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1 Introduction

Assessing the statistical and structural implicationsaflimear DSGE models with recursive pref-
erences and stochastic volatility for asset pricing andness cycle dynamics is an unfinished task
in macroeconomics. We derive the theoretical moments ofimesr moving average approxima-
tions to the model and decompose these moments into catdnisurom the individual orders of
nonlinearity in realized shocks (amplification effectsyildrom the moments of future shocks (risk
adjustment effects). With this decomposition, we find thatlksastic volatility activates a time-
varying risk adjustment channel in macroeconomic varglecounting for a substantial amount
of total variation. We identify this conditional heteroslkestic mechanism as the sole driving force
of the conditional asset pricing measures under study. dimables us to tell the story of a varying
pattern of risk in the economy eliciting changes in housg$igirecautionary responses as priced by
measures such as the conditional market price of risk.

While there is growing interest in stochastic volatilitydaBpstein and Zin’s (1989) recursive
preferencesin recent literature, there is little work that studies thiaj effect of these two elements
for both asset pricing and business cycle dynarfigsdreasen (2012), focusing on the different
specifications of the conditional heteroskedasticity dreldonsequential difference in the quanti-
tative performance of a New Keynesian model, takes a bragd & the implications of the model
on both sides. Bidder and Smith (2012), taking a model uai#yt perspective a la Hansen and
Sargent (2007), study fluctuations in the worst-case digion as sources for business cycles in

a model with stochastic volatility and recursive prefeesicWe differ from both their work in our

1See also Kreps and Porteus (1978) and Weil (1990). Backug|éRige, and Zin (2005) offers a recent review of
these and related preferences.

2Bloom (2009) notes the impact of stochastic volatility orcneeconomic variables. Justiniano and Primiceri (2008)
add stochastic volatility to DSGE models to study the doauereduction in volatility of U.S. economy since the early
1980's (See also Blanchard and Simon (2001), Stock and W#B93) and Sims and Zha (2006) for a review.). Tal-
larini (2000) among many others, note recursive preferenaa contribute to resolving the longstanding asset @ricin
puzzles (equity premium and risk free rate) documented ihrslend Prescott (1985) and Weil (1989) without com-
promising the model’s ability of replicating macroeconordynamics; and Rudebusch and Swanson (2012) and van
Binsbergen, Fernandez-Villaverde, Koijen, and Rubigritez (2012) use a model with recursive preferences tosstud
the dynamics of the yield curve.



aim to analyze the propagation mechanism of stochastitivtylamplemented as a volatility shock,
and we examine the role of stochastic volatility in attajnthe Hansen-Jagannathan bounds (See
Hansen and Jagannathan (1991)) to complement the empaiahlation of the model regarding
replicating asset pricing regularities.

We solve the model using the nonlinear moving average pgEtian derived in Lan and Meyer-
Gohde (2012), following the documentation of Caldara, Bedez-Villaverde, Rubio-Ramirez, and
Yao (2012) regarding the accuracy of perturbation for aress cycle model with recursive pref-
erences and stochastic volatility and Bidder and SmittCd2} perturbation study using the same
specific functional form for continuation utility (the expential certainty equivalent of Tallarini
(2000)). We approximate the policy function to third ordercs it is the minimum order needed to
capture the time-varying shifts in risk premium as noted mdfeasen (2012, p. 300) and van Bins-
bergen, Fernandez-Villaverde, Koijen, and Rubio-Ram{2012, p. 638). The nonlinear moving
average policy function takes the infinite sequence ofzedlishocks, past to present, as its state
variable basis and adjusts the deterministic policy fuurctor the effect of future shocks by scaling
their distribution with the perturbation parameter. Thidigy function and its third order approxi-
mation can be decomposed straightforwardly into the orfléreoamplification effects (the impact
of the realized shocks) and risk adjustment (the antiapagifect of future shocks). We find, in the
analysis of the impulse responses of both macroeconomi@sset pricing variables, a volatility
shock by itself propagates solely through the time-varyisi adjustment channel. For conditional
asset pricing measures such as the expected risk premitlatiliposhocks and productivity growth
shocks propagate individually through the time-varyirgk radjustment channel only. Moreover,
the effect of stochastic volatility shocks on the expecisk premium is several orders of magni-
tude larger than that of productivity growth shocks, highting again the importance of this time
variation in the dispersion of probability measures usefibtm expectations for conditional asset

pricing.



Using our third order nonlinear moving approximation, we able to derive theoretical mo-
ments that are in general not available in the nonlinear D8G&els. We further derive a decompo-
sition of the theoretical variance that neatly dissectsrttividual contributions of amplification and
risk adjustment effects to the total variance of the modeth\is variance decomposition, we find
that adding stochastic volatility changes the composiidhe variance of the macroeconomic vari-
ables. In the presence of stochastic volatility, more vianais generated in the time-varying risk
adjustment channel. As for macroeconomic variables, mewsnn the risk adjustment channel
can be explained by the household’s precautionary motivés finding implies households aware
of shifts in the distributions of future shocks will adjuskir precautionary behavior commensu-
rately.

The nonlinear moving average approximation, as its polizycfion directly maps exogenous
shocks into the endogenous variables, only needs the merthie exogenous shocks when com-
puting the theoretical moments. We implement our approachemically by providing an add-on
for the popular Dynare packadeA state space perturbation policy function, by contrastpsna
the endogenous variables into themselves and resulting infaite regression in theoretical mo-
ments requiring higher moments than moments being comptieasimilar vein to our nonlinear
moving average, Andreasen, Fernandez-Villaverde, arfmdRRamirez (2012) compute theoretical
moments using a pruned state space perturb&tsamge after pruning, the unknown higher moments
are nonlinear functions of the known moments of lower orggraximations.

The paper is organized as follows. The competitive realrtmss cycle model with recursive
preferences and stochastic volatility is derived in sec#ioln section3, we present the nonlinear
moving average perturbation solution to the model. Thebcations are introduced in sectidn
We then derive the theoretical moments in secb@nd apply our method to analyze the model in

section6. Section7 concludes.

3See Adjemian, Bastani, Juillard, Mihoubi, Perendia, Rattml Villemot (2011) for Dynare.
4See Lan and Meyer-Gohde (2013) for an overview of pruningitsmelation to our nonlinear moving average.



2 The Model

In this section, we lay out the stochastic neoclassical iromodel with the recursive preferences
and stochastic volatility. We parameterize the model closthe production model described in
Tallarini (2000). The economy is populated by an infinitélet household seeking to maximize its

expected discounted lifetime utility given by the recuespreferences

2
1) UpﬂﬂQ%ﬁNMl—N0+va<a[@@<§A+Q}>
whereC; is consumptionl; labor, 3 € (0,1) the discount factor and
_,1-B)A-Xx
2) y=2 10

indexes the deviation with respect to the expected utijtgdenotes the coefficient of relative risk
aversion (CRRA) andp > 0 controls labor supply. Witly equal to the elasticity of intertemporal
substitution (EIS) which is equal to one herg) ¢ollapses to the expected utility. The household
optimizes over consumption and labor supply subject to
3) Ce+ Ke = WN; +1{ K1 + (1 8)Ky 1
whereK; is capital stock accumulated today for productive purpesecirrow, W real wage,r<
the capital rental rate andle [0, 1] the depreciation rate. Investment is the difference batwie
current capital stock and the capital stock in the previarsopl after depreciation
(4) g = K — (1—8)K¢_1

We assume a perfectly competitive production side of th@ewety, where output is produced
using the labor augmented Cobb-Douglas technodgy K& ; (eZtNt)lfa. Z; is a stochastic pro-
ductivity process and < [0, 1] the capital share. Productivity is assumed to be a randohawith

drift, incorporating long-run risk into the mocel

(5) a=4—Li1=a+ 0_zeoz'tsz,ty €2t ~ N (0,1)

5As noted by Bansal and Yaron (2004, p. 1502), in an endownoemiceny with recursive preferences and stochastic
volatility, better long-run growth prospects leads to aris the wealth-consumption and the price-dividend ratios.
Rudebusch and Swanson (2012, p. 108) incorporate bothndai@ninal long-run risk in a production economy with
recursive preference, and find long-run nominal risk impsothe model’s ability to fit the data.



with &;¢ the innovation taZ;. G,€°%t can be interpreted as the standard deviation of the prodiycti
growth with G; the homoskedastic component. Following, e.g., Fernahilewerde, Guerron-
Quintana, Rubio-Ramirez, and Uribe (2011) and Caldaremdrelez-Villaverde, Rubio-Ramirez,

and Yao (2012), we specify the heteroskedastic compoagntas

(6) Ozt = PoOzt—1+ 1€y, €0y ~ N (0,1)
where|pg| < 1 andt is the standard deviation @f,,. The model is closed by the market clearing

condition

(7) Yi=Ci+1;
that prevents consumption and investment from exceeditfgibin each period.

