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Wolfgang Karl Härdle†and Elena Silyakova‡
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Abstract

Equity basket correlation is an important risk factor. It characterizes the
strength of linear dependence between assets and thus measures the degree of port-
folio diversification. It can be estimated both under the physical measure from
return series, and under the risk neutral measure from option prices. The differ-
ence between the two estimates motivates a so called "dispersion strategy". We
study the performance of this strategy on the German market over the recent 2
years and propose several hedging schemes based on implied correlation (IC) fore-
casts. Modeling IC is a challenging task both in terms of computational burden
and estimation error. First the number of correlation coefficients to be estimated
would grow with the size of the basket. Second, since the IC is implied from op-
tion prices it is not constant over maturities and strikes. Finally, the IC changes
over time. The dimensionality of the problem is reduced by an assumption that
the correlation between all pairs of equities is constant (equicorrelation). The IC
surface (ICS) is then approximated from implied volatilities of stocks and implied
volatility of the basket. To analyze this structure and the dynamics of the ICS we
employ a dynamic semiparametric factor model (DSFM).
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Keywords: correlation risk, dimension reduction, dispersion strategy, dynamic fac-
tor models, implied correlation
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1 Introduction

In a basket of N assets correlation ρi,j, i, j ∈ {1, . . . , N}, is an important (linear) measure
of co-movements between two return series. It is an input for many pricing models,
plays a key role in portfolio optimization and risk management. The concept of a time-
varying correlation is frequently used in studies that describe the joint dynamics of assets,
Bollerslev et al. (1988), Engle (2002). However the idea to consider the correlation an
asset on its own is relatively new and has recently gained its popularity together with
emerging such derivative instruments as variance, volatility, correlation swaps and trading
strategies with them. In this context being able to predict correlation patterns might help
to reveal profitable trading opportunities. One of the most common ways to obtain the
desired correlation exposure is to replicate it with volatility derivatives such as variance
swaps. Here we study the behavior of a particular correlation trading strategy known as
“dispersion strategy”, in which one sells the volatility of the index and buys volatilities of
index constituents. We propose several ways of improving the profitability of the strategy
by extracting information from the dynamic model of the implied correlation.

Unlike asset prices, correlation is not directly observed in the market and needs to be es-
timated in the context of a particular model. Obtaining a well-conditioned and invertible
estimate of an empirical correlation matrix is often a complicated task, in particular when
dimensionality of basket elements N is higher than the time series length T . Here some
work has been done in the field of random matrix theory (RMT), where the case “large
N , small T” is studied in an asymptotic setting, Bai (1999), Laloux et al. (1999), Plerou
et al. (2002). A further segment of research has moved in the direction of developing
various regularization methods for sample covariance and correlation matrices, such as
shrinkage technique proposed in Ledoit and Wolf (2003), regularization via thresholding
in Bickel and Levina (2008a), bending in Bickel and Levina (2008b), factor models in
Fan et al. (2008) and many others. There are some studies proposing a dynamic model
for returns’ correlation such as DCC model by Engle (2002), and in high-dimensional
setting, Engle et al. (2008). The common feature of all these studies is that the empir-
ical correlation matrix is estimated under the physical measure from the time series of
asset returns. Alternatively, instead of relying on historical data, one can infer correla-
tion from the current snapshot of the option market. Option prices reflect expectations
of market participants about the future price (volatility) and disclose their perception
of market risk, Bakshi et al. (2000), Britten-Jones and Neuberger (2000). Some recent
studies have shown that the implied volatility (IV), that equates the model option price
and the one taken from the market, contains incremental information beyond the histori-
cal estimate and outperforms it in forecasting future volatility, Christensen and Prabhala
(1998), Fleming (1998), Blair et al. (2001). Yet only few papers have studied the predic-
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tive content of the correlation, implied by option prices. Some work has been done for
foreign exchange (FX) options, Campa and Chang (1998), Lopez and Walter (2000), who
showed that correlation implied from FX options is useful for forecasting future currency
correlations. Skintzi and Refenes (2005) investigated average correlation implied by eq-
uity options and introduced the Implied Correlation index (ICX). They show that ICX,
computed from current option prices, is a useful proxy for the future realized correlation.
Driessen et al. (2009) investigate the power of options implied correlation to explain the
future realized correlation and conclude that its predictive power is quite high.

