

} −
K∑

k=1

(1 + λξk,T ). (28)

Note that (W T VλW )−1 = (IT−2 + λW T Ã2Λ̃−1AT
2 W )−1 = IT−2− λ∆1, where, by Woodbury

Matrix Identity,

∆1 =: W T Ã2Λ̃−1/2(IK + λΛ−1/2ÃT
2 WW T Ã2Λ−1/2)−1Λ̃−1/2ÃT

2 W. (29)

Hence T σ̂2
λ = Ỹ T W (W T VλW )−1W T Ỹ = Ỹ T WW T Ỹ − λR3, where R3 = Ỹ T W∆1W

T Ỹ .

Together with equation (28), we conclude that equation (23) holds. ¤

Proposition 6.2. For any number of knots K, the following results hold.

Under H0 or H01, λR3/σ2 =
∑K

k=1
ληk,T

1+ληk,T
w2

k1
D= NT (λ);

Under H02, λR3/σ2 = λ
∑K

k=1

ηk,T +d̄0(KT 2)−1η2
k,T

1+ληk,T
w2

k2
D= N ′

T (λ);

where NT (λ) is defined in Theorem 4.1, N ′
T (λ) =: λ

∑K
k=1

ηk,T +d̄0(KT 2)−1η2
k,T

1+ληk,T
w2

k with wk
D=

iidN(0, 1), and ηk,T ’s are defined right before Theorem 4.1.

Proof of Proposition 6.2: Under H0 or H01, the spline coefficients are all 0. Therefore,

Ỹ
D= N(Ã1γ, σ2IT ). Recall that the matrix W satisfies equation (24). Hence

W T Ã1 = (W T W )W T Ã1 = W T {IT − Ã1(ÃT
1 Ã1)−1ÃT

1 }Ã1 = 0(T−2)×2,

and W T Ỹ /σ
D= N(0T−2, IT−2), where 0T−2 is the (T −2)×1 vector whose components are 0.

Recall that the matrix ∆1 is defined as in equation (29). Suppose its eigen decomposition is

U1S1U1, where S1 is the diagonal matrix whose (i, i)th element φi1 is also the ith eigenvalue

of ∆1. Then

R3

σ2
= (

W T Ỹ

σ
)T ∆1(

W T Ỹ

σ
) = (

UT
1 W T Ỹ

σ
)T S1(

UT
1 W T Ỹ

σ
) =

T−2∑

i=1

φi1w
2
i1, (30)
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where wi1’s are the elements of UT
1 W T Ỹ /σ.

Now we show that the eigenvalues φi1’s satisfy φi1 = ηi,T /(1 + ληi,T ) for = 1, · · · ,K and

φi1 = 0 for i > K. Note that for any p1× p2 matrices A and B, AB and BA shares the same

nonzero eigenvalues. Hence the nonzero eigenvalues of ∆1 are the same as those of the matrix

(IK +λΛ−1/2ÃT
2 WW T Ã2Λ−1/2)−1Λ−1/2ÃT

2 WW T Ã2Λ−1/2. Suppose the eigen decomposition

of the matrix Λ−1/2ÃT
2 WW T Ã2Λ−1/2 is U2S2U

T
2 , where S2 is the K × K diagonal matrix

whose (k, k)th element is the kth eigenvalue ηk,T . Then

(IK + λΛ−1/2ÃT
2 WW T Ã2Λ−1/2)−1Λ−1/2ÃT

2 WW T Ã2Λ−1/2

= (U2U
T
2 + λU2S2U

T
2 )−1U2S2U

T
2

= U2{(IK + λS2)−1S2}UT
2 .

Note that the (k, k)th element in the diagonal matrix (IK + λS2)−1)S2 is ηk,T /(1 + ληk,T ),

which equals the first K eigenvalues φk1’s. Since the rest T −2−K eigenvalues are 0, we have

R3/σ2 =
∑K

k=1
ηk,T

1+ληk,T
w2

k1. Note that W T Ỹ /σ
D= N(0T−2, IT−2). Moreover, U1 is an orthog-

onal matrix. Hence we conclude that UT
1 W T Ỹ /σ

D= N(0T−2, IT−2), i.e. wk1
D= iidN(0, 1).

Therefore, λR3/σ2 D= NT (λ).

Under H02, θ(z) = θ0 + T−4/5θ1(z), where θ1(z) has an associated λ̄0 satisfying λ̄0 =

d̄0T
−2/5K−1 for some positive constant d̄0. Let b̄ be the spline coefficients of θ1(z). Then

var(T−4/5b̄) = T−8/5d̄0T
−2/5K−1σ2Λ−1 = d̄0(KT 2)−1σ2Λ−1. Since W T Ã1 = 0(T−2)×2,

we have W T Ỹ = T−4/5W T Ã2b̄ + W T ũ. Equivalently, we could write that W T Ỹ /σ
D=

N

(
0T−2, IT−2 + d̄0(KT 2)−1W T Ã2Λ−1ÃT

2 W

)
. Denote

∆2 = {IT−2 + d̄0(KT 2)−1W T Ã2Λ−1ÃT
2 W}1/2∆1{IT−2 + d̄0(KT 2)−1W T Ã2Λ−1ÃT

2 W}1/2.

Similar as equation (30), we conclude that R3
σ2 =

∑T−2
i=1 φi2w

2
i2, where φi2 is the ith eigenvalue

of ∆2 and wi2 is the ith element of UT
1 {IT−2+d̄0(KT 2)−1W T Ã2Λ−1ÃT

2 W}−1/2W T Ỹ /σ. Note

the nonzero eigenvalues of ∆2 are the same as those of

(IK+λΛ−1ÃT
2 WW T Ã2Λ−1/2)−1Λ−1/2ÃT

2 W{IT−2+d̄0(KT 2)−1W T Ã2Λ−1ÃT
2 W}W T Ã2Λ−1/2.
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With the eigen decomposition Λ−1/2ÃT
2 WW T Ã2Λ−1/2 = U2S2U

T
2 , the above matrix equals

(IK + λU2S2U
T
2 )−1{U2S2U

T
2 + d̄0(KT 2)−1U2S2U

T
2 U2S2U

T
2 }

= U2(IK + λS2)−1{S2 + d̄0(KT 2)−1S2
2}UT

2 .