The solution is characterized by the intratemporal labppsuproductivity condition equalizing
the utility cost of marginally increasing labor supply t@thtility value of the additional consump-
tion

1
® NG

The stochastic discount factor, or pricing kernel, fromhbesehold’s intertemporal maximiza-

(1— )KL A OINTe

tion of utility is given by

(©) oy = M/0C 5 G exp(3Veia)
1= oVt /0C Cir1 E [exp($Vit1)]

whereV, is the maximum attainable utility, i.e., the value functmfrthe household

(10) Vi =InG + @in(1— N +B§In (B [exp(Z¥+2)])
Combining firms’ profit and households’ utility maximizatigields the real risky ratg
(11) 1+ =aKd M (@EN) 4 +1-8=r+1-5
The fundamental asset pricing equation takes the form
(12) Er[mi1(1+r1)] =1
As the economy is nonstationary, growing at the &tewve detrend output, consumption, in-

vestment, capital stock and value function to stationaheanodel. This is achieved by dividing all



nonstationary variables but the value function, which niestended differently, by the contempo-
raneous level of productivitgZ.% Labor supplyN: and leisure 1- N; as well as the returns and
r€ are stationary and therefore do not need to be transforntatioary variables will be denoted
by lower case letters.

Reexpressing the pricing kernel in terms of stationaryaldess, the effect of incorporating long-

run risk can be seen directly in the pricing kernel
eXp(\z{ [Vt+1 + 1T13 (a+ 0_29027”1827&1)] )

Et [eXpG/ [Vt+1 + 1Tlg, (a+ U_ZGOZ’”lsz,tJrl)] )]
with the stochastic trendie%zt+1, entering the kernel directly.

_ & (arorelatile, )
(13) M1 BCt e
+1

To analyze asset prices, we append the model with the follpwariables: the real risk-free rate

(14) 141 =E(my1)t
the conditional market price of risk—the ratio of the comathtl standard deviation of the pricing

kernel to its conditional mean

Nl

(Bt [(My1— Exms1)?])
Ermy i1
that measures the excess return the household demandsafargoan additional unit of risk, the

(15) cmpk =

expected (ex ante) risk premium

(16) erp =B (1111 )
and the (ex post) risk premium

(17) rpe=re—r ,

as the difference between the risky and risk-free rate.

3 Perturbation Solution and Risk Adjustment Channel

As stated by Caldara, Fernandez-Villaverde, Rubio-Remand Yao (2012), local approximations

via perturbation methods can solve models such as ourslguigth a degree of accuracy com-

6See the appendix for details.



parable to global methods. Moreover, as at least a thirdr@pleroximation is necessary for the
analysis of time-varying shifts in risk premia and relategasures at the heart of our analysis, we
solve the model to third order. We choose the nonlinear ngpairerage perturbation derived in
Lan and Meyer-Gohde (2012) as it delivers stable impulgeareses and simulations at all orders,
hence including our third order approximation of interestgl, as we shall show, enables the direct
calculation and decomposition of moments.

For the implementation of the nonlinear moving averageupeation, we collect the (stationar-
ized) equilibrium conditions into a vector of functions
(18) 0= E[f(Yer1, Y6, Yt-1,8)]
wherey; = [kt ¢ Nt &—a Ozt ¥ m Iy rtf cmpk  erp rpt]/ is the vector of the en-
dogenous variables, amgd= [€; sgzyt}’ the vector of the exogenous shocks, assuming the function
f in (18) is sufficiently smooth and all the momentsspkxist and finité.

The solution to {8) is a time-invariant functiory, taking as its state variable basis the infinite
sequence of realized shocks, past and present, and indgxked perturbation parametere [0, 1]

scaling the distribution of future shocks

(19) Yt = Y(0,&, & 1,...)

Assuming normality of all the shocks and setting= 1 as we are interested in the stochastic
model, the third order approximation—a Volterra expansgae Lan and Meyer-Gohde (2012)—of
(19), takes the form
(20) W —y+ }yoz+} S (Vi +Yo2,i) & +} B Yii(&—j @&—i)

2 2 i;) ’ 2 j;i; 7

1222
+ 6 kZO j;i;}kj,i(et—k@et_j RE i)

wherey denotes the deterministic steady state of the model, athnddicthe partial derivatives

’See for example, Judd (1998, ch. 13) and Jin and Judd (200&)cfamplete characterization of these assumptions.
While the normal distribution for shocks we choose is at omitls Jin and Judd’s (2002) assumption of bounded support,
Kim, Kim, Schaumburg, and Sims (2008) dispute the essémt@lthis assumption, lending support to our distribution
choice



Yo2,Yo2,Yi,Yji andyk ji are evaluated.20) is naturally decomposed into order of nonlinearity and
risk adjustment-y, yj i andyy ;  capture the amplification effects of the realized shqeks;_1,...)

in the policy function 19) at first, second and third order respectively. The two phderivatives
with respect too, y,2 andyg2; adjust the approximation for future riSk While Y2 IS a constant
adjustment for risk and a linear function of the varianceuitife shocky Yo2,i Varies over time,
interacting the linear response to realized shocks wittvétnence of future shocks essentially ad-

justing the model for time variation in the conditional ity of future risk.

4 Calibration

We select three calibrations for the numerical analysisefmhodel. For the baseline calibration,
most of the parameter values are taken from Tallarini (2@0@) are listed below. For the parame-
ters of the volatility shock, the literature varies in thega of the persistencepy, from 0.9, Cal-
dara, Fernandez-Villaverde, Rubio-Ramirez, and Yad22@nd Bidder and Smith (2012), td9G,
Fernandez-Villaverde and Rubio-Ramirez (2010a), ar@d® or 1, Andreasen (2012) and Justini-
ano and Primiceri (2008)—and in the range of its instantaaetandard deviation¥-from 0.01,
Andreasen (2012) and Justiniano and Primiceri (2008),.1¢0 Pernandez-Villaverde and Rubio-
Ramirez (2010b), and ta1b, Bidder and Smith (2012). We follow the parameterizatbBidder
and Smith (2012), implying a cumulative variance compaabithe value in Fernandez-Villaverde
and Rubio-Ramirez (2010a, p. 20), described as “genegitfhanges in volatility similar to the
ones observed in the [post-war] U.S.” Following Tallariz@00), we adjust the homoskedastic com-
ponent of the standard deviation of productivity growth tatam the standard deviation of (log)

consumption growth.

[Table 1 about here.]

8More generally, a constant termyp,s, at third order adjusts2Q) for the skewness of the shocks. See Andreasen
(2012). As we assume all the shocks are normally distribwtgdis zero and not included ir2Q) and the rest of our
analysis.

9See, Lan and Meyer-Gohde (2012, p. 13) for the derivatiohisfterm.
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The discount facto = 0.9926 generates an annual interest rate of about 3 percemtafiital
sharen = 0.331 matches the ratio of labor share to national income. €peatiation raté = 0.021
matches the ratio of investment to output. The risk avergamametey and labor supply parameter
Y are chosen such that labor in the deterministic steady, $ate 0.2305 to align with the mean
level of hours in data and such that —0.3676 in line with Tallarini (2000).

While still allowing preferences to be recursive, the canstvolatility calibration shuts down
stochastic volatility by setting = 0O, this enables direct comparison with Tallarini’'s (200€5ults.

In addition, by comparing with the results from the basetiakbration, this exercise helps identify
the contribution of the stochastic volatility, by itselfdor in interaction with recursive preferences,

to the model.
[Table 2 about here.]

The expected utility calibration shuts stochastic valgtidiown and is implemented by setting
X = 1 (equivalentlyy = 0). We will be using all the three calibrations to analyzedbmtributions of
recursive preferences and stochastic volatility to the elisgherformance evaluated by the Hansen-

Jagnannathan bounds.
5 Theoretical Moments

In this section, we derive the theoretical moments of thelthider approximatior20). The nonlin-
ear moving average policy functioh9) and its third order approximatio2@) both map exogenous
shocks directly into endogenous variables. The momentaddgenous variables can therefore be
computed directly as they are functions of the known momehexogenous shocks. We further
decompose the theoretical variance, disentangling theidhul contributions of the risk adjustment
and amplification channels to the total variance. Note thaiughout the derivation of theoretical

moments, we assume normality of the exogenous si®eksl all processes involved are, as proved

1%while removing normality does not disable the calculatidrih@oretical moments, the derivation will be more
complicated as additional terms involving skewness anbldriQup to fifth) moments of the shocks emerge.

9



in Lan and Meyer-Gohde (2012), covariance stationary.

By contrast, the state space perturbation policy functimhits nonlinear approximations map
the endogenous variables into themselves. Computingwtietheoretical moment of such a non-
linear approximations af-th order, for example, requires the knowledge of highear{tin-th) mo-
ments of endogenous variables that are in general nonlfoeetions of the approximations up to
and includingn-th order. To this end, the calculation results in an infinéigression in the moments
of endogenous variables. While theoretical moments ofineat state space perturbation approxi-
mations are in general not available, there are attempecent literature. Andreasen, Fernandez-
Villaverde, and Rubio-Ramirez (2012) calculate thecedtmoments by pruning the nonlinear ap-
proximations, such that the higher (tharth) moments are functions of approximations lower than

the current order of approximation, and therefore compatgilven the results from all lower orders.
5.1 Mean

The mean (first moment) of the third order approximati?®) (s straightforward to calculate. Ap-
plying the expectations operator 0] yields
(21) E[] =+ o+ 3 5 VisE el

The last term in20) vanishes as the triple KI’OI’]l;CkeI‘ product in expectatidhascolumnwise
vectorization of the third moment of the exogenous shodjsakto zero under normality. Likewise,
the Kronecker product in expectation is the columnwise areation of the second moment of
the exogenous shocks. Only the contemporaneous variapea@pbecause the shock vector is
assumed serially uncorrelated. The other two terms cantaga_; in (20) also disappear as the
shock is mean zero. From a different perspective, the détestic steady state is the mean of
the zeroth order approximation where all shocks, pasteptesnd future are zero. It remains the

mean in a first order approximation, as the exogenous shoeka@an zero (first moment is zero).