Here we model the implied correlation (IC), which is an object of a very high dimension-
ality. Similar to the IV, every day one recovers a IC surface. We model the IC with a
dynamic semiparametric factor model (DSFM), Fengler et al. (2007), Park et al. (2009)
and Song et al. (2010). It yields a low dimensional representation as a linear combination
of a small number of time-invariant basis functions (surfaces), whose time evolution is
driven by series of coefficients. We produce an IC forecast and use it in several hedging
schemes for dispersion strategy. For empirical analysis we chose the German market rep-
resented by DAX portfolio over the 2-years sample period from 20100802 until 20120801
(dates are written as YYYYMMDD). Backtesting shows that the hedging allows to reduce
potential losses and increase the average profitability of the strategy.

The paper is structured as follows. In Section 2 we introduce the notions of realized,
model-implied and model-free implied volatility and correlation and describe the basic
setup of a dispersion strategy with variance swaps. The DSFM model for IC is introduced
in Section 3 starting with general description in Section 3.1 followed by the description
of the functional principal component analysis (FPCA) approach to finding the basis
functions in Section 3.2 and the estimation procedure for both factors and factor loadings
in Section 3.3. Section 4 presents the dataset taken for the empirical study, followed by
description of the estimation results in Section 5. Here first we interpret obtained factors
and factor loadings and propose a time series model for low-dimensional factors in 5.1.
Finally in Section 5.2 we propose and compare alternative dispersion strategy setups: no
hedge, naïve approach and advanced hedge. Section 6 concludes.
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2 Correlation trading

2.1 Average basket correlation

Standard statistical analysis yields that the basket variance σ2
B can be decomposed as:

σ2
B =

∑

i

w2
i σ

2
i +

∑

i

∑

j 6=i

wiwjσiσjρij, (1)

where σ2
i denotes the variance of the i-th asset and wi its weight in the basket. Now,

assuming that ρij is constant for every pair (i, j), one can imply the equicorrelation ρ

from (1):

ρ = σ2
B −

∑
iw

2
i σ

2
i∑

i

∑
j 6=iwiwjσiσj

. (2)

Later we call ρ a basket correlation or simply correlation. The corresponding correlation
matrix has all off-diagonal elements equal to ρ and offers thus several advantages. First,
plugging ρi,j = ρ into (1) reproduces the basket variance σ2

B. Second, if − 1
N−1 < ρ <

1 then the correlation matrix is positive semidefinite, Härdle and Simar (2012). This
property becomes particularly important if N is large. A closer look also reveals that (2)
is in fact a nonlinear weighted average over all ρi,j in the basket:

ρ =
∑

i

∑

j 6=i

ci,jρi,j (3)

with weights ci,j defined by:

ci,j = wiwjσiσj∑
i

∑
j 6=iwiwjσiσj

. (4)

Bourgoin (2001) showed that if the correlation matrix is positive semidefinite, for suffi-
ciently large baskets it holds that 0 ≤ ρ ≤ 1. Using this property maximum and minimum
variances of a basket, σ2

B,min and σ2
B,max respectively, are defined as follows:

σ2
B,min =

∑

i

w2
i σ

2
i , (5)
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σ2
B,max =

∑

i

w2
i σ

2
i +

∑

i

∑

j 6=i

wiwjσiσj. (6)

σ2
B,min is achieved when ρ = 0 that is when the assets in the basket are fully diversified.

In case of no diversification one observes the maximal possible basket variance σ2
B,max

corresponding to ρ = 1.

