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Abstract

Modelling the dynamics of credit derivatives is a challenging task in finance

and economics. The recent crisis has shown that the standard market models fail to

measure and forecast financial risks and their characteristics. This work studies risk

of collateralized debt obligations (CDOs) by investigating the evolution of tranche

spread surfaces and base correlation surfaces using a dynamic semiparametric factor

model (DSFM). The DSFM offers a combination of flexible functional data analysis

and dimension reduction methods, where the change in time is linear but the shape

is nonparametric. The study provides an empirical analysis based on iTraxx Europe

tranches and proposes an application to curve trading strategies. The DSFM allows

us to describe the dynamics of all the tranches for all available maturities and series

simultaneously which yields better understanding of the risk associated with trading

CDOs and other structured products.

Keywords: base correlation, collateralized debt obligation, curve trade, dynamic

factor model, semiparametric model.

JEL classification: C14, C51, G11, G17

1 Introduction

The recent financial crisis began in 2007 with the subprime mortgage crisis in U.S. Then

it spread globally and gathered intensity in 2008. The financial system weakened and

remained frozen. In 2009 the global economy stabilized but has not returned to its pre-

crisis levels.

Collateralized debt obligations (CDOs) played a significant role in the global financial

crisis. A CDO is a credit derivative used by financial institutions to repackage individ-

ual assets into a product that can be sold to investors on the secondary market. The
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assets may be mortgages, auto loans, credit card debt, corporate debt or credit default

swaps (CDS). CDOs were initially constructed for securitization of big portfolios. The

entire portfolio risk is sliced into tranches and then transfered to investors. Prior to the

credit crisis, CDOs provided outstanding investment opportunities to market participants.

Banks used CDOs to reduce the amount of debt on their balance sheets. Tranching made

it possible to create new securities of different risk classes that met the needs of a wide

range of clients. The market observed an excess demand for senior CDO tranches because

they were considered as safe and offered unusual high returns. As we know now, the rat-

ing agencies underestimated default risk of CDOs. Consequently, investors were exposed

to more risk than the ratings of these CDOs implied. When the market collapsed, CDO

investors faced enormous losses that led some of them to bankruptcy (Lehman Brothers)

or a takeover (Bear Stearns, Merrill Lynch) by another institutions. The CDO market

has significantly shrunk the beginning of the financial crisis. However, the methodology

proposed in our study can be used in modelling and trading other financial instruments,

especially non-standardised and bespoke structured products.

Developments in the CDO research mainly concern finding an accurate and flexible pricing

model, see a comparison of popular models in Bluhm & Overbeck (2006) and Burtshell,

Gregory & Laurent (2009). Papers that investigate implied correlations concentrate on

the replication of the shape of the implied curve, e.g. Ağca, Agrawal & Islam (2008).

Primarily because of the high dimensionality of the CDO problem the vast majority of

papers consider only CDOs of one particular maturity, see e.g. Hamerle, Igl & Plank

(2012). Up to our knowledge, the available literature do not look at the CDO market as

a whole. Since CDOs are quoted for different maturities, we should consider the effect of

the CDO term structure.

The empirical research of this study was performed using the iTraxx indices and their

tranches of Series 2 to 10. The iTraxx Europe is the most widely traded credit index

in Europe. Its reference portfolio consists of 125 equally weighted, most liquid credit

default swaps (CDS) on European companies. Twice a year, every March and September,

a new series of iTraxx is issued and the current constituents are reconsidered. The iTraxx

Europe trades at maturities of 3, 5, 7 and 10 years. The tranches with 5 years maturity

are the most liquid, unlike those with 3 years maturity that are rarely quoted. Because of

the regular index roll, each day one observes on the market tranches with various times

to expiration. By plotting prices of all available tranches at one day as a function of

the time to maturity and the tranche seniority, one gets a surface that represents entire

market information about spreads, see Figure 1. Similarly, an implied base correlation

surface can be constructed. When we record these surfaces every day, we can follow how

they change their shape and level. The dynamics over time of such surfaces is the main

goal of this paper. From an investor’s point of view, it is desirable to have an insight into

the behaviour of spreads and base correlations in the future. The forecasting has useful

applications in hedging and trading CDOs, like computation of Greeks, risk measures, or

construction of investment strategies. One of the simplest solutions would be to consider

the classic time series analysis for each tranche of each series for every maturity. Due

to illiquidity and due to the short history of particular series, this methodology is not

applicable. Thus, the natural choice for CDO data is to first interpolate observations
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Figure 1: Spreads of all tranches of all series observed on 20080909 (left) and 20090119

(right).

for each time point by creating a smooth surface and afterwards to forecast this new

high-dimensional object.

High-dimensional data sets naturally appear in many fields of science ranging from fi-

nance to genetics. Worth mentioning statistical approaches for handling complex high-

dimensional problems are a structural analysis of curves by Kneip & Gasser (1992), a

stochastic warping model by Liu & Müller (2004), penalized splines by Kauermann,

Krivobokova & Fahrmeir (2009), and a functional principal components approach by

Gromenko, Kokoszka, Zhu, & Sojka (2012). One of the most popular methods are factor

type models as they effectively reduce the dimensionality. Factor models assume that

the comovements of big number of variables are generated by a a small set of latent fac-

tors. When data disclose a dynamic structure then one needs a technique that is able to

correctly detect and describe the observed behaviour, e.g. Gourieroux & Jasiak (2001),

Hallin & Lǐska (2007), Koopman, Lucas & Schwaab (2012). In this study we employ a

dynamic semiparametric factor model (DSFM).

In the DSFM the observed variables are expressed as linear combinations of the factors.

The factors and the factor loadings are estimated from the data. The first ones represent

the spatial, time-invariant component. The later ones form multidimensional time series

that reflect the dynamics. The inference on the original variables reduces to the inference

on the factors and the factor loadings.

The DSFM was introduced by Fengler, Härdle & Mammen (2007) for modelling the

dynamics of implied volatility surfaces. Further, Giacomini, Härdle & Krätschmer (2009)

apply the DSFM to analyse risk neutral densities implied by prices of DAX options,

Härdle, Hautsch & Mihoci (2012) use it for limit order book analysis, Detlefsen & Härdle

(2013) for variance swaps, and Myšičková, Song, Majer, Mohr, Heekeren & Härdle (2013)

for fMRI images. In this work we study the dynamics of CDO surfaces with the DSFM

and propose an application to curve trading strategies.

The paper is structured as follows. Section 2 discusses the CDO valuation. Section

3 describes the DSFM. Section 4 shows results of the empirical modelling. Section 5

presents applications in CDO trading. Section 6 concludes.
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2 Collateralized Debt Obligations

Consider a CDO with a maturity of T years, J tranches and a pool of d entities at the

valuation day t0. A tranche j = 1, . . . , J absorbs losses between lj percent and uj percent

of the total portfolio loss. lj and uj are called an attachment and a detachment point

respectively and lj < uj. For the iTraxx Europe, successive tranches have the following

attachment points: 0%, 3%, 6%, 9%, 12%, 22%. The corresponding detachment points

are 3%, 6%, 9%, 12%, 22%, 100%.

The protection buyer pays periodically to the protection seller a predetermined premium,

called a spread on the outstanding tranche notional and is compensated for losses that

occur within the range of the tranche. Each default in the portfolio reduces the notional

on which the payments are based. This leads to a decline in the value of the periodic fee.

The cash exchange takes place until the maturity of the CDO or until the portfolio losses

exceed the detachment point.

This section briefly discusses key points of the CDO pricing. First, we describe the cash-

flow structure. Then we specify the distribution of the portfolio losses. At the end we

present a concept of a base correlation.

2.1 Valuation

We assume that there exists a risk-neutral measure P under which the discounted asset

prices are martingales. The expectations in the formulas below are taken with respect to

this measure.

The loss of the portfolio of d assets at time t is defined as

L(t) =
LGD

d

d∑
i=1

Γi(t), t ∈ [t0, T ], (1)

where LGD is a common loss given default and Γi(t) = 1(τi ≤ t), i = 1,. . . , d, is a default

indicator showing that the credit i defaults at time t within the period [t0, T ] if the time

of default random variable τi ≤ t. The loss of a tranche j = 1, . . . , J at time t is expressed

as

Lj(t) = Lu(t, uj)− Lu(t, lj),

with Lu(t, x) = min{L(t), x}, x ∈ [0, 1]. The outstanding notional of the tranche j is

given by

Fj(t) = F u(t, uj)− F u(t, lj),

with F u(t, x) = x − Lu(t, x), x ∈ [0, 1]. At the predefined dates t = t1, . . . , T , t1 > t0,

the protection seller and the protection buyer exchange the payments. The protection leg

DLj is defined as the present value of all expected payments made upon defaults

DLj(t0) =
T∑
t=t1

β(t0, t)E{Lj(t)− Lj(t−∆t)}, j = 1, . . . , J, (2)
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where β is a discount factor and ∆t is a time between t and the previous payment day.

