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Modelling general dependence between commodity forward

curves�

Mikhail Zolotko∗, Ostap Okhrin∗∗

Abstract

This study proposes a novel framework for the joint modelling of commodity forward curves.

Its key contribution is twofold. First, dynamic correlation models are applied in this context

as part of the modelling scheme. Second, we introduce a family of dynamic conditional cor-

relation models based on hierarchical Archimedean copulae (HAC DCC), which are flexible,

but parsimonious instruments that capture a wide range of dynamic dependencies. The

conducted analysis allows us to obtain precise out-of-sample forecasts of the distribution

of the returns of various commodity futures portfolios. The Value-at-Risk analysis shows

that HAC DCC models outperform other introduced benchmark models on a consistent

basis.

Keywords: commodity forward curves, multivariate GARCH, hierarchical Archimedean

copula, Value-at-Risk

JEL: C13, C53, Q40

1. Introduction

Futures and forward contracts play a special role in the world of energy-related instru-

ments. First, they represent one of the most widely traded type of commodity derivatives.

Second, so-called forward curves, which are formed by the futures/forward prices for a
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particular commodity for all available maturities at a certain point in time, constitute an

essential input into the pricing models of more complex energy derivatives, see Pilipovic

(2007). Risk management and portfolio optimisation in the situations where the value of

a market position is influenced by several futures/forward prices (possibly of several com-

modities) is a challenging task and requires reliable tools to model the joint dynamics of

all these prices.

Though in practice there is a difference between futures and forward contracts, Pilipovic

(2007) notes that due to the nature of the energy commodity market, the terms forward

and futures price can be used interchangeably because they represent the same value if

a technical condition, namely that the delivery and the payment dates of both contracts

coincide and there is no possibility of default on either side, is satisfied. Due to this

indifference between forward and futures prices, the term forward curve is often used not

only in the forward price context, but also to denote a set of futures prices.

Modelling of the dynamics of forward curves is in fact a goal in itself since it can provide

a risk management tool for portfolios composed of futures or forward contracts, which alone

can be of much interest to practicians. The importance of modelling of joint dynamics of

several forward curves is especially stressed in Ohana (2010). Moreover, the techniques and

methods used for forward curves modelling can also find their application in the pricing of

more complex derivatives.

All approaches to forward curves modelling can be subdivided into two broad groups.

The first group consists of theoretical stochastic models of spot price dynamics that provide

a framework for pricing various commodity derivatives including futures, see, e.g. Gabillon

(1991), Schwartz (1997), Eydeland and Geman (1998), Cortazar and Schwartz (2003),

Pilipovic (2007), and Liu and Tang (2010) to name a few. By contrast, the models of the

second group start by directly formulating the process for the futures price and analyse the

forward curve as a whole, see, e.g. Cortazar and Schwartz (1994), Tolmasky and Hindanov

(2002), Chantziara and Skiadopoulos (2008), etc. The theoretical framework of the latter

approach was first described in Reisman (1991).
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Within the second group of models, in order to define the risk factors influencing the

model dynamics, many authors follow the methodology of Heath et al. (1990) and apply

principal components analysis (PCA). Cortazar and Schwartz (1994) is one of the first

studies where PCA is used in the commodity forward curves analysis in order to define

the optimal number of factors with the purpose to simulate copper futures prices and

eventually price a copper-linked note. The authors were also among the first to denote

the first three factors defining the dynamics of a commodity forward curve as “level”,

“steepness” and “curvature”. Similar to the names of the factors identified in earlier yield

curve modelling studies, such as Litterman and Scheinkman (1991), these terms were used

in a somewhat abstract sense since, e.g. “level” did not mean parallel shift and “steepness”

did not correspond to any commonly used steepness measure.

Tolmasky and Hindanov (2002), Koekebakker and Ollmar (2005), and Chantziara and

Skiadopoulos (2008) found that in application to the forward curve dynamics modelling,

PCA works reasonably well, e.g. for copper and various oil products. Two empirical factors

were shown to be enough to explain over 95% of the futures return variance. At the same

time, PCA yielded relatively poor results in terms of the explained variance when applied

to more than one commodity curve simultaneously. In addition, the factors became less

interpretable in this case, thus limiting the applicability of PCA to the modelling of the

joint dynamics of several forward curves.

The two-factor model used in Ohana (2010) defines a futures price process under the

physical probability measure and does not apply PCA, but employs parametrically defined

factor loadings instead. Straightforward interpretability of this model is enhanced by a

good explanatory power, which is comparable with that of PCA. Unlike in Tolmasky and

Hindanov (2002), the factors do not explain the mechanism of the interdependence of the

forward curves, this mechanism is modelled separately instead. The combination of forward

curve decomposition with econometric time series analysis represents the main innovation

of Ohana (2010). Other econometric models capturing interrelations between markets had

already been developed previously, see, e.g. Asche et al. (2006), Bachmeier and Griffin
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(2006), Dawson et al. (2006), Grasso and Manera (2007), and Hartley et al. (2008). But

despite well-elaborated specifications, econometric models in these studies used only front-

month futures prices which constrained the power of the applied techniques.

Chambers and Bailey (1996), Jin (2007), Onour (2009) and Ohana (2010) insinuate that

the dependencies and the dynamics of the commodity markets are rather complicated and

may not be well described by the methods that are based on linear specifications only and

assume elliptical distributions. In this work, we develop a new copula-based econometric

model trying to capture most of the dependency. The whole procedure can be sketched as

follows.

First, we calibrate the two-factor model, which transforms the the whole dataset of

futures returns into only four time series of shocks thus reducing the dimensionality of the

modelling problem. Then, similar to Ohana (2010), the deterministic component is ex-

tracted from the shocks series by estimating the vector autoregression model, which yields

heteroskedastic and temporally as well as mutually dependent residuals, which are analysed

in the next step. To this end, we introduce a multivariate GARCH model based on the

hierarchical Archimedean copula, which is a flexible instrument allowing for a variety of

possible dependency structures for multivariate time series. The proposed model outper-

forms benchmark models that are driven by multivariate Gaussian innovations in terms

of the quality of the out-of-sample forecasts of the portfolio returns. Moreover, the pro-

posed model shows robustness with respect to different capital allocation scenarios. In this

study we apply a combination of several approaches to the commodity spot and futures

price modelling in order to deal with specific features of the data, such as common factors,

autocorrelation, heteroskedasticity and non-linear dependency. These approaches are the

two-factor model of the forward curve dynamics, vector autoregression and copula-based

multivariate GARCH.

The paper is organised as follows. Section 2 reviews the two-factor model of the forward

curve. Section 3 provides necessary theoretical background on multivariate GARCH models

including those based on hierarchical Archimedean copulae. Section 4 is a simulation study
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for different data-generating processes. Section 5 presents a multi-stage empirical study.

Section 6 concludes.

2. Two-factor model of the forward curve

Let F (t, T ) be the price of a forward/futures contract with maturity T (which we assume

to coincide with the last trading day), observed at time t, T > t. While T is the maturity

of a futures contract in general, let T it additionally denote the maturity of the i-th nearby,

i.e. i-th soonest to mature, futures observed on day t.

