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Abstract 
 

Individuals in most industrialized countries have to make investment decisions 
throughout their adult life span to save for their retirement. These decisions 
substantially affect their living standards in old age. Research on cognitive aging has 
already demonstrated several changes in cognitive functions (e.g., processing speed) 
that likely influence investment decisions. This review brings together research on 
behavioral and neural aspects of financial decision making and aging to advance 
knowledge on age-related changes in financial decision making. The dopaminergic 
system plays a key role in financial decision making, both in financial decisions from 
description and financial decisions from experience. Importantly, both dopaminergic 
neuromodulation and financial decision making change during healthy aging. Especially 
when the parameters of the return distribution have to be learned from experience, older 
adults show a different and suboptimal choice behavior compared to younger adults. 
Based on these observations we suggest ways to circumvent the age-related bias in 
financial decision making to improve older adults’ wealth. 
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1 Introduction 

In our everyday life we often have to make investment decisions. Especially 

retirement saving decisions have become more and more important in developed 

countries over the last years. Due to demographic changes the public pension systems 

are usually no longer able to ensure the living standard for older adults. Therefore 

everybody is recommended to invest in private retirement plans. Although we have to 

make investment decisions throughout our life and although these decisions can have 

important consequences (e.g., they can affect the living standard in old age) it is still not 

fully understood how individuals make investment decisions. It further remains unclear 

how investment decisions might change across the lifespan, influencing especially 

retirement saving decisions. 

Theories of lifespan development posit that the gain-loss dynamics of fundamental 

developmental resources (e.g., cognitive, emotional, social, and financial resources) 

vary dynamically across the lifespan (Baltes et al. (1999), Carstensen (1995)). 

Individuals thus need to adaptively regulate their behaviors and actions throughout life 

for optimal development. During the process of aging, losses in different types of 

developmental resources gradually outweigh gains. For instance, the age-related decline 

of various cognitive processes underlying fluid intelligence has a steeper slope than the 

growth of crystallized intelligence over the same period (Li et al. (2004)). Fluid 

intelligence is the abilitry to think logically and solve problems in novel situations, 

independent of acquired knowledge. Crystallized intelligence is one’s lifetime or 

intellectual achievement, as demonstrated largely through one's vocabulary and general 

knowledge. To age successfully it is therefore of particular importance for individuals in 

midlife and old age to adjust their preferences, decision strategies, and behaviors in 

different domains of life, including economical and financial practices,. 

Traditional research on financial decision making (FDM) focused on observable 

choice behavior thereby neglecting the underlying processes. Technological and 

conceptual advances in the last two decades offered new methods to investigate these 

underlying processes. Especially, the advancement of functional magnetic resonance 

imaging (fMRI) offered a new tool that contributed significantly to the understanding of 

human cognition. The new field of neuroeconomics uses neuroscientific methods and 
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psychological concepts to investigate the underlying processes of economically relevant 

behavior, including risk processing and decision making under risk.  

The aim of this review is to bring together research on behavioral and neural 

aspects of FDM and research on cognitive aging to advance knowledge on age-related 

changes in FDM. The remainder of this article is structured as follows: In the next 

section we begin with the behavioral basis of FDM followed by a section on age-related 

changes in FDM across the adult life span. In the following section we derive why and 

under which circumstances neuroeconomics can provide valuable new insights for 

research in business administration and economics. Afterwards we review in two 

sections the state of the art of the neural basis of FDM and age-related differences, 

respectively. We conclude with a section on implications for the practice and an outlook 

for future research. 

 

2 Behavioral basis of FDM 

The dominant model in FDM is the so-called Mean-Variance Model (MVM). The 

MVM is based on the idea of a risk premium (Markowitz (1952)). To be equally 

attractive, a risky investment (e.g., a stock) has to offer a higher expected value 

compared to a safe investment (e.g., a bond). 

 

SV (X) = EV (x) ! b "V (x)    (1) 

 

The MVM proposes that the subjective value (SV) of a choice option is 

determined by the expected value of possible outcomes (EV) minus its standard 

deviation (SD) (or variance) linearly weighted with a factor b. This factor represents the 

risk attitude in the MVM and determines the risk premium. If b is positive, risk 

(measured as the SD) reduces the SV of a choice option and the individual is 

characterized as risk averse. Similarly, individuals can be described as risk neutral if b 

is equal to zero and as risk seeking if b is negative. 

