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We analyze the theoretical moments of a nonlinear approximation to a model of business cycles

and asset pricing with stochastic volatility and recursivepreferences. We find that heteroskedastic

volatility operationalizes a time-varying risk adjustment channel that induces variability in condi-

tional asset pricing measures and assigns a substantial portion of the variance of macroeconomic

variables to variations in precautionary behavior, both while leaving its ability to match key macroe-

conomic and asset pricing facts untouched. Our method decomposes moments into contributions

from realized shocks and differing orders of approximationand from shifts in the distribution of

future shocks, enabling us to identify the common channel through which stochastic volatility in

isolation operates and through which conditional asset pricing measures vary.
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1 Introduction

Assessing the statistical and structural implications of nonlinear DSGE models with recursive pref-

erences and stochastic volatility for asset pricing and business cycle dynamics is an unfinished task

in macroeconomics. We derive the theoretical moments of nonlinear moving average approxima-

tions to the model and decompose these moments into contributions from the individual orders of

nonlinearity in realized shocks (amplification effects) and from the moments of future shocks (risk

adjustment effects). With this decomposition, we find that stochastic volatility activates a time-

varying risk adjustment channel in macroeconomic variables accounting for a substantial amount

of total variation. We identify this conditional heteroskedastic mechanism as the sole driving force

of the conditional asset pricing measures under study. Thisenables us to tell the story of a varying

pattern of risk in the economy eliciting changes in households’ precautionary responses as priced by

measures such as the conditional market price of risk.

While there is growing interest in stochastic volatility and Epstein and Zin’s (1989) recursive

preferences1 in recent literature, there is little work that studies the joint effect of these two elements

for both asset pricing and business cycle dynamics.2 Andreasen (2012), focusing on the different

specifications of the conditional heteroskedasticity and the consequential difference in the quanti-

tative performance of a New Keynesian model, takes a brief look at the implications of the model

on both sides. Bidder and Smith (2012), taking a model uncertainty perspective à la Hansen and

Sargent (2007), study fluctuations in the worst-case distribution as sources for business cycles in

a model with stochastic volatility and recursive preferences. We differ from both their work in our

1See also Kreps and Porteus (1978) and Weil (1990). Backus, Routledge, and Zin (2005) offers a recent review of
these and related preferences.

2Bloom (2009) notes the impact of stochastic volatility on macroeconomic variables. Justiniano and Primiceri (2008)
add stochastic volatility to DSGE models to study the documented reduction in volatility of U.S. economy since the early
1980’s (See also Blanchard and Simon (2001), Stock and Watson (2003) and Sims and Zha (2006) for a review.). Tal-
larini (2000) among many others, note recursive preferences can contribute to resolving the longstanding asset pricing
puzzles (equity premium and risk free rate) documented in Mehra and Prescott (1985) and Weil (1989) without com-
promising the model’s ability of replicating macroeconomic dynamics; and Rudebusch and Swanson (2012) and van
Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012) use a model with recursive preferences to study
the dynamics of the yield curve.
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aim to analyze the propagation mechanism of stochastic volatility implemented as a volatility shock,

and we examine the role of stochastic volatility in attaining the Hansen-Jagannathan bounds (See

Hansen and Jagannathan (1991)) to complement the empiricalevaluation of the model regarding

replicating asset pricing regularities.

We solve the model using the nonlinear moving average perturbation derived in Lan and Meyer-

Gohde (2012), following the documentation of Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and

Yao (2012) regarding the accuracy of perturbation for a business cycle model with recursive pref-

erences and stochastic volatility and Bidder and Smith’s (2012) perturbation study using the same

specific functional form for continuation utility (the exponential certainty equivalent of Tallarini

(2000)). We approximate the policy function to third order since it is the minimum order needed to

capture the time-varying shifts in risk premium as noted in Andreasen (2012, p. 300) and van Bins-

bergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012, p. 638). The nonlinear moving

average policy function takes the infinite sequence of realized shocks, past to present, as its state

variable basis and adjusts the deterministic policy function for the effect of future shocks by scaling

their distribution with the perturbation parameter. This policy function and its third order approxi-

mation can be decomposed straightforwardly into the order of the amplification effects (the impact

of the realized shocks) and risk adjustment (the anticipation effect of future shocks). We find, in the

analysis of the impulse responses of both macroeconomic andasset pricing variables, a volatility

shock by itself propagates solely through the time-varyingrisk adjustment channel. For conditional

asset pricing measures such as the expected risk premium, volatility shocks and productivity growth

shocks propagate individually through the time-varying risk adjustment channel only. Moreover,

the effect of stochastic volatility shocks on the expected risk premium is several orders of magni-

tude larger than that of productivity growth shocks, highlighting again the importance of this time

variation in the dispersion of probability measures used toform expectations for conditional asset

pricing.
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Using our third order nonlinear moving approximation, we are able to derive theoretical mo-

ments that are in general not available in the nonlinear DSGEmodels. We further derive a decompo-

sition of the theoretical variance that neatly dissects theindividual contributions of amplification and

risk adjustment effects to the total variance of the model. With this variance decomposition, we find

that adding stochastic volatility changes the compositionof the variance of the macroeconomic vari-

ables. In the presence of stochastic volatility, more variation is generated in the time-varying risk

adjustment channel. As for macroeconomic variables, movements in the risk adjustment channel

can be explained by the household’s precautionary motive. This finding implies households aware

of shifts in the distributions of future shocks will adjust their precautionary behavior commensu-

rately.

The nonlinear moving average approximation, as its policy function directly maps exogenous

shocks into the endogenous variables, only needs the moments of the exogenous shocks when com-

puting the theoretical moments. We implement our approach numerically by providing an add-on

for the popular Dynare package.3 A state space perturbation policy function, by contrast, maps

the endogenous variables into themselves and resulting in an infinite regression in theoretical mo-

ments requiring higher moments than moments being computed. In a similar vein to our nonlinear

moving average, Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2012) compute theoretical

moments using a pruned state space perturbation,4 since after pruning, the unknown higher moments

are nonlinear functions of the known moments of lower order approximations.

The paper is organized as follows. The competitive real business cycle model with recursive

preferences and stochastic volatility is derived in section 2. In section3, we present the nonlinear

moving average perturbation solution to the model. The calibrations are introduced in section4.

We then derive the theoretical moments in section5 and apply our method to analyze the model in

section6. Section7 concludes.
3See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011) for Dynare.
4See Lan and Meyer-Gohde (2013) for an overview of pruning andits relation to our nonlinear moving average.
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2 The Model

In this section, we lay out the stochastic neoclassical growth model with the recursive preferences

and stochastic volatility. We parameterize the model closeto the production model described in

Tallarini (2000). The economy is populated by an infinitely lived household seeking to maximize its

expected discounted lifetime utility given by the recursive preferences

Ut = lnCt +ψ ln(1−Nt)+β
2
γ

ln
(

Et

[
exp

( γ
2
Ut+1

)])
(1)

whereCt is consumption,Nt labor,β ∈ (0,1) the discount factor and

γ ≡ 2
(1−β)(1−χ)

1+ψ
(2)

indexes the deviation with respect to the expected utility.χ denotes the coefficient of relative risk

aversion (CRRA) andψ > 0 controls labor supply. Withχ equal to the elasticity of intertemporal

substitution (EIS) which is equal to one here, (1) collapses to the expected utility. The household

optimizes over consumption and labor supply subject to

Ct +Kt =WtNt + rK
t Kt−1+(1−δ)Kt−1(3)

whereKt is capital stock accumulated today for productive purpose tomorrow,Wt real wage,rK
t

the capital rental rate andδ ∈ [0,1] the depreciation rate. Investment is the difference between the

current capital stock and the capital stock in the previous period after depreciation

It = Kt − (1−δ)Kt−1(4)

We assume a perfectly competitive production side of the economy, where output is produced

using the labor augmented Cobb-Douglas technologyYt = Kα
t−1

(
eZtNt

)1−α
. Zt is a stochastic pro-

ductivity process andα ∈ [0,1] the capital share. Productivity is assumed to be a random walk with

drift, incorporating long-run risk into the model5

at ≡ Zt −Zt−1 = a+σze
σz,t εz,t, εz,t ∼ N (0,1)(5)

5As noted by Bansal and Yaron (2004, p. 1502), in an endowment economy with recursive preferences and stochastic
volatility, better long-run growth prospects leads to a rise in the wealth-consumption and the price-dividend ratios.
Rudebusch and Swanson (2012, p. 108) incorporate both real and nominal long-run risk in a production economy with
recursive preference, and find long-run nominal risk improves the model’s ability to fit the data.
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with εz,t the innovation toZt . σzeσz,t can be interpreted as the standard deviation of the productivity

growth with σz the homoskedastic component. Following, e.g., Fernández-Villaverde, Guerrón-

Quintana, Rubio-Ramı́rez, and Uribe (2011) and Caldara, Fernández-Villaverde, Rubio-Ramı́rez,

and Yao (2012), we specify the heteroskedastic component,σz,t , as

σz,t = ρσσz,t−1+ τεσz,t , εσz,t ∼ N (0,1)(6)

where|ρσ| < 1 andτ is the standard deviation ofεσz,t . The model is closed by the market clearing

condition

Yt =Ct + It(7)

that prevents consumption and investment from exceeding output in each period.

The solution is characterized by the intratemporal labor supply/productivity condition equalizing

the utility cost of marginally increasing labor supply to the utility value of the additional consump-

tion

ψ
1−Nt

=
1
Ct

(1−α)Kα
t−1eZt(1−α)N−α

t(8)

The stochastic discount factor, or pricing kernel, from thehousehold’s intertemporal maximiza-

tion of utility is given by

mt+1 ≡
∂Vt/∂Ct+1

∂Vt/∂Ct
= β

Ct

Ct+1

exp
( γ

2Vt+1
)

Et
[
exp

( γ
2Vt+1

)](9)

whereVt is the maximum attainable utility, i.e., the value functionof the household

Vt = lnCt +ψ ln(1−Nt)+β
2
γ

ln
(

Et

[
exp

( γ
2
Vt+1

)])
(10)

Combining firms’ profit and households’ utility maximization yields the real risky ratert

1+ rt = αKα−1
t−1 (ezt Nt)

1−α +1−δ = rK
t +1−δ(11)

The fundamental asset pricing equation takes the form

Et [mt+1(1+ rt+1)] = 1(12)

As the economy is nonstationary, growing at the rateat , we detrend output, consumption, in-

vestment, capital stock and value function to stationarizethe model. This is achieved by dividing all
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nonstationary variables but the value function, which mustdetrended differently, by the contempo-

raneous level of productivityeZt .6 Labor supplyNt and leisure 1−Nt as well as the returnsrt and

rK
t are stationary and therefore do not need to be transformed. Stationary variables will be denoted

by lower case letters.

