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Abstract

The price for a single-family house depends both on the characteristics of

the building and on its location. We propose a novel semiparametric method

to extract location values from house prices. After splitting house prices into

building and land components, location values are estimated with adaptive

weight smoothing. The adaptive estimator requires neither strong smoothness

assumptions nor local symmetry. We apply the method to house transactions

from Berlin, Germany. The estimated surface of location values is highly corre-

lated with expert-based land values and location ratings. The semiparametric

method can therefore be used for applications where no other location value

information exists or where this information is not reliable.

Keywords: location value, adaptive weight smoothing, spatial modeling

JEL Classification: R31, C14
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1 Introduction

When asking a real estate professional about the three most important character-

istics of a house, the likely answer will be ‘location, location, location’.1 Naturally,

the characteristics of the building itself also play a role in its desirability, but the

phrase emphasizes the importance of the surrounding area. The nicest villa in an

otherwise run-down neighborhood is much less desirable than the very same building

in a nice suburban area with shady forests, quiet lakes, and good schools. Based on

this reasoning, we expect that the house will fetch a higher price when located in

a nice area than when located in a run-down area. Seen differently, the difference

between the prices of the villa in the two different areas gives the location value of

the nice area relative to the run-down area. Once buildings differ with respect to

their characteristics, such a simple price comparison is no longer sufficient to learn

about the relative value of a location. But the general notion remains: house prices

contain information on the value of the location.

Location values are of interest for several reasons. They can be used for spatial

analysis with respect to the influence of amenities and externalities. They can be

used for studying the impact of regulation, such as zoning. They can be used to

measure the effects of policy interventions, such as regeneration and revitalization.

Location values can be estimated directly from transactions of undeveloped land

(Colwell and Munneke, 2003). However, particularly in densely populated urban

areas, few (if any) transactions of undeveloped land may occur. House sales are

typically more frequent.

In this paper, we propose a flexible method to estimate location values from

house prices. At the first stage, we use the semiparametric estimator of Yatchew

(1997) and Wang et al. (2011) to split the house price into components related to the

building and the location. At the second stage, we use adaptive weight smoothing

1The phrase is in use at least since the 1920ties, see William Safire’s ‘On language: location,

location, location’ in The New York Times, June 28, 2009.
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(AWS) as pioneered by Polzehl and Spokoiny (2000, 2006) to estimate the location

value surface. AWS is flexible regarding the shape of the surface and does not require

smoothness assumptions. AWS identifies areas with homogenous location values by

an adaptive iterative algorithm that is based on nonparametric smoothing. Unlike

standard smoothers such as kernel regression, the algorithm does not require that

the local areas have the same shape (e.g. rectangular or radial) at different locations.

We illustrate the methodology in an empirical application to data of geo-coded

single-family house transactions from Germany’s capital Berlin. Our estimated lo-

cation surface provides a comprehensive characterization of the location values of

Berlin’s residential areas. The shape and size of areas with similar location values

are completely data-driven and need not adhere to administrative boundaries. Since

the true location values are not observed, we assess the adequacy of our estimates

by comparing them with expert-based land values and expert-based ordinal location

ratings. We find that our semiparametric method estimates location values that are

highly correlated with the expert-based land values and location ratings.

Only a few previous studies have modeled location values from house price in-

formation. Cheshire and Sheppard (1995), Rosenthal (1999), and Rossi-Hansberg

et al. (2010) are examples; none of these studies compares the estimated location

values with benchmarks as we do.2 Anglin and Gencay (1996) and Clapp (2004)

also fitted semiparametric models to house prices, but with more restrictive and less

flexible value functions.

In summary, the novel method proposed in this paper allows us to estimate loca-

tion values from house prices. We find that the estimated location values are reliable

in the sense that they show agreement with expert assessments based on different

information. The method should prove useful for applications where location values

are needed and no expert-based information is available or where such information

should be complemented by data-driven flexible location value estimates.

2Lack of such a benchmark is the reason why location values have to be imputed in the first

place.

4



2 Methodology and estimation

We start with the assumption that the price of a house can be split into the value

B of the building and the value L of land, so that P = B + L. Such a zero-profit

condition holds for new houses if they are produced by a competitive construction

industry using a constant returns to scale technology. In the case of old houses,

the condition should hold once the building value is adjusted for depreciation; the

condition corresponds then to the depreciated cost approach (Bourassa et al., 2011).

To make explicit that houses are heterogenous, we write

P = B(xB) + L(xL) , (1)

where the vectors xB and xL collect building and land characteristics. We specify the

building component as B(xB) = x′Bβ. Building characteristics include continuous

variables such as floor area and age and discrete variable such as cellar and building

type. The land component is specified as L(xL) = sa(l), where s measures lot size in

square meters. The location value a(l) depends on the Cartesian location coordinates

l = (l1, l2), but is otherwise unspecified and flexible. The coefficient vector β and

the location value function a(l) are not known and have to be estimated.