The MVM is highly related to Expected Utility Theory (EUT) and is therefore 

also regarded as a normative model of decision making under risk. For the special case 

of quadratic utility functions it can be shown analytically that the expected utility of a 

choice option can be re-described in the form of the MVM (d'Acremont/Bossaerts 
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(2008)). Furthermore, utility functions can be approximated by means of a second-order 

Taylor series expansion, that is the sum of an infinite number of statistical moments 

(e.g., expected value, variance, skewness, etc.) of the utility function 

(d'Acremont/Bossaerts (2008)). Taking the first two statistical moments (expected value 

and variance) results in a formulation of expected utility that is similar to the MVM.  

The MVM belongs to the broader class of risk-return models that follow the 

intuitively appealing idea to trade off risk and return, reflecting positive and negative 

characteristics of the investment. Based on findings that perceived risk often does not 

simply correspond to the variance the psychological Risk-Return Model (PRRM) 

defines risk and return as subject-related variables (Weber/Johnson (2009a), 

Weber/Johnson (2009b)). 

 

SV (X) = SER(x) ! b "PR(x)    (2) 

 

In the PRRM the SV of a choice option is defined by the difference between 

subjective expected return (SER) and weighted perceived risk (PR). Similar to the 

MVM the trade-off factor b reflects the risk attitude of the individual (in this case 

perceived risk attitude). Whereas observed risk attitudes are highly dependent on 

situational and contextual factors in EUT and MVM, perceived risk attitudes are 

constant within individuals for certain choice domains (Weber, et al., 2002; Weber & 

Milliman, 1997). In contrast, SER and PR are assumed to be prone to situational and 

contextual influences.  

But not only these factors might influence perceptions of risk and return. In real-

life investment decisions the return distribution is often unknown. (Subjective) 

Expected return and (perceived) risk can thus only be estimated from past performance 

data, assuming the past performance of the investment reflects the full return 

distribution. Another way to estimate expected return and risk is to update and learn 

them over time based on observed returns. Importantly recent research has shown, that 

decision making from description (i.e., based on a known return distribution) and 

decision making from experience (i.e., based on learned parameters of the return 

distribution) can differ significantly (Hertwig/Erev (2009), for review).  
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During decision making from experience, individuals learn and update expected 

return and risk based on their actual experiences (i.e., the returns they get). The learning 

and updating process can be described by reinforcement learning models 

(Rescorla/Wagner (1972)). Such a model generally assumes that after the decision has 

been made for one investment, a received return R(t) at time t is compared to the 

expected value of the investment’s return EV(t), with the deviation d formalized as 

prediction error PE: d(t) = R(t) – ER(t).  

 

EV (t) = EV (t !1) +" #d(t !1)     (3) 

 

A reinforcement learning model assumes that learning is driven by these deviations; 

hence, a PE is used to update EV(t), allowing the optimization of reward predictions. A 

similar updating process was recently proposed for risk, also based on prediction errors 

(Preuschoff et al. (2008)). The so-called risk prediction error is defined as the deviation 

between the squared prediction error and the actual risk prediction.  

 

3 Age-related differences in FDM 
Economic preferences are usually quite stable in the short term. If you actually prefer, 

for example, an investment that offers a low expected return with low risk (e.g. a bond) 

over an investment that offers a high expected return with a high risk (e.g. a stock 

option), your preference will likely also hold next week or in a few months. It is, 

however, assumed that preferences change over the long run, that is, over the adult 

lifespan (Rogers (1994), Trostel/Taylor (2001)). Your actual preference for the first 

investment might thus change in five or ten years. Economic preferences are also 

influenced by situational, environmental, and biological factors. A new mother will 

likely have different preferences than she had a few years earlier. Similarly, a newly 

retired man may also have different financial considerations than before the retirement. 

Age is a descriptive variable for many changes that might cause changes in decision 

making in general and specifically in FDM over the adult life span.  