The premium leg PLj is expressed as the present value of all expected premium payments

PLj(t0) =
T∑
t=t1

β(t0, t)sj(t0)∆tE{Fj(t)}, j = 2, . . . , J, (3)

where sj denotes the spread of tranche j. The first tranche, called the equity is traded

with an upfront payment α and a fixed spread of 500 bp. Its premium leg (3) turns into

PL1(t0) = α(t0)(u1 − l1) +
T∑
t=t1

β(t0, t) · 500 ·∆tE{F1(t)}.

A spread sj is calculated once, at t0 so that the marked-to-market value of the tranche is

zero, i.e. the value of the premium leg equals the value of the protection leg

sj(t0) =

∑T
t=t1

β(t0, t)E{Lj(t)− Lj(t−∆t)}∑T
t=t1

β(t0, t)∆tE{Fj(t)}
, for j = 2, . . . , J. (4)

The upfront payment of the equity tranche is computed as

α(t0) =
100

u1 − l1

T∑
t=t0

(β(t, t0) [E{L1(t)− L1(t−∆t)} − 0.05∆tE{F1(t)}]) .

For more details we refer to Bluhm & Overbeck (2006) and Kakodkar, Galiani, Jónsson

& Gallo (2006).

The iTraxx data used in this study cover years 2005–2009 when the tranches were priced

in the way presented above. However, since 2009 the quoting convention of the iTraxx

Europe tranches has changed. Now all the tranches (0-3%, 3-6%, 6-9%, 9-12%, 12-22%,

22-100%) have a structure of the equity tranche and trade with an upfront fee and a fixed

running spread of 500 bp, 500 bp, 300 bp, 100 bp, 100 bp, and 25 bp respectively.

2.2 Credit risk models

The main challenge in calculating the fair tranche spread (4) is the correct calculation of

the expected losses. This task requires the analysis of how the portfolio entities are likely

to default together. At the core of the CDO pricing lies a dependency model for portfolio

credit risk. There are two main types of credit risk models: structural and reduced

form models. The structural model is motivated from a Merton style approach where a

default occurs when the value of an asset drops below a certain level. In the reduced form

approach a default is modeled with an intensity process. A third class is based on copula

theory and is connected with the first two approaches. For a comprehensive overview we

refer to Bielecki & Rutkowski (2004).

There has been a multitude of CDO risk models proposed that apply different dependency

concepts. The market standard for pricing CDOs is the large pool Gaussian copula model
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that has been introduced to the valuation of multi-name credit derivatives by Li (2000).

The large pool concept is also the basis of the Gaussian one-factor model proposed by

Vasicek (1987).

In the Vasicek model, an obligor i = 1, . . . , d defaults before time T if the value of a

random variable Xi drops below a threshold Ci

P(τi ≤ T ) = P(Xi < Ci).

The variable Xi is defined as a linear combination of the systematic risk factor Y and the

idiosyncratic risk factor Zi
Xi =

√
ρY +

√
1− ρZi, (5)

In this setting Y and {Zi}di=1 are i.i.d. N(0, 1) variables. Thus, {Xi}di=1 follow a multi-

variate Gaussian distribution with an equal pairwise correlation ρ.

The model assumes that the portfolio is large and homogeneous, i.e. it possesses an infinite

number of assets that have the same exposure, default probability, loss given default,

correlation and that these values are constant over all time horizons. The individual

default probability determines the default threshold Ci = C = Φ−1(p) for all i = 1, . . . ,

d, where Φ denotes the cdf of the standard normal distribution.

The portfolio loss distribution is approximated by the conditional probability given the

common factor Y . When Y is fixed, the conditional default probability of any obligor is

given by

p(y) = P(Xi < C|Y = y) = Φ

(
C −√ρy
√

1− ρ

)
. (6)

Conditional on the realization of the common factor, the variables (5) are independent.

The portfolio loss conditional on Y converges, by the law of large numbers, to its expec-

tation p(y). The cdf of the loss of a very large portfolio is in the limit equal

P(L ≤ x) = P{p(Y) ≤ x} = Φ

{√
1− ρΦ−1(x)− Φ−1(p)

√
ρ

}
. (7)

The expected tranche loss in (2) and (3) is calculated as an integral with respect to the

distribution (7) and because of absence of the explicit solution it has to be evaluated

numerically.

The main drawback of the Gaussian copula is that it exhibits no tail dependence and

in consequence it cannot model the extreme events accurately. However, due to its ana-

lytical tractability and numerical simplicity, the Gaussian copula model still remains the

benchmark on the market.

2.3 Base correlation

In the Gaussian copula model the main driver of the tranche price is the correlation

coefficient. The correlations can be computed from market data by inverting the pricing

6



formula (4). If we keep the value of other parameters fixed, then the correlation parameter

that matches the quoted tranche spread is called an implied compound correlation. It is

observed that implied compound correlations are not constant across the tranches. This

phenomenon is called an implied correlation smile. Still, the main disadvantage of the

compound coefficient is that the mezzanine tranches are not monotonic in correlation and

two parameters might result in the same spread value. The second problem that we might

encounter is a nonexistence of the implied correlation. These disadvantages caused the

enhanced popularity of base correlations proposed by McGinty & Ahluwalia (2004).

The main idea behind the concept of the base correlation is that each tranche [lj, uj] can

be represented as a difference of two, equity type tranches that have the lower attachment

point zero: [0, uj] and [0, lj]. Here we use a property that the equity tranche is monotone in

correlation. The base correlations can be implied from the market spreads using standard

bootstrapping techniques. One needs the spread value of the tranche [uj−1, uj] and the

base correlation of the tranche [0, uj−1] in order to imply the base correlation [0, uj]. In

this approach, (4) is calculated as

sj(t0)=

∑T
t=t1

β(t0, t)
[
Eρ(0,uj){Luj (t, uj)−Luj (t−∆t, uj)}−Eρ(0,lj){Luj (t, lj)−Luj (t−∆t, lj)}

]∑T
t=t1

β(t0, t)∆t
[
Eρ(0,uj){F u

j (t, uj)} − Eρ(0,lj){F u
j (t, lj)}

]
(8)

for j = 2, . . . , J , where the expected value Eρ(0,uj) is calculated with respect to the dis-

tribution (7) determined by the base correlation ρ(0, uj) of the tranche [0, uj]. In the

Gaussian copula model the base correlations are nondecreasing with respect to the se-

niority of tranches and the implied correlation smile turns into a correlation skew.

3 Dynamic Semiparametric Factor Model

Let Yt,k be a data point, a tranche spread or a base correlation, observed on a day t,

t = 1, . . . , T . The index k represents an intra-day numbering of observations on that day,

k = 1, . . . , Kt. The observations Yt,k are regressed on two-dimensional covariates Xt,k that

contain the tranche seniority and the remaining time to maturity

Yt,k = m0(Xt,k) +
L∑
l=1

Zt,lml(Xt,k) + εt,k, (9)

where ml : R2 → R, l = 0, . . . , L, are factor loading functions, Zt,l ∈ R are factors, and

εt,j are error terms with zero means and finite variances.

The additive structure of (9) is a typical approach in regression models. Here, the func-

tions m are estimated nonparametricly and represent the time-invariant, spatial compo-

nent. The factors Zt drive the dynamics of Yt. The number of factors L is fixed and should

be small relative to the number of observed data points so that we achieve a significant

reduction in the dimension. The investigation of the dynamics of the entire system boils

down to the analysis of the factors’ variability. These arguments justify calling (9) a

dynamic semiparametric factor model.
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Fengler et al. (2007) estimate m and Zt iteratively using kernel smoothing methods, Song,

Härdle & Ritov (2013) apply functional principal component analysis, Park, Mammen,

Härdle & Borak (2009) estimate m with a series based estimator. For numerical con-

venience we follow the last paper and define functions ψb : R2 → R, b = 1, . . . , B,

B ≥ 1, such that
∫
R2 ψ

2
b dx = 1. Then, a tuple of functions (m0, . . . ,mL)> may be ap-

proximated by Aψ, where A is a (L + 1 × K) matrix of coefficients {{al,b}L+1
l=1 }Bb=1 and

ψ = (ψ1, . . . , ψB)>. We take {ψb}Bb=1 to be a tensor B-spline basis. For a survey over the

mathematical foundations of splines we refer to de Boor (2001). With this parametrization

(9) turns into

Yt,k = Z>t m(Xt,k) + εt,k = Z>t Aψ(Xt,k) + εt,k,

where Zt = (Zt,0, . . . , Zt,L)> with Zt,0 = 1 and m = (m0, . . . ,mL)>.