Reexpressing the pricing kernel in terms of stationary variables, the effect of incorporating long-

run risk can be seen directly in the pricing kernel

mt+1 = β
ct

ct+1
e−(a+σze

σz,t+1εz,t+1)
exp

(
γ
2

[
vt+1+

1
1−β (a+σzeσz,t+1εz,t+1)

])

Et

[
exp

(
γ
2

[
vt+1+

1
1−β (a+σzeσz,t+1εz,t+1)

])](13)

with the stochastic trend,σzeσz,t+1, entering the kernel directly.

To analyze asset prices, we append the model with the following variables: the real risk-free rate

1+ r f
t ≡ Et(mt+1)

−1(14)

the conditional market price of risk—the ratio of the conditional standard deviation of the pricing

kernel to its conditional mean

cmprt ≡

(
Et

[
(mt+1−Etmt+1)

2
])1

2

Etmt+1
(15)

that measures the excess return the household demands for bearing an additional unit of risk, the

expected (ex ante) risk premium

erpt ≡ Et

(
rt+1− r f

t

)
(16)

and the (ex post) risk premium

rpt = rt − r f
t−1(17)

as the difference between the risky and risk-free rate.

3 Perturbation Solution and Risk Adjustment Channel

As stated by Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012), local approximations

via perturbation methods can solve models such as ours quickly with a degree of accuracy com-

6See the appendix for details.
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parable to global methods. Moreover, as at least a third order approximation is necessary for the

analysis of time-varying shifts in risk premia and related measures at the heart of our analysis, we

solve the model to third order. We choose the nonlinear moving average perturbation derived in

Lan and Meyer-Gohde (2012) as it delivers stable impulse responses and simulations at all orders,

hence including our third order approximation of interest,and, as we shall show, enables the direct

calculation and decomposition of moments.

For the implementation of the nonlinear moving average perturbation, we collect the (stationar-

ized) equilibrium conditions into a vector of functions

0= Et [ f (yt+1,yt ,yt−1,εt)](18)

whereyt =
[
kt ct Nt at −a σz,t vt mt rt r f

t cmprt erpt rpt

]′
is the vector of the en-

dogenous variables, andεt =
[
εz,t εσz,t

]′
the vector of the exogenous shocks, assuming the function

f in (18) is sufficiently smooth and all the moments ofεt exist and finite7.

The solution to (18) is a time-invariant functiony, taking as its state variable basis the infinite

sequence of realized shocks, past and present, and indexed by the perturbation parameterσ ∈ [0,1]

scaling the distribution of future shocks

yt = y(σ,εt ,εt−1, . . .)(19)

Assuming normality of all the shocks and settingσ = 1 as we are interested in the stochastic

model, the third order approximation—a Volterra expansion, see Lan and Meyer-Gohde (2012)—of

(19), takes the form

y(3)t =y+
1
2

yσ2 +
1
2

∞

∑
i=0

(
yi +yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(20)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)

wherey denotes the deterministic steady state of the model, at which all the partial derivatives

7See for example, Judd (1998, ch. 13) and Jin and Judd (2002) for a complete characterization of these assumptions.
While the normal distribution for shocks we choose is at oddswith Jin and Judd’s (2002) assumption of bounded support,
Kim, Kim, Schaumburg, and Sims (2008) dispute the essentiality of this assumption, lending support to our distribution
choice
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yσ2,yσ2,i,yi ,y j ,i andyk, j ,i are evaluated. (20) is naturally decomposed into order of nonlinearity and

risk adjustment—yi, y j ,i andyk, j ,i capture the amplification effects of the realized shocks(εt ,εt−1, . . .)

in the policy function (19) at first, second and third order respectively. The two partial derivatives

with respect toσ, yσ2 andyσ2,i adjust the approximation for future risk.8 While yσ2 is a constant

adjustment for risk and a linear function of the variance of future shocks9, yσ2,i varies over time,

interacting the linear response to realized shocks with thevariance of future shocks essentially ad-

justing the model for time variation in the conditional volatility of future risk.

4 Calibration

We select three calibrations for the numerical analysis of the model. For the baseline calibration,

most of the parameter values are taken from Tallarini (2000)and are listed below. For the parame-

ters of the volatility shock, the literature varies in the range of the persistence—ρσ, from 0.9, Cal-

dara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012) and Bidder and Smith (2012), to 0.95,

Fernández-Villaverde and Rubio-Ramı́rez (2010a), and to0.99 or 1, Andreasen (2012) and Justini-

ano and Primiceri (2008)—and in the range of its instantaneous standard deviation—τ, from 0.01,

Andreasen (2012) and Justiniano and Primiceri (2008), to 0.1, Fernández-Villaverde and Rubio-

Ramı́rez (2010b), and to 0.15, Bidder and Smith (2012). We follow the parameterizationof Bidder

and Smith (2012), implying a cumulative variance comparable to the value in Fernández-Villaverde

and Rubio-Ramı́rez (2010a, p. 20), described as “generat[ing] changes in volatility similar to the

ones observed in the [post-war] U.S.” Following Tallarini (2000), we adjust the homoskedastic com-

ponent of the standard deviation of productivity growth to match the standard deviation of (log)

consumption growth.

[Table 1 about here.]

8More generally, a constant term,yσ3, at third order adjusts (20) for the skewness of the shocks. See Andreasen
(2012). As we assume all the shocks are normally distributed, yσ3 is zero and not included in (20) and the rest of our
analysis.

9See, Lan and Meyer-Gohde (2012, p. 13) for the derivation of this term.
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The discount factorβ = 0.9926 generates an annual interest rate of about 3 percent. The capital

shareα = 0.331 matches the ratio of labor share to national income. The depreciation rateδ = 0.021

matches the ratio of investment to output. The risk aversionparameterχ and labor supply parameter

ψ are chosen such that labor in the deterministic steady state, N, is 0.2305 to align with the mean

level of hours in data and such thatγ =−0.3676 in line with Tallarini (2000).

While still allowing preferences to be recursive, the constant volatility calibration shuts down

stochastic volatility by settingτ = 0, this enables direct comparison with Tallarini’s (2000) results.

In addition, by comparing with the results from the baselinecalibration, this exercise helps identify

the contribution of the stochastic volatility, by itself and/or in interaction with recursive preferences,

to the model.

[Table 2 about here.]

The expected utility calibration shuts stochastic volatility down and is implemented by setting

χ = 1 (equivalently,γ = 0). We will be using all the three calibrations to analyze thecontributions of

recursive preferences and stochastic volatility to the model’s performance evaluated by the Hansen-

Jagnannathan bounds.

5 Theoretical Moments

In this section, we derive the theoretical moments of the third order approximation (20). The nonlin-

ear moving average policy function (19) and its third order approximation (20) both map exogenous

shocks directly into endogenous variables. The moments of endogenous variables can therefore be

computed directly as they are functions of the known momentsof exogenous shocks. We further

decompose the theoretical variance, disentangling the individual contributions of the risk adjustment

and amplification channels to the total variance. Note that throughout the derivation of theoretical

moments, we assume normality of the exogenous shocks10 and all processes involved are, as proved

10While removing normality does not disable the calculation of theoretical moments, the derivation will be more
complicated as additional terms involving skewness and higher (up to fifth) moments of the shocks emerge.
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in Lan and Meyer-Gohde (2012), covariance stationary.

By contrast, the state space perturbation policy function and its nonlinear approximations map

the endogenous variables into themselves. Computing them-th theoretical moment of such a non-

linear approximations ofn-th order, for example, requires the knowledge of higher (thanm-th) mo-

ments of endogenous variables that are in general nonlinearfunctions of the approximations up to

and includingn-th order. To this end, the calculation results in an infiniteregression in the moments

of endogenous variables. While theoretical moments of nonlinear state space perturbation approxi-

mations are in general not available, there are attempts in recent literature. Andreasen, Fernández-

Villaverde, and Rubio-Ramı́rez (2012) calculate theoretical moments by pruning the nonlinear ap-

proximations, such that the higher (thanm-th) moments are functions of approximations lower than

the current order of approximation, and therefore computable given the results from all lower orders.

5.1 Mean

The mean (first moment) of the third order approximation (20) is straightforward to calculate. Ap-

plying the expectations operator to (20) yields

E
[
y(3)t

]
= y+

1
2

yσ2 +
1
2

∞

∑
j=0

y j , jE [εt ⊗ εt ](21)

The last term in (20) vanishes as the triple Kronecker product in expectation isthe columnwise

vectorization of the third moment of the exogenous shocks, equal to zero under normality. Likewise,

the Kronecker product in expectation is the columnwise vectorization of the second moment of

the exogenous shocks. Only the contemporaneous variance appears because the shock vector is

assumed serially uncorrelated. The other two terms containing εt−i in (20) also disappear as the

shock is mean zero. From a different perspective, the deterministic steady state is the mean of

the zeroth order approximation where all shocks, past, present and future are zero. It remains the

mean in a first order approximation, as the exogenous shocks are mean zero (first moment is zero).

At second order, the second moments of the shocks are included—both past and present (in the

10



term ∑∞
j=0y j , jE [εt ⊗ εt ]) as well as future shocks (in the termyσ2)—which are assumed nonzero,

generating an adjustment from the deterministic steady state. When the approximation moves to

the third order, the calculation of the mean of (20) would be accordingly adjusted for the first three

moments of all the realized and future shocks, but the mean zero and normality assumptions render

the first and third moments of the shocks zero, thus leaving the first moment at third order identical

to its value from a second order approximation.

5.2 Variance and Autocovariances

While we could conceivably compute the second moments (variance and autocovariances) of (20)

using the Volterra expansion directly, it would be a rather complicated operation on the products of

multi-layered infinite summation of coefficients. As an alternative, we use the recursive expression

of (20) derived in Lan and Meyer-Gohde (2013) to compute the secondmoments.

Computing the second moments using the recursive expression of (20), we need to proceed se-

quentially through the orders of approximation and exploitthe linearly recursive (in order) structure

of the solution.11 That is, the second moments of the approximation at any ordercan always be

expressed as the sum of the second moments of the approximation of the previous order and the

second moments of all the previous order increments (the difference between two approximations

of adjacent order, subtracting the constant risk adjustment of the higher order). In other words, the

embedded decomposition into order of approximation in the nonlinear approximations of the policy

function (19) is preserved its second moments.

The first order approximation of (19) takes the form of a linear moving average,y(1)t = y+

∑∞
i=0yiεt−i, and can be expressed recursively as12

y(1)t −y= α
(

y(1)state
t −ystate

)
+β0εt(22)

11The terminology if Lombardo’s (2010). In Lan and Meyer-Gohde (2013), we compare Lombardo’s (2010), others,
and our recursive representation.