One study that used data from a large representative sample found that age has a 

significant effect on the general willingness to take risks (Dohmen et al. (2011)). The 

applied scale was experimentally validated in a smaller sample. The general willingness 
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to take risks predicted actual choice behavior in a lottery game where subjects 

repeatedly had to choose between fixed outcomes and risky lotteries. Thus, the authors 

conclude that individuals get more risk averse over the adult lifespan.  

Experimental studies on age-related differences in investment decisions can be broadly 

characterized by the two forms of decision making, namely decision making from 

description and decision making from experience.  

Studies in which the parameters of the return distribution have to be learned (i.e. 

decision making from description) usually applied the Iowa Gambling Task (IGT) 

(Bechara et al. (1997)). In the IGT subjects have to choose repeatedly between four 

decks of cards without any knowledge about possible outcomes (i.e., reward magnitude 

and probability). Two of these card decks are “bad decks” and result on average in a 

loss. The other two decks (“good decks”) have a positive expected return. The typical 

choice pattern of the IGT is to start with the bad decks, which have higher gains but also 

much higher losses compared to the good decks, and then switch to the good decks.  

In one study that used the IGT, both younger and older subjects started with the typical 

pattern to choose the bad decks (Denburg et al. (2005)). Whereas the younger subjects 

then usually shifted towards the good decks, the older subjects did not demonstrate this 

shift, staying with the bad card decks. Obviously, they failed to correctly learn the 

expected return and variance of the card decks thereby showing an impaired ability to 

identify favorable choice alternatives in the long run. Two other studies also found that 

older adults perform less advantageously in the IGT compared to younger adults (Fein 

et al. (2007), Zamarian et al. (2008)). Zamarian et al. (2008) compared the performance 

of younger and older adults in the IGT with their performance in another task that, in 

contrast to the IGT, provides the subjects with full information about the return 

distribution (i.e. probabilities and magnitudes). As in other studies, older adults showed 

an impaired performance in the IGT compared to younger adults. In contrast, older 

adults showed similar choice behavior compared with younger adults in the other task, 

demonstrating their ability to make favorable decisions in decision making from 

description.  

The observation that older adults have problems in decisions from experience but 

make similar choices in decisions from description was recently confirmed by an 

experimental study (Figner et al. (2009)) and a meta analysis (Mata et al. (2011)). 
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Importantly, it is not the risk attitude of individuals that changes with age, but their 

ability to learn relevant parameters of the return distribution. If learning lead to a greater 

number of risky choices, older individuals showed more risk averse behavior than 

younger adults. In contrast, if learning lead to risk avoidance behavior, older adults 

made more risky choices compared with younger adults. 

 

4 Why Neuroeconomics?  

Neuroeconomics seeks to integrate ideas from different disciplines that investigate 

decision making in general, namely economics, business administration, psychology 

and neuroscience (Kenning/Plassmann (2005), Sanfey et al. (2006)). In fact, 

neuroeconomics emerged when two lines of research met, that followed already 

interdisciplinary ideas – behavioral economics and cognitive neuroscience (Glimcher et 

al. (2009)). Behavioral economics aims to integrate ideas from psychology, business 

administration, and economics to provide a better understanding of economic behavior. 

Cognitive neuroscience, in contrast, aims to integrate ideas from psychology and 

neuroscience to investigate the biological substrates of cognition. Neuroeconomics 

consequently tries to ground economic behavior in neural mechanisms thereby gaining 

insights on the processes underlying economic decision making (Camerer (2007)). It 

can therefore be seen as a subfield of both behavioral economics and cognitive 

neuroscience. These two, however, constitute two different views on neuroeconomics. 

Behavioral economics aims to use neuroscientific methods as a tool to both test 

economic models of decision making and develop alternatives to classical revealed 

preference models (e.g., Expected Utilty Theory). Cognitive neuroscience in contrast 

uses economic models as a tool to test and develop algorithmic models of the neural 

hardware of choice. 