The estimates Ẑt = (Ẑt,0, . . . , Ẑt,L)> and Â are obtained by

(Ẑt, Â) = arg min
Zt,A

T∑
t=1

Kt∑
k=1

{
Yt,k − Z>t Aψ(Xt,k)

}2
, (10)

yielding estimated basis functions m̂ = Âψ. The minimization is carried out using an

iterative algorithm. However, the estimates of m and Zt are not uniquely defined. There-

fore, the final estimates of m are orthonormalized and Zt are centered. Park et al. (2009)

also prove that the difference of the inference based on the estimated Ẑt,l and the true,

unobserved Zt,l is asymptotically negligible. This result justifies fitting an econometric

model, like a vector autoregressive to the estimated factors for further analysis of the

data.

The number of factors L as well as the numbers of spline knots in both maturity and

tranche directions R1, R2, and the orders of splines r1, r2 have to be chosen in advance.

A common approach is to maximize a proportion of the variation explained by the model

among the total variation. We propose a following criterion

EV(L,R1, r1, R2, r2) = 1−

∑T
t=1

∑Kt

k=1

{
Yt,k −

∑L
l=1 Zt,lml(Xt,k)

}2

∑T
t=1

∑Kt

k=1 {Yt,k − m̃0(Xt,k)}2
, (11)

where

m̃0(X`) =
1

T

T∑
t=1

∑Kt

k=1 Yt,k1{X` = Xt,k}∑Kt

k=1 1{X` = Xt,k}
, ` = 1, . . . , Kmax, (12)

is an empirical mean surface and Kmax is the number of all different Xt,k observed during

T days. The criterion (11) is a modified version of this considered in Fengler et al. (2007)

and other literature on the DSFM, where instead of the empirical mean surface, the overall

mean of the observations is used. The mean surface (12) makes more sense, since our data

reflect monotonous behaviour w.r.t. the time to maturity.

The m̃0 factor in (9) is usually interpreted as a mean function of the data. We propose

to first subtract the estimate (12) from the data and then fit the DSFM. The extraction

of the empirical mean m̃0 leads to the following model

Yt,k = m̃0(Xt,k) +
L∑
l=1

Zt,lml(Xt,k) + εt,k = m̃0(Xt,k) + Z>t Aψ(Xt,k) + εt,k, (13)

8



where ml are factor functions, l = 1, . . . , L, Zt,l are factor loadings, and A is a (L × B)

coefficient matrix. The representation (13) reduces the number of the factor functions

estimated in the iterative algorithm (10). The model (9) is the classic DSFM and we will

refer to it as the DSFM. The model (13) is hereafter called the DSFM without the mean

factor.

4 Modelling the Dynamics of CDO Surfaces

4.1 Data Description

The data set analysed in this study contains daily spreads of iTraxx tranches of Series 2

to 10 between 30 March 2005 (hereafter denoted 20050330) and 2 February 2009 (denoted

20090202) obtained from Bloomberg. We have in total
∑T

t=1Kt = 49502 data points over

T = 1004 days. As far as we know, this is the first study on CDOs that consider such an

extensive data set.

Each index has 3, 5, 7, or 10 years maturity. Figure 2 shows the market spreads of Series

6 and the corresponding implied Gaussian base correlations for the maturity of 5 and 10

years. We see similarities in the general evolution between these two maturities. However,

since their exposure in terms of duration differs, they represent different levels.

Due to the issuing scheme one observes every day a bunch of indices from various series

and different maturities. Here we analyse tranche spreads and also base correlations, both

denoted Yt, as a function of the tranche seniority ξt and the remaining time to maturity τt.

The seniority of a tranche ξt is represented by its corresponding detachment point. The

remaining time to maturity of an index is an actual time left till its expiration and takes

values between zero and 10.25. For every day a separate surface representing the market

information is available. The number of observed every day indices is low (minimum 4,

maximum 17, median 12, see Figure 3). This results in a string structure in the data.

Each string corresponds to one τt ∈ [0, 10.25] and is composed out of at most five points.

The market quotes five out of six tranches as the most senior tranche is usually not traded.

Figure 1 and Figure 4 present the curves of market spreads and corresponding implied

base correlations on 20080909 and 20090119. As time passes, the curves move through the

space towards expiry and simultaneously change their skewness and level. As previously

mentioned, the main aim of this research is to model the evolution of the iTraxx spreads

and base correlations simultaneously in space and time dimensions.

Since the shortest maturity is 3 years and every half a year new four indices are issued,

the number of indices present on the market grows in time. Table 1 shows the number of

observed market values of iTraxx tranches for every possible maturity during the entire

period considered and during the annual subperiods. Table 2 outlines a percentage of

missing values for every maturity and for every tranche. We see that the CDO market

was booming in 2006 and 2007. However, since the beginning of the financial crisis in 2008

the demand for credit derivatives had been shrinking meaningfully. In the first quarter of
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Figure 2: Market spreads (upper panel) and implied base correlations (lower panel).

Series 6, maturity 5 (left) and 10 (right) years. Data from 20060920-20090202. Tranches:

1 (blue), 2 (black), 3 (red), 4 (pink), 5 (green).
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Figure 3: Daily number of curves for every surface during the period 20050330-20090202.
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Figure 4: Base correlations of all series observed on 20080909 (left) and 20090119 (right).
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2009 the iTraxx tranches became highly illiquid. Many missing data may create challenges

to the econometric analysis. Because tranches with 3 years maturity were rarely traded,

this maturity was excluded from our study. Tables 3 and 4 present summary statistics of

Year 3Y 5Y 7Y 10Y

2005 0 1478 715 1532

2006 181 3998 3739 4005

2007 75 5155 5170 5172

2008 232 5904 5916 5932

2009 0 260 263 263

All 488 16740 15803 16840

Table 1: Number of observed values of iTraxx tranches in the period 20050330-20090202.

Year
3Y 5Y 7Y 10Y

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

2005 100 100 100 100 100 34 34 34 34 48 5 5 5 5 5 35 34 35 34 35

2006 78 56 55 100 100 6 7 6 6 8 3 3 3 4 4 5 5 6 8 6

2007 88 99 99 100 100 3 2 2 3 3 2 2 3 2 3 3 2 3 2 2

2008 47 99 100 100 100 24 25 25 24 27 24 25 25 25 27 24 27 24 25 24

2009 100 100 100 100 100 42 42 47 42 42 42 43 43 42 42 42 43 42 42 43

All 72 93 93 100 100 16 17 17 16 20 13 14 13 13 14 16 17 16 17 16

Table 2: Percentage of missing values during the period 20050330-20090202.

Year Tranche 1 Tranche 2 Tranche 3 Tranche 4 Tranche 5

S
p

re
ad

2005 40.90 (13.22) 255.42 (174.34) 62.13 (41.26) 32.30 (19.49) 18.85 (12.47)

2006 33.71 (14.76) 212.75 (173.46) 52.09 (38.71) 23.56 (16.63) 9.68 (7.02)

2007 26.03 (12.45) 187.28 (127.72) 72.98 (55.19) 40.56 (32.85) 20.79 (18.96)

2008 42.66 (11.22) 536.11 (230.96) 317.60 (130.18) 195.79 (74.15) 92.13 (32.29)

2009 62.89 (8.01) 998.48 (116.96) 558.98 (80.98) 320.51 (55.32) 103.44 (11.04)

All 35.56 (14.86) 335.27 (256.95) 162.61 (157.65) 96.36 (96.74) 44.86 (43.51)

B
as

e
C

o
rr

.