As mentioned above, we employ the Ohana (2010) model in the first step of our analysis.

This model explicitly defines factors determining the shape of the forward curve at every

moment t. It also enables decomposition of any daily forward curve movement into two

shocks. The first one is the long-term shock that affects all maturities equally and is caused

by factors such as new information on available reserves, change of the political situation

in commodity-rich countries, etc. The second one is the short-term shock that affects the

market for a limited period of time, has a more significant impact on shorter than on longer

maturities and is caused by factors such as temperature change, transitory supply shortage

or transportation problems. For t ≥ 0, the following arbitrage-free dynamics for the futures

prices of a commodity is assumed:

F (t, T )− F (t−Δ, T )

F (t−Δ, T )
= exp

{−N−1k(T − t+Δ)
}
δSt + δLt , (1)

where Δ is some small time interval, N = 252 is the considered number of trading days in

a year and k is the characteristic value of a commodity that defines the extent to which

a short-term shock affects longer maturities and is assumed constant for each commodity.

(δS)t≥1 and (δL)t≥1 are short-term and long-term shocks respectively. We decompose them

as:

δSt = λSt + ξSt , δLt = λLt + ξLt , (2)

where λt and ξt are deterministic and random shocks components respectively. The dy-

namics of λt and ξt is separately modelled later using VAR and multivariate GARCH
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respectively. In (1) and thereafter, T , t and Δ are measured in trading days, and Δ is

equal to one trading day.

Both deterministic (λt) and random (ξt) components of the shocks are in general mu-

tually dependent. Whereas the model defined by (1) is assumed to remain unchanged for

both commodities throughout the whole time period considered in the study, the mecha-

nisms defining the behaviour of the shocks components may vary over the considered time

interval.

Every day t one observes a forward curve, which consists of the prices of the first to

the M -th nearby futures contracts (M prices all in all). In order to decompose the futures

price returns into shocks consistently, we take into account that only the price of one and

the same contract can be used to calculate a return. Let r̂it denote the return of the i-th

nearby futures contract calculated on day t.

In order to enable the calibration of the model, the effect of the short-term shock on

different maturities is assumed to vanish fast enough so that the return of the farthest

contract r̂Mt is not affected by it. This validity of this assumption is confirmed by the

high explanatory power of the model for both commodities, see below. Since r̂Mt is then

fully attributed to the long-term shock δLt , δ
S
t can be expressed, e.g. from (1) written for

the actual return of the first nearby futures contract. The expressions for both shocks are

therefore:

δLt = r̂Mt , δSt = exp
{N−1k

(
T 1
t − t+ 1

)} (
r̂1t − r̂Mt

)
. (3)

Plugging (3) into (1), we obtain the following formulation for the model-implied return of

the futures contract with maturity T it , denoted by rit and written as a function of k:

rit(k) = r̂Mt + exp
{−N−1k

(
T it − T 1

t

)} (
r̂1t − r̂Mt

)
. (4)

In order to estimate k, we minimise the root mean square error calculated from the

squared differences between the model-implied (rit) and actual (r̂it) futures returns using

all available information, i.e. every trading day across all available maturities for each
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commodity:

k̂ = argmin
k

√√√√(NM)−1

N∑
t=1

M∑
i=1

{r̂it − rit(k)}2, (5)

where N is the number of returns observations, which requires N + 1 forward curve obser-

vations, and M is the number of considered maturities.

Taking into account that discrete daily returns are an approximation of continuous

returns, it follows from (1) that the logarithmised forward curve may be represented in

terms of the past shocks as in (6) or as in (7) via its slope and level defined in (8) and (9)

respectively, see Ohana (2010):

logF (t, T ) ≈ logF (0, T ) +
t∑

j=1

exp
{−N−1k(T − j + 1)

}
δSj +

t∑
j=1

δLj (6)

= Z(T ) + exp
{−N−1k(T − t)

}
Xt + Yt; t ∈ [0;T ] , (7)

where for t ≥ 1, Xt and Yt are defined respectively as:

Xt = X0 exp
(−N−1kt

)
+

t∑
j=1

exp
{−N−1k(t− j + 1)

}
δSj , (8)

Yt = Y0 +
t∑

j=1

δLj . (9)

Here X0 and Y0 are real deterministic numbers and Z(T ) is some fixed periodic function

with a 12-month cycle ensuring that the forward curve has the seasonality property observed

in the real data, see section 5. In (7), the term Yt (level) regulates the vertical shift of the

curve, and the term Xt (slope) defines the exact shape of the curve since the expression

exp {−N−1k(T − t)}, which depends only on the time to maturity, is predefined for a

particular commodity curve. It is easy to see that positive values of Xt will generate a curve

that declines with increasing time to maturity (the situation referred to as backwardation)

and, conversely, negative values of Xt generate an upward-sloping curve (which is referred

to as contango).
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At this point it is worthwhile to note that although the described model can generate

forward curves that exhibit the seasonality property, the presence of this property is irrel-

evant to subsequent analysis. Since the value of the seasonality function Z(T ) is constant

for every futures price for some T , it cancels out when futures price returns are calculated.

Thus no seasonality term shows up in (1) and in any other expressions that directly follow

from it.

Ohana (2010) also provides a fundamental theoretical interpretation of the slope Xt and

the level Yt in light of the risk factors of the spot commodity price models. Yt corresponds

to the long-term commodity price and Xt is related to the convenience yield, i.e. to the

relative benefit of holding of a physical commodity as compared to taking a long futures

position in this commodity.

Finally, we note that the slope and the level of each forward curve can be easily estimated

from the futures price data. Without loss of generality, setting Y1 = 0, we use (9) to derive

the levels for all other days. Xt is estimated by applying (7) to some pair of maturities with

equal value of the seasonal function Z(T ), e.g. the 1st and the 13th, and then subtracting

one expression from the other. Assuming that exp {k(T 13
t − 1)/N} ≈ 0, we obtain the

following approximation for the Xt:

Xt ≈ exp
{N−1k(T 1

t − t)
}
log

{
F (t, T 1

t )

F (t, T 13
t )

}
. (10)

The shocks δSt and δLt , the slopes Xt and the levels Yt represent our time series of interest

in the subsequent analysis.

3. Copula-based multivariate GARCH

The copula-based multivariate generalised autoregressive conditional heteroskedastic-

ity model (C-MGARCH), which is used in our study to describe the variance-covariance

structure of the random component ξt of the shocks vector δt = (δoil,Lt , δgas,Lt , δoil,St , δgas,St )�,

was proposed by Lee and Long (2009) as a generalisation of the family of multivariate

generalised autoregressive conditional models (MGARCH), such as the BEKK model of
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Engle and Kroner (1995), the DCC model of Engle (2002) or the VC model of Tse and

Tsui (2002).

The main goal and advantage of this generalisation is the possibility to separately model

linear and nonlinear dependencies between data series. MGARCH specifies the evolution

of the linear dependency mechanisms, and the nonlinear dependency of error terms is

controlled by a copula.