Further we can rewrite ρ by substituting (5) and (6) to (2):

ρ =
σ2
B − σ2

B,min

σ2
B,max − σ2

B,min

(7)

and obtain an additional interpretation as a measure for degree of diversification, Skintzi
and Refenes (2005). In fact (7) shows how far is σ2

B from its minimal value σ2
B,min relative

to the possible value range σ2
B,max− σ2

B,min, or in other words, how far is the basket from
the perfect diversification. High ρ is the sign of a poorly diversified portfolio, which is
typical for the market downturn, when asset prices simultaneously drop driving σ2

B up.
It means diversification benefits disappear in times when they are at most needed. To
hedge against correlation risk investors look for derivative securities that offer higher
payoffs (premia) when the correlation decreases.

If a basket is constructed from constituents of an equity index with weights equal to
index weights, then the corresponding basket correlation would serve as a benchmark for
a sector, an industry or a whole market average correlation. Figure 1 shows an example
of the DAX correlation together with the volatility of DAX and some of its components.
First, we clearly see that correlation and volatility vary over time. Second, the volatility
of the basket (DAX) is smaller than almost any individual volatility of its constituents,
which illustrates the impact of the diversification effect on the portfolio risk. Finally, there
is a clear linear dependence of the correlation of the basket and its volatility. However
the strength of this dependence changes when the volatility exceeds a certain threshold.
We investigate this phenomenon and propose a dataset correction scheme in Section 4.

2.2 Implied versus realized correlation

Based on (2) we conclude that the exposure to the basket correlation ρ can be achieved
by exposures to the variances of a basket σ2

B and its constituents, σ2
i . Such trades can

be realized via a combination of variance swaps, an over-the-counter forward contract
opened at t, which at t+ τ pays the difference between the variance cumulated over the
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Figure 1: Left panel: series of Adidas, BMW, Siemens, Daimler, E.ON, Lufthansa volatil-
ities (11) - color, DAX volatility (11) - solid black, equicorrelation (2) - dashed black,
the stock market fall 2011 - shaded area. Right panel: scatter plot DAX volatility vs.
equicorrelation. Estimation period - from 20100104 to 20120801, estimation window - 3
month.

life time of the swap σ2
t+τ and the strike σ̃t2(τ). Thus the payoff is defined by

{
σ2
t+τ − σ̃2

t (τ)
}
Nvar, (8)

where Nvar is the notional amount. Here and later t and τ are given in fractions of a
year.

The strike of the variance swap, the model-free implied variance (MFIV), is the risk-
neutral expectation at t of the integrated variance from t to t+ τ . “Model-free” indicates
that the expectation does not depend on the specification of the underlying price process,
Britten-Jones and Neuberger (2000). MFIV can be approximated by a function of current
option prices, Breeden and Litzenberger (1978), Carr and Madan (1998), Britten-Jones
and Neuberger (2000), which has the following form

σ̃t
2(τ) = EQ

t

[∫ t+τ

t

σ2(s)ds
]

=

2erτ
τ

{∫ St

0

Pt(K, τ)dK
K2 +

∫ ∞

St

Ct(K, τ)dK
K2

}
, (9)
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where EQ
t expected value at t under the risk-neutral measure Q, Pt(K, τ) {Ct(K, τ)} price

of put (call) with exercise price K and time to maturity τ traded at t, St price of the
asset in t, r the annualized continuously compounded risk-free interest rate.

MFIV can be opposed to the implied variance σ̂2
t (κ, τ), the implied volatility (IV) squared,

which is obtained by solving

Vt(σ̂, κ, τ)− V̆t(κ, τ) = 0, (10)

where Vt is the theoretical (model) option price, V̆t option price taken from the market,
κ = K

Sterτ
moneyness of the option. IV, in comparison to MFIV, is a function of both κ

and τ , meaning that every t one recovers a cloud of points, which can be approximated
by a surface, Cont and Da Fonseca (2002), Fengler et al. (2007).