At second order, the second moments of the shocks are intlddeth past and present (in the

10



term 37 oYj,iE [& @ &]) as well as future shocks (in the teryge)—which are assumed nonzero,
generating an adjustment from the deterministic steadg.st&/hen the approximation moves to
the third order, the calculation of the mean 80 would be accordingly adjusted for the first three
moments of all the realized and future shocks, but the meamnazrel normality assumptions render
the first and third moments of the shocks zero, thus leaviaditst moment at third order identical

to its value from a second order approximation.
5.2 Variance and Autocovariances

While we could conceivably compute the second momentsgnae and autocovariances) @)
using the \Volterra expansion directly, it would be a rath@nplicated operation on the products of
multi-layered infinite summation of coefficients. As an altgive, we use the recursive expression
of (20) derived in Lan and Meyer-Gohde (2013) to compute the seoumuents.

Computing the second moments using the recursive expresti@0), we need to proceed se-
guentially through the orders of approximation and exgtwatlinearly recursive (in order) structure
of the solutiont! That is, the second moments of the approximation at any aaeralways be
expressed as the sum of the second moments of the appraxinudtthe previous order and the
second moments of all the previous order increments (tlierdifce between two approximations
of adjacent order, subtracting the constant risk adjustmietine higher order). In other words, the
embedded decomposition into order of approximation in tirdinear approximations of the policy
function (L9) is preserved its second moments.

The first order approximation ofL) takes the form of a linear moving averagé%) =V+

S oYi&t—i, and can be expressed recursivel{?as

(22) WY =y = o (Y ) o

11The terminology if Lombardo’s (2010). In Lan and Meyer-Gel{#l013), we compare Lombardo’s (2010), others,
and our recursive representation.

12See Lan and Meyer-Gohde (2013). This is, of course, an stamdsult for linear models. Compare, e.g., the state
space representations of Uhlig (1999) with the infinite mg\average representations of Taylor (1986).

11



where the diﬁerencgt(l) —V is the deviation of the first order approximation with redpecthe

deterministic steady state, and identical to the first omleement

(23) dy” =yV -y

which captures the addition to the approximation conteduty the time varying terms of the cur-
rent, here first, order of approximation, @ss the zeroth order approximatibhand the constant
risk adjustment of first ordeyy, is zero. In addition

(24) E [dyef| =0

as the current shock is not correlated with the endogenaisbl@s in the past. Under the orthog-
onality condition 24), the sequence of autocovariances of endogenous variables this order
equivalently, of the first order incremeﬁi(l) = Fgl) =E [dyt(l)dyt(f)j/], solves the following Lya-
punov equation

(1)

(25) Y

(1)
= alrf "o’ + BoE[eter By
The second order approximation of the policy functi@B)(captures the amplification effects of
the realized shocks up to second order, and the constaradjsktment for future shocks
(26) y(z)—y+1y 2+00y'8t -+1 3 ooy--(st | @ &)
t = A ict—i T 5 jilet—j —i
2T 2T o 2,

Defining the second order increment

(27) d%”z%a—%”—%%z

which more clearly illustrates the notion of increment we tere; the addition the approximation
contributed by time varying components of current ordertf@ difference between the current
and previous order of approximation, hey[@ — yt(l), less the additional constant contributed by
the current order, her%yoz). The second moments of the second order approxima2@ncan be

expressed as the sum of the second moments of the first ongiexapation and those of the order

increment. We summarize the results for a second order zippation in the following proposition

I3This is the terminology in Anderson, Levin, and Swanson @@0 17) and Borovicka and Hansen (2012, p. 22).

12



Proposition 5.1. Assuming the exogenous shocks are normally distributed;tthautocovariance

of the second order approximatio6) is of the form

(28) Y =

where

@ Ek &) (- |
(30) =t <o|y<l dyY ,)

(31) ri? = E[(oly<2 Edf)(dy?] Ed;@)']

Proof. See the appendices. O

The second order incremedyfz) can likewise be expressed recursivElyWith that recursive
expression in hand, the unknoWrEnZ) in (28) can be computed by formulating an appropriate Lya-
punov equation. We regelate all details to the appendices.

Likewise, to compute the second moments of endogenousiesiasing the third order approx-
imation @0), we define the third order increment
(32) dy” = y” —y?
which is merely the difference between the third and secoddr@approximations, as the third order
approximation adds no additional constant terms under alityn We summarize the resulting

second moment calculations at third order in the followingposition

Proposition 5.2. Assuming the exogenous shocks are normally distributed,tthautocovariance

of the third order approximatiorn2Q) takes the form

¥ _ oy L@, 0@, (0.3
(33) = r +<r. )

1435ee, again, Lan and Meyer-Gohde (2013).
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where
(34) = | (- 5) (4 - ) |
(35) ¥ — (dy<3 dyt<3]>

51 (dy(l dyt<3]>

and I'3j'<2) is as defined in Propositiob. 1

(36) r

Proof. See the appendices. O

I'Bj’@ is the j’'th autocovariance of endogenous variables computed ulsenthird order approx-
imation 0), ng) the j’th autocovariance of the third order incremem(s), and Fgl)’(s) the j’'th
autocovariance between the first and the third order inonafmbfl) anddyt(s). Analogous to 28)
in Proposition5.1, (33) decomposes the second moments into order of approximatithren the
approximation moves to the third order, the second momenéndogenous variables are those
computed using second order approximati@6)( adjusted by the second momentsd@fs) itself
and the interaction with the first order incremdlyﬁl).

With the recursive form of the third order increme'n‘;&(:g),15 the two unknown quantitief,ES)

andrgl)’(S), in (33) for calculating the covariance matrices of the third oralgproximation can be

computed by formulating appropriate Lyapunov equatiote details are in the appendices.
5.3 A Variance Decomposition

The third order approximation2Q), decomposes naturally into orders of nonlinearity ankl aid-
justment. This dissects the individual contributions af #equence of realized shocks and future
shocks and a variance decomposition can be accordinglyedto analyze the composition of the
volatility of endogenous variables.

(3)risk

Lety; = %ycz + % Yi—0Yo2,€t—i denote risk adjustment channel, with a constant risk adjust

ment at second orde%ycz) and a time-varying risk adjustment channel at third orégriloycz’ist,i)

15See, again, Lan and Meyer-Gohde (2013).
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andyt(s)ampcollect all the other terms in the third order approximati@@) capturing the amplifica-

tion effects, we can rewrite(Q) as

(37) yt(3) — yt(3)risk +yt(3)amp

Centering the previous equation around its mEamultiplying the resulting expression with its
transposition and applying the expectations operatodyitte following variance decomposition

y(S)risk y(S)risk.amp

y(3) . y(3)amp
risk i i - isk\’
wherergs) is the variance of the endogenous variabl'(%ss.) =E {(yt@”Sk _ E%(?’)“Sk) <yt(3)”8k _ E%S)rlsk) }
stores the variations in the endogenous variables cometfrertime-varying risk adjustment chan-

3 ! i
nel alone. ¥ =E [(yt(s)amp— Eyt(S)amp) (yt(S)amp— EM(s)amp> stores the variations come

e . (3)risk, ) ol
from the amplification channels of all three ordf.  is the sum of [(yt(?’)amp— Eyfs)amp> yt(?’)”Sk]
and its transposition, storing the variations come fromnkeraction between the two types of chan-

nels.

i . . . . (3)risk
Bothy{ " andy{?®™P can be expressed recursively. With those recursive express),

andr)o’(g)arnp can be computed by formulating appropriate Lyapunov equoatiSee the appendices for

3)risk,am

. 3 . " ( .
details). Asr% is already known from Propositidh2, F{) " can be computed by subtracting

risk

y(s) y(s) amp y(s)
N, andl  fromly .

5.4 Simulated Moments

Apart from the theoretical moments, we can simulate thel thider approximation20) and com-
pute the moments of the simulated series to analyze thststatiimplications of the model. Lan
and Meyer-Gohde (2012) show that nonlinear approximatfathe policy function (9) preserve
the stability of the linear approximation or first order apgmation and, hence, does not generate
explosive time paths in simulations.

Simulation methods for moment calculations are, howewaraiways feasible for state space

16Note Eyf Y™ = 1y, andEy¥*™P—y+ 1 > oY) iEle @&.