But whereas the neuroeconomics approach, that is, investigating the neural 

processes underlying economic behavior, is widely accepted in psychology and 

neuroscience, it is met with more skepticism in economics and business administration 

and received substantial criticism especially from economics scholars (Gul/Pesendorfer 

(2008)). The main argument of these scholars is that evidence from neuroscience cannot 

falsify economic theories as they make no claims regarding the psychological and 

neurological processes involved in economic decision making. Following this argument 
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behavioral data are both necessary and sufficient to evaluate the validity of economic 

models. This is obviously correct, as economic models usually make “as if” statements. 

EUT for example proposes that individuals behave “as if” they would maximize their 

expected utility, implying that they behave “as if” a metric like utility would actually 

exist. The weakness of this argument is, however, that a variety of studies already 

provided behavioral data that questioned the predictive power of EUT (e.g., Allais 

(1953), Birnbaum (2008)).  

The goal of neuroeconomics is, thus, not to falsify any model of individual decision 

making, as this has in most cases already been done (Clithero et al. (2008)). The role of 

neuroeconomics in decision sciences lies mostly in its potential to guide and constrain 

the development of new hypotheses and models. Without this guidance and these 

constraints, research has to test in its extreme all plausible influencing factors on 

economic decision making to form the basis for a comprehensive model. This is of 

course highly impractical. No collection of researchers can obtain all possible data 

about all possible behaviors. An understanding of the neural processes underlying 

economic decision making can indicate which possible factors are more likely and 

which are less likely to influence economic behavior. Neural and behavioral studies 

should interact to identify interesting phenomena, to suggest mechanisms that underlie 

those phenomena, and to map out the biological substrates that support those 

mechanisms.  

Aside from generating new hypotheses neurobiological data can also introduce 

constraints. Psychological research has already turned to focus not only on predicting 

and explaining choices, that is, the outcome of a decision process, but tries to develop 

process models that include testable hypotheses regarding the underlying processes of 

decision making (e.g., Weber/Johnson (2009a), for review). By virtue of hypothesizing 

a series of psychological processes that precede decisions, process models make 

predictions about intermediate states of the decision maker, between the beginning and 

the end of the decision. Process models can, thus, improve model selection because they 

consider more variables and add multiple constraints. Following the same logic the 

neuroeconomics approach can add neurobiological constraints to models of decision 

making. In addition, neurobiological data can serve to test the biological plausibility of 

these models. 
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With respect to the relatively new field of research on age-related changes in 

economic decision making neuroeconomics can serve both functions, the generation of 

new hypotheses on age-related differences in choice behavior and a differential 

evaluation of the biological plausibility of assumed choice mechanisms.  

 

5 Neural Basis of FDM 
Economic decision making in general is heavily influenced by the modulation of 

different neurotransmitter systems (Doya (2008), for review). Neurotransmitters are 

chemicals that are used to relay, amplify, and modulate signals between neurons. Neural 

representations of reward and prediction error rely on the neurotransmitter dopamine. 

Research in monkeys demonstrated that the majority of midbrain dopamine neurons 

(75-80%) show rather homogeneous, phasic activations to unpredicted rewards (Schultz 

(2009)). The neuronal response thereby depends on the magnitude of the delivered 

reward (Tobler et al. (2005)). But when the monkeys have to learn stimulus reward 

associations, the dopamine response to the reward decreases gradually, and a response 

to the reward-predicting stimulus is observable. At the time of reward delivery 

dopamine no longer codes for the reward itself. In contrast, the dopamine response 

correlates with the prediction error, as modeled in reinforcement learning models 

(Schultz et al. (1997)). Similarly, activations of midbrain dopamine neurons shift from 

the time of reward delivery to the onset of the reward-predicting stimulus when the 

probability of being rewarded increases (Fiorillo et al. (2003)). But dopamine not only 

codes for reward delivery and prediction error, there is also a direct link between risk 

and dopamine release (Fiorillo et al. (2003), St Onge/Floresco (2009)). A substantial 

amount of midbrain dopamine neurons (ca. 1/3) in monkeys show a relatively slow, 

moderate activation that increases gradually between the reward-predicting stimulus and 

reward. This increase depends on the actual level of risk, demonstrating a relationship 

between dopaminergic neuromodulation and risk.  