3.1. Copulae

The copula was introduced in the seminal paper of Sklar (1959) and defined as a con-

tinuous function C: [0; 1]d → [0; 1] that satisfies the equality:

G (x1, . . . , xd) = C {F1(x1), . . . , Fd(xd)} , x1, . . . , xd ∈ R, (11)

where G (x1, . . . , xd) is a d-dimensional multivariate distribution, and G1(x1), . . . , Gd(xd)

are the respective marginal distributions. For continuous multivariate distributions the

copula is unique.

In practice, a class of so-called Archimedean copulae proved to be very convenient for

dependency modelling purposes due to its useful properties: Archimedean copulae can

generate a large variety of dependency structures, and a closed form is available for all

copulae of this class. A d-dimensional Archimedean copula has the form:

C (u1, . . . , ud) = φ−1 {φ (u1) + . . .+ φ (ud)} , [u1, . . . , ud] ∈ [0, 1], (12)

where φ is a copula generator function. Necessary and sufficient properties of φ are provided

in McNeil and Nešlehová (2009). Some of the most widely used generator functions are the

Gumbel generator φθ (u) = (− log x)θ for x ∈ [0,∞), θ ∈ [1,∞), which generates a copula

with upper tail dependence:

CG (u1, . . . , ud; θ) = exp

[
−
{
(− log u1)

θ + . . .+ (− log ud)
θ
}1/θ

]
, (13)

and the Clayton generator φθ (u) =
(
xθ − 1

)
/θ for x ∈ [0,∞), θ ∈ (−1/(d− 1),∞), θ �= 0,

which generates a copula with lower tail dependence:

CCl (u1, . . . , ud; θ) =
(
uθ1 + . . .+ uθd − 1

)−1/θ
. (14)
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The concept of copula also nests the case of independence of the variables, which is described

by the product copula Π (u1, . . . , ud) = u1 · . . . · ud.
Since Archimedean copulae are permutation symmetric, they can be too restrictive

even in the 3-dimensional case, let alone cases of higher dimensionality. A solution to this

problem is a generalisation called hierarchical Archimedean copula (HAC), which is an

Archimedean copula that nests other Archimedean copulae subject to certain conditions,

i.e. uses them as arguments. Some of these nested copulae, which we call subcopulae,

may in turn nest copulae as well, thus forming several levels of hierarchy, see Okhrin

et al. (2012b). The variety of distributions that can be described by a HAC stems from the

following sources: the copula’s structure, the employed generator functions and the strength

of the dependence as reflected by the parameter values. There exist certain limitations as to

which generator functions, i.e. which copula types, can be combined, and certain conditions

should be imposed on parameters to ensure that the resulting HAC is indeed a copula, see,

e.g. McNeil (2008) and Hofert (2008). In this study we use only HACs employing the

same kind of generator function in all subcopulae. In this case, the necessary condition

for a function to be a copula is that the parameter of any outer copula, i.e. a copula

nesting another copula, should not be higher than the one of any of its subordinated

(inner) copulae. In other words, the strength of the relationship described by the outer

copula should not exceed any of those described by its subordinated copulae. To facilitate

further notation, we will say that if, e.g. C(x1, x2, x3) = Ca(Cb(x1, x2), x3), where Ca and

Cb are some Archimedean copulae, then Cb links x1 and x2 with each other, and Ca links

Cb and x3 with each other.

The structure of a HAC will be described as s = (. . . (. . . ij . . . ik . . .) . . . (. . .) . . .) or

s = (. . . (. . . “ηij” . . . “ηik” . . .) . . . (. . .) . . .), where i� ∈ {1, . . . , d} are the indices of the

variables following the d-dimensional distribution whose dependency structure is defined

by the HAC and “ηi�” are the names of these variables. Every expression in brackets

describes the structure of a subcopula by showing what variables and/or other subcopulae

it links with each other. Figure 1 illustrates the first type of this notation demonstrating
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Figure 1: Graphical representation of two HAC structures for the dimension d = 4: (s = ((12)3)4) (left)

and (s = (12)(34)) (right)

two possible HAC structures.

3.2. HAC-MGARCH

If ξt, which is a random part of the shocks vector δt, is a d-variate vector with E(ξt|Ft−1) =

0, where Ft−1 is the information set available at t− 1, MGARCH models describe the con-

ditional dynamics of its variance-covariance matrix Ht
def
= E(ξtξ

�
t |Ft−1). It is natural to

measure time in trading days as in section 2, since daily data will be analysed in the

empirical part of the study.

Vector ξt is expressed as ξt = H
1/2
t et with et = Σ−1/2ηt and ηt being a random vector

with E(ηt|Ft−1) = 0 and E(ηtη
�
t |Ft−1) = Σ, whose components are in general nonlinearly

dependent. The exact form of this dependence is described as ηt|Ft−1 ∼ F1,...,d(ηt, θ)
def
=

C {F1(η1,t), . . . , Fd(ηd,t); θ}, where C is a copula, θ is its parameter vector assumed to

be constant and F1(η1,t), . . . , Fd(ηd,t) are marginal distributions of η1,t, . . . , ηd,t. In the

following, we assume F1(η1,t), . . . , Fd(ηd,t) to be standard normal distributions. Since θ

is assumed to be constant, the multivariate distribution of ηt is not affected by any past

information Ft−1.

As mentioned earlier, several MGARCH models were proposed in the literature. In our

study we focus on two of them: Dynamic conditional correlation (DCC) proposed in Engle
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(2002) and the more recent Dynamic equicorrelation model (DECO), see Engle and Kelly

(2012).

In DCC, Ht is modelled as Ht = DtRtDt, where Rt = diag(Q
−1/2
t )Qt diag(Q

−1/2
t ),

Qt = (1 − a − b)Q + a(εt−1ε
�
t−1) + bQt−1, D

2
t = diag(σ2

1,t, . . . , σ
2
d,t), εt

def
= D−1

t ξt and Q is

the unconditional covariance matrix of εt, a ≥ 0, b ≥ 0, a + b < 1. The dynamics of the

individual series variances σ2
1,t, . . . , σ

2
d,t has to be specified separately, we assume each of

them to follow univariate GARCH(1,1):

σ2
�,t = ω� + α�σ

2
�,t−1 + β�ζ

2
�,t−1, (15)

where ζt = σtzt, zt ∼ N(0, 1), ω� > 0, α� ≥ 0, β� ≥ 0 and α� + β� < 1, for � = 1, . . . , d.

The DECO model is based on DCC though the two models are not nested. DECO

applies the same decomposition of Ht as DCC, but the correlation matrix RDECO
t is a

transformation of RDCC
t :

RDECO
t =

⎛⎜⎜⎜⎝
1 . . . ρt
...

. . .
...

ρt . . . 1

⎞⎟⎟⎟⎠ ,

where ρt = 1/ {d(d− 1)} (ι�RDCC
t ι− d

)
and ι is a unit vector with length d.