15



perturbations. Aruoba, Fernandez-Villaverde, and Rifamirez (2006), Fernandez-Villaverde and
Rubio-Ramirez (2006) and Kim, Kim, Schaumburg, and Sind®82 note that higher order Taylor
approximations to state space perturbation policy functian be potentially explosive in simula-
tions. Truncation of the distribution from which exogenah®cks are drawn or the application of
pruning schemes, like proposed by Kim, Kim, Schaumburg, Sinas (2008) for a second order
approximations’ can prevent such behavior. While this imposes stabilityiorukations of higher
order approximations, pruning is an ad hoc procedure asirimtd_ombardo (2010) and poten-
tially distortive even when the simulation is not on an espte path (See, Den Haan and De Wind
(2012)). Though this might give rise to reasonable douldanding the accuracy and validity of
moments calculated using perturbations, we will show thitis not the case with our nonlinear
moving average.

As (20) generates stable time paths, moments computed by simgyk@0) should asymptoti-

cally converge to their theoretical counterparts.
[Figure 1 about here.]

Figurelis an example of this check. It depicts the evolution patihefdensity of the simulated
variance of the pricing kernel in the model described in 8a@ under the benchmark calibration.
Densities of the simulated variance of the pricing kernel @lculated using a kernel density es-
timation and 100 simulations at the indicated length. Tleatatical variance, denoted by the red
dashed line, is @666 and all densities are in general centered around this.va&he distributions
of simulated variance are more dispersed in short-run sitioms, tightening up to the theoretical
value as the length increases consistent with asymptotieergence of the simulated moments to

their theoretical couterparts we calculated above.

17See Lan and Meyer-Gohde (2013) for an overview and compaospruning algorithms at second and third order
and their relation to our nonlinear moving average.
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6 Analysis

In this section, we report the performance of the model utiteedifferent calibrations. We present
impulse responses of shocks in productivity growth andalatiity for both macroeconomic and
asset pricing variables, to analyze the role of the amplifioaand risk adjustment channel in shock
propagation. We then proceed to the moments and the resulte wariance decomposition intro-
duced in Sectiorb.3 to identify and quantify the individual contribution of thiene-varying risk
adjustment channel to the total variation. In addition, walgze effect of adding stochastic volatil-

ity on model’s ability of attaining the Hansen-Jagnanthauorizls.
6.1 Impulse Responses and Simulations

We analyze the impulse responses to shocks in productivityty and shock in its volatility for
macroeconomic and asset pricing variables. We also simthat conditional market price of risk
under stochastic volatility and with growth shocks of cam$tvariance to observe the change in the

variations of this variable under conditional heterosistiday.
[Figure 2 about here.]

Figure2 depicts the impulse response and its contributing compseriencapital to a positive,
one standard deviation shocksag: ;. The upper panel displays the impulse responses at firstndec
and third order as deviations from their respective (hac)sstic steady states (themselves in the
middle right panel). In the the middle left panel and the nedzblumn of panels in the lower half
of the figure, the contributions to the total impulse resgsrsom the first, second and third order
amplification channels, that ig;, yi i andy;  ; in the third order approximatior2(Q), are displayed.
Notice that there is no response in these amplification atlanAll responses to this volatility shock
come from the lower left panel of the figure where the timeyiray risk adjustment channgj;z ;
is displayed. In other words, for capital, a volatility skduy itself propagates solely through the

time-varying risk adjustment channel.
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Capital responds positively to a positive volatility shockhis captures the household’s pre-
cautionary reaction to the widening of the distribution wiure shocks. Our risk-averse household
accumulates a buffer stock in capital to ensure itself agjaime increased future risk of productivity

growth shocks from a more dispersed distribution.
[Figure 3 about here.]

Figure 3 depicts the systematic responses at the third order of megnomic variables as de-
viations from their nonstochastic steady states to a pesibne standard deviation volatility shock.
The household accumulates a buffer stock of capital by astng current investment on impact of
the shock. As the allocation has not changed, the houselmalddes this investment through a de-
crease in current consumption, resulting in an increaseamtarginal utility of consumption. The
intratemporal labor supply equatio8) (mplies this increased marginal utility of consumptioads
to an increase in the marginal utility of leisure, and therefa decrease in time spend on leisure.
The increased labor effort, with the capital stock beingdire impact as it is a state variable and
with the productivity having not changéd translates into an increase in current output partially
offsetting the costs borne by consumption of the increaseelstment for the buffer stock of cap-
ital. Thus, this model predicts a boom in economic activitjdiwing an increase in risk, as firms
produce and households work to accumulate the necessdey btdck. A richer model of invest-
ment that, for example, includes variable capacity utiiacan overturn this result, see Bidder and
Smith (2012). While the impulse responses for the macraaoinvariables are not pictured with
their contributing components, responses of these vasabl a volatility shock come solely from
the time-varying risk adjustment channel. The volatilitpsk is persistent but not permanent. As
the shock dies out and productivity shocks fail to matezeafrom their widened distribution, the
household winds down its buffer stock of capital by incregsionsumption and leisure, leading to

a fall in output and investment.

18Remember, it is the distribution governing future produittishocks that is being shocked here, not the level of
productivity itself.
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[Figure 4 about here.]

Figure4 depicts the impulse responses and their contributing coemts for the expected risk
premium to positive, one standard deviation shockein ande, ¢ (Figure4aand4b respectively).
Note that both the volatility shock and productivity grovetfiock propagate solely througle ; the
time-varying risk adjustment channel for this variable #rete are no responses in the amplification
channels of any of the three orders. Moreover, the respdogbs volatility shock are almost two
orders magnitude larger than the responses to the growttk sHence, figure implies that almost
all the variations in this variable are driven solely by ity shocks with the contribution of the

growth shock to the total variation negligible.
[Figure 5 about here.]

Figure5 depicts the simulated time paths of the squared conditimaaket price of risk® under
the second and the baseline calibration of the model (Figa@nd5b respectively). When there
is no volatility shock, the conditional market price ext#minimal fluctuations along the simula-
tion path. Adding stochastic volatility, however, indu@substantial amount of variations in this
variable. This is consistent with the interpretation thalatility shocks are a source of conditional
heteroskedasticity. The displayed time variation in thiedittonal market price of risk is roughly
consistent with the empirical variations in the (lower bdwf) market price of risk as measured

over different periods of time the past 130 odd years (Seglég@nd Sargent (2008, p. 466)).
6.2 Moments Comparison

We compare the mean and standard deviations of the third apgeoximation 20) to those reported
in Tallarini (2000) for his model and post-war U.S. data. Tésults of the variance decomposition
in Section5.3 are reported, allowing us to pin down the contribution frdme time-varying risk

adjustment channel to the total variance of the endogeramishles.

we square this variable to eliminate the kink at the deteistimsteady state, so that perturbation methods can be
applied.
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[Table 3 about here.]

The third column of Tabl@ reports the theoretical means under the baseline cabbrafithe
model. The fourth column reports means of Tallarini’s (20@@del under the same calibration but
without the volatility shock. For both macroeconomic andedgricing variables, our theoretical
means are in line with those of Tallarini (2088) As (21) implies, the theoretical means will
generally differ from the deterministic steady states rigabin the second column of the table since
the mean at second and third order is adjusted for the inBuite of variance over realized shocks

3 >i-0Yij,iE (&t ® &) and the variance of future shockg,.
[Table 4 about here.]

The second column of Tabkereports the theoretical standard deviations of the thid&oap-
proximation Q0) under the baseline calibration of the model. Comparindp¢ostandard deviations
reported in the third and fourth column, the theoreticahdtad deviations are in line with those

reported in Tallarini (2000), both model based and emgirica
[Table 5 about here.]

Table 5 reports the results of the variance decomposition undeb#seline and the second
calibration without stochastic volatility. For each caéibon, the table reports the percentage con-
tributions of the first order amplification chanr)é]r) and the time-varying risk adjustment channel

(3)risk

Vi to the total variance of the endogenous variables as thalbweajority of variations come

from these two channels. The second and third column relperdécomposition results in absence
of volatility shock and the last two columns in presence dhtility shock. For the conditional

market price of risk and the expected risk premium, all vesracomes from the time-varying risk

20The fact that Tallarini chooses an iterative implementatiba modified LQ approximation method proposed by
Hansen and Sargent (1995) to solve his model may accourtdaetnaining difference.
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adjustment channel regardless of whether there is vtyasiiock. This is consistent with the im-
pulse responses for the expected risk premium (Figurevhere we observed that both the growth
and volatility shock propagate solely through the timeyirag risk adjustment channel.

For the risk premium and macroeconomic variables, addiagdhatility shock alters the com-
position of variance. In the absence of the volatility shdbk contribution of the time-varying risk
adjustment channel is negligible and almost all variatiomes from the first order amplification
channel. Adding stochastic volatility, however, opemadilizes the time-varying risk channel, as
a large portion of variance now comes through this channielce$ for macroeconomic variables,
actions in the time-varying risk adjustment channel candpéagned by the risk-averse household’s
precautionary motives, this variance decomposition tesylies that such motives account for a
larger portion of variance in the presence of stochastiatilty than in the absence thereof.

From a methodological point of view, in the absence of stetibaolatility shock, a first or-
der linear approximation would thus appear sufficient fompating the theoretical variance of
macroeconomic variables. However, theoretical varianeesl to be computed using a third order
approximation in the presence of stochastic volatility éarcconditional asset pricing measures, as
otherwise a large portion or all of the variance will be méserough the neglect of time varying

risk adjustment and higher order amplification effects.