Due to ethical considerations it is not possible to investigate the relationship 

between the activity of dopamine neurons and investment behavior directly in humans. 

Several studies investigated, however, the effect of different genotypes, known to affect 

dopaminergic neuromodulation, on finacial decision making. These studies could 
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demonstrate an effect of dopamine on risk-taking behavior and the flexible learning of 

stimulus-reward associations (Krugel et al. (2009), Kuhnen/Chiao (2009)). 

Several studies have also investigated the neural foundations of financial decision 

making in humans by using fMRI. The results of these studies reveal that both financial 

decision making from description and experience are highly complex processes that (a) 

are influenced by several factors and (b) recruit a network of different brain regions. 

Studies using simple gambles with discrete outcome distributions usually identified 

representations of reward magnitude and probability in ventral striatum (VST), 

ventromedial prefrontal cortex (VMPFC), and ventrolateral prefrontal cortex (VLPFC), 

brain regions heavily influenced by dopamine neurotransmission (Knutson et al. (2001), 

Knutson et al. (2005), Tobler et al. (2007)). Both reward magnitude and probability 

were, however, found to be nonlinearly represented in the VST. The decrease of ventral 

striatal activity for losses is steeper than the increase in activity for gains, reflecting loss 

aversion (Tom et al. (2007)). In addition probability-related activity in the VST follows 

an S-shaped function, overweighting probabilities near zero and underweighting 

probabilities near one (Hsu et al. (2009)).  

Similar to their role in the processing of reward magnitude and probability, VST, 

VMPFC, and VLPFC were also found to code the expected and subjective value of 

simple gambles (Tobler et al. (2007), Tom et al. (2007), Rangel et al. (2008)). In 

addition to VST, VMPFC, and VLPFC, also the dorsolateral prefrontal cortex (DLPFC) 

might play an important role in valuing choice options. Compared with a control 

condition, application of repetitive transcranial magnetic stimulation (rTMS) to the right 

DLPFC (i.e. “switching” it off) decreases values assigned to the stimuli (Camus et al. 

(2009)).  

The neural basis of risk was mainly investigated by comparing risky with save 

situations as well as correlating the fMRI blood oxygen level dependent (BOLD) signal 

with the degree of riskiness (e.g. measured by the variance of possible outcomes). 

Studies that followed this approach identified several brain regions as sensitive to the 

present degree of riskiness. These included the anterior insula (aINS), the VST, the 

midbrain, the medial prefrontal cortex (MPFC), and the DLPFC (Behrens et al. (2007), 

Huettel et al. (2005), Kuhnen/Knutson (2005), Preuschoff et al. (2006), Preuschoff et al. 

(2008), Rolls et al. (2008)). In a recent quantitative meta analysis we found support for 
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Figure 1. Neural representations of risk. Results from an ALE meta-analysis on risk Activated clusters 
included bilateral aINS, DMPFC, and Thalamus (adapted with permission from Mohr et al. (2010), 
Copyright Journal of Neuroscience).  

the role of the above mentioned brain regions in risk processing, but also evidence for 

the implication of the thalamus and the parietal cortex in risk processing (see Figure 1) 

(Mohr et al. (2010a)). Most importantly this meta analysis showed which brain regions 

process risk independent of a choice situation (aINS, DMPFC, and thalamus) and which 

brain regions only process risk if individuals have to make a decision (DLPFC and 

parietal cortex). 

 

 

Some studies also investigated neural representations of risk and expected value 

simultaneously. One study found that the variance correlates with brain activity in the 

aINS and that both expected value and variance correlate with the BOLD signal in the 

VST (Preuschoff, et al., 2006). The variance-related BOLD response in the VST was, 

however, one second delayed. Another study that conducted two experiments with 

simple gambles found that both expected value and variance covary with brain activity 

in the ventrolateral prefrontal cortex (VLPFC) (Tobler et al. (2009)). All of the above 

mentioned studies used, however, simple gambles. Only one study so far, tried to mimic 

real-life financial decisions by using continuous outcome distributions that were 

described by past performance data (Mohr et al. (2010b)). The authors found 
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representations of (perceived) risk in the aINS and representations of (subjective) 

expected return in DLPFC, VLPFC, and DMPFC. 