Since the (k, k)th element in the diagonal matrix (IK + λS2)−1{S2 + d̄0(KT 2)−1S2
2} is

ηk,T +d̄0(KT 2)−1η2
k,T

1+ηk,T
, we have R3

σ2 =
∑K

k=1

ηk,T +d̄0(KT 2)−1η2
k,T

1+ληk,T
w2

k2. Note that wk2
D= iidN(0, 1)

because var[UT
1 {IT−2 + d̄0(KT 2)−1W T Ã2Λ−1ÃT

2 W}−1/2W T Ỹ ] = σ2IT−2 under H02. There-

fore, Proposition 6.2 is proved. ¤

Proposition 6.3. Assume K = o(T ). Then under H0, H01 or H02, Ỹ T WW T Ỹ /T ⇒ σ.

Proof of Proposition 6.3: Under H0 or H01, W T Ỹ /σ
D= N(0T−2, IT−2). Therefore,

Ỹ T WW T Ỹ

Tσ2
=

T − 2
T

+ op(1) = 1 + op(1).

Under H02 W T Ỹ /σ
D= N

(
0T−2, IT−2 + d̄0(KT 2)−1W T Ã2Λ−1ÃT

2 W

)
. Therefore,

Ỹ T WW T Ỹ /(Tσ2) = T−1
T−2∑

i=1

φ′i2w
2
i2 = T−1

T−2∑

i=1

φ′i2 + op(1), (31)

where φ′i2 is the ith eigenvalue of the matrix IT−2 + d̄0(KT 2)−1W T Ã2Λ−1ÃT
2 W and wi2 is de-

fined as in the proof of Proposition 6.2 and satisfying wi2
D= iidN(0, 1). Since W T Ã2Λ−1ÃT

2 W

and Λ−1/2ÃT
2 WW T Ã2Λ−1/2 share the same nonzero eigenvalues,

T−1
T−2∑

i=1

φ′i2 =
T − 2

T
+ T−1

K∑

i=1

d̄0(KT 2)−1ηi,T = 1 + op(1).

With equation (31), Ỹ T WW T Ỹ /T ⇒ σ2. Hence, Proposition 6.3 is proved. ¤

Proposition 6.4. Let Ãc
01 be defined right before equation (33). It holds that

2 log L(0)− 2 log L0 = T log{1 +
Ỹ T Ãc

01(Ã
c
01)

T Ỹ /σ2

Ỹ T WW T Ỹ /σ2
}. (32)
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Proof of Proposition 6.4: By equation (27), 2 log L(0) = T log(Ỹ T WW T Ỹ /σ2)+C0, where

W is the T × (T − 2) matrix satisfying equation (24). Now we show that there exists a

T × (T − 1) matrix W0 such that 2 log L0 = T log(Ỹ T W0W
T
0 Ỹ /σ2) + C0.

Partition A1 as A1 = (A01, Ar1), where A01 is the T ×1 vector whose elements are xt’s and

Ar1 is the T×1 vector whose elements are xtzt’s. Define Ã01 = Σ−1/2
u A01 and Ãr1 = Σ−1/2

u Ar1.

Note that the maximum likelihood estimates associated with log L0 satisfies that

γ̂0 = (ÃT
01Ã01)−1ÃT

01Ỹ , σ̂2
0 = T−1(Ỹ − Ã01γ̂0)T (Ỹ − Ã01γ̂0).

Similar as equation (24), there exists W0 such that (Ỹ − Ã01γ̂0)T (Ỹ − Ã01γ̂0) = Ỹ T W0W
T
0 Ỹ ,

W T
0 W0 = IT−1 and W0W

T
0 = P0 =: IT − Ã01(ÃT

01Ã01)−1ÃT
01. Thus

−2 log L0 = T log(σ̂2
0) + (Ỹ − Ã01γ̂0)T (Ỹ − Ã01γ̂0) + T log(2π) = T log(

Ỹ T W0W
T
0 Ỹ

σ2
) + C0,

and 2 log L(0) − 2 log L0 = T log{1 + (Ỹ T W0W T
0 Ỹ−Ỹ T WW T Ỹ )/σ2

Ỹ T WW T Ỹ /σ2
}. We could project Ãr1 onto

the unit direction Ã01

||Ã01|| and the unit direction orthogonal to Ã01, i.e.

Ãr1 = π1
Ã01

||Ã01||
+ π2Ã

c
01. (33)

By standard linear algebra, W0W
T
0 −WW T = Ãc

01(Ã
c
01)

T . Hence equation (32) holds. ¤

Now we study Theorem 4.1.

Proof of Theorem 4.1: By Proposition 6.2, λR3/σ2 =
∑K

k=1
ληk,T

1+ληk,T
w2

k1
D= NT (λ). Note that

Ỹ T WW T Ỹ /σ2 =
∑T−2

k=1 w2
k1. Hence

T σ̂2
λ

σ2
=

Ỹ T WW T Ỹ − λR3

σ2
=

K∑

k=1

w2
k1

1 + ληk,T
+

T−2∑

k=K+1

w2
k1

D= DT (λ).

Together with Proposition 6.1, we have

sup
λ≥0

{2 log L(λ)− 2 log L(0)} D= sup
λ≥0

[T log{1 + NT (λ)/DT (λ)} −
K∑

k=1

log(1 + λξk,T )]. (34)

Denote (Ãc
01)

T Ỹ /σ = wT−1. Proposition 6.4 yields

2 log L(0)− 2 log L0 = T log{1 +
Ỹ T Ãc

01(Ã
c
01)

T Ỹ /σ2

Ỹ T WW T Ỹ /σ2
} = T log{1 +

w2
T−1∑T−2

k=1 w2
k1

}.
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It remains to show that under H0, wT−1
D= N(0, 1) and it is independent of wk1’s, or equiv-

alently, the vector UT
1 W T Ỹ . Under H0, Ỹ = Ã1γ = Ã01γ0 + ũ. Recall that Ãc

01 is the unit

direction that is orthogonal to both Ã01 and W . Since (Ãc
01)

T Ỹ = (Ãc
01)

T ũ
D= N(0, σ2) and

cov{(Ãc
01)

T Ỹ , UT
1 W T Ỹ } = σ2(Ãc

01)
T WU1 = σ20T−2U1 = 0T−2,

we conclude Theorem 4.1 holds. ¤

Now we study Theorem 4.2.