6.3 Stochastic Volatility and Hansen-Jagannathan Bounds

We evaluate the model’s ability of attaining the Hanseradagthan bounds under the three different
calibrations, as they are an important empirical measurefmodel’s ability to replicate asset

pricing facts that depend on the first two moments of the pgiiernel.
[Figure 6 about here.]

Figure 6 depicts the unconditional mean standard deviation paitheforicing kernel generated

by the model under the three different calibrations. Unterliaseline (stochastic volatility) and
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second (constant variance) calibrations, the prefereamaes recursive form, and therefore when
the volatility of the kernel increases with risk aversioer@ from one to five, ten, twenty, thirty,
forty, fifty, and one hundred), the unconditional mean of kkenel is left (essentially) unchanged
and the model approaches the Hansen-Jagannathan Boundbdtow. The expected utility cal-
ibration generates a volatile pricing kernel at the costeolucing its unconditional mean, as the
EIS and risk aversion are inversely correlated in the exgakeatility, generating Weil’s (1989) risk
free rate puzzle. Figuréashows that given the same value of risk aversion, the caidoravith
stochastic volatility (baseline calibration) generatesae volatile pricing kernel than the constant
volatility calibration. In other words, to generate cemtaimount of volatility in the pricing kernel,
the model with volatility shock appears to need less risksiga than the model without volatility
shock. This is achieved, however, at the cost of increasiegvairiance of the log consumption
growth. As figurebb shows, if we hold that variance constant at its empiricahterpart by reduc-
ing the homoskedastic component of the productivity grostibck, the effect of volatility shock in
terms of further increasing the volatility in the pricingrkel vanishes, reiterating the conditional

heteroskedastic interpretation of volatility shocks.

7 Conclusion

We have solved a business cycle model with recursive prefeseand stochastic volatility with a
third order perturbation approximation to the nonlinearving average policy function. We use
the impulse responses generated by this third order appadiin to analyze the propagation mech-
anism of a volatility shock, and find that for macroecononaciables, a volatility shock by itself
propagates solely through a time-varying risk adjustmbeahaoel. For conditional asset pricing vari-
ables, this time-varying risk adjustment channel is thg @rdrking channel for the transmission of
shocks, both to productivity growth and its volatility.

We have derived a closed-form calculation of the theorkti@aments of the endogenous vari-
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ables using a third order approximation. Our calculatiomoiments lends itself to a decomposi-
tion that disentangles the individual contributions ofgivarying risk adjustment and amplification
channels to the total variance. In our model, we find thatragidiochastic volatility alters the com-
position of variance, making a time-varying risk channetlastantial contributor of variance. For
macroeconomic variables, variations that come from the-warying risk adjustment channel can
be explained by the household’s precautionary savingsegeand, in the presence of stochastic
volatility, we find a large portion of variations in macro@awnic variables is driven by precaution-
ary behavior.

In linear approximations, variance decompositions cangpdied to study the individual con-
tribution of each shock to the total variance. The channklss& adjustment and amplification
we have derived here are perhaps a step towards extendsghbck-specific decomposition to

nonlinear perturbation approximations.
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A Appendices

A.1 Detrending the Model

Stationary consumption, investment, capital stock angututienoted by the lower case letters, are

defined as follows

G I O
(39) Ctzgv Itzgaklzgv Wt =

_t,
For notational ease in detrending the model, we define a cedishoclke,, containing both

the homoskedastic and heteroskedastic components ofddagdivity growth shock
(40) Eat = 0767'€7¢

The productivity growth process can therefore be written as
(41) & =24 —2Z-1=2a+¢&q;

While detrending, the exponential form of the foregoind wé frequently used
pvAl
elti-1
The goal is essentially to substit@g I;, K; andy; for their stationary counterparts in the relevant

ea+ €at

(42) et —

model equations. We start with the production function

43) () = (ki-28"2)" (M)
(44) =W = (g) kta—l 1-a
(45) =y = efa(é+ea7t)kta_1,\lt1,q

Detrending the capital accumulation law

(46) (ke?) = (1—8) (k—1641) + (i1€?)
(47) =k = (1-9) e:sztﬁ i
(48) =k = (1-8)e * k1 +it

Detrending the market clearing condition is straightfaidvas it is a contemporaneous relation-
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ship
(49) (ne?) = (ae?) + (i)
(50) =Vt = G+t
Combing @é5), (48) and 60) yields the detrended resource constraint
(51) G +k = e 1@ EURY NI 4 (1 )e B Fatk g

Detrending the labor supply equation

(52) % = %(1— ) (k167 1) AN
(53) i% =(1— a)ea(a+€a,t)éktd_ll\lta
The risky ratery is stationary and we reexpress it in terms of the stationarighles
(4) 14 =(1-8)+a(k 164" (&N) "
(55) =141 = (1-3) + ok le@eal-a)\l-a

We now move to the value function. As the felicity functionlégarithmic in nonstationary
consumption, removing the trend in consumption will leateren linear in the level of productivity

that when subtracted froW gives the stationary value function
(56) Vi =V, —blne® =\, — bz
Substituting the relevant variables for their stationaryrterparts yields

(57) Vi +bZ =In (ce?) +Pin(1—N) + B%In (Et [exp(% [Vt41+ bZt+1]>])

68) v~ Ina+yin(—N)+pin (Et [exp(‘é’ [vt+1+b(zt+1—bb%fz¢)])D

It follows that the remaining nonstationarities can beetfté

b—1
(59) o 1
which pins dowrb as
1
(60) b= 13
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Inserting 60) in (58) yields the stationary value function
6 w=na+una—N+p2in (& [ew(] et g @+ )]

While stationary, the foregoing value function does notrfithe problem statement) in the
text, thus can not be implemented directly in perturbatioftiveare packages like Dynare. This
problem is caused by nonlinear twisting of the expectedinaation value, and can be fixed by
redefining this conditional expectation as a new variablenmin periodt. Besides, the twisted
expected continuation value is numerically unstable, duée logarithmic transformation, when
approaches zero or becomes very large. To counteract thidefiné’

(62) =K [eXp<y [Vt+1 + 1i B§t+1 - \7} )}
wherev denotes the deterministic steady state value of the stafjoralue function§l1) and can be

computed as follows

(63) V= 1E 5 {Inc+ Pin(1—N)+ 1—883}
Substitutingw 1 in (61) for V; yields the normalized, stationary value function
(64) Vi =Inc+Wwin(1—N) +B- {Invﬁty(l—lBaqu)}
With the stationary value function in hand, we reexprestiwng kernel in terms of stationary
variables
IR (I Ree )

C+1€412 [exp( [Vt+1+r1[32t+1}>]
Multiplying both the denominator and numerator of the faieg with exp(—%%&), and

rearranging yields

exp( Y|+ -1 (a+e
(66) M1 = B e (@ac) p<2 [ t+1 1—2( a,t+1)])
Ci+1 E [exp(% [vt+1+ P (a+ga7t+1)]>}
Writing out the definition ofeat11 yields (3) in the text. Recognizing the expectational term in

the previous equation can be replaced by the pro@lmﬂp(% [\‘/—i- rlﬁa] ) we substitute it for this

21Rudebusch and Swanson (2012) adopt, in their companionevtettica codes, a very similar procedure to improve
numerical stability.
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product and collect terms

exp( Y| viiq+ -t gaii1—V
(67) M. =B e @ear) p(4 v Tptant )
Ct+1 %

The period counterpart of the foregoing follows

y 1 ey
G-1 .- (atear) EXp<2 [Vt trptat VD
Ct Vi-1

(68) m =0
A.2 Proof of Proposition 5.1

Rearrange the definition of the second order increment teesgghe second order approximation as
the sum of the first order approximation, the second ordeement, and the second order constant
risk adjustment

(69 W2 =+ oy 2y

Applying the expectations operator to the foregoing yi¢tessmean of the second order approxima-

tion
1
(70) Ey? = EyY +Edy? + SYo2
Centering the second order approximatiéf)(@round its mean by subtractingd) from (69) yields
(72) 1By = (W —EfY) + (af? — Eayf?)

Noting that the mean of the first order approximation is theeheinistic steady state o, i.e.,

Eyt(l) =Yy, the foregoing can be rewritten as

(72) By = (W ) + (o —Edy?)
Using the definition of the first order incremenél) = yt(l) —Y, the foregoing is
(73) W2~ — ) + (ayf? — Eay?)