Dividing both sides of Eq. 1 by the lot size s and adding the term ε for unobserved

characteristics and idiosyncratic effects during the transaction, we obtain the partial-

linear regression model

p = z′β + a(l) + ε . (2)

Here, p and z denote the house price and the building characteristics per square

meter lot size.3 We assume E(ε|z, l) = 0.

In order to estimate the nonparametric location value function, we first remove

the building value from the house price. Specifically, we obtain a consistent estimate

of the parametric component in Eq. 2 and compute the residual u = p− z′β, which

3The continuous building characteristics may be transformed further to capture non-linearities

in the hedonic price function.

5



equals the sum of the location value plus the transaction noise term ε. We then

separate the residual into the latter two terms using AWS.

We note that our method does not allow the identification of separate constants

for the building and the location value component. We can therefore estimate the

relative location value surface, but additional information is required to convert the

surface into levels.4

2.1 Data description

Our main data is provided by Berlin’s Committee of Valuation Experts (GAA,

Gutachterausschuss für Grundstückswerte) from their transaction database (AKS,

Automatisierte Kaufpreissammlung).5 The data covers arms-length transactions of

single-family houses during the years 1996-2010. The data contains information

on the transaction price, geographic location coordinates, and numerous building

characteristics.

Each transaction has an expert-based land value, which is the notional value of

land as if it were undeveloped. The value assumes that land is not contaminated

or burdened with unusual legal covenants. The land values are computed by GAA

appraisers using the sales comparison approach based on information from trans-

actions of undeveloped land. Expert-based land values are expressed in Euros per

square meter. Each transaction has also an expert-based location rating, which is

provided by Berlin’s Senate Department for Urban Development and the Environ-

ment. The ordinal rating uses four levels to summarize the quality of a location.

For this rating, the experts consider the amount of natural amenities such as lakes

and forests, the quality of existing buildings, and the access to public transport and

shopping facilities.

4Observing the price for undeveloped land at the location where a(l) reaches, say, its minimum

would be sufficient to calibrate the surface.
5The GAA is entitled by law to request and collect information on all real estate transactions

occurring in Berlin.
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Table 1 gives summary statistics for the 19,283 observations. House prices and

expert-based land values are converted into year 2000 Euros using constant-quality

price and land value indices, respectively.6 As indicated by the standard deviation,

house prices show substantial variation. This is in line with the substantial variation

of building characteristics, such as floor size, number of storeys, age of the building,

and building type. There is also substantial variation regarding the size of the lot.

Unusual features of the house in Table 1 include physical aspects such as structural

damage or flooding risk and legal aspects such as rights of way or use for pipes or

cables. Such easements are rather common.

[Table 1 about here]

Another important source of variation is the location of a house within the city, as

indicated by the map plotted in Figure 1.

[Figure 1 about here]

The area of Berlin is 891 km2, where the distance from west to east is 45 km (left

to right) and 38 km from south to north (bottom to top). The map shows that the

amount of lakes, rivers, parks, and forests differs between suburban areas. Modern

Berlin was created by incorporating many formerly independent smaller cities and

towns, some of which have kept their own distinctive character, which adds to the

variation of location characteristics.

The last part of Table 1 presents summary statistics for the expert-based land

values and the expert-based location ratings. The expert-based values and ratings

are not unrelated, because GAA appraisers will use the location ratings for their

land values and the experts of the Senate department might use information on

land values for their location rating exercise. But the experts will also use different

6The indices are estimated using the hedonic regression methodology described in Schulz and

Werwatz (2011).
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information differently and we do not expect that the two expert-based assessments

always conform. Panel A of Table 2 gives the matching frequencies of the two expert-

based location assessments once the expert-based land values are converted into an

ordinal rating. In this conversion, the 2% largest land values receive the rating

‘excellent’, the next 20% values the rating ‘high’ and so forth. Constructed this

way, the land value rating has the same marginal distribution as the expert-based

location rating.

[Table 2 about here.]

If the two ordinal location ratings were identical, then the contingency matrix would

have the marginal frequencies on the diagonal and zeros elsewhere. In Panel A,

this is not the case. The two expert-based ratings are also not independent, as a

comparison with Panel C shows. The panel gives the frequencies we would expect

if matching were random. The null hypothesis of the chi-square test for statistical

independence is rejected at the usual significance levels. Measures of strength of the

relationship between the two ratings are Goodman and Kruskal’s γ, and Kendall’s

τ , respectively. Both statistics range from −1 (perfect inversion) to +1 (perfect

agreement). In Panel A, we estimate γ̂ = 0.634 (τ̂ = 0.438), indicating the expected

positive relationship between both expert-based ratings.