Proof of Theorem 4.2: First we show equation (12) holds. Recall that ξs,T and ηs,T are the s-

th eigenvalues of Λ−1/2AT
2 Σ−1

u A2Λ−1/2 and Λ−1/2AT
2 Σ−1/2

u PΣ−1/2
u A2Λ−1/2 respectively. Note

that Λ−1/2 and Σ−1/2
u are bounded deterministic matrices. By continuous mapping theorem,

it suffices to show that T−2AT
2 A2 and T−2AT

2 P ′A2 converge, where P ′ = IT−A2(AT
2 A2)−1AT

2 .

Define that ζι = E(zι
t), ζι(κi) = E{zι

t(zt − κi)+}, and ζ(κi, κj) = E{(zt − κi)+(zt − κj)+},
for l = 0 or 1, i = 1, · · · ,K and j = 1, · · · ,K. Let Π1 be the 2 × 2 matrices with (i, j)-th

element ζi+j−2, Π2 be the K×K matrix with (i, j)-th element ζ(κi, κj) and Π3 be the 2×K

matrix with (i, j)-th element ζi−1(κj). We first show that

T−2AT
1 A1 ⇒ Π1

∫
B2

v(s)ds, (35)

T−2AT
2 A2 ⇒ Π2

∫
B2

v(s)ds, (36)

T−2AT
1 A2 ⇒ Π3

∫
B2

v(s)ds. (37)

Take the proof of equation (35) as an example. Note that the (i, j)th element of AT
1 A1

satisfying (AT
1 A1)i,j =

∑
x2

t z
i+j−2
t . By subtracting and adding the mean, we have

T−2
∑

x2
t z

i+j−2
t = T−2

∑
x2

t

(
zi+j−2
t − E(zi+j−2

t )
)

+ T−2E(zi+j−2
t )

∑
x2

t

= op(1) + T−2E(zi+j−2
t )

∑
x2

t .

Hence T−2(AT
1 A1)i,j = T−2

∑
x2

t z
i+j−2
t ⇒ ζi+j−2

∫
B2

v(s)ds = (Π1)i,j

∫
B2

v(s)ds. Similarly,
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we could show that equation (36) and (37) are true. Moreover,

T−2AT
2 P ′A2 = T−2AT

2 A2 − T−2AT
2 A1(T−2AT

1 A1)−1T−2AT
1 A2

⇒ (Π2 −ΠT
3 Π−1

1 Π3)
∫

B2
v(s)ds.

Therefore, we conclude that equation (12) is true.

Next we prove that equation (13) is valid. Recall that equation (34) holds for any T and

K. Let d = λT 2. Then we have

sup
λ≥0

{2 log L(λ)− 2 log L(0)} D= sup
d≥0

[T log{1 +
NT (dT−2)
DT (dT−2)

} −
K∑

k=1

log(1 + dT−2ξk,T )]. (38)

Define the right hand side in equation (38) as supd≥0 fT (d). We want to show that

sup
d≥0

fT (d) ⇒ sup
d≥0

f(d) =: sup
d≥0

{
K∑

s=1

dηs

1 + dηs
w2

s −
K∑

s=1

log(1 + dξs)}. (39)

We first establish the finite dimensional convergence of fT (d). Since T−2ηs,t ⇒ ηs, we have

NT (dT−2) converges to
∑K

s=1
dηs

1+dηs
w2

s for every fixed d. By Proposition 6.3,

T−1DT (dT−2) = T−1{Ỹ T WW T Ỹ /σ2 −NT (dT−2)} = 1 + op(1).

Therefore, NT (dT−2)/DT (dT−2) = Op(T−1) and we have

T log{1 +
NT (dT−2)
DT (dT−2)

} = T [
NT (dT−2)

T{1 + op(1)} + Op(T−2)] =
K∑

s=1

dηs

1 + dηs
w2

s + op(1).

Together with the fact T−2ξs,T ⇒ ξs, we conclude fT (d) converges to f(d) for every fixed d.

Lemma 6.1 below shows that fT (d) form a tight sequence and hence fT (d) converges to f(d)

weakly. Lemma 6.2 further shows that supd≥0 fT (d) ⇒ supd≥0 f(d) by proving a continuous

mapping theorem type results holds. Therefore, equation (38) holds.

By Proposition 6.4, 2 log L(0)−2 log L0 = T log(1+
w2

T−1

Ỹ T WW T Ỹ /σ2
), where wT−1 = (Ãc

01)
T Ỹ /σ.

Under H0, wT−1
D= N(0, 1). Recall that W T Ỹ /σ

D= N(0T−2, IT−2). Hence

log(1 +
w2

T−1

Ỹ T WW T Ỹ /σ2
) =

w2
T−1

T{1 + op(1)} + Op(T−2) =
w2

T−1

T
+ op(T−1).
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Therefore, 2 log L(0)− 2 log L0 = w2
T−1 + op(1) and Theorem 4.2 is proved. ¤

Lemma 6.1. Under the assumptions of Theorem 4.2, fT (d) ⇒ f(d), where fT (d) and f(d)

are defined between equation (38) and equation (39).

Proof of Lemma 6.1: We have already established the finite dimensional convergence of

fT (d) to f(d). It suffices to show that fT (d) form a tight sequence, i.e. for every ε and η

strictly positive, there exist δ and T0 such that for T ≥ T0,

δ−1P{ sup
t≤u≤t+δ

|fT (u)− fT (t)| ≥ ε} ≤ η.

By the definition of fT (·), we have |fT (u)− fT (t)| = T log{ DT (T−2t)
DT (T−2u)

}+
∑K

s=1 log 1+tT−2ξs,T

1+uT−αξs,T
.

Since log(1 + x) < x for every x > 0, it holds that

log{DT (T−2t)
DT (T−2u)

} ≤ DT (T−2t)−DT (T−2u)
DT (T−2u)

≤ (u− t)
∑K

s=1 T−2ηs,T w2
s∑T−2

s=K+1 w2
s

.