Multiplying the foregoing with its transposition &t j and noting thaEny) = Eyf)j andEdM‘Z) =

Edy, yields
(74) <yt(2) - EM<2)> (yt(i)j - Eyt(z))/
= oy + (af? —Edy?) | oyl + (@) - Edﬁ)]/
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—dyMay Y+ (P oy — EdyfPayY))
+ (dyay? — ayEdy?) + (oy® ~ Edy? ) (ay?, ~Eay?)
Applying the expectations operator to the foregoing detive
75 E| (W -e) ()
=€ (ay Vo)) + E (P ayt?)) — EPEAy?]
+E (d%l)dyt(f)j/) _EdyYEdy? +E [(dy@ . Edﬁ) (dy@j - Ed){z)”

To simplify the foregoing, apply the expectations operadathe definition of the first order incre-

ment, yielding its mean
(76) Edy” =Ey -y
As Eyt(l) =Y, the foregoing implies that the mean of the first order in@etis zero
(77) EdyY =0
Using the this result and noting tHﬁd)fl) = Edﬁ)j, (75) reduces to
e
& (o)) +E (yPef?)) + € (o)
+E [(dﬂ _ Ed){z)) (dyff)j - Ed;{z))']
It then remains to show that
(79) E (df)dy@}) _0, E (dy@dy@j’) ~0

One way is to use the moving average representation of ther andrements. l.e., inserting the
moving average representation of the first and second opgeogimations in the definition of the

order increments yields

(80) = 5 v

1 (o] (o]
(81) dy? == Yi(&—j ®@€—i)
h Z%i;J t—j © &

Therefore the product of the two order increments, whenrsekpectation, takes the form of the
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third moments of the shocks, which is equal to zero under abityn
A.3 Proof of Proposition 5.2

First note thaEyt(?’) = Eyt(z) under normality. Given this result, applyingthe expectations operator
to the definition of the third order incremed1y§3) = yt(s) —yt(z) immediately impliesEd)fS) =0.

Next, rearranging the definition of the third order incretraslivers
(82) W =y +ay?

Applying the expectations operator to the foregoing yields

(83) ey = E}”
Centering 82) around its mean by subtracting3) from (82) gives
(84) By =y —Ey? +dy?

2)

Multiplying the foregoing with its transposition &t j and notingEyt(S) = Eyt(f)j andEyt(z) = Eyt(_j

delivers
(47~ o) (4% - E”) =t (o4 - &%) (%) - %)
+ ¥y - B + Py — ey
Applying the expectations operator to the foregoing, rg)Ercd)f?’) =0, gives
09 €[4 -6) (0, 5) ] - 0] (- 5) (4,247
+E (om<3 yt_j’) E (yt dyt<3]>
Rewrite the definition of the second order increr‘r‘tﬂayél2 = ytz — yt( ) _ %ycz as
oo = oy + Y 5+ Sy

2 2
Given the foregoing expression and notEng)fS) =0,E (yt(z)dyf)j/) on the right hand side 08p)

@) W2 = o ol

can be rewritten as
/ . 1 ’ ’
(87) E(W7ayY)) =€ Kdyfz) + Y + 5+ éy(,z) dy@,} —E (dyPay?))

2270 see this, applying the expectations operator to the secater approximatior2@) and comparing the resulting
expression with the mean of the third order approximatiti) (
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Noting thate (dyfz)dyt@;) is zero under normalif?. AnalogouslyE <dyt(3)yt(3);) on the right hand
side of 85) can be written as
(89) E [d%(?’)yﬁﬂ —E (dﬁdy@j’)
Inserting the last two equations i@5) yields
e[ - 47) 5 -e%) | & o] & 4 -24%) (-4
+E (oM ay)) + E (o Py

A.4  Second Moments oblyt(z)

The second order incremedt}{z) can be expressed recursively as
(90) dy(z dyt(Z state [B d tat@ 2] + 2B <dyt(1 state® 5t> +BOOS§[2]]

If the previous equation can be cast as a linear recursiem, standard linear methods can be
applied to the computation of the second moments. Ng{(tzé, besides being linearly autoregressive
in the state variable block of itselfy”s"™® is a linear function of all the second order permutations
of products of the first order mcreme«jyt<1 St and the shocks. This relationship guides the cal-
culations, and we therefore compute the second momelui}(%?tatefirst, then recover the second
moments of variables of interéét

The state variable block 090) takes the form
(91) dyt(Z)state Statedyt(Z state statedy(l )statex|[2] n BState<dyt<1 state ) Bstat

To cast the foregoing in a linear recursion, we take the stat@ble block of the first order

incrementdyl?'*® and raise it to the second Kronecker power, noting througheuuse(ns) to

23pgain consider the moving average representation of the thider increment

© o 0

(88) dy” = Zgoyoz e .+6z)zozjyk,. B k@8 O8i)

When multiplying with the moving average representatiothefsecond order increment, the result, in expectation, is a
sum of the third and fifth moments of shocks, and equal to zedeunormality.

24This procedure is widely adopted to minimize the dimensiotianprove the speed of the computation. See, e.g.,
Uhlig’s (1999) toolkit, Schmitt-Grohé and Uribe’s (20G&8hftware package and Dynare.

33



denote the number of state variables

(92) dM(l)Stat@[Z] :aStat@[Z]dX(E)ftat@[Z} + (Knsns+ Ing) ( gstate Bstate) <dyt(1 state® €t>

+Bgtat@ 2] & ®[2]

whereKnsns is ans? x ns> commutation matrix (See Magnus and Neudecker (1979)). Gug(®2)

and ©2) yields the following linear recursion containing the kmeecursion offy{ 2

Bstate
(93) X =002+ | Sl E (&) + 0=
0
where
5 dy(z)state
(94) x? = [ g yt<1§stat@[2]
astate 1Bstate
(95) eQV::[ 0 aam@pd
(2)X % Stoate Stoate
96 ® =
( ) [BStat@[Z] (Knsns+ lnsz) (astate® Bgtate)]
(2 ®[2]
—(2 Ee
(97) ( = - [dy<1 statet
1

While the second term on the right hand side @3)(vanishes after centerin@3) around its
mean, it ensures, by compensating the subtracti&}(csf)[z}) in Et(z), thatEt(z) is orthogond® to
X
(98) E ()@1552)/) —0

With the linear recursion th(z), the second order increme®() can be recast as the following

linear recursion

(99) dy? = @@x/
Bo'

where [z 0] 0 330 557

[300] < 2])+¢() —(2

Noting E (Et(z)) = 0 by construction, and the mean of the foregoing writes

BEOO] E (")

25This orthogonality condition significantly simplifies thelculation of the autocovariances that followed.

(100) Edy? = 0@ Ex?
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A.4.1 Contemporaneous Covariance

Centering 99) around its mean—»by subtractingQ0) from (99)—yields the following centered
linear recursion of the second order increment
2 2 2 2 -2
(102) (ay” —Eady?) =@ (x* ~EX?) + 0@ =?
Multiplying the foregoing with its transposition and apiply the expectations operator to the

resulting expression yields the contemporaneous variafittee second order increment

(102) ré =e@ri?*e® +o@
where
(103) r?*—g {

(X? —EX?) (x2 - EX{(Z))’}
(104) g £ | (ay” —Edy?) (ay? - Ed;{z))']
(105) —o2E (7= ) o'

This requires the contemporaneous variandé;@f, i.e.,r( X ,aswell aE <_t( )_t( )> Starting

with I'éz)x, we can proceed by applying the expectations operat@3ad yield

l State
5B 2
I3stat@[Z] E (5?[ }>
0
Centering the foregoing around its mean yields

(107) X{(Z) - EX(Z) _ G(Z)X (xt(f)l - Ex(2)> + q)(Z)XEt(Z)

Multiplying the foregoing with its transposition and apiplg the expectations operator, it follows

(106) Ex? = 0@Xgx? 4

the unknown contemporaneous variance([g? solves the following Lyapunov equati¢h

(108) r2X — g@xr@Xg@Xx | g@X
where
(109) Q@X _ p@XE <5t<2) 5t<2)’> pX

26Note r(()z)x is of dimension(ns+ns’) x (ns+ng’). For models with a large number of state variables, spjttin

(108) into four Sylvester equations of smaller size by explajtihe triangularity o®@* and solving them one by one
is computationally a lot less expensive than solvih§g as a whole. This division also enables exploitation of the

symmetry ofl” éz)x and therefore can avoid redundant computations.
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(110)
Thus,rgz)x can be calculated giveld (Et(z) Et(z)/) and, thereforel’éz)x in (102 too. We requires

this variance, which is given by

=(2)=(2) (Ine + Knene) [E (&t&;) ® E (&1€¢)] 0
111 E(="= =
(111) < t =t ) 0 X G E (g

In the right hand side of1(11), r(()l)x is the state variable block of the contemporaneous variance
of the first order approximation (or of the first order increm)eand therefore already known from
calculations at the first order.
The upper left entry of the right hand side dfid) contains the fourth moment of the shocks
and can be computed using Tracy and Sultan’s (1993, p. 3d#ta. The two zero entries ii11)
state .

are due to the fact that the third moments of the shocks aceurater normality, andly@l is

uncorrelated with current shocks.