Figure 2 shows in its left panel box plots of the expert-based land values for each

of the four levels of the expert-based location ratings.

[Figure 2 about here.]

The median land values increase in line with the level of the expert-based rating, but

the quartiles of the land values for locations with low and medium rating overlap to

a large extend. The separation for the top two levels of the expert-based rating is

more pronounced.
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2.2 Estimation of the building component

We use the estimator proposed by Yatchew (1997) and Wang et al. (2011) for the

estimation of β. The basic idea of the estimator is that a(l) can be neglected when

working with the differences of the variables of close observations. This requires that

the data are ordered to be geographically close to each other. We follow Yatchew

(1997) and order the observations along a path created from the nearest-neighbor

algorithm. The Appendix explains the algorithm.

Taking the differences of two nearby observations i and i− 1 yields

pi − pi−1 = (zi − zi−1)′β + a(li)− a(li−1) + εi − εi−1 . (3)

If the location value function is sufficiently smooth, a(li)−a(li−1) becomes negligible,

because li and li−1 are geographically close. The coefficient vector β can then be

estimated consistently with ordinary least squares.7

Whereas Eq. 3 is ideal for providing intuition, a version of this regression equa-

tion with weighted higher order differences will lead to a more efficient estimator.

Letting ∆myi ≡
∑m

s=0 dsyi−s, where yi can be a scalar or a vector, and denoting the

differencing weights with ds, the improved estimation equation is

∆mpi = (∆mzi)
′β + ∆ma(li) + ∆mεi . (4)

The weights fulfill the two restrictions

m∑
s=0

ds = 0 and
m∑
s=0

d2
s = 1 , (5)

where the first restriction ensures that the location value function vanishes as the

sample size increases and the locations become close. The second ensures that

Var[∆mε] = σ2
ε , i.e. the variance of the differenced error equals the variance of ε.

7Wang et al. (2011) provide a technical discussion of what minimal smoothness assumptions are

required for consistency. Moreover, their Monte Carlo simulations show that the estimator works

well even if the unknown function a(·) is bumpy or has sharp boundaries.
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The ordinary least squares estimator β̂∆m
of Eq. 4 approaches asymptotic efficiency

when m is chosen sufficiently large. Optimal weights for different values of m are

tabulated in Hall et al. (1990, Table 1).

Table 3 presents the ordinary least squares estimates for the coefficients of Eq. 4,

with m set to 10.8 The standard errors are calculated with a heteroscedasticity-

robust sandwich estimator.

[Table 3 about here.]

The overall fit for Eq. 4 is remarkably good with an R2 = 0.830.9 Moreover, all of

the estimated coefficients have reasonably signs and most of them are statistically

significant at the usual levels. The price for a house increases, for instance, with

both the floor size and the size and volume of all base areas in all storeys. The

significant coefficients on the corresponding squared terms imply that these effects

have diminishing rates. The age of the building, on the other hand, has a negative

impact on the house price. The significant coefficient for the squared age term

implies a decreasing depreciation rate, which stays positive over the whole range

of the age variable (when evaluated at the mean value of the size variables). The

magnitudes of the estimated effects of the binary indicator variables are reasonable

in sign and magnitude as well. Relative to the price of building with a normal state

of repair buildings with a poor (good) state of repair, for instance, demand a price

rebate (premium).

The estimator β̂∆m
depends not only on m, but also on the ordering of obser-

vations regarding their geographical closeness. In the presented results the average

distance between observations is about 95 meters with a standard deviation of 394

meters. To assess the impact of the nearest-neighbor algorithm on the estimated

8A difference order of m = 10 produces coefficient estimates that achieve approximately 95

percent efficiency relative to an estimator with the optimal rate of convergence (Yatchew, 1997).
9R2 is computed with 1 − s2

m/s2
p, where s2

m = (N − m)−1 ∑N−m
i=1 (∆mpi − z′iβ̂∆m

)2, s2
p is the

variance of p, and N is the number of observations (Yatchew, 1997, Proposition 1).
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building values, we re-ran the regressions 50 times, each time with a different order-

ing. The within standard deviation of predicted building component for these runs

is approximately 3% of the (average) building value.10 Moreover, the coefficient of

correlation between predicted building values from any two different runs is always

well above 0.96. The results presented here are thus robust towards the specific

ordering of observations.

Given β̂∆m
, we can adjust the per-square meter house prices for the buildung

component and obtain the residuals ûi = pi − z′iβ̂∆m
. These first-stage residuals

contain the location values to be extracted by the second stage of our method.