Another specification of DECO also described in Engle and Kelly (2012) is Block DECO

(BDECO), which allows for a non-homogeneous structure of the vector ξt. Similar to the

Archimedean copula, which can allow for various degrees of strength of the (nonlinear) de-

pendence between different data series, Block DECO can accommodate different intragroup

correlations within certain groups of series as well as different intergroup correlations. In

the general case, if the series can be broken down into V groups of sizes d1, . . . , dV , the cor-

relation matrix Rt will contain V diagonal blocks with sides equal to d1, . . . , dV respectively,

and V (V − 1)/2 off-diagonal blocks:

Rt=

⎛⎜⎜⎜⎝
(1− ρ1,1,t)Id1 0 . . .

0
. . . 0

... 0 (1− ρV,V,t)IdV

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
ρ1,1,tJd1 ρ1,2,tJd1×d2 . . .

ρ2,1,tJd2×d1
. . .

... ρV,V,tJdV

⎞⎟⎟⎟⎠ , (16)
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where ρl,l,t = 1/ {dl(dl − 1)}∑i∈l,j∈l,i �=j
qi,j,t√
qi,i,tqj,j,t

, ρl,m,t = 1/(dldm)
∑

i∈l,j∈m
qi,j,t√
qi,i,tqj,j,t

,

ρl,m,t = ρm,l,t for all l,m and qi,j,t is the i, j-th element of the matrix RDCC
t , so BDECO

correlations are in fact average correlations of each block of the matrix Rt in the DCC

model.

To denote the structure of BDECO we use the same notation that was introduced for

the copula structure in section 3.1. Each expression in brackets refers in this case to one

of the V groups of variables.

3.3. Estimation of copula-based multivariate GARCH

The assumptions on the distribution of ηt give rise to the following log-likelihood func-

tion which should be maximised for model parameter estimation (see Lee and Long (2009)):

L(ϕ, θ) =
N∑
t=1

log f1,...,d(ηt; θ) + log |Σ1/2(θ)H
−1/2
t (ϕ)|, (17)

where N is the number of observations of vector ξt, ϕ is the vector of MGARCH parameters

defined as ϕ = (ω1, . . . , ωd, α1, . . . , αd, β1, . . . , βd, a, b)
� for both DCC and DECO models

and f1,...,d(ηt; θ) is the pdf of ηt. The log-likelihood function is to be maximised over ϕ and

θ:

(ϕ̂, θ̂) = arg max
ϕ,θ

L(ϕ, θ). (18)

With the HAC assumption on the distribution of ηt taken into account, the log-likelihood

function (17) for HAC-MGARCH takes the form:

L(ϕ, θ) =
N∑
t=1

[
d∑
i=1

{log fi(ηi,t)}+ log c {F1(η1,t), . . . , Fd(ηd,t); θ}+ (19)

+ log
∣∣∣Σ1/2(θ)H

−1/2
t (ϕ)

∣∣∣ ],
where fi(ηi,t) is the marginal pdf of ηi,t assumed to be the pdf of standard normal distri-

bution and c(u1, . . . , ud) =
∂dC(u1,...,ud)
∂u1...∂ud

is the copula density function.

Within one MGARCH type, e.g. DCC or VC, HAC-MGARCH represents the most gen-

eral model. AC-MGARCH is thus its special case, which in turn nests standard MGARCH.
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Since standard MGARCH assumes independence of ηi,t, C(·) takes the form of the product

copula Π(·) in this case, hence log c(·) turns to zero and Σ1/2 becomes a unity matrix.

In the more general case of AC-MGARCH and HAC-MGARCH, the diagonal elements

of Σ are equal to 1 since ηi,t follows standard normal distribution with unity variance. The

off-diagonal elements of Σ can be evaluated using Hoeffding’s lemma (Hoeffding (1940)).

According to it, if η1 and η2 are random variables with the marginal distributions F1 and

F2 and the joint distribution F12, and if their first and second moments are finite, then

taking Sklar’s theorem into account:

σ12(θ) =

∫∫
R2

{F12 (η1, η2; θ)− F1 (η1)F2 (η2)} dη1dη2 = (20)

=

∫∫
R2

[C {F1 (η1) , F2 (η2) ; θ} − F1 (η1)F2 (η2)] dη1dη2.

4. Simulation study

This brief simulation study demonstrates the performance of HAC-MGARCH in the

cases of correct and incorrect model specifications. To be consistent with the empirical

study, we consider a 4-dimensional case.

We simulate data series with length N = 2000 from standard DCC, Gumbel HAC DCC

with s = (12)(34), as in Figure 1 (right panel), and BDECO with s = (12)(34).1 Each of

the simulated samples is then used to estimate the following models: DCC, Gumbel AC

DCC, Gumbel HAC DCC, DECO and BDECO. We include HAC DCC and BDECO to be

able to consider a typical situation in practice where portfolio components can be naturally

grouped in a certain way, anticipating the relevance of this situation for our case.

The vectors of the univariate GARCH parameters for the four series are ω = (0.013,

0.003, 0.014, 0.016)�, α = (0.15, 0.2, 0.06, 0.2)�, β = (0.6, 0.7, 0.8, 0.6)�. The DCC param-

eters are a = 0.1 and b = 0.7. The chosen values are in line with those encountered in

1We also considered DECO and Gumbel AC DCC. The corresponding results are not reported here for

the sake of brevity, but are available upon request.
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practice: αj and a estimates are usually relatively close to their lower boundary 0, whereas

βj and b estimates are often close to their higher boundary 1. The copula parameters are

θ
def
= (θ1, θ2, θ3)

� = (1.5, 3.0, 5.0)� for HAC DCC, where θ1 is the parameter of the outer

copula and θ2 and θ3 are the parameters of the two subordinated copulae, see Figure 1

(right panel).

The whole procedure is repeated J = 1000 times. To quantify the quality of fit, we use

the conditional Kullback-Leibler divergence (Kullback and Leibler (1951)):

KL(ξt, ψt, ψ
∗
t ) = Eψt

{
log

ψt(ξt, ϕ, θ)

ψ∗
t (ξt, ϕ̂

∗, θ̂∗)

}
, (21)

where ψt(ξt, ϕ, θ) is the true conditional density of the observation ξt calculated using the

true parameter vector values (ϕ, θ)� and ψ∗
t (ξt, ϕ̂

∗, θ̂∗) is the conditional density of the

observation ξt according to the candidate model calculated using the estimated parameter

vector (ϕ̂∗, θ̂∗)�. We estimate KL by taking the average of the logarithms of the actual

calculated conditional probability ratios:

K̂L(ξt, ψt, ψ
∗
t ) =

1

N

N∑
t=1

{
log

ψt(ξt, ϕ, θ)

ψ∗
t (ξt, ϕ̂

∗, θ̂∗)

}
. (22)

The kernel density of K̂L, shown in Figures 2-4, is calculated using the Gaussian kernel

smoother. The bandwidth is chosen based on Silverman’s rule of thumb.

Smaller absolute values of K̂L correspond to a model that is closer to the true one. Esti-

mation of a true specification results in K̂L distributed closely around zero, corresponding

to the highest possible likelihood.