A.4.2 Autocovariances

Now we turn to the autocovariances @%(2). To start, note that under normalitﬁt(z) is serially
uncorrelated
(112) E (Et(Z)EE)D —0V >0

Given the contemporaneous variarfqgé)x, multiplying (107) with the transposition of101)

and taking expectation yields the contemporaneous varibetween theq(Z) anddyt(z)

(113) rE*a _ @@Xr@Xg@' | g@x.dy
where

(114) oY =€ {(x}” —Ex?) (ayf? - Edﬁ)’}
(115) Q@X.dy _ pXE (Ega Et<2>/> @'

With all the three contemporaneous variances in hand, thegonality ©8) and (L12) ensures

the autocovariance (oiyfz) can be computed with the following recursive formulae

2)X,dy
1

(116) r§2> _ 6(2>F§
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d d
(117) [(2Xdy _ @(2)xr§2)i<, y

where
(119 = [ (of? - Eef®) (o, - Ea?)
(119) rpey e {(Xt(z) —ex?) (ay?) - Ed)éz))/}

A.5 Second Moments oblyt(s)

The third order increment can be expressed recursively as

(120) dy(s dyt(3 state [Bssaldyt(l )statex|[3] +Booosf®[3]]
4B <dyt(2 state® dyt(l state) +Boo <dyt(2 state® 8t>

[BSOO (dyt(l state® & ) + Bazas (dyt(l )statex|[2 ® St) 4 Bygti + BGZldyt(l state]

Its state variable block takes the form

(121) dyt(3)state Statedyt<3 state [ :S%tSaé?Lan )statex|[3 Sto%%t 3]]
Bstate <dyt(2 state® dyfl state) State(dyt(z state )
[ state ( gy et ¢ ) psate ( Y )
B+ BT

From the terms on the left hand side of the foregoing, we ne&ditd up two additional recur-

sions, the first in the Kronecker product of the first and sdamnder increments and the second in

the triple Kronecker product of the first order incrementaastruct the linear recursion containing

dyi ¥ that can be used for calculating moments
(122)

dyt(2)state®dM(1)state g state 2] <dy(2 state® dyt(l state) {( Bstate) ®cxstate} dyt(l )statex|[3]
( gstate Bstate) <dyt(2 state ) + {(; state) ®Bstate] stat@[3]
+ {(Bgtoate state) Knsimens-+ (; state) Bstate} <dy(1 )staten|[2] ®8>
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+ ([(%Bgtoate) ®astate] Kne. ns+BState® Bstate) <dyt(1 state ;) 6! Q) ])
(123) dyt(l)stat@[3] :astat@[3]dyt(i)lstat@[3] +Bgtat@[3} 8{5@[3]
+ [(Kngns® Ins+ 1ng ) Kngns+ Ines) ( astates[2 ®[35tate> (dyt(l Jstates] ]®et>
+ [Kngns+ (Knsns® Ins+ Ing)] (ustate® Bgtat@ ) (dyt<1 state o, o g )
Given the foregoing two equations, along with the statealde block of the first order increment
(124) dM(l)state statedyt(l )state Bgtat%t

we construct the following linear recursion

(125) X3 = @(3)xxt(f)1 + 3%zl
where?’ _ _
[ d M(S) state 28551
) dM(Z)state® dy(l)state _3 ) statdeY( ®€t o
(126) X7 = d M(l)stat@)t[S] , =t = dyt< ( — Eg H)
dyt(l)state dyt<1 )staten|[2
J ] & |

Note there is no need to cenﬁqF?’) before computing its contemporaneous variance as its nsean i
zero under normality, i.eE)§(3) = 0. In the third entry oEt(S), sfm is adjusted using its mean, such
thatEt(S) is orthogonal tht(f)l

(127) E(x%=) =0

and it is can be shown thz-‘xfs) is serially uncorrelated

(128) E (:§3>_§ )]) 0V >0
A.5.1 Contemporaneous Covariance

With linear recursion125), the third order incremeniL@0) can be cast in a linear recursfén
(129) dy? =e¥x% + o=

Multiplying the foregoing with its transposition and apiply the expectations operator to the

2193X andd3X are specified in sectiof.8.
289(3) and®® are specified in sectioA.8.
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resulting expression yields the contemporaneous variahtte third order increment

(130) rY =e®r*e® +qo
where

(131) re) =€ (ay’ay®)

(132) Q¥ =oBE <5t<3> 553)/> @'

To compute the yet known contemporaneous varianaé%f i.e.,r(()s)x, we multiply (125 with

its transposition and apply the expectations operatorgdodbulting expression. It follows thﬁé?’)x

solves the following Lyapunov equatith

(133) r¥% — @@Xr@Xg@x 4 @)X
where

(134) r&x g (Xt(3>xt<3)/)

(135) QBX _ pBXE (553) 553)’) PAX

with E (Et(S)Et(?’)/) as specified in sectiof.8.
Given I'é3)x, multiplying (125 with the transposition of129 and applying the expectations

operator yields the contemporaneous variance betwé%randdyfs)

(136) r@*a _ @@xr @@ 1 g@x.dy
where

(137) rexdy_g <)<t(3)d)4<3)/>

(138) QX — ¥ (=) o

29Note that (33) is a Lyapunov equation of dimensigns+ ns’ + ns*+ns) x (ns+ns’+ ns*+ns). By exploiting

)

the triangularity of©®X and the symmetry olL'E)3 X, that large Lyapunov equation can be split and reduced to 10

Sylvester equations of dimension upns x ns’.
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A.5.2 Autocovariances

For the autocovariance of the third order increment, thieagronality (27) andEt(s) being serially

uncorrelated, i.e. 128), ensure that it can be computed with the following recw$ormulae

(3) (3)X,dy
(139) r _@Urj_1

(3)X.dy _ X (3)X,dy
(140) r =BXriY]
where

(141) r

3) (dM(s dyt(sj)
X dy _ ( dyt(3,>

(142) r

A.6 Second Moments betweedyt(l) and dyt(?’)

First rewrite the linear recursion of the first order increin@2) usingxt(?’)
(143) dy? =0 0 0 a]x¥+[0 0 0 0 Bo=?

Multiplying the foregoing with the transposition of the diar recursion of the third order incre-
ment 129, and applying the expectations operator to the resultipgession yields the contempo-

raneous covariance betweéyfl) anddM(S)

g =0 0 0 arf*e®+[o0 0 0 0 pE(ZVZY) 0
where
(145) rg @ = (ayVay”)

(1.3

The autocovariancé,; , can be computed using the following recursive formula

1).(3 3)X.,d
(146) r®= o 0 a)r¥F®
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A.7 Variance Decomposition

The decomposition the variance of the third order approkondollows directly from the decom-
position of the third order increment. Defining
(147) dy? = dy IAMPy dyf Ik

Multiplying the foregoing with its transposition and apjply the expectations operator, a vari-

ance decomposition immediately follows

(148) r® — r@amp , @risk | p(3amprisk <|_ é3)amprisk)’
where

(149) ré3)amp: E (dyt<3)ampdyt(3)amp>

(150) ré3)”3k —E (dyt(3)riskdyt(3)risk’>

(151) ré?»)amnrisk _E <dM(3)ampd yt(3)risk’>

Proposition §.2) in the text implies the contemporaneous variance of thebbas of interest

takes the form
(3) (2) /
(152) iy =y 4+ 4 (r )
Inserting the decomposé*cf’), l.e., (148), in the previous equation yields the decomposition of

the contemporaneous variance of the variables of interest
(153) F%(S) :I’%@ L I_éS)amp L rgs)risk n rgs)amp,risk n <I—é3)amprisk>’
n rél)v(S) n (r81)7(3)>’
Note the decompositiorib3) is not yet complete as the cross-contemporaneous varll'eﬁ’?é@

can be further broken down into two pafts

(154) r§ =€ (ayPay)

o (a7 )

30| (154), rVaMP3AMPIs ysed to denotE (d){fl)d){‘q’)am#) as there is only amplification effects in the first order

incremen'd)q(l).
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_E <dyt(1)dM(3)amr5> 1E (d)él)dyt(?’)riSk/)

r(()1)am p(3)am p+ r(()1)am|q(3)risk

Inserting the foregoing inlG3) yields the complete variance decomposition

3) (2) i i isk\’
(155) r% :r% i I_é3)amp+ rés)mk—l— réS)amprlsk+ <ré3)ampr|sk>
+ ré)l)amp(S)amp_l_ r(()1)am|q(3)risk

n (r(()l)amp(S)amp+ r(()1)amp,(3)risk>/

)risk,amp

: 3 I e (3
Lettingy " collect the contribution from all amplification channelsadifthree orderd})

, : e L , (3)risk

collects all interaction between amplification and timeyuag risk adjustment channels aﬁ@ "

collects the contribution from the time-varying risk adjugnt channel

(3)amp (2) (3)amp (L)amp(3)amp ()amp(3)amp\’
@se) Y =ry? pr®ame +(ré )

(157) I_%<3>risk-amp _ I_éS)amprisk n (réS)amprisk)' n rgl)amp,(s)risk n (rél)amp(S)risk>'
(1s8) Y =ik

Inserting the foregoing iNG5) yields @38) in the text. Note the first order amplification effect re-
ported in Tabl& is included in (56). In particular, itis included im‘%@. As implied by proposition
5.1, the contemporaneous variance of the second order appabaimtakes the form
(159) P P
whererﬁm captures the first order amplification effect.

amp

To compute the individual terms id%5), first notedyfs) collects all amplification effects and

d)és)riSk collects the time-varying risk adjustment effect in thedhorder increment

(160) Ay YamP gy ampstate % (Bazaady 5 4 Boooe; ™|
4 B2 (dyt(i)lstate® dyff)ftate> +Bao <dyt(7)1state® Et)
1
+ > [[3300 (dyf_)lstate@? 8? [2]) +B3301 (dyff)lstat@[z] ® St)}