The floating leg of the variance swap, the realized variance (RV) of an asset from t to t+τ ,
can be computed from the time series of daily asset returns in different ways, depending
on the contract specification. Here we use the most common following form

σ2
t+τ = τ−1

252(t+τ)∑

i=252t

(
log Si

Si−1

)2

. (11)

In Carr and Wu (2009) σ2
t+τ − σ̃2

t (τ) is referred to as the variance risk premium (VRP),
which is shown to be strongly negative for major US stock indexes over the sample period
from January 1996 until December 2003. The negative sign indicates that investors are
willing to pay extra to hedge themselves against possible future market turmoils. Bakshi
et al. (2003), who investigated the S&P100 index and its largest constituents from 1991
until 1995, also found significant negative difference between realized and option implied
volatilities for the average of 25 stocks and stressed that this difference is less pronounced
than for the index. Driessen et al. (2009) study each S&P100 constituent individually.
Their t-test for H0 that on average RV=MFIV was not rejected for the majority of stocks
in the sample from January 1996 until December 2003.

We check the same hypothesis on the German market for DAX and its 23 selected con-
stituents over the most recent sample period from 20100802 until 20120801. Appendix
A summarizes the results of a t-test for the null hypothesis that RV and MFIV are on
average equal against the alternative RV<MFIV. H0 is strongly rejected for DAX index,
however for individual stocks the results differ: for 5 out of 23 stocks we cannot reject the
H0 at 5% significance level, for others the hypothesis over the studied 2-years interval was
strongly rejected in favor of the alternative. Appendix A also reports sample averages of
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Figure 2: Left panel: ρt+τ (blue) ρ̃t(τ) (red), right panel: scatter plot ρt+τ vs ρ̃t(τ), for
t+ 0.25 from 20100802 till 20120801

RV and MFIV and their differences, which are found to be negative for all stocks and the
DAX index.

Driessen et al. (2009) interpret their t-test results as indirect evidence that there exists a
negative correlation risk premium (CRP). To see this in the DAX dataset we compute the
model free implied correlation (MFIC) ρ̃t(τ) from the MFIVs of DAX and its constituents
and the realized correlation (RC) ρt+τ from the corresponding RV by applying(2):

ρ̃t(τ) =
σ̃2
t,DAX(τ)−

∑
iw

2
i σ̃

2
t,i(τ)∑

i

∑
j 6=iwiwjσ̃t,i(τ)σ̃t,j(τ) , (12)

ρt+τ =
σ2
t+τ,DAX −

∑
iw

2
i σ

2
t+τ,i∑

i

∑
j 6=iwiwjσt+τ,iσt+τ,j

. (13)

Figure 2 plots the of MFIC and RC of DAX computed over the 3-month window and
with 3 month maturity respectively (τ = 0.25). The H0 : RC=MFIC of the t-test is
strongly rejected (Appendix B). Using this finding and taking into account results in the
literature we would expect the CRP ρt+τ − ρ̃t(τ) to be negative most of the times. One
of the ways of exploiting this observation is making a bet on the market correlation by
entering a dispersion strategy.
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2.3 Dispersion strategy with variance swaps

We study one of the variations of the dispersion strategy, which consists in selling the
variance of the basket (DAX) and buying variances of basket constituents. We implement
the strategy by taking a short position in the variance swap (8) on an index and long
positions in variance swaps on its constituents with notional amounts proportional to
index weights. The payoff a dispersion strategy at t+ τ is then defined by

Dt+τ = −
{
σ2
t+τ,B − σ̃2

t,B(τ)
}

+
N∑

i=1

wi
{
σ2
t+τ,i − σ̃2

t,i(τ)
}
. (14)

Then we apply (2) and rewrite (14) in the following form

Dt+τ = ρ̃t(τ)
∑

i

∑

j 6=i

wiwjσ̃t,i(τ)σ̃t,j(τ)− ρt+τ
∑

i

∑

j 6=i

wiwjσt+τ,iσt+τ,j. (15)

Based on empirical findings described in Section 2.2 we assume σ̃t,i(τ) ≈ σt+τ,i for each
constituent stock and simplify the payoff (15), as follows