2005 0.18 (0.04) 0.26 (0.05) 0.35 (0.05) 0.43 (0.06) 0.60 (0.09)

2006 0.16 (0.05) 0.21 (0.07) 0.28 (0.09) 0.33 (0.11) 0.48 (0.17)

2007 0.27 (0.08) 0.36 (0.10) 0.43 (0.11) 0.49 (0.11) 0.65 (0.12)

2008 0.43 (0.06) 0.52 (0.06) 0.58 (0.06) 0.63 (0.06) 0.79 (0.06)

2009 0.40 (0.10) 0.48 (0.11) 0.53 (0.12) 0.59 (0.13) 0.80 (0.10)

All 0.29 (0.13) 0.38 (0.14) 0.44 (0.15) 0.50 (0.15) 0.66 (0.16)

Table 3: Mean and standard deviation (in parentheses) of tranche spreads (UFF for the

tranche 1) and implied base correlations during the period 20050330-20090202.

Year Index

2005 46.34 (11.08)

2006 37.70 (11.86)

2007 40.22 (16.25)

2008 121.71 (50.86)

2009 205.47 (44.04)

All 77.25 (57.60)

Table 4: Mean and standard deviation (in parentheses) of iTraxx indices’ spreads during

the period 20050330-20090202.
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the market spreads, the base correlations, and of the iTraxx indices.

Sometimes on a particular day, for a particular tranche and a particular remaining time

to maturity we observe two different spreads. As an example consider a day t0 on which a

new series with 3 years maturity is issued. If 5 years earlier a series with 7 years maturity

was issued, then on day t0 this series has also 3 years remaining time to maturity. In

this situation we include in our data set the observation that comes form the most actual

series (in the example we take the series issued on t0).

The base correlations (8) are implied from the market spreads using the large pool Gaus-

sian copula model (assuming the LGD of 60%) presented in Section 2.2. The common

intensity parameters are derived from iTraxx indices. The discount factors are calculated

from rates of Euribor and Euro Swaps.

The structure of the equity tranche is different from the other tranches. It is quoted as

an upfront payment plus 500 bp spread paid quarterly. In order to include the equity

tranche in the joint analysis of all the tranches, we convert its quotes to standard spreads

with zero upfront fee using the large pool Gaussian copula model.

4.2 DSFM Estimation Results

Since our data are positive and monotone, we convert spreads into log-spreads and for

base correlations apply the Fisher’s Z-transformation defined as

T (u) = arctanh(u) =
1

2
log

1 + u

1− u
.

It transforms the empirical Pearson’s correlations between bivariate normal variables to

a normally distributed variable. We will use it for the base correlations as it stabilizes

their variance.

As discussed in Section 3, the number of factors L, the numbers of knots R1, R2, and

the orders of splines r1, r2 are selected according to (11). Since the design of the data in

the tranche seniority dimension is fixed, we choose in this direction quadratic B-splines

and five knots. Tables 5 and 6 present a proportion of the explained variation (11) by

the DSFM and the DSFM without the mean factor respectively for different numbers of

factors, knots and different orders of splines in the maturity dimension. Similar like in

Park et al. (2009), we find that the order of splines and the number of knots have a small

influence on the proportion of the explained variation. We pick the quadratic B-splines

placed on 10 knots in τ dimension for both types of data and for both DSFM models.

The number of knots is close to the median number of observed strings every day. Table

7 outlines the criterion’s values for the chosen tensor B-splines and for up to five factors.

The information shown there reveals that two factors are sufficiently good approximation

to the data. Figures 5 and 6 exhibit m̂ and Ẑt in the DSFM for the log-spreads and the

Z-transformed base correlations respectively. Figures 7 and 8 show the DSFM without

the mean factor estimates.
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Number

of

Factors

Spline Log-Spr Z-BC
PPPPPPPPPOrder

Knots
5 10 15 20 5 10 15 20

1

1 0.944 0.963 0.967 0.968 0.721 0.765 0.774 0.786

2 0.965 0.968 0.968 0.969 0.738 0.769 0.788 0.799

3 0.966 0.968 0.969 0.969 0.743 0.775 0.786 0.793

4 0.966 0.968 0.969 0.969 0.740 0.774 0.792 0.797

2

1 0.960 0.978 0.982 0.983 0.813 0.871 0.814 0.894

2 0.980 0.983 0.984 0.984 0.835 0.883 0.912 0.918

3 0.981 0.983 0.984 0.984 0.846 0.894 0.908 0.891

4 0.981 0.983 0.984 0.984 0.849 0.895 0.913 0.912

3

1 0.965 0.985 0.989 0.990 0.822 0.893 0.915 0.915

2 0.986 0.989 0.990 0.990 0.869 0.915 0.928 0.932

3 0.987 0.989 0.990 0.991 0.872 0.922 0.937 0.941

4 0.987 0.989 0.990 0.990 0.873 0.921 0.930 0.935

Table 5: Proportion of the explained variation by the DSFM for L = 1, 2, 3, different

numbers of knots and different orders of splines in the maturity dimension. The values of

the selected models marked with italic.

Number

of

Factors

Spline Log-Spr Z-BC
PPPPPPPPPOrder

Knots
5 10 15 20 5 10 15 20

1

1 0.797 0.876 0.897 0.898 0.629 0.640 0.660 0.660

2 0.877 0.896 0.905 0.910 0.633 0.654 0.657 0.664

3 0.867 0.898 0.906 0.908 0.638 0.650 0.662 0.664

4 0.871 0.898 0.907 0.910 0.639 0.653 0.659 0.662

2

1 0.842 0.925 0.940 0.945 0.730 0.835 0.860 0.869

2 0.926 0.952 0.961 0.954 0.781 0.861 0.876 0.888

3 0.911 0.952 0.941 0.950 0.763 0.867 0.883 0.887

4 0.917 0.956 0.947 0.954 0.783 0.870 0.881 0.886

3

1 0.858 0.940 0.959 0.973 0.746 0.854 0.888 0.898

2 0.941 0.967 0.977 0.982 0.815 0.896 0.907 0.925

3 0.927 0.967 0.975 0.979 0.805 0.901 0.922 0.930

4 0.932 0.972 0.977 0.982 0.817 0.903 0.910 0.927

Table 6: Proportion of the explained variation by the DSFM without the mean factor

for L = 1, 2, 3, different numbers of knots and different orders of splines in the maturity

dimension. The values of the selected models marked with italic.

Number

of Factors

DSFM DSFM w/o mean f.

Log-Spr Z-BC Log-Spr Z-BC

1 0.968 0.769 0.896 0.654

2 0.983 0.893 0.952 0.862

3 0.989 0.919 0.967 0.887

4 0.991 0.931 0.973 0.909

5 0.993 0.936 0.976 0.918

Table 7: Proportion of the explained variation by the models with L = 1, . . . , 5 dynamic

factors and quadratic tensor B-splines placed on 5× 10 knots.
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Figure 5: Estimated factors and loadings (Zt,1 black, Zt,2 red) in the DSFM for the

log-spreads.
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Figure 6: Estimated factors and loadings (Zt,1 black, Zt,2 red) in the DSFM for the

Z-transformed base correlations.
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Figure 7: Sample mean, estimated factors and loadings (Zt,1 black, Zt,2 red) in the DSFM

without the mean factor for the log-spreads.
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Figure 8: Sample mean, estimated factors and loadings (Zt,1 black, Zt,2 red) in the DSFM

without the mean factor for the Z-transformed base correlations.
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In the DSFM for both data types, the first and the second factor can be interpreted as a

slope-curvature and a shift function respectively. Increasing Ẑt,1 results in the enhance-

ment of the surface’s steepness, whereas, decreasing Ẑt,1 implies its flattening. When we

shift Ẑt,2, the whole surface shifts along the z-axis. In the DSFM without the mean factor

for the log-spreads we observe an opposite influence of the factors. Namely, m̂1 is the shift

factor, m̂2 is the slope-curvature factor. For the DSFM without the mean factor applied

to the Z-transformed base correlations the interpretation is not so clear. When varying

Ẑt,1 and Ẑt,2 both the slope and the curvature change. The upward shift of the surface

can be a result of a decrease in Ẑt,1 or an increase in Ẑt,2.

Table 8 discloses the mean squared error of the in-sample fits. The classic DSFM occurs

to provide a better fit to the data than the DSFM without the mean factor. Moreover, the

Z-transformed base correlations are approximated more accurately than the log-spreads

for both DSFMs. Figure 9 displays the in-sample fit of the models to data on 20080909

and 20090119. The convergence of the models is typically reached after 8 cycles.

Model Log-Spr Z-BC

DSFM 0.016 0.004

DSFM w/o mean f. 0.045 0.006

Table 8: Mean squared error of the in-sample fit.

The covariance structure of the Ẑt time series is investigated by means of VAR analysis.