Figure 2 shows the distribution of K̂L based on 5 specifications, where the true model

is standard DCC. Not surpisingly, the lines corresponding to standard DCC, AC DCC

and HAC DCC are indistinguishable from each other since standard DCC is a special

case of the other two models. The lines corresponding to both DECO specifications are

positioned relatively far from those corresponding to the DCC specifications, suggesting

that the DECO models’ ability to approximate DCC models is rather low.

The results of estimation of the dataset generated by HAC DCC are shown in Figure 3.

It is obvious that the simpler DCC models fail to capture the dependence structure gener-
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Figure 2: K̂L kernel density estimation under various MGARCH specifications, true model: standard

DCC. Assumed specifications: standard DCC, Gumbel AC DCC, Gumbel HAC DCC with s = (12)(34)

(last three lines coincide), DECO, BDECO with s = (12)(34).

ated by the more general models. At the same time, the dependence assumed by HAC DCC

can be satisfactorily approximated only by HAC DCC itself. DECO models are generally

a rather poor fit for HAC DCC.

BDECO is the model that generated the dataset analysed in Figure 4. One sees that

the K̂L distributions resulting from the true BDECO and all DCC models estimation

are reasonably close to each other, which means that all DCC models perform equally in

this case and all significantly outperform DECO. It is noteworthy that the distributions

corresponding to the DCC models in Figure 4 are positioned much closer to zero than

the distributions corresponding to DECO and BDECO in Figures 2 and 3, which can be

interpreted as a better ability of DCC to approximate DECO than the ability of the latter

to approximate the former.

To summarise, we can conclude that HAC DCC approximates all other models under

consideration fairly well, whereas the opposite is not true. This implies that the HAC

DCC specification in fact looks promising since it can capture dependence structures that

other models cannot, at the same time it can approximate dependence structures defined

by other models well enough.
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Figure 3: K̂L kernel density estimation under various assumed MGARCH specifications, true model: DCC

with Gumbel HAC, (s = (12)(34)). Assumed specifications: standard DCC, Gumbel AC DCC, Gumbel

HAC DCC with s = (12)(34), DECO, BDECO with s = (12)(34).
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Figure 4: K̂L kernel density estimation under various assumed MGARCH specifications, true model:

BDECO, (s = (12)(34)). Assumed specifications: standard DCC, Gumbel AC DCC, Gumbel HAC DCC

with s = (12)(34) (last three lines almost coincide), DECO, BDECO with s = (12)(34).
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Figure 5: Logarithmised heating oil forward curves on 01.02.2000 and 22.06.2000 in US cents per gallon

5. Empirical study

In this study we use daily New York Harbour No. 2 Heating Oil Futures and Henry Hub

Natural Gas Futures prices (obtained from Bloomberg) for the time frame from 01.02.2000

to 19.12.2011 for the first M = 14 maturities, which resulted in N = 2975 observations

for each of the two forward curves. Figure 5 demonstrates a logarithmised heating oil

forward curve for 01.02.2000 and 22.06.2000 and exposes its two important features. The

first one is backwardation, i.e. a situation where more distant maturities are traded at

lower prices than less distant ones (both curves are decreasing). This is a normal situation

in commodity markets as stated, e.g. in Gabillon (1991) and reflects (buyers’) “preference

for the present time whatever the reasons are”. The other feature is seasonality: contracts

expiring in winter are generally more expensive than those expiring in summer. As discussed

in section 2, the seasonality effect is of no consequence to our analysis.

5.1. Estimation of the Model

In the first step, we calibrate the two-factor model (1). The calibrated parameters are

k̂oil = 3.10 and k̂gas = 2.86, and the model explains 98.23% and 93.80% of the variance of

the heating oil and natural gas futures returns, respectively, which can be regarded as a

good fit. Due to a longer time span, our results are slightly different from those obtained by
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Series ADF KPSS Series ADF KPSS

Y oil -1.43 (0.55) 4.82 (0.01) δoil,L -19.80 (0.00) 0.17 (0.10)

Y gas -1.66 (0.45) 1.96 (0.01) δgas,L -19.03 (0.00) 1.05 (0.01)

Xoil -3.07 (0.03) 2.84 (0.01) δoil,S -19.91 (0.00) 0.15 (0.10)

Xgas -3.71 (0.00) 1.85 (0.01) δgas,S -20.34 (0.00) 0.05 (0.10)

Table 1: Test statistics of the stationarity tests, p-values in brackets.

Ohana (2010), i.e. we find evidence for an even higher explanatory power of the model for

heating oil and a little lower explanatory power for natural gas. Given k̂, we estimate shocks

series δt, levels Yt and slopes Xt for both commodities, see Figures 6, 7 and 8 respectively.

Results of some basic time series analysis are provided in Table 1. As can be concluded

from it, the Augmented Dickey-Fuller (ADF) test does not reject the unit root hypothesis

for the levels series, and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test does not reject

the stationarity hypothesis for the shocks series. Although the tests disagree about the

stationarity of the slopes series, we decided to use them as regressors in the model in line

with Ohana (2010).

5.2. Vector autoregression

After obtaining the shocks series δt =
(
δoil,Lt , δgas,Lt , δoil,St , δgas,St

)�
, Ohana (2010) rec-

ommends estimating a vector error correction model (VECM) as the levels of the two

commodities Y oil
t and Y gas

t are cointegrated. Following the approach of Engle and Granger

(1987), the long-term relationship between the commodity levels is estimated in a separate

model and turns out to be well approximated by a piecewise linear function, see Figure 9.

In the next step, the residuals of this model, i.e. deviations from the long-term relationship,

are used as an exogenous variable in the VAR model. In this paper we do not apply the

VECM framework for two reasons. First, even with cointegration accounted for, the model

in Ohana (2010) explains a too small proportion of the shocks’ variance: the four equations

within the VECM model explaining the dynamics of the heating oil long-term shocks δoil,Lt ,

natural gas long-term shocks δgas,Lt , heating oil short-term shocks δoil,St and natural gas
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Figure 7: Heating oil (Y oil
t ) and natural gas (Y gas

t ) levels (01.02.2000 – 19.12.2011).
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Figure 8: Heating oil (Xoil
t ) and natural gas (Xgas

t ) slopes (01.02.2000 – 19.12.2011).
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short-term shocks δgas,St had R2 of only 3.19%, 1.89%, 2.21% and 1.72%, respectively. Sec-

ond, there is enough evidence of the fact that during 2009 the cointegration link between

oil and gas was substantially affected by the changes in the US gas market. A quick look

at Figure 9 confirms this: whereas oil prices have recovered after their slump during the