Since T−2ηs,T ⇒ ηs, there exists a constant C1 such that T−2ηs,T w2
s ≤ w2

s for all s and

T . Denote RK,T =
∑K

s=1 w2
s/K∑T−2

s=K+1 w2
s/(T−K−2)

. Then T log{ DT (T−2t)
DT (T−2u)

} ≤ (u − t)C1KRK,T . Since

T−2ξs,T ⇒ ξs, there exists a constant C2 such that

K∑

s=1

log(
1 + uT−2ξs,T

1 + tT−2ξs,T
) ≤ (u− t)

K∑

s=1

ξs,T T−2 ≤ (u− t)C2K.

Let C3 = max(C1, C2). Then P{supt≤u≤t+δ |fT (u)− fT (t)| ≥ ε} ≤ P(RK,T ≥ ε
C3Kδ − 1), and

it reduces to show the cumulative distribution function (c.d.f.) HK,T of RK,T satisfies

1−HK,T (
ε

C3Kδ
− 1) ≤ ηδ. (40)

Note that RK,T follows the F -distribution with degrees of freedom K and T − 2 −K. For

every x, limT→∞HK,T (x) = HK(Kx), where HK is the c.d.f of χ2
K random variables. Using

L’Hospital rules, we have limδ→0+{1 − HK( ε
C3δ − K)}/{ηδ

2 } = 0. Therefore, we could find

δ = δ(ε, η), with δ < 1 and ε
Cδ
−K > 0, such that 1 −HK( ε

C3δ −K) ≤ ηδ
2 . Because of the

convergence of HK,T (x) to HK(Kx), we could find T0 such that for T ≥ T0, it holds that

30



|HK,T ( ε
C3Kδ − 1) − HK( ε

C3δ −K)| ≤ ηδ
2 . Thus equation (40) holds and we conclude that it

converges to f(d) weakly. ¤

Lemma 6.2. Under the assumptions of Theorem 4.2, supd≥0 fT (d) ⇒ supd≥0 f(d).

Proof of Lemma 6.2: Lemma 6.1 shows that fT (d) weakly converges to f(d). Similar as

Crainiceanu and Ruppert (2004), we first find a random variable FK,T such that

sup
d≥0

fT (d) = max
d∈[0,FK,T ]

fT (d). (41)

Note that fT (0) = 0 for all T . It suffices to find FK,T such that fT (d) < 0 when d > FK,T .

Recall that log(1 + x) ≤ x when x ≥ 0. By definition, DT (dT−2) ≥ ∑T−2
s=K+1 w2

s , and

NT (dT−2) ≤ ∑K
s=1 w2

s for all d. Hence

T log{1 +
NT (dT−2)
DT (dT−2)

} ≤ T
NT (dT−2)
DT (dT−2)

≤ T

∑K
s=1 w2

s∑T−2
s=K+1 w2

s

. (42)

Let m0 be the positive constant such that all nonzero ξs,T ’s satisfy T−2ξs,T ≥ m0. Then

−
K∑

s=1

log(1 + T−2ξs,T ) ≤ −K log(1 + dm0). (43)

With equations (42) and (43), we establish that

fT (d) ≤ T

∑K
s=1 w2

s∑T−2
s=K+1 w2

s

−K log(1 + dm0). (44)

Let FK,T =: m−1
0 {exp( T

T−2−K KRK,T ) − 1}. Mind that fT (FK,T ) = 0. Since the right hand

side of equation (44) is monotonic decreasing in d, FK,T has the desired property (41).

For any fixed M > 0 and t ≥ 0, we have maxd∈[0,M ] fT (d) ≤ supd≥0 fT (d). Hence

P{sup
d≥0

fT (d) ≤ t} ≤ P{ max
d∈[0,M ]

fT (d) ≤ t}.

Taking lim sup for T →∞ and applying the Continuous Mapping Theorem,

lim sup
T→∞

P(sup
d≥0

fT (d) ≤ t) ≤ lim sup
T→∞

P( max
d∈[0,M ]

fT (d) ≤ t) = P( max
d∈[0,M ]

f(d) ≤ t).
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Using the fact that

lim
M→∞

P{ max
d∈[0,M ]

f(d) ≤ t} = P{sup
d≥0

f(d) ≤ t}, (45)

we have

lim sup
T→∞

P(sup
d≥0

fT (d) ≤ t) ≤ P{sup
d≥0

f(d) ≤ t}. (46)

Since P(AB) ≥ P(A)− P(Bc),

P(sup
d≥0

fT (d) ≤ t) ≥ P(sup
d≥0

fT (d) ≤ t, FK,T < M)

= P( max
d∈[0,M ]

fT (d) ≤ t, FK,T < M)

≥ P( max
d∈[0,M ]

fT (d) ≤ t)− P(FK,T > M).

Note that P(FK,T > M) → P(FK > KM), where FK is a χ2
K distributed random variable.

Taking lim inf, lim infT→∞ P(supd≥0 fT (d) ≤ t) ≥ P(maxd∈[0,M ] f(d) ≤ t) − P(FK ≥ KM).

Using equation (45) and that limM→∞ P(FK ≥ KM) = 0, we conclude

lim inf
T→∞

P(sup
d≥0

fT (d) ≤ t) ≥ P{sup
d≥0

f(d) ≤ t}.

Together with equation (46), the limit of P{supd≥0 fT (d)} exists and satisfying

lim
T→∞

P{sup
d≥0

fT (d) ≤ t} = P{sup
d≥0

f(d) ≤ t}.

Therefore, supd≥0 fT (d) ⇒ supd≥0 f(d). ¤

Now we study Theorem 4.3.

Proof of Theorem 4.3: First we show that equation (14) holds. Note that for any matrix A,

its trace equals the sum of its eigenvalues. Since Λ−1/2 and Σ−1/2
u are bounded determinis-

tic matrices, it suffices to show both (KT 2)−1tr(AT
2 A2) and (KT 2)−1tr(AT

2 P ′A2) converge,

where P ′ is defined the same as in the proof of Theorem 4.2.

Take the term (KT 2)−1tr(AT
2 A2) as an example. Let

∏∗
2 =

∏
2

∫
B2

v(s)ds. From Equation

(36), the (i, j)-th element of T−2AT
2 A2 satisfies T−2(AT

2 A2)ij ⇒ (
∏∗

2)ij . Note that

K−1
K∑

i=1

(Π∗2)ii = K−1
K∑

i=1

[E{(zt − κi)2+}
∫

B2
v(s)ds] ≤ C

∫
B2

v(s)ds,
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where the last inequality holds as E{(zt − κi)2+} is bounded. Therefore, (KT 2)−1tr(AT
2 A2)

converges. Similarly, (KT 2)−1tr(AT
2 P ′A2) converges and thus equation (14) is true.