12See Lan and Meyer-Gohde (2013). This is, of course, an standard result for linear models. Compare, e.g., the state
space representations of Uhlig (1999) with the infinite moving average representations of Taylor (1986).
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where the differencey(1)t − y is the deviation of the first order approximation with respect to the

deterministic steady state, and identical to the first orderincrement

dy(1)t ≡ y(1)t −y(23)

which captures the addition to the approximation contributed by the time varying terms of the cur-

rent, here first, order of approximation, asy is the zeroth order approximation13 and the constant

risk adjustment of first order,yσ, is zero. In addition

E
[
dy(1)t−1ε′t

]
= 0(24)

as the current shock is not correlated with the endogenous variables in the past. Under the orthog-

onality condition (24), the sequence of autocovariances of endogenous variablesor, at this order

equivalently, of the first order incrementΓy(1)

j = Γ(1)
j = E

[
dy(1)t dy(1)

′

t− j

]
, solves the following Lya-

punov equation

Γy(1)

j = αΓy(1)

j α′+β0E[εtεt− j ]β′
0(25)

The second order approximation of the policy function (19) captures the amplification effects of

the realized shocks up to second order, and the constant riskadjustment for future shocks

y(2)t = y+
1
2

yσ2 +
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(26)

Defining the second order increment

dy(2)t ≡ y(2)t −y(1)t −
1
2

yσ2(27)

which more clearly illustrates the notion of increment we use here; the addition the approximation

contributed by time varying components of current order (orthe difference between the current

and previous order of approximation, herey(2)t − y(1)t , less the additional constant contributed by

the current order, here12yσ2). The second moments of the second order approximation (26) can be

expressed as the sum of the second moments of the first order approximation and those of the order

increment. We summarize the results for a second order approximation in the following proposition

13This is the terminology in Anderson, Levin, and Swanson (2006, p. 17) and Borovicka and Hansen (2012, p. 22).
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Proposition 5.1. Assuming the exogenous shocks are normally distributed, the j’th autocovariance

of the second order approximation (26) is of the form

Γy(2)

j = Γy(1)

j +Γ(2)
j(28)

where

Γy(2)

j = E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]
(29)

Γy(1)

j = Γ(1)
j = E

(
dy(1)t dy(1)

′

t− j

)
(30)

Γ(2)
j = E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]
(31)

Proof. See the appendices.

The second order incrementdy(2)t can likewise be expressed recursively.14 With that recursive

expression in hand, the unknownΓ(2)
j in (28) can be computed by formulating an appropriate Lya-

punov equation. We regelate all details to the appendices.

Likewise, to compute the second moments of endogenous variables using the third order approx-

imation (20), we define the third order increment

dy(3)t ≡ y(3)t −y(2)t(32)

which is merely the difference between the third and second order approximations, as the third order

approximation adds no additional constant terms under normality. We summarize the resulting

second moment calculations at third order in the following proposition

Proposition 5.2. Assuming the exogenous shocks are normally distributed, the j’th autocovariance

of the third order approximation (20) takes the form

Γy(3)

j = Γy(2)

j +Γ(3)
j +Γ(1),(3)

j +
(

Γ(1),(3)
j

)′
(33)

14See, again, Lan and Meyer-Gohde (2013).
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where

Γy(3)

j = E

[(
y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′]
(34)

Γ(3)
j = E

(
dy(3)t dy(3)

′

t− j

)
(35)

Γ(1),(3)
j = E

(
dy(1)t dy(3)

′

t− j

)
(36)

andΓy(2)

j is as defined in Proposition5.1.

Proof. See the appendices.

Γy(3)

j is the j ’th autocovariance of endogenous variables computed usingthe third order approx-

imation (20), Γ(3)
j the j ’th autocovariance of the third order incrementdy(3)t , andΓ(1),(3)

j the j ’th

autocovariance between the first and the third order incrementsdy(1)t anddy(3)t . Analogous to (28)

in Proposition5.1, (33) decomposes the second moments into order of approximation: When the

approximation moves to the third order, the second moments of endogenous variables are those

computed using second order approximation (26), adjusted by the second moments ofdy(3)t itself

and the interaction with the first order incrementdy(1)t .

With the recursive form of the third order incrementdy(3)t ,15 the two unknown quantities,Γ(3)
j

andΓ(1),(3)
j , in (33) for calculating the covariance matrices of the third orderapproximation can be

computed by formulating appropriate Lyapunov equations. The details are in the appendices.

5.3 A Variance Decomposition

The third order approximation, (20), decomposes naturally into orders of nonlinearity and risk ad-

justment. This dissects the individual contributions of the sequence of realized shocks and future

shocks and a variance decomposition can be accordingly derived to analyze the composition of the

volatility of endogenous variables.

Let y(3)risk
t ≡ 1

2yσ2 + 1
2 ∑∞

i=0yσ2,iεt−i denote risk adjustment channel, with a constant risk adjust-

ment at second order (1
2yσ2) and a time-varying risk adjustment channel at third order (1

2 ∑∞
i=0yσ2,iεt−i)

15See, again, Lan and Meyer-Gohde (2013).
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andy(3)amp
t collect all the other terms in the third order approximation(20) capturing the amplifica-

tion effects, we can rewrite (20) as

y(3)t ≡ y(3)risk
t +y(3)amp

t(37)

Centering the previous equation around its mean,16 multiplying the resulting expression with its

transposition and applying the expectations operator yields the following variance decomposition

Γy(3)

0 = Γy(3)risk

0 +Γy(3)risk,amp

0 +Γy(3)amp

0(38)

whereΓy(3)

0 is the variance of the endogenous variables.Γy(3)risk

0 =E

[(
y(3)risk

t −Ey(3)risk
t

)(
y(3)risk

t −Ey(3)risk
t

)′]

stores the variations in the endogenous variables come fromthe time-varying risk adjustment chan-

nel alone. Γy(3)amp

0 = E

[(
y(3)amp

t −Ey(3)amp
t

)(
y(3)amp

t −Ey(3)amp
t

)′
]

stores the variations come

from the amplification channels of all three orders.Γy(3)risk,amp

0 is the sum ofE
[(

y(3)amp
t −Ey(3)amp

t

)
y(3)risk′

t

]

and its transposition, storing the variations come from theinteraction between the two types of chan-

nels.

Both y(3)risk
t andy(3)amp

t can be expressed recursively. With those recursive expressions,Γy(3)risk

0

andΓy(3)amp

0 can be computed by formulating appropriate Lyapunov equations (See the appendices for

details). AsΓy(3)

0 is already known from Proposition5.2, Γy(3)risk,amp

0 can be computed by subtracting

Γy(3)risk

0 andΓy(3)amp

0 from Γy(3)

0 .

5.4 Simulated Moments

Apart from the theoretical moments, we can simulate the third order approximation (20) and com-

pute the moments of the simulated series to analyze the statistical implications of the model. Lan

and Meyer-Gohde (2012) show that nonlinear approximation of the policy function (19) preserve

the stability of the linear approximation or first order approximation and, hence, does not generate

explosive time paths in simulations.

Simulation methods for moment calculations are, however, not always feasible for state space

16NoteEy(3)risk
t = 1

2yσ2 andEy(3)amp
t = y+ 1

2 ∑∞
j=0y j , jE [εt ⊗ εt ].
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perturbations. Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006), Fernández-Villaverde and

Rubio-Ramı́rez (2006) and Kim, Kim, Schaumburg, and Sims (2008) note that higher order Taylor

approximations to state space perturbation policy function can be potentially explosive in simula-

tions. Truncation of the distribution from which exogenousshocks are drawn or the application of

pruning schemes, like proposed by Kim, Kim, Schaumburg, andSims (2008) for a second order

approximation,17 can prevent such behavior. While this imposes stability on simulations of higher

order approximations, pruning is an ad hoc procedure as noted by Lombardo (2010) and poten-

tially distortive even when the simulation is not on an explosive path (See, Den Haan and De Wind

(2012)). Though this might give rise to reasonable doubts regarding the accuracy and validity of

moments calculated using perturbations, we will show that this is not the case with our nonlinear

moving average.

As (20) generates stable time paths, moments computed by simulating (20) should asymptoti-

cally converge to their theoretical counterparts.

[Figure 1 about here.]

Figure1 is an example of this check. It depicts the evolution path of the density of the simulated

variance of the pricing kernel in the model described in Section 2 under the benchmark calibration.

Densities of the simulated variance of the pricing kernel are calculated using a kernel density es-

timation and 100 simulations at the indicated length. The theoretical variance, denoted by the red

dashed line, is 0.0666 and all densities are in general centered around this value. The distributions

of simulated variance are more dispersed in short-run simulations, tightening up to the theoretical

value as the length increases consistent with asymptotic convergence of the simulated moments to

their theoretical couterparts we calculated above.

17See Lan and Meyer-Gohde (2013) for an overview and comparison of pruning algorithms at second and third order
and their relation to our nonlinear moving average.
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6 Analysis

In this section, we report the performance of the model underthe different calibrations. We present

impulse responses of shocks in productivity growth and its volatility for both macroeconomic and

asset pricing variables, to analyze the role of the amplification and risk adjustment channel in shock

propagation. We then proceed to the moments and the results of the variance decomposition intro-

duced in Section5.3 to identify and quantify the individual contribution of thetime-varying risk

adjustment channel to the total variation. In addition, we analyze effect of adding stochastic volatil-

ity on model’s ability of attaining the Hansen-Jagnanthan bounds.

6.1 Impulse Responses and Simulations

We analyze the impulse responses to shocks in productivity growth and shock in its volatility for

macroeconomic and asset pricing variables. We also simulate the conditional market price of risk

under stochastic volatility and with growth shocks of constant variance to observe the change in the

variations of this variable under conditional heteroskedasticity.

[Figure 2 about here.]

Figure2 depicts the impulse response and its contributing components for capital to a positive,

one standard deviation shock inεσa,t . The upper panel displays the impulse responses at first, second

and third order as deviations from their respective (non)stochastic steady states (themselves in the

middle right panel). In the the middle left panel and the middle column of panels in the lower half

of the figure, the contributions to the total impulse responses from the first, second and third order

amplification channels, that is,yi , yi,i andyi,i,i in the third order approximation (20), are displayed.

Notice that there is no response in these amplification channels. All responses to this volatility shock

come from the lower left panel of the figure where the time-varying risk adjustment channelyσ2,i

is displayed. In other words, for capital, a volatility shock by itself propagates solely through the

time-varying risk adjustment channel.
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Capital responds positively to a positive volatility shock. This captures the household’s pre-

cautionary reaction to the widening of the distribution of future shocks. Our risk-averse household

accumulates a buffer stock in capital to ensure itself against the increased future risk of productivity

growth shocks from a more dispersed distribution.