Figure 3 shows box plots of these residuals for Berlin’s districts.11 For the plot, the

residuals are normalized to the unit interval and the districts are ordered according

to the median of the expert-based location ranking.

[Figure 3 about here.]

Within each district, the residuals show substantial variation. This suggests that

location values vary among areas within any given district.

2.3 Estimation of the location value surface

The second-stage of our method has two aims: (1) to separate the location values

contained in the first-stage residuals ûi from the transaction-specific noise and (2)

to form areas with homogenous location values. To achieve these aims, we apply

adaptive weights smoothing (AWS), a regression method developed by Polzehl and

Spokoiny (2000, 2006) in the context of image denoising. AWS allows to separate

10We assume that the building value accounts for 50% of the house price. Taking the mean house

price and floor size in Table 1 then leads to an average building value per sqm of 935 Euros. The

within standard deviation of the predicted building component is 27 Euro.
11The inner-city district of Kreuzberg-Friedrichshain has no single-family house neighborhoods

and is not part of the plot.
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the underlying structure in the data (e.g. the shape of an organ in an X-ray or ultra-

sonic image) from the distorting noise. AWS does not impose a priori assumptions

on the form of this underlying structure (i.e. the regression function). Rather, AWS

recovers the unknown regression function contained in the noisy data by an itera-

tive, locally adaptive smoothing algorithm. In this algorithm, the local regression

estimate is successively improved by searching for the largest vicinity of a nearly

constant level of the regression function.

In our application, this amounts to finding the largest area around each location

li in which the expected location value can be approximated well by a constant level.

We denote this level at li by a(li). Similar to well-known smoothing methods such as

kernel regression or nearest-neighbor estimation, AWS estimates a(li) by weighted

local averaging over ûjs at li. However, to determine the weight of observation j

in forming the estimate of a(li), AWS does not only consider the distance between

lj and li (like other standard nonparametric smoothers do), but also adds a level

penalty. Formally, the estimator at location li in the k-th iteration is defined as

â(li)
(k)

=

∑N
j=1w

(k)
ij ûj∑N

j=1w
(k)
ij

, (6)

where the weights are computed as

w
(k)
ij = Kdist

(
dist

(k)
ij

)
×Klev

(
lev

(k)
ij

)
. (7)

The weight of observation j in the average formed at i is thus determined by a

product of two kernel functions K. Both kernel functions are nonnegative and non-

increasing on the positive semi-axis. That is, they give maximum weight if their

respective argument is zero and declining weights as their arguments increase. The

arguments of these kernel functions are the distance penalty distij and the level

penalty levij , respectively. The distance penalty in iteration k is given by dist
(k)
ij =

|ρ(li, lj)/h
(k)|2 where ρ(li, lj) is the Euclidean distance between the locations of

observations i and j and h(k) is the bandwidth in iteration k. Hence, as in standard

nonparametric regression, observation j will receive the more weight in the estimate
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at i, the closer its location to that of i. The level penalty in iteration k is computed

as

lev
(k)
ij = λ−1A

(k−1)
i

{
â(li)

(k−1)
− â(lj)

(k−1)
}2

︸ ︷︷ ︸
T

(k)
ij

, (8)

This penalty is based on the comparison of the regression estimates at lj and li in

the previous iteration (k − 1). Hence, observation j will receive the more weight in

iteration k, the closer its estimated level has been to that of observation i in the

previous step. The term

A
(k−1)
i =

n∑
j=1

w
(k)
ij (9)

equals the sum of the weights at i from the previous step and can be viewed as

the local sample size that rescales the squared distance â(li)
(k−1)

− â(lj)
(k−1)

. The

product of these two terms, T
(k)
ij , can be viewed as a test statistic of the hypothesis

a(li) = a(lj). Finally, the parameter λ chosen by the econometrician acts as a critical

value for this test statistic: the larger λ, the smaller the impact of a particular

deviation of â(li) from â(lj) on the level penalty.

By amending the distance penalty of standard nonparametric estimation with a

level penalty, AWS achieves both an extension of the scope of regression relations

it can successfully tackle as well as an an increase in estimation efficiency. Both

advantages will become clear when we complete our description of AWS by sketching

the steps of its iterative algorithm. Further details are given in the Appendix.