Next we prove equation (15). Let d = λKT 2. By equation (34), we could conclude that

supλ≥0{2 log L(λ)− 2 log L(0)} D= supd≥0 gT (d), where

sup
d≥0

gT (d) =: sup
d≥0

[T log{1 +
NT

(
d(KT 2)−1

)

DT (d(KT 2)−1)
} −

K∑

k=1

log{1 + d(KT 2)−1ξk,T }]. (47)

Let g1(d) and g2(d) be continuous functions defined respectively as the following limits:

ḡ1(d) = lim
T→∞

K∑

k=1

dK−1T−2ηk,T

1 + dK−1T−2ηk,T
, ḡ2(d) = lim

T→∞

K∑

k=1

log(1 + dK−1T−2ξk,T ). (48)

Lemma 6.3 shows that ḡ1(d) and ḡ2(d) exist for every fixed d and established the finite

dimensional convergence of gT (d) to ḡ1(d)− ḡ2(d). Similar as Lemma 6.1, we could show that

gT (d) form a tight sequence and hence gT (d) converges to ḡ1(d) − ḡ2(d) weakly. Similar as

Lemma 6.2, we could establish a continuous mapping theorem type result and conclude that

sup
d≥0

gT (d) ⇒ sup
d≥0

{ḡ1(d)− ḡ2(d)}, (49)

Next we want to prove that

sup
d≥0

{ḡ1(d)− ḡ2(d)} = 0, (50)

To prove equation (50), we will show that ḡ1(d) − ḡ2(d) ≤ 0 for all d. Note that the first

derivative of the partial sum induced by ḡ1(d)− ḡ2(d) satisfies

{
K∑

k=1

dK−1T−2ηk,T

1 + dK−1T−2ηk,T
−

K∑

k=1

log(1 + dK−1T−2ξk,T )

}(1)

=
K∑

k=1

K−1T−2ηk,T

(1 + dK−1T−2ηk,T )2
−

K∑

k=1

K−1T−2ξk,T

1 + dK−1T−2ξk,T

=: Q1,T + Q2,T ,

where

Q1,T =
K∑

k=1

K−1T−2ηk,T

(1 + dK−1T−2ηk,T )2
−

K∑

k=1

K−1T−2ηk,T

1 + dK−1T−2ηk,T
,
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and

Q2,T =
K∑

k=1

K−1T−2ηk,T

1 + dK−1T−2ηk,T
−

K∑

k=1

K−1T−2ξk,T

1 + dK−1T−2ξk,T
.

Since (1 + dK−1T−2ηk,T ) ≥ 1, we have Q1,T ≤ 0 for all T . Moreover, Q2,T ≤ 0 as we

explained below. Recall that ξk,T and ηk,T are the k-th eigenvalues of Λ−1/2ÃT
2 Ã2Λ−1/2 and

Λ−1/2ÃT
2 PÃ2Λ−1/2 respectively. Moreover,

Λ−1/2ÃT
2 Ã2Λ−1/2 − Λ−1/2ÃT

2 PÃ2Λ−1/2 = Λ−1/2ÃT
2 Ã1(ÃT

1 Ã1)−1ÃT
1 Ã2Λ−1/2,

which is a semi-positive definite matrix. Hence ηk,T ≤ ξk,T for all k and T . Since x
1+dx is an

increasing function of x, we have

Q2,T =:
K∑

k=1

K−1T−2ηk,T

1 + dK−1T−2ηk,T
−

K∑

k=1

K−1T−2ξk,T

1 + dK−1T−2ξk,T
≤ 0. (51)

Because ḡ1(d) and ḡ2(d) are both absolutely summable, we could change the order between

summation and derivative. Since Q1,T ≤ 0 and Q2,T ≤ 0, we conclude that the first derivative

of ḡ1(d)− ḡ2(d) satisfies

ḡ′1(d)− ḡ′2(d) = lim
T→∞

(Q1,T + Q2,T ) ≤ 0.

Recall that ḡ1(0) − ḡ2(0) = 0. For d ≥ 0, ḡ1(d) − ḡ2(d) = 0 +
∫ d
0 {ḡ′1(x) − ḡ′2(x)}dx ≤ 0.

Therefore, equation (50) holds and thus supλ≥0{2 log L(λ)− 2 log L(0)} = supd≥0 gT (d) ⇒ 0.

Similarly as in Theorem 4.2, we conclude that

2 log L(0)− 2 log L0 = w2
T−1 + op(1),

where wT−1
D= N(0, 1) under H0. Therefore, LRTT ⇒ χ2

1 under H0. ¤

Lemma 6.3. Assume the conditions in Theorem 4.3 and define gT (d) as in equation (47).

Then gT (d) converges to ḡ1(d)− ḡ2(d) for every fixed d, where ḡ1(d) and ḡ2(d) are defined

in equation (48).
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Proof of Lemma 6.3: First, we prove that ḡ1(d) and ḡ2(d) exist for any fixed d ≥ 0. Since

1 + x ≤ exp(x) for x ≥ 0, we have

1 + d
K∑

k=1

K−1T−2ξk,T ≤
K∏

k=1

(1 + dK−1T−2ξk,T ) ≤ exp{d
K∑

k=1

K−1T−2ξk,T }.

If d
∑K

k=1 K−1T−2ξk,T converges, so does log{∏K
k=1(1 + dK−1T−2ξk,T )}. We have already

proved equation (14), i.e.
∑K

k=1 K−1T−2ξk,T ⇒ ξ̄. Hence
∑K

k=1 log(1 + dK−1T−2ξk,T ) con-

verges and its limit ḡ2(d) exists. Note that

0 ≤ dK−1T−2ηk,T

1 + dK−1T−2ηk,T
≤ dK−1T−2ηk,T ≤ dK−1T−2ξk,T .

Since
∑K

k=1 dK−1T−2ξk,T converges, the limit of
∑K

k=1
dK−1T−2ηk,T

1+dK−1T−2ηk,T
exists and we could

denote it as ḡ1(d).