[Figure 3 about here.]

Figure3 depicts the systematic responses at the third order of macroeconomic variables as de-

viations from their nonstochastic steady states to a positive, one standard deviation volatility shock.

The household accumulates a buffer stock of capital by increasing current investment on impact of

the shock. As the allocation has not changed, the household finances this investment through a de-

crease in current consumption, resulting in an increase in the marginal utility of consumption. The

intratemporal labor supply equation (8) implies this increased marginal utility of consumption leads

to an increase in the marginal utility of leisure, and therefore a decrease in time spend on leisure.

The increased labor effort, with the capital stock being fixed on impact as it is a state variable and

with the productivity having not changed,18 translates into an increase in current output partially

offsetting the costs borne by consumption of the increased investment for the buffer stock of cap-

ital. Thus, this model predicts a boom in economic activity following an increase in risk, as firms

produce and households work to accumulate the necessary buffer stock. A richer model of invest-

ment that, for example, includes variable capacity utilization can overturn this result, see Bidder and

Smith (2012). While the impulse responses for the macroeconomic variables are not pictured with

their contributing components, responses of these variables to a volatility shock come solely from

the time-varying risk adjustment channel. The volatility shock is persistent but not permanent. As

the shock dies out and productivity shocks fail to materialize from their widened distribution, the

household winds down its buffer stock of capital by increasing consumption and leisure, leading to

a fall in output and investment.

18Remember, it is the distribution governing future productivity shocks that is being shocked here, not the level of
productivity itself.
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[Figure 4 about here.]

Figure4 depicts the impulse responses and their contributing components for the expected risk

premium to positive, one standard deviation shocks inεσa,t andεz,t (Figure4aand4b respectively).

Note that both the volatility shock and productivity growthshock propagate solely throughyσ2,i the

time-varying risk adjustment channel for this variable andthere are no responses in the amplification

channels of any of the three orders. Moreover, the responsesto the volatility shock are almost two

orders magnitude larger than the responses to the growth shock. Hence, figure4 implies that almost

all the variations in this variable are driven solely by volatility shocks with the contribution of the

growth shock to the total variation negligible.

[Figure 5 about here.]

Figure5 depicts the simulated time paths of the squared conditionalmarket price of risk19 under

the second and the baseline calibration of the model (Figure5a and5b respectively). When there

is no volatility shock, the conditional market price exhibits minimal fluctuations along the simula-

tion path. Adding stochastic volatility, however, inducesa substantial amount of variations in this

variable. This is consistent with the interpretation that volatility shocks are a source of conditional

heteroskedasticity. The displayed time variation in the conditional market price of risk is roughly

consistent with the empirical variations in the (lower bound of) market price of risk as measured

over different periods of time the past 130 odd years (See, Cogley and Sargent (2008, p. 466)).

6.2 Moments Comparison

We compare the mean and standard deviations of the third order approximation (20) to those reported

in Tallarini (2000) for his model and post-war U.S. data. Theresults of the variance decomposition

in Section5.3 are reported, allowing us to pin down the contribution from the time-varying risk

adjustment channel to the total variance of the endogenous variables.

19We square this variable to eliminate the kink at the deterministic steady state, so that perturbation methods can be
applied.
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[Table 3 about here.]

The third column of Table3 reports the theoretical means under the baseline calibration of the

model. The fourth column reports means of Tallarini’s (2000) model under the same calibration but

without the volatility shock. For both macroeconomic and asset pricing variables, our theoretical

means are in line with those of Tallarini (2000)20. As (21) implies, the theoretical means will

generally differ from the deterministic steady states reported in the second column of the table since

the mean at second and third order is adjusted for the infinitesum of variance over realized shocks

1
2 ∑∞

j=0y j , jE (εt ⊗ εt) and the variance of future shocks1
2yσ2.

[Table 4 about here.]

The second column of Table4 reports the theoretical standard deviations of the third order ap-

proximation (20) under the baseline calibration of the model. Comparing to the standard deviations

reported in the third and fourth column, the theoretical standard deviations are in line with those

reported in Tallarini (2000), both model based and empirical.

[Table 5 about here.]

Table 5 reports the results of the variance decomposition under thebaseline and the second

calibration without stochastic volatility. For each calibration, the table reports the percentage con-

tributions of the first order amplification channely(1)t and the time-varying risk adjustment channel

y(3)risk
t to the total variance of the endogenous variables as the overall majority of variations come

from these two channels. The second and third column report the decomposition results in absence

of volatility shock and the last two columns in presence of volatility shock. For the conditional

market price of risk and the expected risk premium, all variation comes from the time-varying risk

20The fact that Tallarini chooses an iterative implementation of a modified LQ approximation method proposed by
Hansen and Sargent (1995) to solve his model may account for the remaining difference.
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adjustment channel regardless of whether there is volatility shock. This is consistent with the im-

pulse responses for the expected risk premium (Figure4), where we observed that both the growth

and volatility shock propagate solely through the time-varying risk adjustment channel.

For the risk premium and macroeconomic variables, adding the volatility shock alters the com-

position of variance. In the absence of the volatility shock, the contribution of the time-varying risk

adjustment channel is negligible and almost all variation comes from the first order amplification

channel. Adding stochastic volatility, however, operationalizes the time-varying risk channel, as

a large portion of variance now comes through this channel. Since, for macroeconomic variables,

actions in the time-varying risk adjustment channel can be explained by the risk-averse household’s

precautionary motives, this variance decomposition result implies that such motives account for a

larger portion of variance in the presence of stochastic volatility than in the absence thereof.

From a methodological point of view, in the absence of stochastic volatility shock, a first or-

der linear approximation would thus appear sufficient for computing the theoretical variance of

macroeconomic variables. However, theoretical variancesneed to be computed using a third order

approximation in the presence of stochastic volatility andfor conditional asset pricing measures, as

otherwise a large portion or all of the variance will be missed through the neglect of time varying

risk adjustment and higher order amplification effects.

6.3 Stochastic Volatility and Hansen-Jagannathan Bounds

We evaluate the model’s ability of attaining the Hansen-Jagannathan bounds under the three different

calibrations, as they are an important empirical measure for a model’s ability to replicate asset

pricing facts that depend on the first two moments of the pricing kernel.

[Figure 6 about here.]

Figure6 depicts the unconditional mean standard deviation pairs ofthe pricing kernel generated

by the model under the three different calibrations. Under the baseline (stochastic volatility) and
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second (constant variance) calibrations, the preferencesare in recursive form, and therefore when

the volatility of the kernel increases with risk aversion (here from one to five, ten, twenty, thirty,

forty, fifty, and one hundred), the unconditional mean of thekernel is left (essentially) unchanged

and the model approaches the Hansen-Jagannathan Bounds from below. The expected utility cal-

ibration generates a volatile pricing kernel at the cost of reducing its unconditional mean, as the

EIS and risk aversion are inversely correlated in the expected utility, generating Weil’s (1989) risk

free rate puzzle. Figure6a shows that given the same value of risk aversion, the calibration with

stochastic volatility (baseline calibration) generates amore volatile pricing kernel than the constant

volatility calibration. In other words, to generate certain amount of volatility in the pricing kernel,

the model with volatility shock appears to need less risk aversion than the model without volatility

shock. This is achieved, however, at the cost of increasing the variance of the log consumption

growth. As figure6b shows, if we hold that variance constant at its empirical counterpart by reduc-

ing the homoskedastic component of the productivity growthshock, the effect of volatility shock in

terms of further increasing the volatility in the pricing kernel vanishes, reiterating the conditional

heteroskedastic interpretation of volatility shocks.

7 Conclusion

We have solved a business cycle model with recursive preferences and stochastic volatility with a

third order perturbation approximation to the nonlinear moving average policy function. We use

the impulse responses generated by this third order approximation to analyze the propagation mech-

anism of a volatility shock, and find that for macroeconomic variables, a volatility shock by itself

propagates solely through a time-varying risk adjustment channel. For conditional asset pricing vari-

ables, this time-varying risk adjustment channel is the only working channel for the transmission of

shocks, both to productivity growth and its volatility.

We have derived a closed-form calculation of the theoretical moments of the endogenous vari-
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ables using a third order approximation. Our calculation ofmoments lends itself to a decomposi-

tion that disentangles the individual contributions of time-varying risk adjustment and amplification

channels to the total variance. In our model, we find that adding stochastic volatility alters the com-

position of variance, making a time-varying risk channel a substantial contributor of variance. For

macroeconomic variables, variations that come from the time-varying risk adjustment channel can

be explained by the household’s precautionary savings desires and, in the presence of stochastic

volatility, we find a large portion of variations in macroeconomic variables is driven by precaution-

ary behavior.

In linear approximations, variance decompositions can be applied to study the individual con-

tribution of each shock to the total variance. The channels of risk adjustment and amplification

we have derived here are perhaps a step towards extending this shock-specific decomposition to

nonlinear perturbation approximations.
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Perturbation Methods and a Change of Variables,”Journal of Economic Dynamics and Control,
30(12), 2509–2531.

HANSEN, L. P., AND R. JAGANNATHAN (1991): “Implications of Security Market Data for Models
of Dynamic Economies,”Journal of Political Economy, 99(2), 225–62.

HANSEN, L. P., AND T. J. SARGENT (1995): “Discounted Linear Exponential Quadratic Gaussian
Control,” Automatic Control, IEEE Transactions on, 40(5), 968 –971.

(2007):Robustness. Princeton University Press.

JIN , H.-H., AND K. L. JUDD (2002): “Pertubation Methods for General Dynamic Stochastic Mod-
els,” Mimeo April.

JINADASA , K. G., AND D. S. TRACY (1986): “Higher Order Moments of Random Vectors Using
Matrix Derivatives,”Stochastic Analysis and Applications, 4(4), 399 – 407.

JUDD, K. L. (1998):Numerical Methods in Economics. MIT Press, Cambridge, MA.

JUSTINIANO, A., AND G. E. PRIMICERI (2008): “The Time-Varying Volatility of Macroeconomic
Fluctuations,”American Economic Review, 98(3), 604–41.

K IM , J., S. KIM , E. SCHAUMBURG, AND C. A. SIMS (2008): “Calculating and Using Second-
Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models,”Journal of Economic
Dynamics and Control, 32(11), 3397–3414.

KREPS, D. M., AND E. L. PORTEUS (1978): “Temporal Resolution of Uncertainty and Dynamic
Choice Theory,”Econometrica, 46(1), 185–200.