The augmented Dickey-Fuller test indicates that the first differences of Ẑt in both DSFMs

are stationary. Figure 10 exhibits the sample partial autocorrelation functions of the

residuals of the estimated VAR(1) models for the factor loadings of the DSFM without the

mean factor. In general only a few autocorrelations lie slightly outside the 95% confidence

interval. A similar result is observed for the classic DSFM. Thus, VAR(1) seems to be in

line with the data. Certainly, one may investigate more complex multivariate time series

models that account for a dynamic structure of the conditional variance-covariance and

of the conditional correlation like the BEKK-GARCH or the DCC-GARCH, see Engle

(2002). Since we are interested in the conditional mean process only, the VAR model

appears to be sufficient. Moreover, a relatively simple out-of-sample VAR forecasting can

be used in forecasting the evolution of the surfaces.

5 Applications in Trading

5.1 Curve Trades

The popularity of the iTraxx market led to more liquidity in its standardized tranches

allowing investors to implement complex credit positions. Here we present curve trades,

namely flatteners and steepeners – strategies that combine tranches of different time to

maturity, see also Kakodkar et al. (2006).
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(a) DSFM for the log-spreads.

(b) DSFM without the mean factor for the log-spreads.

(c) DSFM for the Z-transformed base correlations.

(d) DSFM without the mean factor for the Z-transformed base correlations.

Figure 9: In-sample fit (black points) of the models to data (red points) on 20080909

(left) and 20090119 (right).
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Figure 10: Sample partial autocorrelation for VAR(1) residuals of the factor loadings

Zt,1 (left) and Zt,2 (right) in the DSFM without the mean factor for log-spreads (upper

panel) and Z-transformed base correlations (lower panel). The solid lines correspond to

the approximate lower and upper 95% confidence bounds.

A flattener is a trade that involves a simultaneous sale of a long-term tranche and a

purchase of a short-term tranche. An example would be: sell 10Y 3-6% and buy 5Y

6-9%. In this trade the investor expresses a bullish long-term outlook but also a bearish

short-term view on the market. The opposite trade is called a steepener. It is achieved

by selling the short-term protection and buying the long-term protection. Both strategies

are popular in trading CDS, credit indices, and yield curves. Credit curves got a lot of

attention in May 2012 when J.P. Morgan announced a loss of $2 billion on its flattener

trade on the CDX IG 9 index. The final loss reached $6.2 billion.

In our study both long and short term tranches have equal notional amounts. However,

by adjusting the notionals, a trade can be structured so that it is risky duration neutral,

carry neutral, correlation neutral, or theta (sensitivity to implied correlation changes)

neutral, see Roy (2007). As recommended by Felsenheimer, Gisdakis & Zaiser (2004) we

consider trades that generate no or a positive carry, i.e. the spread of the sold protection

does not exceed the spread of the bought protection.

It is important to remark that very often our trades will be exposed to jump-to-default

risk. For simplicity, let us consider in this paragraph flatteners only. If one buys 5Y 6-9%

and sells 10Y 6-9%, then the trade is fully hedged for default only until the maturity of

the 5Y tranche, i.e. any defaults that emerage from 10Y 6-9% are covered by 5Y 6-9%
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till it expires. It should also be pointed out that the tranches do not have to be from

the same series and there are slight differences in the composition of the collaterals of

every series. Another case is if one buys 5Y 6-9% and sells 10Y 3-6%, then these tranches

provide protection of different portion of portfolio risk. If there is any default in 10Y

3-6%, then we must deliver a payment obligation and incur a loss. Since we do not posses

data of historical defaults in iTraxx, we cannot include the default payments in the further

analysis. Consequently, in calculating the profit-and-loss (P&L) of the strategy we also

do not account for the positive carry that we cumulate until the both positions are closed.

Felsenheimer et al. (2004), Kakodkar et al. (2006) and Roy (2007) consider various sce-

narios of flattener trades. They also assume that we do not observe any defaults in the

collateral. However, the examples are not based on real data and do not investigate the

performance of the trades over time.

Assume that an investor enters a curve trade and sells protection at a spread of s1(t0) for

the period [t0, T1] and buys protection at a spread of s2(t0) for the period [t0, T2]. If the

trade is a flattener, then T1 > T2. The spreads of the tranches are calculated in such a way

that on the date of the trade t0 the marked-to-market (MTM) values of both positions

are zero

MTM`(t0) =

T∑̀
t=t1

β(t0, t) [s`(t0)∆tE{F`(t)} − E{L`(t)− L`(t−∆t)}] = 0, ` = 1, 2.

Since spread values constantly vary over time, immediately after initiation of the trade,

t̃ > t0, the market trades the tranches at s`(t̃). In consequence, we observe a change in

the MTM value of our positions

MTM`(t̃) =
{
s`(t0)− s`(t̃)

} T∑̀
t=t̃1

β(t̃, t)∆tE{F`(t)}, ` = 1, 2, (14)

where t̃1 is the first payment day after t̃.

A positive MTM means that the contract has a positive value to the protection seller.

If the protection seller closes the position ` at time t̃, then receives from the protection

buyer the amount MTM`(t̃).

The aim of the curve trade investor is to maximize the P&L function that equals the total

MTM value

PL(t̃) = MTM1(t̃)−MTM2(t̃). (15)

5.2 Empirical Results

The key decision in constructing a curve trade is which tranche to buy and which to sell.

If an investor entered a flattener on 20080909, then the trade incorporated two tranches

whose spreads are depicted on the left panel of Figure 1. If the investor decided to close
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the positions on 20090119, then their MTM values (14) were calculated using the spread

quotes exhibited on the right panel of Figure 1 and using the base correlations (need for

E{F`}) shown on the right panel of Figure 4. Having the data displayed on Figures 1 and

4, we can compute the MTM values of all tranches that where quoted on both days. In

consequence, we can easily recover those two tranches that maximize the P&L function

(15). However, it is only possible if we possess the whole market information from these

two points in time.

With an efficient forecasting technique, one can compute a prediction, for a given time

horizon, of each point that is displayed on the left panels of Figures 1 and 4. By doing

it using standard econometric methods, each tranche from every series has to be treaded

as an individual time series. Disregarding the fact that there are many missing values in

our data, see Table 2, we have many series that do not have a long history. If an investor

bought a tranche from Series 9 on 20080320, the day of its launch and decided to sell it a

day or a week later, then we might not have enough past observations to fit and forecast

the model.

In the DSFM modelling we do not differentiate the indices by their series number but by

their remaining time to maturity. If in the past we already had observations with a very

long remaining time to maturity, then we are able to price upcoming series even before

they appear on the market. Moreover, we can forecast them using the DSFM.

We carry out the forecasting of log-spreads and Z-transformed base correlations in mov-

ing windows. A moving window procedure is used when only the most recent data are

considered to be relevant for the estimation. We impose a static window of w = 250 days.

Then for every time t0 between the day w and the last day T in our data, we analyse

{Yt}t0t=t0−w+1. For these sequences the DSFMs (9) and (13) are estimated separately. As

a result, we obtain T − w + 1 times the estimated factor functions m̂ = (m̂0, . . . , m̂L)>

and the series of the factor loadings Ẑt = (Ẑt,0, . . . , Ẑt,L)> of length w. Since the factor

functions are fixed, the forecasting is performed only on the factor loadings. As discussed

in Section 4.2, we apply VAR(1) models to compute the predictions for a horizon h of one

day, one week (five days), and one month (20 days). Due to the fixed scheme of issuing the

iTraxx on the market, for every time t, w+ h ≤ t ≤ T we know which indices are traded.

Therefore, the number of points that could be observed Kt and the possible remaining

times to maturity τt are known. Thus, the bivariate vector Xt,k, k = 1, . . . , Kt, does not

have to be forecasted. The forecast Ŷt is calculated from the Ẑt forecast. Finally, a proper

inverse transformation is applied to Ŷt in order to recover the values of the spreads and

the base correlations.

The calculation of the expected tranche losses needs as an input a homogeneous default

probability, see (7). Since the spread predictions are calculated out-of-sample, we also

forecast the default probabilities. The time series of the default probabilities are derived

from the time series of all the iTraxx indices considered and are forecasted with an AR(1)-

GARCH(1,1) process in moving windows of w observations. For short data histories we

reduce the window size or take as a predictor the last observed value. All predicted values

of spreads and base correlations that lead to an arbitrage in prices, i.e. negative spreads,

default probabilities and base correlations outside [0, 1], were excluded.
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Afterwards, for every predicted {ŝk(t), ρ̂k(t)}, t = w+h, . . . , T , k = 1, . . . , Kt, we compute

M̂TMk(t) according to (14) where the initial spread is the spread observed on t − h.