In the initial step (k = 0), the AWS estimator at li behaves like a standard kernel

estimator by setting w
(0)
ij = Kdist

(
dist

(0)
ij

)
. That is, only the distance penalty is

considered for determining the weight of any observation j. In subsequent steps, the

distance penalty is relaxed by successively increasing the location bandwidth accord-

ing to the rule h(k) = ch(k−1). The iterative algorithm terminates if ch(k−1) > h∗

where the parameter c controls the bandwidth growth. We set the initial bandwidth

h(0) and c according to the suggestions in Polzehl and Spokoiny (details are given

in the Appendix).
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Hence, successively more distant observations are considered for forming the

local average at li. The level penalty, which kicks in at iteration k = 1, ensures

that this is justified. More distant observations may belong to locations where the

the expected location value may be quite different from a(li), resulting in a biased

estimate. This, however, is prevented by a large level penalty which effectively leads

to the exclusion of such an observation from the computation of â(li)
(k)

. If, on the

other hand, the current assessment of the expected location value at observation

j, i.e. â(lj)
(k−1)

, is close to that at observation i, then observation j does receive

weight despite its potentially substantial distance in location from li.

By relaxing the distance penalty and at the same time enforcing the level penalty,

AWS identifies at any location the largest contiguous area of a nearly constant level

of the expected location value. Unlike standard nonparametric smoothers, it thus

allows more distant observations to be included in an estimate at any location as

long as this is justified by homogeneity in expected location values. This not only

increases the efficiency of the estimate (from the resulting increase in the local sam-

ple size), it also enables to identify shapes of regression relations that standard

smoothers can not pick up. This modeling advantage is most pronounced in sit-

uations where the underlying regression function allows a piecewise constant ap-

proximation with large homogenous regions that are allowed to sharply differ at the

boundaries.

The flexible AWS procedure involves several parameters that must be speci-

fied, in particular the smoothing parameters of both penalties.12 Since the location

penalty is successively relaxed during the algorithm, the choice of its bandwidth,

h, is much less important for AWS than for standard Kernel regression. The key

parameter of AWS is λ, the factor that scales the level penalty. Too small values

of λ will result in an over-penalization of level differences between neighboring bins.

As a result, areas of homogeneous location values may not be properly identified.

Too large values of λ, on the other hand, will result in a loss of sensitivity towards

12Details on our choices of AWS’ parameters are given in the Appendix
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discontinuities in location values. Neighboring bins may be joined in this case to

form an area of a common level of location values when this is not warranted. To

resolve this trade-off, Polzehl and Spokoiny consider the (hypothetical) situation of

a constant value surface. In this case, the final estimate of AWS should coincide with

high probability with the globally constant location value. They suggest using the

minimal value of λ that ensures this ‘propagation condition’. This value of λ does

not depend on the particular globally constant location value and can be obtained

from Monte Carlo simulations. This is the default value of λ in the contributed

package ‘aws’ of the R-Project for Statistical Computing (Polzehl, 2011). We use

this package to implement AWS.

AWS is designed to work on matrices. In our application, the matrix is a grid

with the two dimensions ‘latitude’ and ‘longitude’ placed over the map of Berlin. A

matrix where each of the 19,283 observations has its own bin has over 1.5 billion

entries. This matrix is too large for the algorithm. To reduce the size of the matrix,

we use binning (Fan and Marron, 1994). We generate a 300 × 300 = 90, 000 grid

and allocate the observations to bins with the grid points as centers. Each bin has

an approximate size of 171× 114 meters. Applied to the data, 7,704 bins contain at

least one observation, 3,354 bins contain exactly one, the average count per bin is

2.5 observations, and the maximum is 49.

Figure 4 plots the estimated location values â(l) for the bins within a map of

Berlin. Estimates are normalized to the unit interval and coloring is used to represent

their magnitudes.

[Figure 4 about here.]

The plot illustrates both the functioning and the advantages of AWS. Binning is

visible from the somewhat angular appearance of similar colored areas but otherwise

the colors, shapes and size of these areas is data-driven and locally adaptive. AWS

identified these areas by relaxing the location penalty in successive iterations and
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implicitly testing for local homogeneity of location values. As long as the location

values are sufficiently similar, relaxing the location penalty is justified and adjacent

bins are subsumed into an area.

3 Comparison with expert-based location assessments

Section 2.1 showed that the expert-based land values and location ratings agree in

many cases regarding their assessment of the value of a location. We also expect a

strong positive relationship between the expert-based assessments and the estimated

location values, â(l). As the expert-based assessments do not agree in all instances,

we will compare our estimated location values with each of them.

Figure 2 shows in its right panel box plots of the estimated location value, â(l),

for the four levels of the expert-based rating. Similar to the expert-based land values

(shown in the left panel of the figure), the medians of the estimated location values

increase in line with the expert-based location rating; the quartiles of the estimated

location values for locations with low and medium rating overlap also. The variance

of the estimated location values is higher than the variance of the expert-based

land values, except for locations with low rating. This is attributable to few first

stage residuals that are rather large or small. These residuals could be the result

of mis-specifications of the first stage regression or could be the result of aberrant

idiosyncratic effects during the transaction.