2008-2009 crisis, gas prices have not. De Bock and Gijón (2011) cite an additional supply

of non-conventional gas (above all shale gas) and high storage levels in the US market as

the main reasons behind the relative weakness of US gas prices and the loosening of the

link between the prices for natural gas and West Texas Intermediate (WTI), which is a

low-sulfur light grade of oil and one of the world’s benchmarks in oil pricing shown to

be cointegrated with heating oil, see, e.g. Hartley et al. (2008). This period can also be

denoted as a period of increased uncertainty in the gas market because it appears to be

difficult to reliably estimate the amount of the gas that can be extracted. Nevertheless, it

is reasonable to assume that the long-term link between heating oil and natural gas prices

will not be completely broken because there seems to be little reason for the common fac-

tors on the demand side and for the link between the two commodities to disappear. This

is why the period that started in 2009 should be denoted as a transition to a new long-

term relationship between the two commodities. As an extra argument, one can refer to

the Annual Energy Outlook (2012) by the US Energy Information Administration (EIA),

which makes projections for a number of energy market indicators including commodity

prices and uses the virtual “low-sulfur light crude oil price”, denoted as “similar” to the

price for WTI, as the reference oil price. An important for us projection is the one for the

ratio of low-sulfur light crude oil price to Henry Hub natural gas price, which is predicted

to change very slowly after achieving what appears to be its peak around 2015 following an

especially steep rise during 2007-2010. Figure 9 shows that during the period covered in

Ohana (2010) (up to February 2009), the cointegration approach seemed reasonable, but

the newer data, shown in black, gives some impression of a negative correlation between

heating oil and natural gas price levels. We cannot treat this negative relationship as part

of the long-term price interdependence because no theoretical arguments would justify this.
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As a result, the model specification used in this paper is a simpler vector autoregression

(VAR) with the maximum lag of 1 and two extra regressors Xoil
t−1 and Xgas

t−1:

δt = λt + ξt = μ+ Γδt−1 +ΨAt−1 + ξt, (23)

where, as noted earlier, δt = (δoil,Lt , δgas,Lt , δoil,St , δgas,St )� is the shocks vector. Its determin-

istic component is defined as λt
def
= μ + Γδt−1 + ΨAt−1, where μ is a vector of constants,

At =
(
Xoil
t , Xgas

t

)�
is the slopes vector, ξt with E(ξt|Ft−1) = 0 is the random shocks com-

ponent vector that follows C-MGARCH and Γ and Ψ are parameter matrices.

The maximum lag of 1 was chosen based on the Hannan-Quinn and Bayesian Schwartz

information criteria. For both criteria, the generalisation for multivariate processes was

calculated, see Lütkepohl and Krätzig (2004) for details.

The model is estimated in a rolling window fashion with a window size of 500 and a

step of 5 days. We treat VAR estimation as a procedure whose only aim is to extract

the deterministic component λt from the vector δt. The exact form of the autoregressive

relation is not as important to us as the obtained residual series ξ̂t, to which MGARCH

models are applied in order to describe their dependency dynamics.

For MGARCH we consider eleven different models, among them two AC DCC speci-

fications (with Gumbel and Clayton generators) and four HAC DCC specifications (with

Gumbel and Clayton generators as well as two different structures s1 and s2 defined be-

low). Three DECO specifications are estimated for reference purposes: DECO and BDECO

with s1 and s2. We also estimate univariate GARCH, which is effectively a special case

of MGARCH and can be characterised as DCC or DECO with constant zero correlation

between the components of ξt.

Usually, estimation of HAC-MGARCH or BDECOmodels implies not only estimation of

the parameters, but also the choice of an optimal structure. Here we consider the following

structures: s1 = ((ol gl)(os gs)) and s2 = ((ol os)(gl gs)), where ol, gl, os, gs are the

components of the vector ηt in the MGARCH model (see section 3.3) that correspond to

heating oil long-term shocks (δoil,Lt ), natural gas long-term shocks (δgas,Lt ), heating oil short-

term shocks (δoil,St ) and natural gas short-term shocks (δgas,St ), respectively. The grouping
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in s2 is the result of our preliminary analysis of the residuals based on the structure selection

procedure from Okhrin et al. (2012a), and s1 is its natural analogue. The interpretation of

both structures is straightforward.
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Figure 11: Parameter b in the DCC part (01.02.2000 – 19.12.2011). Values were estimated on a 500-day

period ending on the respective day.

Figure 11 demonstrates the variation of the parameter b in the main DCC equation

from period to period. This can be seen as a justification for using several time windows

for the model estimation.

5.3. Value-at-Risk of the portfolio

Portfolio Value-at-Risk backtesting became a standard tool for model quality assess-

ment. The aim of this procedure is to compare the precision of Value-at-Risk forecasts

produced by different models for different futures portfolios. According to the two-factor

model of the forward curve (1) the return of any portfolio consisting of heating oil and

natural gas futures can be expressed as a “portfolio” of the four shocks. The heating oil

shocks weights in such a portfolio wδoil,St
and wδoil,Lt

are expressed as:

wδoil,St
=

M∑
i=1

woili exp{−N−1koil(T
i
t − t+ 1)}, wδoil,Lt

=
M∑
i=1

woili , (24)

where woili are weights of M = 14 heating oil contracts in the futures portfolio and other

notation is as defined above. The weights of the natural gas shocks are calculated analo-
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gously. Thus, if the joint distribution of the shocks can be estimated for a particular day,

the distribution for any futures portfolio return, i.e. for any weighted sum of the shocks,

can be easily obtained.

Let the portfolio return Rt+1 for an arbitrary day t+ 1 be calculated as:

Rt+1 = w�r̂t+1 = w�
s δt+1, (25)

where w = (w1, w2, . . . , w28)
� is the vector of the futures weights (14 maturities for each

commodity), ws = (ws1, ws2, ws3, ws4)
� is the corresponding vector of the shocks weights

(the notation is changed for the sake of simplicity), r̂t+1 is the vector of futures returns at

t + 1 and δt+1 is defined as in (23). Then the Value-at-Risk (VaR) at level 0 < α < 1 for

day t+ 1 is defined as V aRt+1(α)
def
= F−1

Rt+1
(α). From (2) it follows that:

V aRt+1(α) = w�
s λt+1 + F−1

w�
s ξt+1

(α). (26)

Using the estimated VAR parameters, we calculate the forecast for λt+1. For non-copula-

based MGARCH models, since et+1 ∼ N(0, Id), the expression w�
s ξt+1 is also normally dis-

tributed, i.e. w�
s ξt+1 ∼ N(0, w�

s Ht+1ws). Hence F
−1
w�

s ξt+1
(α) can be inferred explicitly using

properties of the normal distribution. For AC-MGARCH and HAC-MGARCH such an

estimation is not possible since et+1 = Σ−1/2ηt+1 is not normal, hence the whole distribu-

tion of H
1/2
t+1et+1 has to be simulated based on the estimated copula parameters governing

the distribution of ηt+1. For each distribution we simulate 3000 points, then obtain the

distribution of the weighted sum of the four components of H
1/2
t+1et+1 and finally estimate

the empirical quantile F−1
w�

s ξt+1
(α).