. : 1 1
(161) dyt(S)rlsk _ Gd)’t@lrISk’State-i- éBozoet n éBczldyt(i)lstate
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We start with constructing an auxiliary vect)qf for this decomposition

i dM(s ampstate ]
dy(S)risk,state
t
(162) Xt(3D) _ dyt(Z)state® dyt(l)state
dyt(l)stat@[3]
dM(l)state
. . - é)amp 3)risk ) . .
With the foregoing auxiliary vectodyt< anddyt( can be cast as linear recursions
(163) dyfdamp_ @(3)amp><t(f|i)) + p@amp=®)
(164) dydsk — o )”Skxt( D) 4 qy(3risk=(3)
where
(165) o®amp_ [0( 0 B2z gB3zan zl3§toac§e( ns® ES?[Z})]
(166) OPMk—T0 a 0 0 IBg]
(167) ®®2amP— [18,00 IB3z01 Bsoo Bzo O]
(168) oI —=0 0 0 0 3Py

Multiplying (163 with its transposition and applying the expectations afmeryields the con-
temporaneous varian€g> ", which collects the contribution of amplification chanrteishe total
variance of the third order increment
(169) r(()3)amp: o@ampe (Xt(fli)xt(fli)) oB3)amp | p@ampe (Et(3)5t(3)’) p(3amp
whereE <Et(3)5t(3)/> is as calculated in sectioh.4. E <Xt(3D)Xt(f'f)/) can be computed using the

following relationship

(170) Xt(3) _ ADXt(?’D)
where

Il I 0 0O

5 001 00

(171) AT = 0001 O

0O 00 01
therefore
(172) E (Xt(EI]D_)Xt(EI]D_) ) _ AD+E ()([(Eix[(f)]_) AD+' _ AD+r(()3)XAD+/
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whereAP+ denotes the Moore-Penrose inverséBfandr % is already known. TheR*™P can

be computed using

a73) r(()S)amp: (@(3)amPAD+) r(()3)x (@(3)ampAD+>/ 4 p(®ampe (Et(S) Et(s)/> p3)amp

I . isk
Likewise, the contemporaneous variafcg"™

collects the contribution of the time-varying
risk adjustment channel to the total variance of the thidieorincrement, and can be computed
using

(174) r(()3)risk _ <@(3)risk AD+) r(()S)X <®(3)risk AD+)/ | p@riskg (Et(3) Et(3)’) p(3)risk

r(J2mPrsk and its transposition collects the contribution of the iatéion between the amplifi-

cation and time-vary risk adjustment channels to the t@ablwnce of the third order increment, and

can be computed using

(175) r(()S)amprisk+ <r(()3)amprisk>’ _ r(()s) B r(()3)amp_ r(()S)risk
To compute™SV2™PE2™P myttiply (143) with the transposition ofi63) and apply the expecta-

tions operator to the resulting expression to yield
(176)

ribame@ame_rg o o o] rP* <e<3>amPAD+)'+[o 0 0 0 PolE (=) w@ame

As rgl)@ was already computed in sectiénb, Fél)amp(s)”Sk can be obtained by subtracting

the foregoing from'él)’(s).

A.8 Coefficient Matrices

This section contains explicit expressions for severaffimyent matrices left implicit above.

0l = [0( B2z 3Basar 3P300 (lns® Ee [2}) + %[3021]

dB — [%[3000 %[333(;1 %Bsoo B2o %3020}
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A.9 Computing Elements inE (553)553)/>

For every nonzero entry & <E§3)Et(3)/) in sectionA.8, the terms inside the expectations operator
are either i) second, fourth, or sixth moments of the shamkis) the product of these moments with
the state variable block of the order increments, dgi2>*® anddy ”*'®'®. The fourth and sixth
moments of the shocks can be computed using Tracy and S(i893, p. 344-345) formulae. E.g.,
for sixth moments in the forrk ( 13 ®[ ) ) applying the mixed Kronecker product rule yields
(177) E (st [3]g& 3 ) = E (&€& @ &€ @ &)

then Tracy and Sultan’s (1993) Theorem 3 (repeated herd)eapplied directly
(178)

E (egf 0 &gl 0 &) = [E (8€) ] “Y [K + (Kne® Knene) + (Knene® Kne) + Knene (Knene® Kne)]
+K ([vec(E (gigf) ) ved (E (ergf) )| © E (&€) ) K
where
(179) K =Kne +Knene + Kne ne
is a sum of commutation matrices (See Magnus and NeudecBe@))L

For the fourth moment in the forrg (st@)[s}e{), Jinadasa and Tracy’s (1986, p. 404) formula

(repeated here) can likewise be applied directly
(180)

E (s?[s]eo = E(&i&;) @ vec(E(&g;)) + vec(E(eig;)) @ E(&rgf) + (Ine®@ Knene) [Vec(E(gg;)) @ E(&g;)]
For the entries in the form of a product between the momemtsrenstate variable block of order
increments, use the property of the Kronecker product afroal vectors and the mixed Kronecker
product rule to rearrange until they are in the form of a (Kacker) product of two clusters: one
cluster contains the state variable block of the order mems only, and the other contains (the
product of) shocks only. As all the order increments of thet [@riod are uncorrelated with the

current shocks, the expected value of the two clusters caoipputed separately. E.g.
(181)

[(dyt(l )statex|[2 ) 3]’] [dyt(l )statex|[2 ®8t D&l ®[3) } —E [dyt(l )statex|[2] 2 (st ®€f©[3}/)}
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_E [dyt(l )statex|[2 ® <8t8;®[3]/):| —E <dyt(i)1stat@[2]) 2E <8t8§)[3]/)

whereE (dyt(l states| 2]) was computed in sectioA.4 andE (etet@[sy) can be computed using the
transposed version 0180).

In fact, many nonzero entries E|<_t( )_( 2 ) can be recycled from the calculations in section
A.4 and therefore need not to be computed again. E.g., the bidokia the second row and second

column ofE (_t( )_t(?’) ) can be written as

(182) E [(dyt(l )staten| 2] ) (dyfl )staten|[2 ) ] _E (dyt(l )staten| Z]d)’t<1 )statex|[2 >®E (StSt)

The first term on the right hand side of the foregoing can bgated from ng)x as the lower

right entry (the block entry in the second row and secondmobuofr(()z)x takes the form

(183) I_é %2 _E {(dyt(l )staten |2 Ed){l )states)| 2]) (dy(l )staten[2 Ed%l)lstat@[a)/]

(184) —E (d)’t<1 )state|[2 dyt(l )state| 2]') (dyfl )state|[2 ) (d)’t<1 )staten|[2 )
therefore
(185) (d)’t<1 )staten[2 dyt(l )states)| 2]’) T %2 LE (dyt(l )states)| 2]) (dyfl )staten|[2 >

. —(3)—(3 .
Some entries oE (:t( ):t( 2 ) are zero as they contain one or some of terms equal to zero un-

der normality: the odd moments of the exogenous shoEl(sjyfl)State), E (dM(l)Stat@[s}) and

E (d)/t(l)Stat@[S]).
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Table 1: Parameter Values: Common to All Three Calibrations

Parameter 3 U] X a 0 a P T

Value 0.9926 2.9869 25.8 0.331 0.021 0.004 0.9 0.15

See Tallarini (2000) and the main text.

Table 2: Parameter Values: Calibrating HomoskedastictNitya

Calibration Baseline Constant Volatility Expected Uyilit

Oa 0.009824769 0.011588754 0.0115

0, calibrated to keep the standard deviatiod\drfi(c) = 0.0055

Table 3: Mean Comparison

Variable Det.SS* Baseline Calibration Tallarini (2000)

log(k) 2.084 2.137 2.158
i 0.200 0.211 0.216
log(c) -0.567 -0.554 -0.549
log(y) -0.265 -0.242 -0.232
log(N) -1.467 -1.460 -1.456
Rf 1.149 1.047 1.011
R 1.149 1.053 1.022

* The deterministic steady state value
See Table 5, Tallarini (2000).

Table 4: Standard Deviation Comparison

Variable Baseline Calibration Tallarini (2000) Data
Alog(c) 0.0055 0.0055 0.0055
Alog(y) 0.0096 0.0095 0.0104
Alog(i) 0.0240 0.0224 0.0279
log(c) —log(y) 0.0154 0.0147 0.0377
log(i) — log(y) 0.0425 0.0403 0.0649

See Table 7, Tallarini (2000).
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Table 5: Variance Decomposition in Percentage

Constant Volatility Calibration Baseline (Stochastic Adility) Calibration
1st order amp. time-varyingrisk adj. 1storder amp. timeAve risk ad;.

MPR | O 100 0 100

ERP |0 100 0 100

RP 106.50 0.30 80.76 8.52

log(k) | 97.34 0.01 75.07 1.37

[ 96.63 0.01 57.21 30.26

log(c) | 97.58 0.01 75.88 2.62

log(y) | 96.31 0.02 44.52 36.97

log(N) | 98.46 0.01 66.26 18.62

For each calibration, the columns may not add up to 100 duket@mission of 2nd and 3rd order
amplification and cross effects.
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3rd Order NLMA: Density of Simulated Variance
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Figure 1: Monte Carlo Consistency
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