Next we establish the finite dimensional convergence of gT (d) to ḡ1(d)− ḡ2(d). Lemma 6.4

below shows NT (dK−1T−2) converges to ḡ1(d) for every fixed d. By Proposition 6.3,

T−1DT

(
d(KT 2)−1

)
= T−1{Ỹ T WW T Ỹ /σ2 −NT

(
d(KT 2)−1

)} = 1 + op(1).

Correspondingly NT

(
d(KT 2)−1

)
/DT

(
d(KT 2)−1

)
= Op(T−1) and

T log{1 +
NT

(
d(KT 2)−1

)

DT (d(KT 2)−1)
} = T [

NT

(
d(KT 2)−1

)

T{1 + op(1)} + Op(T−2)] = ḡ1(d) + op(1).

With the fact that
∑K

k=1 log{1+ d(KT 2)−1ξk,T } converges to ḡ2(d) for every fixed d, Lemma

6.3 holds. ¤

Lemma 6.4. Assume the conditions in Theorem 4.3.

Then NT (dK−1T−2) converges to ḡ1(d) for every fixed d.

Proof of Lemma 6.4: Notice that wk
D= iidN(0, 1). It suffices to consider show that

∑K
k=1

dK−1T−2ηk,T

1+dK−1T−2ηk,T
w2

k− ḡ1(d) =
∑K

k=1
dK−1T−2ηk,T

1+dK−1T−2ηk,T
(w2

k−1) converges to 0 in finite dimen-

sion. For every fixed d,

E

K∑

k=1

dK−1T−2ηk,T

1 + dK−1T−2ηk,T
(w2

k − 1) = 0.

35



Moreover,

var{
K∑

k=1

dK−1T−2ηk,T

1 + dK−1T−2ηk,T
(w2

k − 1)} = 2
K∑

k=1

(
dK−1T−2ηk,T

1 + dK−1T−2ηk,T
)2 = O(K−1) = o(1).

Hence Lemma 6.4 is valid. ¤

Now we consider Theorem 4.4.

Proof of Theorem 4.4: First we consider the local alternative H01. Note that all spline

coefficients are 0 under H01. Therefore, it still holds supλ≥0{2 log L(λ) − 2 log L(0)} ⇒ 0.

It suffices to show 2 log L(0) − 2 log L0 converges to a noncentral χ2
1 with parameter γ̄1π̄2.

As W T Ã1 = 0(T−2)×2, we have W T Ỹ = W T ũ. By the fact that W T
0 Ãr1 = W T

0 (π1
Ã01

||Ã01|| +

π2Ã
c
01) = π2W

T
0 Ãc

01, it holds W T
0 Ỹ = (T−1γ̄1)π2W

T
0 Ãc

01 + W T
0 ũ. Hence

Ỹ T W0W
T
0 Ỹ − Ỹ T WW T Ỹ

σ2

=
T−2γ̄2

1π2
2(Ã

c
01)

T W0W
T
0 Ãc

01

σ2
+

2T−1γ̄1π2(Ãc
01)

T W0W
T
0 ũ

σ2
+

ũT (W0W
T
0 −WW T )ũ
σ2

=
T−2γ̄2

1π2
2

σ2
+

2T−1γ̄1π2(Ãc
01)

T ũ

σ2
+

ũT Ãc
01(Ã

c
01)

T ũ

σ2

D= (w1 + T−1π2γ̄1)2,

where w1 = (Ãc
01)

T ũ/σ
D= N(0, 1), and the second equation holds as any unit direction

orthogonal to Ã01 is the eigenvector of the projection matrix W0W
T
0 , i.e. (Ãc

01)
T W0W

T
0 =

(Ãc
01)

T . Now we show the limit of T−1π2 exists. Note that

(T−1π2)2 = (T−1π2)2(Ãc
01)

T W0W
T
0 Ãc

01 = T−2ÃT
r1W0W

T
0 Ãr1 = T−2ÃT

r1P0Ãr1.

Using the same technique as in Theorem 4.2, we conclude all elements in T−2AT
r1Ar1 and

T−2AT
r1P

′
0Ar1 converge, where P ′

0 = IT − A01(AT
01A01)−1AT

01. Since Σ−1/2
u and Λ−1/2 are

bounded deterministic matrices, T−2ÃT
r1Ãr1 and T−2ÃT

r1P0Ãr1 converge. Equivalently, T−1π2

converges and we could denote its limit as π̄2. Hence

LRTT = 2 log L(0)− 2 log L0 + op(1) = (w1 + γ̄1π̄2)2 + op(1), (52)
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i.e. the asymptotic distribution is a non-central chi-square distribution with parameter γ̄1π̄2.

Next consider H02. Let d = λKT 2. By Proposition 6.1 and Proposition 6.2, we have

supλ≥0{2 log L(λ) − 2 log L(0)} D= supd≥0 hT (d), where hT (d) =: T log{1 +
N ′

T (d(KT 2)−1)
DT (d(KT 2)−1)

} −
∑K

k=1 log{1 + d(KT 2)−1ξk,T }. We want to show

sup
d≥0

hT (d) ⇒ sup
d≥0

h(d) =: sup
d≥0

{d̄0η̄ + ḡ3(d)− ḡ2(d)}, (53)

where ḡ2(d) and η̄ are defined as in Theorem 4.3 and ḡ3(d) is the limit of
∑K

k=1
(d−d̄0)(KT 2)−1ηk,T

1+d(KT 2)−1ηk,T
.

Note that ḡ3(d) exists because the term
∑K

k=1
(d−d̄0)(KT 2)−1ηk,T

1+d(KT 2)−1ηk,T
is bounded by −d̄0η̄ and ḡ1(d).

To prove equation (53), we first establish the finite dimensional convergence of hT (d) to

h(d). For every fixed d, we could simplify N ′
T

{
d(KT 2)−1

}
as

N ′
T

{
d(KT 2)−1

}
= d̄0

K∑

k=1

(KT 2)−1ηk,T w2
k +

K∑

k=1

(d− d̄0)(KT 2)−1ηk,T

1 + d(KT 2)−1ηk,T
w2

k.