A separate line of research investigated the neural basis of reinforcement learning, 

thereby primarily focusing on the neural basis of the prediction error (Lee et al. (2012)). 

Several studies separately found neural representations of the prediction error in the 

VST (Abler et al. (2006), Li et al. (2006), McClure et al. (2003), Murray et al. (2008), 

O'Doherty et al. (2003), Rolls et al. (2008), Tobler et al. (2006)). In contrast only one 

study to date investigated the neural basis of the risk prediction error (Preuschoff et al. 

(2008)). The authors found that both risk and risk prediction error correlate significantly 

with the BOLD signal in the aINS. 

 

 

6 Age-related differences in the neural basis of FDM 

During the course of normal aging, dopaminergic systems undergo substantial 

decline (Mohr et al. (2010c), Brown/Ridderinkhof (2009), Mell et al. (2005), for 

review). Much of the work on the relationship between aging and dopamine 

neurotransmission has focused on the caudate and the putamen, two major nuclei in the 

striatal complex with dense dopaminergic innervation from the substantia nigra. Thus, 

the conditions for reliable analyses of dopamine biomarkers are particularly favorable in 

the striatum. There is strong evidence for age-related losses of pre- and postsynaptic 

biochemical markers of the nigrostriatal dopamine system. Regarding presynaptic 

mechanisms, both positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) studies (Erixon-Lindroth et al. (2005), Mozley et al. 

(2001)) indicate marked age-related losses of the dopamine transporter in the striatum, 

with the average decline estimated to be 5-10% per decade from early to late adulthood. 

For postsynaptic mechanisms, molecular imaging work reveals age-related losses of 

both striatal D1 (Suhara et al. (1991), Wang et al. (1998)) and D2 (Antonini/Leenders 

(1993)) receptor densities of comparable magnitude, as found for the dopamine 

transporter.  

A similar downward age trajectory is observed for the mesocortical and mesolimbic 

dopaminergic pathways. Thus, marked age-related losses in D2 receptor binding have 

been observed throughout the neocortex as well as in the hippocampus, the amygdala, 
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and the thalamus (Inoue et al. (2001), Kaasinen/Rinne (2002)). The fact that similar age 

patterns can be observed for the dopamine transporter and postsynaptic markers 

suggests that the expression of transporters and receptors may reflect adaptation of 

major components of the dopaminergic pathways. One possibility derived from work on 

knockout mice is that the loss of the dopamine transporter initially results in increased 

dopamine concentrations; increased dopamine levels may subsequently lead to down 

regulation of neurotransmission in postsynaptic neurons (Shinkai et al. (1997), Zhang et 

al. (1995)). 

Various neurocomputational models have been proposed to link aging-related 

decline in dopaminergic neuromodulation to behaviorally observed cognitive deficits. 

One of these models relates weakened phasic activity of the mesencephalic dopamine 

system with aging-related deficits in detecting performance errors (Nieuwenhuis et al. 

(2002)). Another model focuses on capturing the effect of deficient dopaminergic 

neuromodulation on compromised prefrontal cortex functions, such as cognitive control 

(Braver et al. (2001)). A third model captures the effects of deficient neuromodulation 

on processing variability and the distinctiveness of memory and goal representations in 

more general terms (Li et al. (2001)). 

To date several fMRI studies investigated the neural basis of age-related 

differences in FDM. The strongest link between age-related differences in behavior and 

neural processing lies in the domain of decision making from experience. One study 

used a probabilistic object reversal task, where stimulus-reward associations change 

after they have been properly learned, thereby mapping changing environments for 

example on the stock market. Younger participants in their study showed greater 

responses in the VST to reward cues after stimulus reward associations had been 

learned than older adults, indicating that younger adults have a clearer representation of 

the expected reward (Mell et al. (2009)). Another study compared the ability to learn 

stimulus-reward associations between younger and older adults (Schott et al. (2007)). 