Dt+τ ≈
∑

i

∑

j 6=i

wiwjσ̃t,i(τ)σ̃t,j(τ) {ρ̃t(τ)− ρt+τ} , (16)

which illustrates that by entering the dispersion strategy one obtains exposure to ρt+τ −
ρ̃t(τ), where the floating leg ρt+τ is computed with (11) and (2) at expiry, and the fixed
leg ρ̃t(τ) is a function of variance swap strikes (9). Test results described in Section 2.2
suggest that we should on average expect ρt+τ − ρ̃t(τ) < 0. It also means the dispersion
strategy with payoff Dt+τ on average would have a profit. However, as one can see in
Figure 2, there might be days when ρt+τ − ρ̃t(τ) ≥ 0. In order to hedge against these
potential losses one needs a forecast of the floating leg of the dispersion strategy.

3 Modeling and forecasting correlation dynamics

To determine the amount of hedge for Dt+τ we model the implied correlation (IC) and use
the forecast to approximate the floating leg of the dispersion strategy ρt+τ . By applying
(2) to IV of a basket σ̂t,B(κ, τ) and its N constituents σ̂t,i(κ, τ), i ∈ {1, . . . , N}, every t
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Figure 3: ICS implied by prices of DAX options traded on the 20111209, 20120710,
surfaces recovered by the Nadaraya-Watson smoothing

we obtain the IC surface (ICS):

ρ̂t(κ, τ) =
σ̂2
t,B(κ, τ)−

∑
iw

2
i σ̂

2
t,i(κ, τ)∑

i

∑
j 6=iwiwjσ̂t,i(κ, τ)σ̂t,j(κ, τ) . (17)

Figure 3 displays ρ̂t(κ, τ) in different trading days: 20111209, 20120710. Due to the
specific option data structure, every day one observes a “cloud of strings” that visually
resembles a surface and can be recovered by applying nonparametric smoothing. One can
clearly see that surfaces have shape similarities and vary in levels, slopes and curvatures,
and thus may be treated as daily realizations of a random function. In addition one can
observe that the strings do not have fixed spacial locations. In order to model the dynam-
ics of such a complicated multidimensional object we apply a dynamic semiparametric
factor model that reduces the dimensionality of the problem and allows to study the ICS
in a conventional time-series context.

3.1 Model Characterization

At every day t one observes ICs ρ̂(κt,j, τt,j), t = 1, . . . , T , j = 1, . . . , Jt (index of observa-
tions at day t). Prior to introducing the model we exclude the case of a fully undiversified
basket, with ρ̂ = 1, from the analysis and apply a variance stabilizing transformation.
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Fisher’s Z-transformation (Härdle and Simar (2012)) gives:

T (u) def= 1
2 log 1 + u

1− u (18)

with Yt,j
def= T {ρ̂(κt,j, τt,j)}.

Our aim is to model the dynamics of {(Yt,j, Xt,j), 1 ≤ t ≤ T, 1 ≤ j ≤ Jt}, where Xt,j =
(κt,j, τt,j). The technique we are employing allows to reduce the dimensionality and to
simultaneously study the dynamics of Yt by approximation through an L-dimensional
object with L << J . The DSFM, first introduced by Fengler et al. (2007) in application
to IV surfaces dynamics, and then extended by Park et al. (2009) and Song et al. (2010)
has these desired properties.

The basic idea is to approximate E(Yt|Xt) by the sum of L + 1 smooth basis functions
m

def= {m0, . . . ,mL}> (factor loadings) weighted by time dependent coefficients Zt
def=

(1, Zt,1, . . . , Zt,L)> (factors):

Yt,j = m0(Xt,j) +
L∑

l=1

Zt,lml(Xt,j) + εt,j. (19)

In representation (19)m are chosen data driven and do not have a particular (parametric)
form.

Here two important remarks are appropriate. First, the unknown basis functions m have
to be estimated. Fengler et al. (2007) estimate both m and Zt iteratively using kernel
smoothing techniques, Park et al. (2009) approximate m by tensor B-splines basis func-
tions weighted by a coefficients matrix. Here we employ functional principal component
analysis (FPCA) approach that will be described in Section 3.2. Nonparametric estima-
tion procedure we use is introduced in Section 3.3. The basics for this technique is in
Song et al. (2010).