Apply the same technique as Lemma 6.4, we could show that
∑K

k=1(KT 2)−1ηk,T (w2
k−1) ⇒ 0

and thus
∑K

k=1(KT 2)−1ηk,T w2
k ⇒ η̄. Similarly,

∑K
k=1

(d−d̄0)(KT 2)−1ηk,T

1+d(KT 2)−1ηk,T
w2

k converges to ḡ3(d)

for every fixed d. Therefore, N ′
T

(
d(KT 2)−1

)
does so to d̄0η̄ + ḡ3(d). Using Proposition 6.3,

T−1DT

(
d(KT 2)−1

)
= T−1{Ỹ T WW T Ỹ /σ2−N ′

T

(
d(KT 2)−1

)} = 1+op(1). Correspondingly,

N ′
T

(
d(KT 2)−1

)
/DT

(
d(KT 2)−1

)
= Op(T−1). Hence

T log{1 +
N ′

T

(
d(KT 2)−1

)

DT (d(KT 2)−1)
} = T [

N ′
T

(
d(KT 2)−1

)

T{1 + op(1)} + Op(T−2)] = d̄0η̄ + ḡ3(d) + op(1).

Since
∑K

k=1 log{1+d(KT 2)−1ξk,T } converges to ḡ2(d) for every fixed d, so does hT (d) to h(d).

Similar as Lemma 6.1 and Lemma 6.2, we could further show that hT (d) weakly converges

to h(d) and a continuous mapping theorem type results holds. Thus equation (53) holds.

Next we want to show

sup
d≥0

h(d) = max
d∈[0,d̄0]

{d̄0η̄ + ḡ3(d)− ḡ2(d)}. (54)
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Note that the first derivative of the partial sum induced by ḡ3(d)− ḡ2(d) satisfies

l′T (d) =
K∑

k=1

{1 + d0(KT 2)−1ηk,T }(KT 2)−1ηk,T

{1 + d(KT 2)−1ηk,T }2
−

K∑

k=1

(KT 2)−1ξk,T

1 + d(KT 2)−1ξk,T

≤
K∑

k=1

(KT 2)−1ηk,T

1 + d(KT 2)−1ηk,T
−

K∑

k=1

(KT 2)−1ξk,T

1 + d(KT 2)−1ξk,T

=
K∑

k=1

(KT 2)−1ηk,T

1 + d(KT 2)−1ηk,T
−

K∑

k=1

(KT 2)−1ξk,T

1 + d(KT 2)−1ξk,T
,

where the inequality holds when d ≥ d̄0. By equation (51),
K∑

k=1

(KT 2)−1ηk,T

1 + d(KT 2)−1ηk,T
≤

K∑

k=1

(KT 2)−1ξk,T

1 + d(KT 2)−1ξk,T
.

When d ≥ d̄0, l′T (d) ≤ 0 and hence h(d) ≤ h(d̄0) for d ≥ d̄0. Thus equation (54) holds.

Finally, we will show that 2 log L(0) − 2 log L0 ⇒ (1 + d̄0%)w2
1. Under H02, we have that

W T Ỹ = W T (T−4/5Ã2b̄ + ũ) and W T
0 Ỹ = W T

0 (T−4/5Ã2b̄ + ũ). Hence

Ỹ T W0W
T
0 Ỹ − Ỹ T WW T Ỹ

σ2
=

(T−4/5Ã2b̄ + ũ)T Ãc
01(Ã

c
01)

T (T−4/5Ã2b̄ + ũ)
σ2

D=
T∑

i=1

φi4w
2
i ,

where wi
D= iidN(0, 1) and φi4 is the ith eigenvalue of

∆4 = {IT + d̄0(KT 2)−1Ã2Λ−1ÃT
2 }1/2Ãc

01(Ã
c
01)

T {IT + d̄0(KT 2)−1Ã2Λ−1ÃT
2 }1/2.

Note that ∆4 share the same nonzero eigenvalue as

(Ãc
01)

T {IT + d̄0(KT 2)−1Ã2Λ−1ÃT
2 }Ãc

01 = 1 + d̄0
(Ãc

01)
T Ã2Λ−1ÃT

2 Ãc
01

KT 2
.

Moreover, we could show that the limit of (Ãc
01)T Ã2Λ−1ÃT

2 Ãc
01

KT 2 exists. Using the same tech-

nique as in Theorem 4.2, we conclude that each element in T−2AT
2 A01(Ac

01)
T A2 converges.

Since Σ−1/2
u and Λ−1/2 are bounded deterministic matrices, each element of the matrix

T−2Λ−1/2ÃT
2 Ãc

01(Ã
c
01)

T Ã2Λ−1/2 converges and K−1T−2tr{Λ−1/2ÃT
2 Ãc

01(Ã
c
01)

T Ã2Λ−1/2} con-

verges. By the fact that (Ãc
01)

T Ã2Λ−1Ãc
2Ã

c
01 = tr{Λ−1/2ÃT

2 Ãc
01(Ã

c
01)

T Ã2Λ−1/2}, the limit of

(KT 2)−1(Ãc
01)

T Ã2Λ−1ÃT
2 Ãc

01 exists and we could denote it as %. Therefore,

Ỹ T W0W
T
0 Ỹ − Ỹ T WW T Ỹ

σ2

D= (1 + d̄0%)w2
1, (55)

and we could further conclude 2 log L(0)− 2 log L0 ⇒ (1+ d̄0%)w2
1. Theorem 4.4 is proved. ¤
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Appendix B: Tables

Table 1: The empirical size of the proposed LRT when Σu is known

Finite dist. Asymptotic dist.