Whereas young adults showed activations in the VST for stimuli that predicted 

monetary reward, healthy elderly subjects showed the opposite pattern, with an absent 

reward prediction response, but with activations to reward feedback itself. These results 

support behavioral results that indicate that older adults have deficits in learning from 

feedback in decisions from experience. The authors speculate that this might be caused 
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by a dopamine-dependent decrease of the signal-to-noise ratio in VST. This notion was 

supported by a study that found that more accurate representations of the expected value 

in VST and MPFC were positively correlated with the number of rational choices in an 

investment task (Samanez-Larkin et al. (2011)). 

There is, however, also evidence for a reduced abilility to form accurate reward 

expectations in decisions from description (Samanez-Larkin et al. (2007)). In contrast to 

learning studies where reward anticipation is generated through the repeated experience 

of reward, the authors used the monetary incentive delay task (Knutson et al. (2000)), 

where reward anticipation is induced by variations of the stimulus. The authors found 

evidence for intact striatal activation during gain anticipation with age, but report a 

relative reduction in activation during loss anticipation. This supports the finding from 

behavioral studies that report a reduced experience of negative emotions in older adults 

(Mather/Carstensen (2005)).  

There is not only evidence for age-related changes in reward processing but also 

initial evidence for changes in brain systems related to risk perception and risk-taking 

behavior (Lee et al. (2008)). In a simple gambling task, in which subjects had to decide 

between a risky and a save investment, older adults chose the risky investment 

significantly less often. But when they chose the risky investment, they had a greater 

activation in the right insula compared to younger adults. This greater insula activity in 

older adults was interpreted as indicating that the risky option is perceived as more risky 

by elderly than by young adults, resulting in an increased avoidance of the risky 

investment. 

 In contrast to most studies that focus on the size of stimulus-related changes in 

the BOLD signal, a recent study investigated the relationship between the variability of 

the BOLD signal and age-related changes in an investment decision task (Samanez-

Larkin et al. (2010)). The hypothesis was that older adults are impaired in decision 

making under risk because age-related declines in dopamine levels lead to noisier signal 

processing in the VST (see above) und thus to compromised value estimation during 

decision making. The authors found that the variability of the BOLD signal in the VST 

mediates the relationship between age and suboptimal investment decisions. Older 

adults showed a greater variability of the BOLD signal in the VST and chose the risky 

investment more frequently when the choice of the safe investment was optimal. These 
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results demonstrate that not only the size of the BOLD signal but also its variability can 

influence choice behavior (Mohr/Nagel (2010)). 

 

7 Limitations, implications, and outlook 
The dopaminergic system plays a key role in FDM, both in financial decisions from 

description and financial decisions from experience. Importantly, both dopaminergic 

neuromodulation and FDM change during healthy aging. Especially when the 

parameters of the return distribution have to be learned from experience, older adults 

have shown different choice behavior compared to younger adults. If learning lead to 

more risky choices, older individuals showed more risk averse behavior than younger 

adults. In contrast, if learning lead to risk avoidance behavior, older adults made more 

risky choices compared with younger adults. Given the functional role of dopamine in 

reinforcement learning, it was hypothesized that age-related changes in financial 

decision making from experience might be caused by age-related changes in 

dopaminergic neuromodulation. Support for this hypothesis comes from 

neuroeconomics studies on age-related changes in decision making from experience that 

identified differences in brain activity in the VST, a brain region known to be 

influenced by dopamine.  

But dopamine does not only play a role in decision making from experience but 

also in decision making from description, in which actually no consistent age-related 

differences were observed. Most studies, however, investigated age-related differences 

in decision making from description only in the gain domain. Results from studies in 

the field of neuroeconomics suggest that reward processing in older adults is intact in 

the gain domain but not in the loss domain. Loss-related activity in the VST differs 

significantly between younger and older subjects. Consequently, based on these 

findings one might hypothesize that losses have different impact on perceptions of risk 

and return in older adults.  