LAN , H., AND A. M EYER-GOHDE (2012): “Solving DSGE Models with a Nonlinear Moving
Average,” Mimeo July.

(2013): “Pruning in Perturbation DSGE Models: Guidance from Nonlinear Moving Aver-
age Approximations,” Mimeo.

25



LOMBARDO, G. (2010): “On Approximating DSGE Models by Series Expansions,” Working Paper
Series 1264, European Central Bank.

MAGNUS, J. R., AND H. NEUDECKER (1979): “The Commutation Matrix: Some Properties and
Applications,”The Annals of Statistics, 7(9), 383–394.

MEHRA, R., AND E. C. PRESCOTT(1985): “The Equity Premium: A Puzzle,”Journal of Monetary
Economics, 15(2), 145–161.

RUDEBUSCH, G. D., AND E. T. SWANSON (2012): “The Bond Premium in a DSGE Model with
Long-Run Real and Nominal Risks,”AEJ: Macroeconomics, 4(1), 105 – 143.
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(2012): “The term structure of interest rates in a DSGE modelwith recursive preferences,”Jour-
nal of Monetary Economics, 59(7), 634–648.

WEIL , P. (1989): “The Equity Premium Puzzle and the Risk-Free Rate Puzzle,”Journal of Monetary
Economics, 24(3), 401–421.

(1990): “Nonexpected Utility in Macroeconomics,”The Quarterly Journal of Economics,
105(1), 29–42.

26



A Appendices

A.1 Detrending the Model

Stationary consumption, investment, capital stock and output, denoted by the lower case letters, are

defined as follows

ct ≡
Ct

eZt
, It ≡

It
eZt

, kt ≡
Kt

eZt
, yt ≡

Yt

eZt
,(39)

For notational ease in detrending the model, we define a combined shockεa,t , containing both

the homoskedastic and heteroskedastic components of the productivity growth shock

εa,t ≡ σze
σz,t εz,t(40)

The productivity growth process can therefore be written as

at ≡ Zt −Zt−1 = a+ εa,t(41)

While detrending, the exponential form of the foregoing will be frequently used

eat =
eZt

eZt−1
= ea+εa,t(42)

The goal is essentially to substituteCt , It , Kt andYt for their stationary counterparts in the relevant

model equations. We start with the production function

(
yte

Zt
)
=

(
kt−1eZt−1

)α (
eZt Nt

)1−α
(43)

⇒yt =

(
eZt

eZt−1

)−α

kα
t−1N1−α

t(44)

⇒yt = e−α(a+εa,t)kα
t−1N1−α

t(45)

Detrending the capital accumulation law

(
kte

Zt
)
= (1−δ)

(
kt−1eZt−1

)
+
(
ite

Zt
)

(46)

⇒kt = (1−δ)
eZt−1

eZt
kt−1+ it(47)

⇒kt = (1−δ)e−a−εa,t kt−1+ it(48)

Detrending the market clearing condition is straightforward as it is a contemporaneous relation-
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ship

(
yte

Zt
)
=

(
cte

Zt
)
+
(
ite

Zt
)

(49)

⇒yt = ct + it(50)

Combing (45), (48) and (50) yields the detrended resource constraint

ct +kt = e−α(a+εa,t)kα
t−1N1−α

t +(1−δ)e−a−εa,t kt−1(51)

Detrending the labor supply equation

ψ
1−Nt

=
1

cteZt
(1−α)

(
kt−1eZt−1

)α
eZt(1−α)N−α

t(52)

⇒
ψ

1−Nt
= (1−α)e−α(a+εa,t) 1

ct
kα

t−1N−α
t(53)

The risky ratert is stationary and we reexpress it in terms of the stationary variables

1+ rt = (1−δ)+α
(
kt−1eZt−1

)α−1(
eZt Nt

)1−α
(54)

⇒1+ rt = (1−δ)+αkα−1
t−1 e(a+εa,t)(1−α)N1−α

t(55)

We now move to the value function. As the felicity function islogarithmic in nonstationary

consumption, removing the trend in consumption will leave aterm linear in the level of productivity

that when subtracted fromVt gives the stationary value functionvt

vt =Vt −blneZt =Vt −bZt(56)

Substituting the relevant variables for their stationary counterparts yields

vt +bZt = ln
(
cte

Zt
)
+ψ ln(1−Nt)+β

2
γ

ln
(

Et

[
exp

( γ
2
[vt+1+bZt+1]

)])
(57)

⇒vt = lnct +ψ ln(1−Nt)+β
2
γ

ln

(
Et

[
exp

(
γ
2

[
vt+1+b

(
Zt+1−

b−1
bβ

Zt

)])])
(58)

It follows that the remaining nonstationarities can be offset if

b−1
bβ

= 1(59)

which pins downb as

b=
1

1−β
(60)
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Inserting (60) in (58) yields the stationary value function

vt = lnct +ψ ln(1−Nt)+β
2
γ

ln

(
Et

[
exp

(
γ
2

[
vt+1+

1
1−β

(a+ εa,t+1)

])])
(61)

While stationary, the foregoing value function does not fit in the problem statement (18) in the

text, thus can not be implemented directly in perturbation software packages like Dynare. This

problem is caused by nonlinear twisting of the expected continuation value, and can be fixed by

redefining this conditional expectation as a new variable known in periodt. Besides, the twisted

expected continuation value is numerically unstable, due to the logarithmic transformation, whenγ

approaches zero or becomes very large. To counteract this, we define21

ṽt ≡ Et

[
exp

(
γ
2

[
vt+1+

1
1−β

ε̃t+1−v

])]
(62)

wherev denotes the deterministic steady state value of the stationary value function (61) and can be

computed as follows

v=
1

1−β

[
lnc+ψ ln(1−N)+

β
1−β

a

]
(63)

Substitutingvt+1 in (61) for ṽt yields the normalized, stationary value function

vt = lnct +ψ ln(1−Nt)+β
2
γ

[
ln ṽt +

γ
2

(
1

1−β
a+v

)]
(64)

With the stationary value function in hand, we reexpress thepricing kernel in terms of stationary

variables

mt+1 = β
cteZt

ct+1eZt+1

exp
(

γ
2

[
vt+1+

1
1−βZt+1

])

Et

[
exp

(
γ
2

[
vt+1+

1
1−βZt+1

])](65)

Multiplying both the denominator and numerator of the foregoing with exp
(
− γ

2
1

1−βZt

)
, and

rearranging yields

mt+1 = β
ct

ct+1
e−(a+εa,t+1)

exp
(

γ
2

[
vt+1+

1
1−β (a+ εa,t+1)

])

Et

[
exp

(
γ
2

[
vt+1+

1
1−β (a+ εa,t+1)

])](66)

Writing out the definition ofεa,t+1 yields (13) in the text. Recognizing the expectational term in

the previous equation can be replaced by the productṽt exp
(

γ
2

[
v+ 1

1−βa
])

, we substitute it for this

21Rudebusch and Swanson (2012) adopt, in their companion Mathematica codes, a very similar procedure to improve
numerical stability.
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product and collect terms

mt+1 = β
ct

ct+1
e−(a+εa,t+1)

exp
(

γ
2

[
vt+1+

1
1−βεa,t+1−v

])

ṽt
(67)

The periodt counterpart of the foregoing follows

mt = β
ct−1

ct
e−(a+εa,t)

exp
(

γ
2

[
vt +

1
1−β εa,t −v

])

ṽt−1
(68)

A.2 Proof of Proposition 5.1

Rearrange the definition of the second order increment to express the second order approximation as

the sum of the first order approximation, the second order increment, and the second order constant

risk adjustment

y(2)t = y(1)t +dy(2)t +
1
2

yσ2(69)

Applying the expectations operator to the foregoing yieldsthe mean of the second order approxima-

tion

Ey(2)t = Ey(1)t +Edy(2)t +
1
2

yσ2(70)

Centering the second order approximation (69) around its mean by subtracting (70) from (69) yields

y(2)t −Ey(2)t =
(

y(1)t −Ey(1)t

)
+
(

dy(2)t −Edy(2)t

)
(71)

Noting that the mean of the first order approximation is the deterministic steady state ofyt , i.e.,

Ey(1)t = y, the foregoing can be rewritten as

y(2)t −Ey(2)t =
(

y(1)t −y
)
+
(

dy(2)t −Edy(2)t

)
(72)

Using the definition of the first order incrementdy(1)t ≡ y(1)t −y, the foregoing is

y(2)t −Ey(2)t = dy(1)t +
(

dy(2)t −Edy(2)t

)
(73)

Multiplying the foregoing with its transposition att − j and noting thatEy(2)t = Ey(2)t− j andEdy(2)t =

Edy(2)t− j yields
(

y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′
(74)

=
[
dy(1)t +

(
dy(2)t −Edy(2)t

)][
dy(1)t− j +

(
dy(2)t− j −Edy(2)t

)]′
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=dy(1)t dy(1)
′

t− j +
(

dy(2)t dy(1)
′

t− j −Edy(2)t dy(1)
′

t− j

)

+
(

dy(1)t dy(2)
′

t− j −dy(1)t Edy(2)
′

t

)
+
(

dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′

Applying the expectations operator to the foregoing delivers

E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′
]

(75)

=E
(

dy(1)t dy(1)
′

t− j

)
+E

(
dy(2)t dy(1)

′

t− j

)
−Edy(2)t Edy(1)

′

t− j

+E
(

dy(1)t dy(2)
′

t− j

)
−Edy(1)t Edy(2)

′

t +E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]

To simplify the foregoing, apply the expectations operatorto the definition of the first order incre-

ment, yielding its mean

Edy(1)t = Ey(1)t −y(76)

As Ey(1)t = y, the foregoing implies that the mean of the first order increment is zero

Edy(1)t = 0(77)

Using the this result and noting thatEdy(1)t = Edy(1)t− j , (75) reduces to

E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]
(78)

=E
(

dy(1)t dy(1)
′

t− j

)
+E

(
dy(2)t dy(1)

′

t− j

)
+E

(
dy(1)t dy(2)

′

t− j

)

+E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]

It then remains to show that

E
(

dy(2)t dy(1)
′

t− j

)
= 0, E

(
dy(1)t dy(2)

′

t− j

)
= 0(79)

One way is to use the moving average representation of the order increments. I.e., inserting the

moving average representation of the first and second order approximations in the definition of the

order increments yields

dy(1)t =
∞

∑
i=0

yiεt−i(80)

dy(2)t =
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(81)

Therefore the product of the two order increments, when set in expectation, takes the form of the

31



third moments of the shocks, which is equal to zero under normality.

A.3 Proof of Proposition 5.2

First note thatEy(3)t = Ey(2)t under normality22. Given this result, applyingthe expectations operator

to the definition of the third order incrementdy(3)t ≡ y(3)t −y(2)t immediately impliesEdy(3)t = 0.