Consequently, we create a surface of the predicted MTM values, see Figure 11. Each

surface has its extremes that indicate the tranches recommended for buying and selling.

Figure 11: MTM surfaces on 20080909 (left) and 20090119 (right) calculated using one-day

spread and base correlation predictions obtained with DSFM (upper panel) and DSFM

without the mean factor (lower panel).

The empirical analysis of the curve trades’ performance is conducted using tranches 2-5

for all dates and indices considered in Section 4.2. Since the equity tranche is quoted in

percent as an upfront fee, its corresponding spread is significantly higher than the spreads

of other tranches. As it causes a large skew of our spread surfaces, we excluded it from

the study. In addition, we also avoid the multiple conversion of the upfront fee to the

spread and back.

Buying and selling tranches involve transaction charges. However, we do not have in-

formation on trading costs neither the entire history of the bid and ask prices. We only

analyse the bid-ask spreads of Series 8. Table 9 shows an average distance of the bid

spread and of the ask spread from the mid spread as a percentage of the mid spread.

For the investigation of the trading strategies, the tranche spread data used in this study

are adjusted in the following way. The protection buyer delivers an ask spread that is

calculated as a mid spread increased by a proper percent listed in Table 9. The protection

seller receives a bid spread which is calculated as a mid spread reduced by this percentage.

The calculation of the spread and the MTM value of the tranche 2 requires as an input a
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Maturity 1 2 3 4 5

5Y 1.88 1.78 2.52 3.77 6.28

7Y 1.49 1.65 2.31 2.97 4.87

10Y 1.41 1.66 1.83 2.52 4.09

Table 9: Average bid-ask spread excess over the mid spread as a percentage of the mid

spread for Series 8 during the period 20070920-20090202

value of the base correlation of the equity tranche. Therefore, we conduct a preliminary

analysis of the models (9) and (13) using all tranches and in this way obtain the forecast

of the first tranche’s parameter.

For every day w ≤ t ≤ T − h we construct a curve trade. Namely, we fit and forecast the

DSFM models and calculate h-day forecasts of the MTM surfaces. From these surfaces

we recover which two tranches and from which series optimize a given strategy. We can

e.g. consider a flattener that from all existing indices always buys the maturity 7Y, sells

5Y, and selects only the tranche 2. For a flattener and a steepener one can restrict the

choice to a fixed tranche and fixed maturities or choose from all tranches and from all

maturities. We also include a strategy that allows the investor to switch between flatteners

and steepeners every day. If a strategy that combines flatteners and steepeners allows in

addition choosing any tranche and any maturities, then the selected tranches are the

maximum and the minimum of the forecasted MTM surface. If we consider the flatteners

only, then we have to comply with the constraint τ1− τ2 > 0. If for a particular day there

are no tranches that for a given strategy return a positive P&L forecast, we assume that

the investor decides not to take any action and we do not include this date in the overall

summary of this strategy.

The accuracy of the predictions is evaluated by conducting a backtesting of the trades

using the historical observations. For a given strategy and for the tranches selected by

the DSFM forecasting procedures we check the corresponding observed market spreads,

calculate the resulting MTM values, and register the realised P&L. Table 10 presents the

overall means of the daily gains of different strategies given in percent. The labels in the

first column should be read in the following way. Each name is composed of three parts

joined with a hyphen. The first part indicates the type of the curve trade: flattener (F),

steepener (S). The first five rows present results of the trades that combine flatteners and

steepeners (FS). The second element of the name shows which tranches were considered:

all tranches (AllT), only tranche 2 (T2), etc. The last part expresses the maturities taken:

all maturities (AllM), 5Y and 10Y (510), etc. In the case of considering all maturities

it is possible that the optimal strategy is composed of two tranches that have the same

maturity, e.g. both are 5Y, but they come from different series and in consequence their

remaining time to maturity are different. The spread predictions can alternatively be

computed directly from the base correlations predictions by using (8). As a consequence

it is not necessary to apply DSFMs to historical spreads. Table 10 presents also the results

obtained by modelling and forecasting the Z-transformed base correlations only. Table 11

discloses the number of executed trades during the whole time period. Table 12 exhibits

the corresponding Sharpe ratios calculated as the mean over the standard deviation.
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To summarize the trading algorithm we enumerate its steps:

1. Consider a static rolling window of w and a forecasting horizon h.

2. For every t = w, . . . , T − h estimate the DSFMs (9) and (13) using {Yν}tν=t−w+1.

3. Compute the forecast Ẑt+h using a VAR model.

4. Check what the possible Xt+h are and calculate Ŷt+h.

5. Transform Ŷt+h suitably to get ŝ(t+ h) or ρ̂(t+ h).

6. Compute the surface of forecasted MTM values with (14).

7. Select two tranches according to the strategy’s restrictions.

8. Calculate the predicted P&L with (15).

9. Check the historical spread values for the selected tranches on day t+ h. Imply the

base correlations, calculate the realised MTM values and the realised P&L.

The results show that the highest daily gains where achieved by the strategies that invest

in tranche 2 and 3. Obviously these tranches are quoted at the highest spreads but also

carry the greatest risk. The steepeners for a fixed tranche and fixed maturities reveal a

very good performance. However, as compared with Table 11 these strategies were rarely

carried out which means that the conditions of these strategies were difficult to meet.

The performance of the DSFM model (9) and (13) is comparable. The models based

entirely on the predictions of the base correlations achieve better results for one-day and

one-week forecasting horizon. The models that combine the spread predictions and the

base correlations predictions show better results for one-month forecasting horizon. Since

the forecasting for the longer time horizons is less accurate, we observe a significantly

better performance of the trades designed for short term periods.

The curve trades can be also tested from the perspective of an investor that follows a

certain strategy over long time horizon and constantly rebalances the trade. Assume

that at t0 the investor enters an optimal curve trade for h-day horizon. At t0 + h she

either keeps the current position for the next h-days or closes it and enters a new one. In

addition, we assume a margin of 10% of the notional. Every time the position is closed

its gain is added or its loss is subtracted from the margin. If the loss exceeds the margin,

the trade is closed. Otherwise, the investor follows her strategy for one year (250 days).

If at t̃ there are no positions that give a positive P&L forecast, the investor waits till t̃+ 1

and repeats the check.

We analyse a strategy of combined flatteners and steepeners from all tranches and all

maturities using our entire data set. Figure 12 displays the final cumulated gains after

one year of the investor as a function of the date on which the investor planed to finish

trading (i.e. the starting date plus one year). The seasonality pattern observed on the

plots appears because the strategy with h-day rebalancing constructed on day t0 and on

day t0 + h might overlap. If on t0 we started a 250-days strategy with a trade that was

closed after h-days then a strategy started on t0 + h differ from the previous one by the

first and the last step only. Figure 13 shows an over time performance of the investor’s

trades started on 20070614 and closed on 20080529. The final cumulated profits equal

39.08%, 35.87%, and 20.35% when the account is rebalanced each day, week, and month

respectively. These values are the last points depicted on the right plots on Figure 13 and

they are presented on Figure 12 for the day 20080529.
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Strategy