Table 2 shows in Panel B the matching frequencies for the estimated location

values and the expert-based location rating. As in Section 2.1, the estimated location

values are converted into an ordinal rating. Even though the matching is not perfect,

the majority of pairs lie on the diagonal of the contingency table. The statistic for

the chi-square independence test is 10, 521, which is a highly unlikely realization

under a χ2(9)-distribution. We therefore reject the null of statistical independence

between the two ratings at the usual significance levels. Estimates of Goodman and
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Kruskal’s γ (γ̂ = 0.644) and Kendall’s τ (τ̂ = 0.466) indicate the expected positive

relationship between both location assessments.

In order to compare the estimated location values with the expert-based land

values, we rescale â(l) so that its median equals the median of the expert-based land

values. The estimated location values and the expert-based land values are both

estimates of the true but unobserved location value and we expect a strong positive

correlation between them. Figure 5 shows a sunflower plot of the estimated location

value and the expert-based land value. To work at the same level of geographical

detail, the plot uses averages of the expert-based land values within bins.13 The plot

represents the density of observations using stylized sunflowers. In a light sunflower,

each petal represents one observation. In a dark sunflower, each petal represents

several observations.14

[Figure 5 about here.]

The expected positive correlation between both location assessments is visible and

strong, with a coefficient of correlation 0.840.15 The majority of paired observa-

tions lie on the 45 degree line, although a few particulary large (small) outliers are

apparent again.

4 Conclusion

In this paper, we proposed a novel semiparametric method to extract location values

out of house prices. The first stage of the method separates the price into a building

13The binning procedure removes potentially variation in the estimated location values that is still

present in the expert-based land values. In particular, differences in the quality of locales within

a bin, as well as differences in the time trend of land values between bins are a priori removed

by binning and discounting with a Berlin-wide quality-adjusted land value index. Both effects are

rather small as indicated by the average standard deviation of the expert-based land value within

bins, which is only 13.31 Euros.
14A dark sunflower with p petals represents between p96 − 96/2 and p96 + 96/2 observations.
15Using the 19,283 individual observations gives a coefficient of correlation of 0.836.
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component and a land component. The second stage employs adaptive weights

smoothing (AWS), a nonparametric method to separate the residual from the first

stage into the location value and a noise term. Using AWS has several advantages

over standard nonparametric regression. It allows the size and shape of areas with

a common location value to be completely determined by the data. They need not

be symmetric or adhere to a particular shape. Moreover, unlike kernel regression,

AWS does not require the location value surface to be smooth.

We apply the method to single-family house transactions from Berlin and obtain

reliable results in the sense that they show agreement with expert-based location

assessments. In particular, the estimated location values are highly correlated with,

both, land values and ordinal location ratings that are provided by real estate ex-

perts. In summary, the estimated surface provides a comprehensive characterization

of the relative location values of Berlin’s residential areas. The methodology should

thus prove useful for applications where location values are needed and no expert-

based information is available or where such information should be complemented

by data-driven flexible location value estimates.

A Appendix

A.1 Nearest-neighbor algorithm

The nearest-neighbor algorithm used in the estimation of the building component

works as follows:

1. Initialization: Start with an arbitrary observation.

2. Iteration: Find its nearest neighbor with respect to their Euclidian distance

and mark the observation as visited.

3. Stopping: Go back to Step 2 until all observations have been visited.
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The resulting sequence of the visited locations provides the ordered observations.

The nearest neighbor algorithm is easy to implement and computationally fast, but

can lead to slightly different ordering sequences depending on the initial observation.

A.2 AWS algorithm

The AWS algorithm can be summarized as follows:

1. Initialization: The parameters λ, h(0), c and h∗ are selected and the location

weights

wij = Kdist

(∣∣∣∣ρ (li, lj)

h(0)

∣∣∣∣2
)

and presmoothed estimates

â (li)
(0)

=

∑
j w

(0)
ij ûj∑

j w
(0)
ij

are calculated for all i, j.

2. Iteration: In each iteration k the following steps are performed for every design

point, li, on the grid.

• Calculate the adaptive weights: For every point lj within the bandwidth

h(k) around point li the penalties

dist
(k)
ij =

∣∣∣∣ρ (li, lj)

h(k)

∣∣∣∣2 ,
lev

(k)
ij = λ−1A

(k−1)
i

(
â (li)

(k−1)
− â (li)

(k−1)
)2

, A
(k−1)
i =

n∑
j=1

w
(k−1)
ij

are computed and the weights are formed by wij = Kdist

(
dist

(k)
ij

)
×

Klev

(
lev

(k)
ij

)
.