Next, rearranging the definition of the third order increment delivers

y(3)t = y(2)t +dy(3)t(82)

Applying the expectations operator to the foregoing yields

Ey(3)t = Ey(2)t(83)

Centering (82) around its mean by subtracting (83) from (82) gives

y(3)t −Ey(3)t = y(2)t −Ey(2)t +dy(3)t(84)

Multiplying the foregoing with its transposition att− j and notingEy(3)t = Ey(3)t− j andEy(2)t = Ey(2)t− j

delivers
(

y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′
=dy(3)t dy(3)

′

t− j +
(

y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′

+dy(3)t y(2)
′

t− j −dy(3)t Ey(2)
′

t +y(2)t dy(3)
′

t− j −Ey(2)t dy(3)
′

t− j

Applying the expectations operator to the foregoing, noting Edy(3)t = 0, gives

E

[(
y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′]
=Et

[
dy(3)t dy(3)

′

t− j

]
+E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′
]

(85)

+E
(

dy(3)t y(2)
′

t− j

)
+E

(
y(2)t dy(3)

′

t− j

)

Rewrite the definition of the second order incrementdy(2)t ≡ y(2)t −y(1)t − 1
2yσ2 as

y(2)t = dy(2)t +y(1)t +
1
2

yσ2 = dy(2)t +dy(1)t + ȳ+
1
2

yσ2(86)

Given the foregoing expression and notingEdy(3)t = 0, E
(

y(2)t dy(3)
′

t− j

)
on the right hand side of (85)

can be rewritten as

E
(

y(2)t dy(3)
′

t− j

)
= E

[(
dy(2)t +dy(1)t + ȳ+

1
2

yσ2

)
dy(3)

′

t− j

]
= E

(
dy(1)t dy(3)

′

t− j

)
(87)

22To see this, applying the expectations operator to the second order approximation (26) and comparing the resulting
expression with the mean of the third order approximation (21)
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Noting thatE
(

dy(2)t dy(3)
′

t− j

)
is zero under normality23. Analogously,E

(
dy(3)t y(2)

′

t− j

)
on the right hand

side of (85) can be written as

E
[
dy(3)t y(2)

′

t− j

]
= E

(
dy(3)t dy(1)

′

t− j

)
(89)

Inserting the last two equations in (85) yields

E

[(
y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′]
=Et

[
dy(3)t dy(3)

′

t− j

]
+E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′
]

+E
(

dy(1)t dy(3)
′

t− j

)
+E

(
dy(3)t dy(1)

′

t− j

)

A.4 Second Moments ofdy(2)t

The second order incrementdy(2)t can be expressed recursively as

dy(2)t = αdy(2)state
t−1 +

1
2

[
β22dystate⊗[2]

t−1 +2β20

(
dy(1)state

t−1 ⊗ εt

)
+β00ε⊗[2]

t

]
(90)

If the previous equation can be cast as a linear recursion, then standard linear methods can be

applied to the computation of the second moments. Notedy(2)t , besides being linearly autoregressive

in the state variable block of itselfdy(2)state
t−1 , is a linear function of all the second order permutations

of products of the first order incrementdy(1)state
t−1 and the shocks. This relationship guides the cal-

culations, and we therefore compute the second moments ofdy(2)state
t first, then recover the second

moments of variables of interest24.

The state variable block of (90) takes the form

dy(2)state
t = αstatedy(2)state

t−1 +
1
2

βstate
22 dy(1)state⊗[2]

t−1 +βstate
20

(
dy(1)state

t−1 ⊗ εt

)
+

1
2

βstate
00 ε⊗[2]

t(91)

To cast the foregoing in a linear recursion, we take the statevariable block of the first order

incrementdy(1)state
t and raise it to the second Kronecker power, noting throughout we use(ns) to

23Again consider the moving average representation of the third order increment

dy(3)t =
1
2

∞

∑
i=0

yσ2,iεt−i +
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(88)

When multiplying with the moving average representation ofthe second order increment, the result, in expectation, is a
sum of the third and fifth moments of shocks, and equal to zero under normality.

24This procedure is widely adopted to minimize the dimension and improve the speed of the computation. See, e.g.,
Uhlig’s (1999) toolkit, Schmitt-Grohé and Uribe’s (2004)software package and Dynare.
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denote the number of state variables

dy(1)state⊗[2]
t =αstate⊗[2]dy(1)state⊗[2]

t−1 +(Kns,ns+ Ins2)
(
αstate⊗βstate

0

)(
dy(1)state

t−1 ⊗ εt

)
(92)

+βstate⊗[2]
0 ε⊗[2]

t

whereKns,ns is ans2×ns2 commutation matrix (See Magnus and Neudecker (1979)). Combing (91)

and (92) yields the following linear recursion containing the linear recursion ofdy(2)state
t

X(2)
t = Θ(2)XX(2)

t−1+

[
1
2βstate

00

βstate⊗[2]
0

]
E
(

ε⊗[2]
t

)
+Φ(2)XΞ(2)

t(93)

where

X(2)
t =

[
dy(2)state

t

dy(1)state⊗[2]
t

]
(94)

Θ(2)X =

[
αstate 1

2βstate
22

0 αstate⊗[2]

]
(95)

Φ(2)X =

[
1
2βstate

00 βstate
20

βstate⊗[2]
0 (Kns,ns+ Ins2)

(
αstate⊗βstate

0

)
]

(96)

Ξ(2)
t =

[
ε⊗[2]

t −Eε⊗[2]
t

dy(1)state
t−1 ⊗ εt

]
(97)

While the second term on the right hand side of (93) vanishes after centering (93) around its

mean, it ensures, by compensating the subtraction ofE
(

ε⊗[2]
t

)
in Ξ(2)

t , thatΞ(2)
t is orthogonal25 to

X(2)
t−1

E
(

X(2)
t−1Ξ(2)′

t

)
= 0(98)

With the linear recursion ofX(2)
t , the second order increment (90) can be recast as the following

linear recursion

dy(2)t = Θ(2)X(2)
t−1+

[
1
2β00

β⊗[2]
0

]
E
(

ε⊗[2]
t

)
+Φ(2)Ξ(2)

t(99)

where Θ(2) =
[
α 1

2β22
]
, Φ(2) =

[
1
2β00 β⊗[2]

0

]

NotingE
(

Ξ(2)
t

)
= 0 by construction, and the mean of the foregoing writes

Edy(2)t = Θ(2)EX(2)
t +

[
1
2β00

β⊗[2]
0

]
E
(

ε⊗[2]
t

)
(100)

25This orthogonality condition significantly simplifies the calculation of the autocovariances that followed.
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A.4.1 Contemporaneous Covariance

Centering (99) around its mean—by subtracting (100) from (99)—yields the following centered

linear recursion of the second order increment
(

dy(2)t −Edy(2)t

)
= Θ(2)

(
X(2)

t−1−EX(2)
t

)
+Φ(2)Ξ(2)

t(101)

Multiplying the foregoing with its transposition and applying the expectations operator to the

resulting expression yields the contemporaneous varianceof the second order increment

Γ(2)
0 = Θ(2)Γ(2)X

0 Θ(2)′ +Ω(2)(102)

where

Γ(2)X
0 = E

[(
X(2)

t −EX(2)
t

)(
X(2)

t −EX(2)
t

)′
]

(103)

Γ(2)
0 = E

[(
dy(2)t −Edy(2)t

)(
dy(2)t −Edy(2)t

)′]
(104)

Ω(2) = Φ(2)E
(

Ξ(2)
t Ξ(2)′

t

)
Φ(2)′(105)

This requires the contemporaneous variance ofX(2)
t , i.e.,Γ(2)X

0 , as well asE
(

Ξ(2)
t Ξ(2)′

t

)
. Starting

with Γ(2)X
0 , we can proceed by applying the expectations operator to (93) to yield

EX(2)
t = Θ(2)XEX(2)

t +

[
1
2βstate

00

βstate⊗[2]
0

]
E
(

ε⊗[2]
t

)
(106)

Centering the foregoing around its mean yields

X(2)
t −EX(2)

t = Θ(2)X
(

X(2)
t−1−EX(2)

t

)
+Φ(2)XΞ(2)

t(107)

Multiplying the foregoing with its transposition and applying the expectations operator, it follows

the unknown contemporaneous variance ofX(2)
t solves the following Lyapunov equation26

Γ(2)X
0 = Θ(2)XΓ(2)X

0 Θ(2)X′
+Ω(2)X(108)

where

Ω(2)X = Φ(2)XE
(

Ξ(2)
t Ξ(2)′

t

)
Φ(2)X′

(109)

26Note Γ(2)X
0 is of dimension(ns+ ns2)× (ns+ ns2). For models with a large number of state variables, splitting

(108) into four Sylvester equations of smaller size by exploiting the triangularity ofΘ(2)X and solving them one by one
is computationally a lot less expensive than solving (108) as a whole. This division also enables exploitation of the

symmetry ofΓ(2)X
0 and therefore can avoid redundant computations.
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(110)

Thus,Γ(2)X
0 can be calculated givenE

(
Ξ(2)

t Ξ(2)′
t

)
and, therefore,Γ(2)X

0 in (102) too. We requires

this variance, which is given by

E
(

Ξ(2)
t Ξ(2)′

t

)
=

[
(Ine2 +Kne,ne) [E (εtε′t)⊗E (εtε′t)] 0

0 Γ(1)X
0 ⊗E (εtε′t)

]
(111)

In the right hand side of (111), Γ(1)X
0 is the state variable block of the contemporaneous variance

of the first order approximation (or of the first order increment), and therefore already known from

calculations at the first order.

The upper left entry of the right hand side of (111) contains the fourth moment of the shocks

and can be computed using Tracy and Sultan’s (1993, p. 344) formula. The two zero entries in (111)

are due to the fact that the third moments of the shocks are zero under normality, anddy(1)state
t−1 is

uncorrelated with current shocks.