DSFM DSFM without the mean factor

1 day 1 week 1 month 1 day 1 week 1 month

LZ Z LZ Z LZ Z LZ Z LZ Z LZ Z

FS-AllT-AllM 0.29 0.35 0.10 0.13 0.05 0.04 0.30 0.30 0.11 0.13 0.04 0.03

FS-T2-AllM 0.29 0.33 0.13 0.14 0.06 0.05 0.33 0.28 0.12 0.13 0.05 0.04

FS-T3-AllM 0.19 0.22 0.07 0.08 0.03 0.02 0.18 0.23 0.07 0.07 0.02 0.02

FS-T4-AllM 0.14 0.17 0.04 0.05 0.02 0.01 0.12 0.18 0.04 0.05 0.01 0.01

FS-T5-AllM 0.09 0.11 0.04 0.04 0.02 0.01 0.08 0.11 0.03 0.04 0.01 0.01

F-T2-AllM 0.30 0.34 0.12 0.12 0.06 0.04 0.28 0.32 0.12 0.11 0.05 0.04

F-T3-AllM 0.16 0.20 0.06 0.07 0.02 0.01 0.16 0.20 0.06 0.07 0.02 0.01

F-T4-AllM 0.10 0.15 0.03 0.04 0.01 0.01 0.10 0.15 0.03 0.04 0.01 0.01

F-T5-AllM 0.09 0.10 0.03 0.03 0.01 0.01 0.08 0.10 0.03 0.03 0.01 0.01

S-T2-AllM 0.39 0.43 0.15 0.17 0.07 0.06 0.45 0.46 0.13 0.16 0.05 0.06

S-T3-AllM 0.27 0.31 0.09 0.10 0.04 0.03 0.30 0.35 0.09 0.09 0.02 0.02

S-T4-AllM 0.20 0.25 0.06 0.07 0.03 0.02 0.20 0.24 0.05 0.06 0.01 0.01

S-T5-AllM 0.12 0.15 0.04 0.04 0.02 0.02 0.12 0.16 0.04 0.04 0.01 0.02

F-AllT-105 0.20 0.21 0.07 0.09 0.03 0.02 0.19 0.21 0.06 0.08 0.02 0.02

F-AllT-107 0.22 0.26 0.07 0.08 0.03 0.03 0.25 0.25 0.08 0.08 0.03 0.03

F-AllT-75 0.15 0.15 0.04 0.06 0.01 -0.00 0.14 0.15 0.04 0.05 0.01 0.00

S-AllT-510 0.16 0.17 0.05 0.08 0.02 0.01 0.16 0.18 0.05 0.08 0.01 0.00

S-AllT-710 0.17 0.23 0.05 0.10 0.02 0.03 0.21 0.25 0.07 0.09 0.02 0.02

S-AllT-57 0.11 0.13 0.03 0.03 0.01 -0.01 0.12 0.13 0.03 0.03 0.00 -0.01

F-T2-105 0.30 0.26 0.13 0.14 0.06 0.04 0.26 0.26 0.12 0.13 0.04 0.04

F-T3-105 0.13 0.17 0.05 0.05 0.01 -0.01 0.12 0.17 0.05 0.05 0.01 -0.01

F-T4-105 0.12 0.12 0.03 0.03 0.01 -0.00 0.12 0.11 0.03 0.02 0.01 -0.01

F-T5-105 0.09 0.07 0.03 0.02 0.01 0.00 0.07 0.07 0.03 0.02 0.01 0.00

F-T2-107 0.33 0.30 0.12 0.12 0.06 0.04 0.34 0.29 0.14 0.12 0.06 0.05

F-T3-107 0.13 0.22 0.05 0.06 0.01 0.00 0.17 0.22 0.06 0.05 0.02 0.00

F-T4-107 0.11 0.13 0.03 0.03 0.01 0.00 0.12 0.13 0.03 0.03 0.01 0.00

F-T5-107 0.10 0.08 0.03 0.02 0.01 0.00 0.08 0.07 0.03 0.02 0.01 0.00

F-T2-75 0.16 0.17 0.05 0.07 0.02 0.00 0.17 0.18 0.06 0.06 0.02 0.00

F-T3-75 0.09 0.10 0.04 0.03 0.01 -0.01 0.09 0.11 0.04 0.03 0.01 -0.01

F-T4-75 0.06 0.07 0.02 0.02 0.01 -0.00 0.08 0.08 0.02 0.02 0.01 -0.00

F-T5-75 0.05 0.05 0.02 0.02 0.01 0.00 0.06 0.05 0.02 0.02 0.01 0.00

S-T2-510 0.22 0.32 0.16 0.40 0.10 0.19 0.33 0.48 0.13 0.35 0.05 0.12

S-T3-510 -0.01 0.10 0.01 0.03 0.04 -0.04 0.02 0.11 -0.03 0.04 -0.05 -0.04

S-T4-510 0.22 0.23 0.09 0.09 0.08 0.08 0.22 0.26 0.09 0.10 0.08 0.09

S-T5-510 0.13 0.13 0.07 0.07 0.04 0.05 0.09 0.13 0.07 0.07 0.04 0.05

S-T2-710 0.39 0.60 0.21 0.47 0.14 0.18 0.44 0.66 0.21 0.42 0.10 0.11

S-T3-710 0.35 0.54 0.12 0.20 0.10 0.04 0.41 0.56 0.09 0.23 0.03 0.04

S-T4-710 0.37 0.54 0.12 0.15 0.08 0.04 0.38 0.55 0.11 0.13 0.04 0.04

S-T5-710 0.25 0.28 0.10 0.12 0.05 0.05 0.24 0.29 0.12 0.13 0.05 0.05

S-T2-57 0.50 0.48 0.20 0.23 0.10 0.05 0.56 0.50 0.27 0.19 0.15 0.02

S-T3-57 0.40 0.39 0.15 0.07 0.08 0.03 0.40 0.39 0.16 0.09 0.09 0.03

S-T4-57 0.24 0.24 0.07 0.06 0.04 0.04 0.23 0.28 0.08 0.07 0.05 0.04

S-T5-57 0.20 0.18 0.07 0.05 0.03 0.02 0.20 0.18 0.07 0.05 0.03 0.02

Table 10: Mean of daily gains in percent. Calculations based on predictions of log-spreads

and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.
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Strategy

DSFM DSFM without the mean factor

1 day 1 week 1 month 1 day 1 week 1 month

LZ Z LZ Z LZ Z LZ Z LZ Z LZ Z

FS-AllT-AllM 754 754 750 750 735 735 754 754 750 750 735 735

FS-T2-AllM 748 751 746 748 734 735 752 753 745 748 729 735

FS-T3-AllM 752 754 749 750 735 735 754 754 750 750 735 735

FS-T4-AllM 754 754 750 750 734 735 754 754 750 750 735 734

FS-T5-AllM 741 736 735 737 735 733 741 744 735 739 735 733

F-T2-AllM 734 748 736 742 730 727 751 750 744 742 728 729

F-T3-AllM 752 754 749 750 734 727 754 754 750 750 734 735

F-T4-AllM 754 754 748 747 733 734 754 754 750 750 735 734

F-T5-AllM 741 734 733 734 734 733 741 739 733 734 735 733

S-T2-AllM 526 530 512 510 483 471 509 507 498 487 473 451

S-T3-AllM 466 433 458 430 432 406 435 423 427 412 423 401

S-T4-AllM 487 444 480 443 453 429 439 435 441 445 426 423

S-T5-AllM 512 454 500 448 494 439 474 455 459 462 472 443

F-AllT-105 695 753 694 749 701 731 698 754 700 750 701 727

F-AllT-107 731 754 731 750 726 730 736 754 730 749 726 730

F-AllT-75 722 750 728 747 723 734 724 750 714 748 717 733

S-AllT-510 736 744 726 743 709 730 723 744 711 741 708 722

S-AllT-710 750 745 741 746 729 735 726 748 716 748 717 735

S-AllT-57 745 752 742 748 721 731 747 749 740 746 717 727

F-T2-105 460 522 460 555 500 604 476 549 483 566 495 622

F-T3-105 551 706 556 698 541 680 576 718 587 705 571 690

F-T4-105 515 724 519 715 509 673 573 731 582 722 582 695

F-T5-105 502 695 497 692 508 655 587 696 572 689 577 660

F-T2-107 544 548 537 549 570 630 555 542 560 571 545 635

F-T3-107 627 701 632 696 613 708 635 704 635 703 616 712

F-T4-107 612 727 628 723 620 712 596 721 610 717 602 719

F-T5-107 582 713 570 710 576 702 604 707 590 702 595 709

F-T2-75 558 693 555 695 552 704 587 721 573 708 587 708

F-T3-75 596 728 597 734 618 714 627 727 616 732 637 718

F-T4-75 559 698 562 703 577 708 592 704 595 724 623 711

F-T5-75 645 707 642 713 637 702 650 704 645 718 644 703

S-T2-510 80 80 76 76 61 61 80 80 76 76 61 61

S-T3-510 69 65 65 65 50 50 69 61 65 57 50 50

S-T4-510 51 51 49 49 37 37 51 48 49 44 37 30

S-T5-510 50 47 49 42 36 28 49 47 48 42 35 28

S-T2-710 86 87 82 82 67 68 86 87 82 83 67 68

S-T3-710 82 84 79 77 64 61 81 84 77 78 62 61

S-T4-710 89 92 86 82 70 69 89 93 85 82 71 68

S-T5-710 120 121 116 112 101 95 122 121 119 113 102 95

S-T2-57 93 85 89 83 74 66 93 80 89 78 74 63

S-T3-57 104 91 100 82 84 72 103 91 99 83 83 64

S-T4-57 110 107 106 100 89 81 108 105 105 94 86 73

S-T5-57 121 114 120 108 97 78 109 116 108 108 85 78

Table 11: Number of executed trades. Calculations based on predictions of log-spreads

and Z-transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.
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Strategy