• Estimation: For every design point li the updated estimate

â (li)
(k)

=

∑
j w

(k)
ij ûj∑

j w
(k)
ij

,

and the sum of weights A
(k)
i are calculated.
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3. Stopping: If ch(k) ≥ h∗, the algorithm terminates. Otherwise the bandwidth

is set to h(k) = ch(k−1) and the algorithm continues with step 2.

A.3 AWS parameters

Several parameters affect the performance of the AWS estimation procedure. These

parameters control constituent features of the method and should be chosen cau-

tiously in light of the application at hand. In the following, we describe the choice

of parameters for our application.

c, h(0), h(1), h∗, k: The number of iterations of AWS is determined by the max-

imal bandwidth h∗. With every iteration k the bandwith is incremented by the

factor c = (1.25)
1
d where d = 2 is the dimension of the sample space. The algorithm

terminates if ch(k−1) ≥ h∗. Unlike classical nonparametric approaches, AWS does

not necessarily suffer from oversmoothing. A relatively large maximal bandwidth h∗

will, however, result in more iterations and thus increases the computational com-

plexity. We set h∗ to 15 which allows that quite far away points lj are (potentially)

used to form an estimate for point li, but keeps the computional complexity reason-

ably low. With respect to the initial bandwidth h(0) and subsequent bandwiths h(1)

we follow the suggestions in Polzehl and Spokoiny. In particular, we select h(0) = 9.6

and h(1) = 0.74, respectively. Both bandwidths are small enough so that the former

i contains a sufficient number of design points in the initial iteration and the latter

does not increase the bandwidth too much in every iteration.

Kdist, Klev: The kernel functions are defined on the positive semiaxis and fulfill

Kdist (0) = Klev (0) = 1 for the case of a perfect match (in distance or level).

In general, Kdist scales the distance penalty and is non-decreasing, whereas Klev

decreases on the positive semiaxis. For both kernel functions we use the triangular

kernel with

Kdist (distij) = (1− distij) 1{+} and Klev (levij) = (1− levij) 1{levij≤1} , (A1)
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where levij is always positive (see Eq. 8).

λ: The parameter λ scales the level penalty and is hence the most critical parameter

of AWS. We follow Polzehl and Spokoiny and obtain λ = 21.96 by monte carlo

simulations. In particular, we compare the standard deviations of two estimates

for a model with a (known) globally constant parameter value a (li) = a for all

i. The first estimate, â (li), is obtained by AWS given a certain λ; the second

estimator, ã (li), uses a very large value of λ so that the AWS estimator converges

to a nonadaptive kernel estimator. We search for the smallest λ which fulfills the

following inequality

E

∣∣∣∣â (li)
k
− a (li)

∣∣∣∣ ≤ (1 + α) E

∣∣∣∣ã (li)
k
− a (li)

∣∣∣∣ , with α = 0.05. (A2)

The intuition of this approach is to choose the minimal λ so that AWS still recovers

the global constant parameter value (with a probability α) while using the most

adaptive bandwidth choice.
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Figure 3: First-stage residuals by district. Shows box plots for the normalized first-

stage residuals for Berlin’s administrative districts. Number of observations is 19,283. Dis-

tricts are sorted in descending order with respect to the median of the expert-based location

rating. Line that separates the box is the median. Lower (upper) hinge of box represents

25th (75th) percentile. Length of whiskers is 1.5 times the IQR below (above) the 25th

(75th) percentile.
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Figure 5: Sunflower plot of expert-based land values and estimated location

value. Shows sunflower plot of the bin average of expert-based land value and estimated

location value, â(l). Both figures are in real (year 2000) Euros. Number of observations

is 7,704. Each petal of a light sunflower represents 1 observation. Each petal of a dark

sunflower represents several observations. Circles represent individual observation in low

density region.
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Table 1: Summary statistics for transacted single-family houses. Number of ob-

servations is 19,283. Prices and land values are in year 2000 Euros. Floor size, gross base,

and lot size are in square meters. Gross volume is in cubic meters. Gross area is the sum

of all base areas in all storeys, gross volume is the corresponding volume. 8,259 objects

have information on the gross volume and 15,325 on the gross base. Age of the building

in years at the transaction date. Attic storey means that the attic is upgraded for living.

Expert-based land value per square meter is the appraised value as if land were undeveloped.

Expert-based location rating is an ordinal ranking of the neighborhood of the house.

Mean Median Std. Dev.