A.4.2 Autocovariances

Now we turn to the autocovariances ofdy(2)t . To start, note that under normality,Ξ(2)
t is serially

uncorrelated

E
(

Ξ(2)
t Ξ(2)′

t− j

)
= 0 ∀ j > 0(112)

Given the contemporaneous varianceΓ(2)X
0 , multiplying (107) with the transposition of (101)

and taking expectation yields the contemporaneous variance between theX(2)
t anddy(2)t

Γ(2)X,dy
0 = Θ(2)XΓ(2)X

0 Θ(2)′ +Ω(2)X,dy(113)

where

Γ(2)X,dy
0 = E

[(
X(2)

t −EX(2)
t

)(
dy(2)t −Edy(2)t

)′
]

(114)

Ω(2)X,dy= Φ(2)XE
(

Ξ(2)
t Ξ(2)′

t

)
Φ(2)′(115)

With all the three contemporaneous variances in hand, the orthogonality (98) and (112) ensures

the autocovariance ofdy(2)t can be computed with the following recursive formulae

Γ(2)
j = Θ(2)Γ(2)X,dy

j−1(116)
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Γ(2)X,dy
j = Θ(2)XΓ(2)X,dy

j−1(117)

where

Γ(2)
j = E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]
(118)

Γ(2)X,dy
j = E

[(
X(2)

t −EX(2)
t

)(
dy(2)t− j −Edy(2)t

)′]
(119)

A.5 Second Moments ofdy(3)t

The third order increment can be expressed recursively as

dy(3)t =αdy(3)state
t−1 +

1
6

[
β333,1dy(1)state⊗[3]

t−1 +β000ε
⊗[3]
t

]
(120)

+β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+β20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+β330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)
+βσ20εt +βσ21dy(1)state

t−1

]

Its state variable block takes the form

dy(3)state
t =αstatedy(3)state

t−1 +
1
6

[
βstate

333,1dy(1)state⊗[3]
t−1 +βstate

000 ε⊗[3]
t

]
(121)

+βstate
22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+βstate

20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
βstate

300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+βstate

330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)

+βstate
σ20 εt +βstate

σ21 dy(1)state
t−1

]

From the terms on the left hand side of the foregoing, we need to build up two additional recur-

sions, the first in the Kronecker product of the first and second order increments and the second in

the triple Kronecker product of the first order increment, toconstruct the linear recursion containing

dy(3)state
t that can be used for calculating moments

dy(2)state
t ⊗dy(1)state

t =αstate⊗[2]
(

dy(2)state
t−1 ⊗dy(1)state

t−1

)
+

[(
1
2

βstate
22

)
⊗αstate

]
dy(1)state⊗[3]

t−1

(122)

+
(
αstate⊗βstate

0

)(
dy(2)state

t−1 ⊗ εt

)
+

[(
1
2

βstate
00

)
⊗βstate

0

]
εstate⊗[3]

t

+

[(
βstate

20 ⊗αstate)Kns∗ne,ns+

(
1
2

βstate
22

)
⊗βstate

0

](
dy(1)state⊗[2]

t−1 ⊗ εt

)
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+

([(
1
2

βstate
00

)
⊗αstate

]
Kne2,ns+βstate

20 ⊗βstate
0

)(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)

dy(1)state⊗[3]
t =αstate⊗[3]dy(1)state⊗[3]

t−1 +βstate⊗[3]
0 ε⊗[3]

t(123)

+[(Kns,ns⊗ Ins+ Ins3)Kns2,ns+ Ins3]
(

αstate⊗[2]⊗βstate
0

)(
dy(1)state⊗[2]

t−1 ⊗ εt

)

+[Kns2,ns+(Kns,ns⊗ Ins+ Ins3)]
(

αstate⊗βstate⊗[2]
0

)(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)

Given the foregoing two equations, along with the state variable block of the first order increment

dy(1)state
t = αstatedy(1)state

t−1 +βstate
0 εt(124)

we construct the following linear recursion

X(3)
t = Θ(3)XX(3)

t−1+Φ(3)XΞ(3)
t(125)

where27

X(3)
t =




dy(3)state
t

dy(2)state
t ⊗dy(1)state

t

dy(1)state⊗[3]
t

dy(1)state
t



, Ξ(3)

t =




ε⊗[3]
t

dy(2)state
t−1 ⊗ εt

dy(1)state
t−1 ⊗

(
ε⊗[2]

t −Eε⊗[2]
t

)

dy(1)state⊗[2]
t−1 ⊗ εt

εt




(126)

Note there is no need to centerX(3)
t before computing its contemporaneous variance as its mean is

zero under normality, i.e.,EX(3)
t = 0. In the third entry ofΞ(3)

t , ε⊗[2]
t is adjusted using its mean, such

thatΞ(3)
t is orthogonal toX(3)

t−1

E
(

X(3)
t−1Ξ(3)′

t

)
= 0(127)

and it is can be shown thatΞ(3)
t is serially uncorrelated

E
(

Ξ(3)
t Ξ(3)′

t− j

)
= 0 ∀ j > 0(128)

A.5.1 Contemporaneous Covariance

With linear recursion (125), the third order increment (120) can be cast in a linear recursion28

dy(3)t = Θ(3)X(3)
t−1+Φ(3)Ξ(3)

t(129)

Multiplying the foregoing with its transposition and applying the expectations operator to the

27Θ(3)X andΦ(3)X are specified in sectionA.8.
28Θ(3) andΦ(3) are specified in sectionA.8.
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resulting expression yields the contemporaneous varianceof the third order increment

Γ(3)
0 = Θ(3)Γ(3)X

0 Θ(3)′ +Ω(3)(130)

where

Γ(3)
0 = E

(
dy(3)t dy(3)

′

t

)
(131)

Ω(3) = Φ(3)E
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)′(132)

To compute the yet known contemporaneous variance ofX(3)
t , i.e.,Γ(3)X

0 , we multiply (125) with

its transposition and apply the expectations operator to the resulting expression. It follows thatΓ(3)X
0

solves the following Lyapunov equation29

Γ(3)X
0 = Θ(3)XΓ(3)X

0 Θ(3)X′
+Ω(3)X(133)

where

Γ(3)X
0 = E

(
X(3)

t X(3)′
t

)
(134)

Ω(3)X = Φ(3)XE
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)X′

(135)

with E
(

Ξ(3)
t Ξ(3)′

t

)
as specified in sectionA.8.

Given Γ(3)X
0 , multiplying (125) with the transposition of (129) and applying the expectations

operator yields the contemporaneous variance betweenX(3)
t anddy(3)t

Γ(3)X,dy
0 = Θ(3)XΓ(3)X

0 Θ(3)′ +Ω(3)X,dy(136)

where

Γ(3)X,dy
0 = E

(
X(3)

t dy(3)
′

t

)
(137)

Ω(3)X,dy= Φ(3)XE
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)′(138)

29Note that (133) is a Lyapunov equation of dimension
(
ns+ns2+ns3+ns

)
×
(
ns+ns2+ns3+ns

)
. By exploiting

the triangularity ofΘ(3)X and the symmetry ofΓ(3)X
0 , that large Lyapunov equation can be split and reduced to 10

Sylvester equations of dimension up tons3×ns3.
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A.5.2 Autocovariances

For the autocovariance of the third order increment, the orthogonality (127) andΞ(3)
t being serially

uncorrelated, i.e., (128), ensure that it can be computed with the following recursive formulae

Γ(3)
j = Θ(3)Γ(3)X,dy

j−1(139)

Γ(3)X,dy
j = Θ(3)XΓ(3)X,dy

j−1(140)

where

Γ(3)
j = E

(
dy(3)t dy(3)

′

t− j

)
(141)

Γ(3)X,dy
j = E

(
X(3)

t dy(3)
′

t− j

)
(142)

A.6 Second Moments betweendy(1)t and dy(3)t

First rewrite the linear recursion of the first order increment (22) usingX(3)
t

dy(1)t =
[
0 0 0 α

]
X(3)

t−1+
[
0 0 0 0 β0

]
Ξ(3)

t(143)

Multiplying the foregoing with the transposition of the linear recursion of the third order incre-

ment (129), and applying the expectations operator to the resulting expression yields the contempo-

raneous covariance betweendy(1)t anddy(3)t

Γ(1),(3)
0 =

[
0 0 0 α

]
Γ(3)X

0 Θ(3)′ +
[
0 0 0 0 β0

]
E
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)′(144)

where

Γ(1),(3)
0 = E

(
dy(1)t dy(3)

′

t

)
(145)

The autocovariance,Γ(1),(3)
j , can be computed using the following recursive formula

Γ(1),(3)
j =

[
0 0 0 α

]
Γ(3)X,dy

j−1(146)
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A.7 Variance Decomposition

The decomposition the variance of the third order approximation follows directly from the decom-

position of the third order increment. Defining

dy(3)t ≡ dy(3)amp
t +dy(3)risk

t(147)

Multiplying the foregoing with its transposition and applying the expectations operator, a vari-

ance decomposition immediately follows

Γ(3)
0 = Γ(3)amp

0 +Γ(3)risk
0 +Γ(3)amp,risk

0 +
(

Γ(3)amp,risk
0

)′
(148)

where

Γ(3)amp
0 = E

(
dy(3)amp

t dy(3)amp′
t

)
(149)

Γ(3)risk
0 = E

(
dy(3)risk

t dy(3)risk′

t

)
(150)

Γ(3)amp,risk
0 = E

(
dy(3)amp

t dy(3)risk′
t

)
(151)

Proposition (5.2) in the text implies the contemporaneous variance of the variables of interest

takes the form

Γy(3)

0 = Γy(2)

0 +Γ(3)
0 +Γ(1),(3)

0 +
(

Γ(1),(3)
0

)′
(152)

Inserting the decomposedΓ(3)
0 , i.e., (148), in the previous equation yields the decomposition of

the contemporaneous variance of the variables of interest

Γy(3)

0 =Γy(2)

0 +Γ(3)amp
0 +Γ(3)risk

0 +Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
(153)

+Γ(1),(3)
0 +

(
Γ(1),(3)

0

)′

Note the decomposition (153) is not yet complete as the cross-contemporaneous varianceΓ(1),(3)
0

can be further broken down into two parts30

Γ(1),(3)
0 =E

(
dy(1)t dy(3)

′

t

)
(154)

=E

[
dy(1)t

(
dy(3)amp

t +dy(3)risk
t

)′
]

30In (154), Γ(1)amp,(3)amp
0 is used to denoteE

(
dy(1)t dy(3)amp′

t

)
as there is only amplification effects in the first order

incrementdy(1)t .
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=E
(

dy(1)t dy(3)amp′
t

)
+E

(
dy(1)t dy(3)risk′

t

)

=Γ(1)amp,(3)amp
0 +Γ(1)amp,(3)risk

0

Inserting the foregoing in (153) yields the complete variance decomposition

Γy(3)

0 =Γy(2)

0 +Γ(3)amp
0 +Γ(3)risk

0 +Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
(155)

+Γ(1)amp,(3)amp
0 +Γ(1)amp,(3)risk

0

+
(

Γ(1)amp,(3)amp
0 +Γ(1)amp,(3)risk

0

)′

LettingΓy(3)amp

0 collect the contribution from all amplification channels ofall three orders,Γy(3)risk,amp

0

collects all interaction between amplification and time-varying risk adjustment channels andΓy(3)risk

0

collects the contribution from the time-varying risk adjustment channel

Γy(3)amp

0 = Γy(2)

0 +Γ(3)amp
0 +Γ(1)amp,(3)amp

0 +
(

Γ(1)amp,(3)amp
0

)′
(156)

Γy(3)risk,amp

0 = Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
+Γ(1)amp,(3)risk

0 +
(

Γ(1)amp,(3)risk
0

)′
(157)

Γy(3)risk

0 = Γ(3)risk
0(158)

Inserting the foregoing in (155) yields (38) in the text. Note the first order amplification effect re-

ported in Table5 is included in (156). In particular, it is included inΓy(2)

0 . As implied by proposition

5.1, the contemporaneous variance of the second order approximation takes the form

Γy(2)

0 = Γy(1)

0 +Γ(2)
0(159)

whereΓy(1)

0 captures the first order amplification effect.