We estimate both VAR and each of the 11 MGARCH specifications on 495 windows of

500 observations each. Taking into account that each window begins five days later than

the previous one, after having estimated the parameters on a particular window, we then

use them to make a 5-day-ahead forecast. For each such forecast the parameters are taken

constant, while the information on futures returns is updated every day. Because of the

history needed for the first window estimation, the forecast time period is reduced to 2475

days.
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For every model and every considered futures portfolio with weights w = (w1, . . . , w28)
�

we estimate the exceedance rate α̂, which is the share of the observations for which the

actual portfolio return is lower than the corresponding Value-at-Risk forecast:

α̂w
def
= n−1

n∑
t=1

I
{
Rt < V̂ aRt(α)

}
, (27)

where n = 2475 is the number of forecast values for each portfolio. The relative deviation

of α̂w from the true α is:

dw
def
=
α̂w − α

α
.

In order to check the significance of the differences between α̂ and α, we employ the

coverage test of Kupiec (1995) with the test statistic of the form:

K = 2 log

{(
1− α̂

1− α

)n−I(α)(
α̂

α

)I(α)
}
, (28)

where I(α) =
∑n

t=1 IRt < V̂ aRt(α). The test statistic follows χ2(1) under H0: α̂ = α.

In order to check the robustness of the procedure with respect to the choice of the

portfolio, we run the study on a set W of |W | = 1000 portfolios w1, . . . , w1000, where each

portfolio wq consists of p components with weights {wq1, . . . , wqp}, p = 28, q = 1, . . . , |W |
being uniformly distributed over the cone Sp =

{
(y1, . . . , yp)

�|∑p
i=1 yi = 1

}
. For weights

generation we use Procedure 4 from Wang and Zionts (2006). By design, this procedure

can produce only positive weights, but in our case it is in fact also desirable to allow for

negative weights which would correspond to taking short positions in contracts. Indeed,

unlike short positions in stocks, short positions in futures do not cause any additional

transaction costs as compared to long positions. This is an argument in support of equal

treatment of long and short positions both of which are likely to be taken, e.g. by a trader

seeking arbitrage opportunities arising from futures prices deviating too far from some

theoretical relationship. Moreover, higher variance of the weights will allow us to check if a

particular model can predict not only the left tail of the shocks distribution correctly, but

also its other intervals. Hence the weights were allowed to take negative values as well and

the procedure had to be modified. Details are given in Appendix A.
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We fix the first portfolio to be an equally-weighted portfolio, w1
i = 1/28 ≈ 0.0357, i =

1, . . . , 28. For the evaluation of the model performance on the whole portfolio set W we

use average exceedance rates and average p-values of the Kupiec test measured across all

|W | portfolios. Additionally we calculate AW , which is the average relative deviation of

dw, and its standard error DW :

AW =
1

|W |
∑
w∈W

dw, DW =

{
1

|W |
∑
w∈W

(dw − AW )2
}1/2

. (29)

Table 2 shows the results of the Value-at-Risk backtesting for the equally-weighted

portfolio of 28 contracts and Table 3 summarises the results of the Value-at-Risk backtesting

for all 1000 portfolios.

As can be seen from Table 2, for α = 10% and α = 5%, H0 of the Kupiec test is not

rejected at the 5% significance level for all models except univariate GARCH, which implies

that treating shocks series as independent leads to severe underestimation of possible losses.

However, the best performers for α = 10% and α = 5% are, respectively, BDECO with s2

and DECO while HAC-based models are second-best for these levels of α. Only for α = 1%

does a HAC-based model (Clayton HAC DCC with s1) outperform other benchmarks.

Moreover, this model is one of the only two for which the hypothesis α̂ = 1% is not rejected

at the 5% significance level. It is necessary to emphasise that while best performing models

were able to forecast Value-at-Risk fairly well for α = 10% and α = 5%, the Value-at-Risk

forecasts for α = 1% exhibit a relatively high exceedance rate, which means that the fat-

tail distributions of the portfolio returns are not fully captured by the considered models.

Overall results of the Value-at-Risk backtesting for the equally-weighted portfolio cannot

be seen as satisfactory with regard to our expectations.

However, the situation is absolutely different on the aggregate level, i.e. for 1000 simu-

lated portfolios on average. For all three α values, the HAC-based DCC models outperform

the benchmarks. They do not only produce the most accurate Value-at-Risk forecasts on

average, as demonstrated by their exceedance rates, which are closest to the respective re-

quired α values, but also generate these accurate forecasts on a regular basis, as can be seen

from their low AW and DW values. It is also a very encouraging result that for two of the
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Model α = 10% α = 5% α = 1%

DCC 9.616(0.522) 4.889(0.799) 1.495(0.021)

Gumbel AC DCC 9.778(0.712) 5.253(0.567) 1.455(0.033)

Clayton AC DCC 9.657(0.567) 4.848(0.728) 1.455(0.033)

Gumbel HAC DCC with s1 9.697(0.614) 5.131(0.765) 1.495(0.021)

Clayton HAC DCC with s1 9.657(0.567) 4.687(0.470) 1.374(0.077)

Gumbel HAC DCC with s2 9.778(0.712) 5.131(0.765) 1.414(0.051)

Clayton HAC DCC with s2 9.737(0.662) 4.889(0.799) 1.495(0.021)

DECO 9.778(0.712) 5.051(0.908) 1.495(0.021)

BDECO with s1 9.697(0.614) 4.848(0.728) 1.455(0.033)

BDECO with s2 10.141(0.815) 5.333(0.451) 1.616(0.005)

Univariate GARCH 16.283(0.000) 11.071(0.000) 4.162(0.000)

Table 2: Value-at-Risk backtesting results for the equally-weighted portfolio: α̂ (in %) and Kupiec test

p-values (in brackets). Results of the models yielding highest p-values are shown in bold.

three α values, standard DCC performs worse than DECO in most cases. This means that

a copula assumption can increase the forecasting qualities of a poorly-performing model

significantly, so that it can overtake other benchmarks. The conclusion, valid for both

equally-weighted portfolio and on the aggregate level, is that for α = 1% all models gener-

ally perform significantly worse, except for Clayton HAC DCC with s1, which still shows

a fair result (on the aggregate level it is one of the two models for which Kupiec test’s

null hypothesis is not rejected at the 10% signifiance level). The classical VaR exceedance

plot is presented in Figure 13. Another perspective of the Value-at-Risk forecasts can be

obtained by plotting their kernel densities over the whole forecasting period for each model

and each α. Figure 12 shows the left tail of the Value-at-Risk kernel density for α = 1%

for each of the 11 considered models. The kernel densities are evaluated using the normal

kernel smoother and the optimal bandwidth is estimated using Silverman’s rule of thumb,

as in section 4. It is easy to see that the models based on the Clayton copula are more

inclined to provide low Value-at-Risk estimates than other models which is demonstrated
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by the fatter left tails of the respective kernel densities. This is in line with our conclusion

from the analysis of Table 2. BDECO with s2 performs worse and has higher exceedance

rates than all other models except univariate GARCH (see Table 2), hence, as may be

anticipated, it generates relatively thin left tails of predicted Value-at-Risk kernel density,

see Figure 12. Summing up, one can conclude that as expected, HAC DCC models can be
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Figure 12: Kernel density of the value-at-risk (α = 0.01) forecast.

a very useful tool for risk management purposes. On average, they generate more accu-

rate Value-at-Risk forecasts for various futures portfolios than nested models with stricter

assumptions and even some other benchmark models (DECO).