House price 273,168 231,176 177,337

Building characteristics

Floor size 145.99 135.00 56.23

Gross area 244.24 228.00 95.69

Gross volume 666.83 612.00 262.78

Storeys 1.5 1.0 0.6

Age 42 42 29

Type

Detached 0.55

Semi-detached 0.22

Row-house 0.23

Attic storey 0.55

Flat roof 0.12

No cellar 0.13

Part cellar 0.12

State of repair

Poor 0.08

Normal 0.61

Good 0.31

Land characteristics

Lot size 578.56 525.00 313.33

Unusual features of the house

Physical 0.03

Legal 0.18

Expert-based land values and location ratings

Land value 284.97 256.46 148.41

Location rating

Low 0.29

Medium 0.49

High 0.20

Excellent 0.02
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Table 2: Contingency tables for ordinal assessments. Panel A gives the relative

frequencies of the matches of the expert-based ratings and the converted ordinal expert-

based land values. Panel B gives the relative frequencies of the matches of the expert-based

ratings and the converted ordinal location values â(l). The Panel C gives the expected

relative frequencies if expert-based ratings were randomly allocated onto itself. Pearson’s

χ2-statistic is for the null that rows and columns are statistically independent. P-value is

for a χ2(9)-distribution. Goodman and Kruskal’s γ̂ is calculated as Ns−Nd

Ns+Nd
where Ns is the

number of pairs of cases ranked in the same order and Nd is the number of pairs ranked

differently. Kendall’s τ̂ is calculated as Ns−Nd√
(N2−

∑
N2

c )(N
2−

∑
N2

r )
where N2

c and N2
r are the

squared column and row marginals, respectively.

Panel A: Expert-based land values

Expert-based rating

Low Medium High Excellent Total

Low 0.131 0.151 0.011 0.000 0.293

Medium 0.140 0.287 0.058 0.000 0.486

High 0.022 0.048 0.131 0.002 0.202

Excellent 0.000 0.000 0.003 0.016 0.019

Total 0.293 0.486 0.202 0.019 1.000

χ2-stat. 2.1e+04 γ̂ 0.634

P-value 0.000 τ̂ 0.438

Panel B : Estimated location values

Expert-based rating

Low Medium High Excellent Total

Low 0.129 0.158 0.006 0.000 0.293

Medium 0.142 0.289 0.055 0.000 0.486

High 0.023 0.039 0.129 0.012 0.202

Excellent 0.000 0.000 0.012 0.007 0.019

Total 0.293 0.486 0.202 0.019 1.000

χ2-stat. 1.1e+04 γ̂ 0.644

P-value 0.000 τ̂ 0.446

Panel C : Random allocation, expected frequencies

Expert-based rating

Low Medium High Excellent Total

Low 0.086 0.142 0.059 0.006 0.293

Medium 0.142 0.236 0.098 0.009 0.486

High 0.059 0.098 0.041 0.004 0.202

Excellent 0.006 0.009 0.004 0.001 0.019

Total 0.293 0.486 0.202 0.019 1.000

χ2-stat. 0.018 γ̂ 0.000

P-value 1.000 τ̂ 0.000
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Table 3: Effect of building characteristics on house price. Table reports ordinary

least squares estimates of Eq. 4. Continuous explanatory variables—floor size, gross area,

gross volume, and age—are per sqm lot size. The gross volume of a building is used whenever

the gross area was missing. Standard errors are calculated with heteroscedasticity robust

sandwich estimator. *** significant at 1%-level ** significant at 5%-level * significant at

10%-level.

Dependent variable: Price per sqm lot size

Coef. Std. Err.

Floor size 500.710 64.624∗∗∗

Floor size squared -0.784 0.446∗∗∗

Gross area 688.681 36.731∗∗∗

Gross area squared -0.630 0.101∗∗∗

Gross volume 248.891 18.367∗∗∗

Gross volume squared -0.060 0.020∗∗∗

Floor size × age -0.884 0.806∗∗∗

Gross area × age -4.421 0.507∗∗∗

Gross volume × age -1.604 0.201∗∗∗

Floor size × gross area 1.287 0.388∗∗∗

Floor size × gross volume 0.315 0.210∗∗∗

Age -198.249 106.371∗∗∗

Age squared 9.235 1.144∗∗∗

Semi-detached 2.497 3.492∗∗∗

Row house -1.075 5.563∗∗∗

Good state of repair 86.035 3.672∗∗∗

Poor state of repair -73.713 3.977∗∗∗

2 storeys 4.425 3.973∗∗∗

3 storeys 73.323 16.431∗∗∗

Attic storey 10.301 3.241∗∗∗

Flat roof 10.664 4.215∗∗∗

No cellar 23.197 4.311∗∗∗

Part cellar -2.990 3.620∗∗∗

Unusual legal circumstances -7.848 3.472∗∗∗

Unusual physical circumstances -24.015 6.204∗∗∗

Obs. 19,273 R2 0.830∗∗∗
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