To compute the individual terms in (155), first notedy(3)amp
t collects all amplification effects and

dy(3)risk
t collects the time-varying risk adjustment effect in the third order increment

dy(3)amp
t =αdy(3)amp,state

t−1 +
1
6

[
β333,1dy(1)state⊗[3]

t−1 +β000ε
⊗[3]
t

]
(160)

+β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+β20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+β330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)]

dy(3)risk
t = αdy(3)risk,state

t−1 +
1
2

βσ20εt +
1
2

βσ21dy(1)state
t−1(161)
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We start with constructing an auxiliary vectorX(3D)
t−1 for this decomposition

X(3D)
t =




dy(3)amp,state
t

dy(3)risk,state
t

dy(2)state
t ⊗dy(1)state

t

dy(1)state⊗[3]
t

dy(1)state
t




(162)

With the foregoing auxiliary vector,dy(3)amp
t anddy(3)risk

t can be cast as linear recursions

dy(3)amp
t = Θ(3)ampX(3D)

t−1 +Φ(3)ampΞ(3)
t(163)

dy(3)risk
t = Θ(3)riskX(3D)

t−1 +Φ(3)riskΞ(3)
t(164)

where

Θ(3)amp=
[
α 0 β22

1
6β333,1

1
2βstate

300

(
Ins⊗Eε⊗[2]

t

)]
(165)

Θ(3)risk =
[
0 α 0 0 1

2βσ21

]
(166)

Φ(3)amp=
[

1
6β000

1
2β330,1

1
2β300 β20 0

]
(167)

Φ(3)risk =
[
0 0 0 0 1

2βσ20

]
(168)

Multiplying (163) with its transposition and applying the expectations operator yields the con-

temporaneous varianceΓ(3)amp
0 , which collects the contribution of amplification channelsto the total

variance of the third order increment

Γ(3)amp
0 = Θ(3)ampE

(
X(3D)

t−1 X(3D)′

t−1

)
Θ(3)amp′ +Φ(3)ampE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)amp′(169)

whereE
(

Ξ(3)
t Ξ(3)′

t

)
is as calculated in sectionA.4. E

(
X(3D)

t−1 X(3D)′

t−1

)
can be computed using the

following relationship

X(3)
t = ADX(3D)

t(170)

where

AD =




I I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


(171)

therefore

E
(

X(3D)
t−1 X(3D)′

t−1

)
= AD+E

(
X(3)

t−1X(3)′

t−1

)
AD+′

= AD+Γ(3)X
0 AD+′

(172)
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whereAD+ denotes the Moore-Penrose inverse ofAD andΓ(3)X
0 is already known. ThenΓ(3)amp

0 can

be computed using

Γ(3)amp
0 =

(
Θ(3)ampAD+

)
Γ(3)X

0

(
Θ(3)ampAD+

)′
+Φ(3)ampE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)amp′(173)

Likewise, the contemporaneous varianceΓ(3)risk
0 collects the contribution of the time-varying

risk adjustment channel to the total variance of the third order increment, and can be computed

using

Γ(3)risk
0 =

(
Θ(3)riskAD+

)
Γ(3)X

0

(
Θ(3)riskAD+

)′
+Φ(3)riskE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)risk′(174)

Γ(3)amp,risk
0 and its transposition collects the contribution of the interaction between the amplifi-

cation and time-vary risk adjustment channels to the total variance of the third order increment, and

can be computed using

Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
= Γ(3)

0 −Γ(3)amp
0 −Γ(3)risk

0(175)

To computeΓ(1)amp,(3)amp
0 , multiply (143) with the transposition of (163) and apply the expecta-

tions operator to the resulting expression to yield

Γ(1)amp,(3)amp
0 =

[
0 0 0 α

]
Γ(3)X

0

(
Θ(3)ampAD+

)′
+
[
0 0 0 0 β0

]
E
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)amp′

(176)

As Γ(1),(3)
0 was already computed in sectionA.6, Γ(1)amp,(3)risk

0 can be obtained by subtracting

the foregoing fromΓ(1),(3)
0 .

A.8 Coefficient Matrices

This section contains explicit expressions for several coefficient matrices left implicit above.

Θ(3) =
[
α β22

1
6β333,1

1
2β300

(
Ins⊗Eε⊗[2]

t

)
+ 1

2βσ21

]

Φ(3) =
[

1
6β000

1
2β330,1

1
2β300 β20

1
2βσ20

]
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Θ
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0
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E
(

Ξ(3)
t Ξ(3)′

t

)
=



E
(

ε⊗[3]
t ε⊗[3]′

t

)
E

[
ε⊗[3]

t

(
dy(1)state⊗[2]

t−1 ⊗ εt

)′]
. . .

E
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A.9 Computing Elements inE
(

Ξ(3)
t Ξ(3)′

t

)

For every nonzero entry ofE
(

Ξ(3)
t Ξ(3)′

t

)
in sectionA.8, the terms inside the expectations operator

are either i) second, fourth, or sixth moments of the shocks,or ii) the product of these moments with

the state variable block of the order increments, i.e.,dy(2)state
t−1 anddy(1)state

t−1 . The fourth and sixth

moments of the shocks can be computed using Tracy and Sultan’s (1993, p. 344-345) formulae. E.g.,

for sixth moments in the formE
(

ε⊗[3]
t ε⊗[3]′

t

)
, applying the mixed Kronecker product rule yields

E
(

ε⊗[3]
t ε⊗[3]′

t

)
= E

(
εtε′t ⊗ εtε′t ⊗ εtε′t

)
(177)

then Tracy and Sultan’s (1993) Theorem 3 (repeated here) canbe applied directly

E
(
εtε′t ⊗ εtε′t ⊗ εtε′t

)
=
[
E
(
εtε′t

)]⊗[3] [
K +(Kne⊗Kne,ne)+(Kne,ne⊗Kne)+Kne,ne2(Kne,ne⊗Kne)

]
(178)

+K
([

vec
(
E
(
εtε′t

))
vec′

(
E
(
εtε′t

))]
⊗E

(
εtε′t

))
K

where

K = Kne3 +Kne,ne2 +Kne2,ne(179)

is a sum of commutation matrices (See Magnus and Neudecker (1979)).

For the fourth moment in the formE
(

ε⊗[3]
t ε′t

)
, Jinadasa and Tracy’s (1986, p. 404) formula

(repeated here) can likewise be applied directly

E
(
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)
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]
(180)

For the entries in the form of a product between the moments and the state variable block of order

increments, use the property of the Kronecker product of column vectors and the mixed Kronecker

product rule to rearrange until they are in the form of a (Kronecker) product of two clusters: one

cluster contains the state variable block of the order increments only, and the other contains (the

product of) shocks only. As all the order increments of the last period are uncorrelated with the

current shocks, the expected value of the two clusters can becomputed separately. E.g.

E
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)](181)
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=E
[
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εtε
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whereE
(
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t−1

)
was computed in sectionA.4 andE

(
εtε

⊗[3]′
t

)
can be computed using the

transposed version of (180).

In fact, many nonzero entries inE
(

Ξ(3)
t Ξ(3)′

t

)
can be recycled from the calculations in section

A.4 and therefore need not to be computed again. E.g., the block entry in the second row and second

column ofE
(

Ξ(3)
t Ξ(3)′

t

)
can be written as
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(182)

The first term on the right hand side of the foregoing can be recycled fromΓ(2)X
0 as the lower

right entry (the block entry in the second row and second column) of Γ(2)X
0 takes the form

Γ(2)X
0,22 =E
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Some entries ofE
(

Ξ(3)
t Ξ(3)′

t

)
are zero as they contain one or some of terms equal to zero un-

der normality: the odd moments of the exogenous shocks,E
(

dy(1)state
t

)
, E

(
dy(1)state⊗[3]

t

)
and

E
(

dy(1)state⊗[5]
t

)
.
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Table 1: Parameter Values: Common to All Three Calibrations

Parameter β ψ χ α δ a ρσ τ
Value 0.9926 2.9869 25.8 0.331 0.021 0.004 0.9 0.15

See Tallarini (2000) and the main text.

Table 2: Parameter Values: Calibrating Homoskedastic Volatility

Calibration Baseline Constant Volatility Expected Utility
σa 0.009824769 0.011588754 0.0115

σa calibrated to keep the standard deviation of∆ ln(c) = 0.0055

Table 3: Mean Comparison

Variable Det.S.S.∗ Baseline Calibration Tallarini (2000)
log(k) 2.084 2.137 2.158
i 0.200 0.211 0.216
log(c) -0.567 -0.554 -0.549
log(y) -0.265 -0.242 -0.232
log(N) -1.467 -1.460 -1.456
Rf 1.149 1.047 1.011
R 1.149 1.053 1.022

* The deterministic steady state value
See Table 5, Tallarini (2000).

Table 4: Standard Deviation Comparison

Variable Baseline Calibration Tallarini (2000) Data
∆ log(c) 0.0055 0.0055 0.0055
∆ log(y) 0.0096 0.0095 0.0104
∆ log(i) 0.0240 0.0224 0.0279
log(c)− log(y) 0.0154 0.0147 0.0377
log(i)− log(y) 0.0425 0.0403 0.0649

See Table 7, Tallarini (2000).
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Table 5: Variance Decomposition in Percentage

Constant Volatility Calibration Baseline (Stochastic Volatility) Calibration
1st order amp. time-varying risk adj. 1st order amp. time-varying risk adj.

MPRt 0 100 0 100
ERP 0 100 0 100
RP 106.50 0.30 80.76 8.52
log(k) 97.34 0.01 75.07 1.37
i 96.63 0.01 57.21 30.26
log(c) 97.58 0.01 75.88 2.62
log(y) 96.31 0.02 44.52 36.97
log(N) 98.46 0.01 66.26 18.62

For each calibration, the columns may not add up to 100 due to the omission of 2nd and 3rd order
amplification and cross effects.
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