20% 15% 10% 5% 1% 20% 15% 10% 5% 1%

Panel A1: T = 100, ρ = 0

K = 10 0.1915 0.1445 0.0930 0.0430 0.0095 0.1995 0.1490 0.0995 0.0465 0.0100

K = 20 0.1940 0.1425 0.0935 0.0425 0.0100 0.1985 0.1480 0.0990 0.0465 0.0100

K = 40 0.1920 0.1425 0.0925 0.0415 0.0085 0.1985 0.1480 0.0990 0.0465 0.0100

Panel A2: T = 100, ρ = 0.5

K = 10 0.1940 0.1435 0.0975 0.0550 0.0095 0.1975 0.1495 0.1025 0.0585 0.0105

K = 20 0.1930 0.1440 0.0990 0.0550 0.0095 0.1970 0.1495 0.1035 0.0580 0.0105

K = 40 0.1945 0.1435 0.0975 0.0555 0.0090 0.1985 0.1500 0.1035 0.0585 0.0105

Panel B1: T = 300, ρ = 0

K = 20 0.2035 0.1560 0.0975 0.0540 0.0160 0.2050 0.1565 0.0995 0.0535 0.0165

K = 40 0.2035 0.1550 0.0990 0.0530 0.0160 0.2050 0.1565 0.0995 0.0535 0.0165

K = 80 0.2025 0.1560 0.0980 0.0530 0.0160 0.2045 0.1560 0.0995 0.0535 0.0165

Panel B2: T = 300, ρ = 0.5

K = 20 0.1985 0.1550 0.0975 0.0485 0.0105 0.1995 0.1555 0.1010 0.0495 0.0110

K = 40 0.1985 0.1520 0.1000 0.0485 0.0120 0.1980 0.1550 0.1005 0.0490 0.0110

K = 80 0.1975 0.1540 0.0975 0.0485 0.0105 0.1975 0.1550 0.1005 0.0495 0.0110

Note: The model is yt = θ(zt)xt + ut with xt = xt−1 + vt and ut = ρut−1 + εt, where vt’s and εt’s are

iid N(0, 1) and are independent with each other. The initial values are set to be zero. In particular,

θ(zt) = 0.25 and the true covariance matrix is used. The rejection frequencies are calculated based

on 2000 replications.
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Table 2: The empirical size of the proposed LRT when Σu is unknown

Finite dist. Asymptotic dist.

20% 15% 10% 5% 1% 20% 15% 10% 5% 1%

Panel A1: T = 100, ρ = 0

K = 10 0.2170 0.1595 0.1065 0.0500 0.0150 0.2245 0.1635 0.1120 0.0565 0.0155

K = 20 0.2190 0.1610 0.1075 0.0530 0.0125 0.2245 0.1630 0.1115 0.0565 0.0150

K = 40 0.2190 0.1585 0.1060 0.0530 0.0135 0.2245 0.1630 0.1115 0.0565 0.0150

Panel A2: T = 100, ρ = 0.5

K = 10 0.2065 0.1565 0.1120 0.0635 0.0125 0.2110 0.1610 0.1155 0.0650 0.0145

K = 20 0.2045 0.1545 0.1080 0.0630 0.0130 0.2105 0.1610 0.1135 0.0650 0.0145

K = 40 0.2060 0.1555 0.1105 0.0625 0.0125 0.2105 0.1605 0.1135 0.0650 0.0145

Panel B1: T = 300, ρ = 0

K = 20 0.2110 0.1640 0.1075 0.0575 0.0165 0.2125 0.1645 0.1075 0.0585 0.0175

K = 40 0.2110 0.1635 0.1065 0.0570 0.0170 0.2125 0.1645 0.1075 0.0585 0.0175

K = 80 0.2105 0.1635 0.1060 0.0565 0.0165 0.2120 0.1640 0.1075 0.0585 0.0175

Panel B2: T = 300, ρ = 0.5

K = 20 0.2075 0.1550 0.1000 0.0500 0.0115 0.2090 0.1595 0.1025 0.0500 0.0115

K = 40 0.2065 0.1555 0.0995 0.0480 0.0115 0.2075 0.1590 0.1020 0.0500 0.0110

K = 80 0.2065 0.1565 0.1000 0.0485 0.0105 0.2070 0.1590 0.1020 0.0500 0.0110

Note: The model is yt = θ(zt)xt + ut with xt = xt−1 + vt and ut = ρut−1 + εt, where vt’s and εt’s are

iid N(0, 1) and are independent with each other. The initial values are set to be zero. In particular,

θ(zt) = 0.25. The true covariance matrix is unknown and is replaced by its estimate. The rejection

frequencies are calculated based on 2000 replications.

40



Table 3 The power of the proposed LRT

Finite dist. Asymptotic dist.

Σu is known Σu is unknown Σu is known Σu is unknown

Panel A1: T = 100, ρ = 0

K = 10 0.6220 (0.5255) 0.6330 (0.5405) 0.6255 (0.5300) 0.6365 (0.5455)

K = 20 0.6175 (0.5195) 0.6275 (0.5325) 0.6210 (0.5240) 0.6330 (0.5390)

K = 40 0.6140 (0.5150) 0.6265 (0.5290) 0.6195 (0.5205) 0.6295 (0.5350)

Panel A2: T = 100, ρ = 0.5

K = 10 0.7085 (0.6050) 0.6930 (0.5905) 0.7125 (0.6110) 0.6975 (0.5960)

K = 20 0.7050 (0.6010) 0.6855 (0.5890) 0.7080 (0.6055) 0.6890 (0.5925)

K = 40 0.7025 (0.5960) 0.6855 (0.5875) 0.7055 (0.6025) 0.6875 (0.5900)

Panel B1: T = 300, ρ = 0

K = 20 0.9920 (0.9855) 0.9915 (0.9855) 0.9920 (0.9855) 0.9915 (0.9850)

K = 40 0.9915 (0.9855)) 0.9905 (0.9850) 0.9915 (0.9855) 0.9910 (0.9850)

K = 80 0.9910 (0.9855) 0.9910 (0.9850) 0.9910 (0.9855) 0.9910 (0.9850)

Panel B2: T = 300, ρ = 0

K = 20 0.994 (0.99) 0.9935 (0.9910) 0.994 (0.99) 0.9940 (0.9910)

K = 40 0.994 (0.99) 0.9940 (0.9905) 0.994 (0.99) 0.9935 (0.9910)

K = 80 0.994 (0.99) 0.9935 (0.9905) 0.994 (0.99) 0.9935 (0.9910)

Note: The model is yt = θ(zt)xt + ut with xt = xt−1 + vt and ut = ρut−1 + εt, where vt’s and εt’s are

iid N(0, 1) and are independent with each other. The initial values are set to be zero. In particular,

θ(zt) = (zt − 0.5)2. The rejection frequencies are calculated using the critical values associated with

α = 0.05 or α = 0.01 as indicated inside the parenthesis. All results are based on 2000 replications.
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