The present studies that investigated age-related changes in FDM and associated 

changes in neural processing, however, face several limitations. First, older individuals 

are much more willing to participate in experiments if they are highly educated and if 

their age-related decline in all domains (e.g., working memory) is limited. These 

individuals usually show only small or no differences compared to younger adults, 
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which might explain the null findings regarding decision making from description. To 

ensure the representativeness of the age-specific samples future studies could 

complement the experiments with questionnaires and psychological tests. Questions 

from large representative panel studies (e.g., the German Socio-Economic Panel 

(GSOEP)), for example, offer the opportunity to compare the experimental sample with 

the panel-sample in key questions related to the research question (e.g., willingness to 

take risks). Similarly standard psychological tests (e.g., for working memory capacity or 

processing speed) offer the opportunity to judge the representativeness of the specific 

age samples in important psychological variables known to decline with age.  

Second, most experiments rely on the assumption that the same choice 

mechanism is used for simple and more complex decisions. Based on this assumption 

most experiments used simple gambles with discrete return distributions that are either 

provided in decisions from description or have to be learned in decisions from 

experience. Returns from most real-life investments, however, usually follow 

continuous return distributions which are much more complex than discrete return 

distributions with only few pairs of outcome magnitudes and probabilities. Given the 

known decline of cognitive functions like working memory and processing speed it 

might be questioned if artificially simple investments are the adequate objects to study 

age-related changes in FDM. Further, studies to date either fell into the domain of 

decision making from description or into the domain of decision making from 

experience. Real-life investment decision, however, usually does not fall in either of the 

two domains. The return distribution of real-life investments usually has to be inferred 

from past performance data. One might speculate that this process is more closely 

related to decision making from experience, but it still remains unclear if choice 

processes and strategies mimic those of decisions from experience using simple 

gambles. Future studies should investigate age-related changes in FDM with more 

ecologically valid stimuli to be able to control for possible age-related effects of 

complexity and information acquisition (learned from experience vs. inferred from past 

performance data). 

The obvious limitations of the present studies on age-related differences in FDM 

also limit the implications for the practice that can be inferred from these studies. 

Consistent evidence from behavioral and neuroeconomics studies, however, suggests 
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that older adults have problems with learning relevant parameters of the return 

distribution. Decisions from experience most closely mimic decisions about investments 

that the investor already owns, as only in this case she can experience actual returns. 

Decisions regarding investments that the investor owns might thus differ from decisions 

between investments that she does not actually own. Especially older adults might have 

problems in correctly inferring expected return and risk of their own investments. 

Assuming that these investments appeared favorable when they were bought, older 

adults might stick too long with them. In this case it might be beneficial to advice them 

to rebuilt their portfolios in regular intervals, thereby using only past performance data 

and cloaking the names of the investments.  

If one assumes that real-life investment decisions follow the same process like 

decisions from experience, older adults have in general problems with learning the 

correct expected return and risk of the investment. Depending on the return history this 

might lead to an over- or underestimation of expected return and risk. In this case, it 

seems reasonable to provide older investors directly with an estimate of these values to 

circumvent their impaired learning ability.  

In sum, research on FDM across the adult life-span is only at its beginning. 

Studies from the field of neuroeconomics identified several differences in the neural 

processing of investment decisions between older and younger adults. Based on these 

results differences in choice behavior could be hypothesized and tested. Additional 

studies are, however, needed both in the behavioral domain and in the field of 

neuroeconomics. The first goal of these studies should be the investigation of age-

related differences in more ecologically valid choice settings. When finding differences, 

research should focus on modulators of these differences (e.g., past performance data 

vs. summary statistics of past performance data) to define effective advice strategies to 

improve older investors’ FDM. 
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Figures: 
 
Figure 1. Neural representations of risk 

 
 
 
Figure 2. Variability in the VST mediates suboptimal FDM  
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Figure Captions: 
 
Figure 1: Results from an ALE meta-analysis on risk Activated clusters included 
bilateral aINS, DMPFC, and Thalamus (adapted with permission from Mohr et al. 
(2010), Copyright Journal of Neuroscience). 
 
Figure 1: A. The proportion of risk-seeking mistakes increases with age. B. The 
variability of the BOLD signal in the VST increases with age. C. The variability of the 
BOLD signal in the nucleus accumbens (NACC; part of the VST) mediates the 
relationship between age and the proportion of risk-seeking mistakes (adapted with 
permission from Samanez-Larkin et al., 2010, Copyright Journal of Neuroscience). 
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