DSFM DSFM without the mean factor

1 day 1 week 1 month 1 day 1 week 1 month

LZ Z LZ Z LZ Z LZ Z LZ Z LZ Z

FS-AllT-AllM 0.20 0.24 0.20 0.25 0.31 0.23 0.20 0.20 0.21 0.25 0.24 0.21

FS-T2-AllM 0.20 0.22 0.25 0.28 0.35 0.32 0.21 0.19 0.23 0.25 0.30 0.30

FS-T3-AllM 0.19 0.22 0.23 0.26 0.28 0.17 0.18 0.23 0.23 0.23 0.21 0.19

FS-T4-AllM 0.19 0.23 0.21 0.23 0.26 0.25 0.17 0.23 0.18 0.23 0.16 0.26

FS-T5-AllM 0.24 0.29 0.32 0.34 0.40 0.28 0.24 0.29 0.26 0.33 0.31 0.29

F-T2-AllM 0.21 0.23 0.24 0.25 0.35 0.32 0.19 0.20 0.25 0.24 0.33 0.31

F-T3-AllM 0.16 0.20 0.20 0.26 0.24 0.16 0.17 0.21 0.20 0.24 0.20 0.17

F-T4-AllM 0.15 0.21 0.17 0.21 0.21 0.18 0.15 0.20 0.16 0.20 0.15 0.19

F-T5-AllM 0.25 0.27 0.32 0.33 0.34 0.26 0.23 0.28 0.26 0.33 0.27 0.27

S-T2-AllM 0.25 0.26 0.27 0.29 0.33 0.33 0.28 0.27 0.23 0.27 0.28 0.33

S-T3-AllM 0.24 0.27 0.30 0.29 0.30 0.25 0.27 0.29 0.29 0.27 0.20 0.21

S-T4-AllM 0.22 0.28 0.26 0.32 0.33 0.24 0.24 0.27 0.24 0.26 0.17 0.20

S-T5-AllM 0.27 0.32 0.32 0.35 0.33 0.34 0.28 0.32 0.30 0.34 0.32 0.34

F-AllT-105 0.17 0.20 0.18 0.21 0.18 0.17 0.16 0.19 0.15 0.20 0.11 0.15

F-AllT-107 0.18 0.23 0.16 0.19 0.19 0.19 0.21 0.22 0.17 0.18 0.15 0.22

F-AllT-75 0.14 0.14 0.11 0.15 0.04 -0.02 0.13 0.14 0.10 0.14 0.04 0.00

S-AllT-510 0.14 0.16 0.13 0.19 0.12 0.08 0.16 0.19 0.13 0.20 0.04 0.03

S-AllT-710 0.13 0.18 0.12 0.22 0.12 0.17 0.16 0.20 0.16 0.21 0.10 0.12

S-AllT-57 0.12 0.14 0.10 0.09 0.07 -0.09 0.14 0.15 0.10 0.09 0.03 -0.09

F-T2-105 0.22 0.21 0.27 0.32 0.29 0.29 0.19 0.19 0.24 0.29 0.22 0.31

F-T3-105 0.13 0.19 0.18 0.18 0.09 -0.07 0.13 0.19 0.15 0.18 0.06 -0.06

F-T4-105 0.16 0.18 0.14 0.13 0.13 -0.07 0.18 0.16 0.13 0.11 0.10 -0.08

F-T5-105 0.26 0.23 0.32 0.21 0.26 0.05 0.21 0.24 0.23 0.24 0.14 0.08

F-T2-107 0.25 0.26 0.25 0.29 0.35 0.32 0.25 0.24 0.30 0.29 0.36 0.34

F-T3-107 0.13 0.28 0.18 0.25 0.14 0.06 0.18 0.27 0.20 0.21 0.19 0.05

F-T4-107 0.16 0.19 0.18 0.17 0.15 0.03 0.18 0.19 0.18 0.16 0.19 0.03

F-T5-107 0.25 0.23 0.32 0.24 0.28 0.10 0.24 0.21 0.28 0.24 0.21 0.10

F-T2-75 0.14 0.16 0.15 0.22 0.15 0.05 0.15 0.17 0.18 0.17 0.17 0.03

F-T3-75 0.12 0.14 0.16 0.14 0.09 -0.12 0.13 0.15 0.16 0.16 0.13 -0.10

F-T4-75 0.13 0.16 0.13 0.14 0.15 -0.08 0.16 0.16 0.16 0.13 0.19 -0.07

F-T5-75 0.20 0.20 0.25 0.21 0.18 0.10 0.22 0.22 0.27 0.20 0.18 0.11

S-T2-510 0.08 0.14 0.14 0.38 0.25 0.48 0.14 0.20 0.12 0.33 0.12 0.29

S-T3-510 -0.01 0.07 0.02 0.06 0.15 -0.17 0.02 0.07 -0.07 0.06 -0.24 -0.17

S-T4-510 0.17 0.18 0.23 0.23 0.47 0.47 0.17 0.20 0.23 0.24 0.47 0.45

S-T5-510 0.23 0.22 0.42 0.40 0.60 0.75 0.18 0.22 0.40 0.40 0.60 0.75

S-T2-710 0.13 0.22 0.19 0.46 0.37 0.52 0.16 0.25 0.21 0.43 0.28 0.32

S-T3-710 0.17 0.26 0.18 0.32 0.34 0.19 0.19 0.28 0.13 0.38 0.12 0.19

S-T4-710 0.25 0.38 0.27 0.39 0.45 0.31 0.26 0.39 0.24 0.35 0.31 0.32

S-T5-710 0.40 0.42 0.54 0.64 0.74 0.66 0.38 0.44 0.60 0.66 0.70 0.62

S-T2-57 0.22 0.20 0.24 0.24 0.32 0.14 0.26 0.22 0.34 0.21 0.46 0.07

S-T3-57 0.28 0.26 0.29 0.13 0.40 0.15 0.27 0.26 0.30 0.17 0.46 0.14

S-T4-57 0.30 0.27 0.28 0.23 0.37 0.38 0.28 0.31 0.31 0.25 0.44 0.35

S-T5-57 0.49 0.42 0.64 0.46 0.71 0.55 0.45 0.42 0.66 0.46 0.72 0.55

Table 12: Sharpe ratios. Calculations based on predictions of log-spreads and Z-

transformed BCs marked as LZ; based only on Z-transformed BCs marked as Z.
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Figure 12: Closing profits of investor’s strategies after one year. Rebalancing after: 1

day (upper panel), 1 week (lower panel, left), 1 month (lower panel, right). Calculations

based on the DSFM predictions of log-spreads and Z-transformed BCs.

6 Conclusions

This work investigates dynamics of collateralized debt obligations (CDOs) by modelling

the evolution of tranche spread surfaces and base correlation surfaces using a dynamic

semiparametric factor model (DSFM). The empirical study is conducted using an ex-

tensive data set of 49,502 observations of iTraxx Europe tranches of Series 2 to 10 for

the time period between 30 March 2005 and 2 February 2009. The base correlations are

implied from spreads using the large pool Gaussian copula model. The tranche spreads

and the base correlations are represented as a function of the tranche seniority and the

remaining time to maturity. Every day data appear in a small number of curves that form

a surface in the three-dimensional space. As time passes, the surfaces move through the

space towards expiry and simultaneously change their shapes. The DSFM captures their

evolution simultaneously in space and time dimensions by a small number of factors. We

propose a modification of the classic DSFM and of the criterion of choosing the number of

factors. The results show that both DSFMs successfully reproduce the dynamics in data.

The study is completed by presenting an application in trading strategies. We show how

DSFM can be used in constructing the curve trades. Based on the DSFM predictions of

the spread and base correlation surfaces we calculate the predictions of the marked-to-

market (MTM) surfaces for different investment horizons. We analyse the performance
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Figure 13: Investor’s strategy. Start date 20070614, end date 20080529. Rebalancing

after: 1 day (upper panel), 1 week (middle panel), 1 month (lower panel). Daily P&L

(left) and daily cumulated P&L (right) over one year. Calculations based on the DSFM

predictions of log-spreads and Z-transformed BCs.

of 43 strategies that combine different positions, tranches, and maturities. A backtesting

using historical data shows that the curve trades achieve high daily gains.

28



References
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