6. Conclusions

This paper addresses an issue that can be of significant importance to many agents

involved in commodity trading. The study models the dynamics of the heating oil and

natural gas forward curves within one model. Multi-stage analysis of a large set of futures

prices is carried out. For the analysis of the variance-covariance structure of the vector of

the random shocks component, HAC-MGARCH models were used. This analysis allows

us to forecast the distribution of the returns of any portfolio composed of the available

futures contracts for short time periods. As shown in the study, Value-at-Risk estimates
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derived from the forecasts produced by HAC DCC models are accurate, and these models

outperform other benchmark models on a consistent basis, as shown by the Value-at-Risk

backtesting procedure carried out on a set of futures portfolios.

The research can be extended along several directions. First, one can further com-

bine copulae with different MGARCH models, e.g. employ copula-based DECO models.

Second, other copula types, such as vine copulae, can be considered. Furthermore, more

sophisticated methods to the determination of the estimation time window, such as local

adaptive methods, can be applied, which can lead to a better understanding of the time

evolution of the processes and more precise forecasts.

Appendix A. Algorithm used to generate random weights

1. Generate a set Λ1 of |Λ1| = 1000 portfolios of p = 28 components with the weights of

each component in each portfolio λ1,q1 , . . . , λ1,qp , q = 1, . . . , |Λ1| uniformly distributed

over the cone Sp =
{
(y1, . . . , yp)

�|yi ≥ 0,
∑p

i=1 yi = 1
}
. Multiply all weights in all

portfolios by 2.

2. Generate a set Λ2 of |Λ2| = 1000 portfolios of p = 28 components with the weights of

each component in each portfolio λ2,q1 , . . . , λ2,qp , q = 1, . . . , |Λ1| uniformly distributed

over the cone Sp =
{
(y1, . . . , yp)

�|yi ≥ 0,
∑p

i=1 yi = 1
}
.

3. Let W be a set of |W | = 1000 portfolios with weights calculated as wqi = λ1,qi − λ2,qi

for all i = 1, . . . , p and q = 1, . . . , |W |.
4. The mean weight w in the resulting portfolios set W is equal to w = 1/28 = 0.0357

and the weight’s standard deviation σw = 0.077 (measured across all contracts and

portfolios).

Annual Energy Outlook, June 2012. U.S. Energy Information Administration. Report

DOE/EIA-0383(2012), www.eia.gov/forecasts/aeo/.

Asche, F., Osmundsen, P., Sandsmark, M., 2006. The UK market for natural gas, oil and

electricity: are prices decoupled? The Energy Journal 27 (2), 27–40.

33



Bachmeier, L., Griffin, J., 2006. Testing for market integration: crude oil, coal, and natural

gas. The Energy Journal 27 (2), 55–72.

Chambers, M. J., Bailey, R. E., 1996. A theory of commodity price fluctuations. Journal

of Political Economics 104 (5), 924–957.

Chantziara, T., Skiadopoulos, G., 2008. Can the dynamics of the term structure of

petroleum futures be forecasted? Evidence from major markets. Energy Economics 30,

962–985.

Cortazar, G., Schwartz, E. S., Summer 1994. The valuation of commodity-contingent

claims. The Journal of Derivatives, 27–39.

Cortazar, G., Schwartz, E. S., 2003. Implementing a stochastic model for oil futures prices.

Energy Economics 25, 215–238.

Dawson, P. J., Sanjuán, A. I., White, B., 2006. Structural breaks and the relationship

between barley and wheat futures prices on the London International Financial Futures

Exchange. Review of Agricultural Economics 28 (4), 585–594.

De Bock, R., Gijón, J., June 2011. Will natural gas prices decouple from oil prices across

the pond? Working Paper WP/11/143, International Monetary Fund.

Engle, R., 2002. Dynamic conditional correlation: A simple class of multivariate generalized

autoregressive conditional heteroskedasticity models. Journal of Business & Economic

Statistics 20 (3), 339–350.

Engle, R., Granger, C., 1987. Co-integration and error correction: Representation, estima-

tion and testing. Econometrica 55 (2), 251–276.

Engle, R., Kelly, R., 2012. Dynamic equicorrelation. Journal of Business & Economic Statis-

tics 30 (2), 212–228.

Engle, R., Kroner, K., 1995. Multivariate simultaneous generalized ARCH. Econometric

Theory 11, 122–150.

34



Eydeland, A., Geman, H., 1998. Pricing power derivatives. RISK September, 71–73.

Gabillon, J., 1991. The term structures of oil futures prices. Working Paper WPM 17,

Oxford Institute for Energy Studies.

Grasso, M., Manera, M., 2007. Asymmetric error correction models for the oil-gasoline

price relationship. Energy Policy 35, 156–177.

Hartley, P., Medlock, K., Rosthal, J., 2008. The relationship of natural gas to oil prices.

The Energy Journal 29 (3), 47–66.

Heath, D., Jarrow, R. A., Morton, A., 1990. Contingent claim valuation with a random

evolution of interest rates. The Review of Futures Markets 9 (1), 54–76.

Hoeffding, W., 1940. Maßtabinvariante Korrelationstheorie, Schriften des Matematischen

Instituts und des Instituts für angewandte Mathematik der Universität Berlin, 5, Heft

3, 179-233. [Reprinted as Scale-invariant correlation theory in The Collected Works of

Wassily Hoeffding, N.I. Fisher and P.K. Sen editors, Springer-Verlag, New York, 57-107].

Hofert, M., 2008. Sampling Archimedean copulas. Computational Statistics and Data Anal-

ysis 52, 5163–5174.

Jin, H. J., 2007. Heavy-tailed behaviour of commodity price distribution and optimal hedg-

ing demand. The Journal of Risk and Insurance 74 (4), 863–881.

Koekebakker, S., Ollmar, F., 2005. Forward curve dynamics in the Nordic electricity mar-

ket. Managerial Finance 31 (6), 73–94.

Kullback, L., Leibler, R., 1951. On information and sufficiency. Annals of Mathematical

Statistics 22, 79–86.

Kupiec, P., 1995. Techniques for verifying the accuracy of risk measurement models. Journal

of Derivatives 3, 73–84.

35



Lee, T.-H., Long, X., 2009. Copula-based multivariate GARCH model with uncorrelated

dependent errors. Journal of Econometrics 150, 207–218.

Litterman, R., Scheinkman, J., June 1991. Common factors affecting bond returns. The

Journal of Fixed Income, 54–61.

Liu, P., Tang, K., 2010. No-arbitrage conditions for storable commodities and the modeling

of futures term structures. Journal of Banking & Finance 34, 1675–1687.

Lütkepohl, H., Krätzig, M. (Eds.), 2004. Applied Time Series Econometrics. Themes in

Modern Econometrics. Cambridge University Press.

McNeil, A., 2008. Sampling nested Archimedean copulas. Journal of Statistical Computa-

tion and Simulation 78 (6), 567–581.
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