The second issue is estimation of the latent factors Zt. Having the data-driven basis m̂l

in hand we can estimate daily factors by the ordinary least squares (OLS) method. After-
wards one fits the econometric model to Ẑt, as it has been done by Cont and Da Fonseca
(2002) and Hafner (2004), who fitted AR(1) to every Zt,l, l ∈ {1, . . . , L}, or in Fengler
et al. (2007) who considered a multivariate VAR(2) process.
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3.2 Correlation surface with FPCA

We are approximating the ICS by the sum of orthogonal functions. By doing so we involve
the FPCA theory looking at the ICS as a stationary random function f : R2 → R.

Let J = [κmin, κmax] × [τmin, τmax] the range of possible values of κt,j and τt,j. We
introduce (ρt), t ∈ {1, . . . , T}, the sample of i.i.d. smooth random functions (surfaces).
Every ρt is a smooth map ρt : J → R and satisfies

∫
J

E(ρ2
t ) < ∞. Also for every ρt

we assume a well-defined mean function µ(u) = E {ρt(u)} and existence of covariance
function ψ(u, v) = E [{ρt(u)− µ(u)} {ρt(v)− µ(v)}]. With φ(u, v) = E {ρt(u)ρt(v)} the
covariance function can be expressed as

ψ(u, v) = φ(u, v)− µ(u)µ(v), (20)

which can be also interpreted as a covariance coefficient of two points on the surface with
coordinates u and v ∈ J . Since (20) is a symmetric positive definite function we can
use it as a nucleus of the integral transform, performed by the linear operator. Define
the covariance operator Γ:

(Γf)(u) =
∫

J

ψ(u, v)f(v)dv (21)

that transforms f into (Γf). Γ is a symmetric positive operator with orthonormal eigen-
functions {γj}∞j=1, γj : J → R, and associated eigenvalues {λj}∞j=1 with λ1 ≥ λ2 ≥ . . . ≥
0. Now we can express (20) in terms of eigenfunctions and eigenvalues of the covariance
operator Γ by applying Mercer’s theorem, e.g. Indritz (1963):

ψ(u, v) =
∞∑

j=1

λjγj(u)γj(v). (22)

Taking eigenfunctions {γj}∞j=1 as basis, we represent ρt(u)−µ(u) as a generalized Fourier
series with coefficients given by ζtj =

∫
J
{ρt(u)− µ(u)} γj(u)du called the j-th principal

component score with E(ζtj) = 0, E(ζ2
tj) = λj and E(ζtjζik) = 0 for j 6= k, Ramsay and

Silverman (2010). Thus one may rewrite ρt(u)− µ(u) in the Karhunen-Loève form:

ρt(u)− µ(u) =
∞∑

j=1

ζtjγj(u). (23)

Here ζtj indicate how strong is the influence of the j-th basis function on the shape of
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the t-th surface. The higher the score, the closer will the shape of ρt resemble the shape
of the j-th eigenfunction.

In practice one needs to take L eigenfunctions to replace the infinite sum in (23) by the
finite sum of L basis functions, corresponding to the highest eigenvalues. One calls {γj}Lj=1

the empirical orthonormal basis, Ramsay and Silverman (2010). In the next Section we
discuss the estimation procedure for {γj}Lj=1 as well as criteria for the L selection.

3.3 Estimation Algorithm

In model (19) both Zt and m have to be estimated. We do that in two steps.

At the first step we estimate the covariance operator introduced in Section (3.2) and
take µ̂ as m̂0 and γ̂l as m̂l, l ∈ {1, . . . , L} .

The covariance function (20) is estimated as described in Yao et al. (2005) and Hall et al.
(2006). The procedure consists in least-squares fitting of two local linear models, for µ̂
and ψ̂.

Given u ∈J we choose (âµ, b̂µ) = (aµ, bµ) to minimize

T∑

t=1

Jt∑

j=1

{Yt,j − aµ − bµ(u−Xt,j)}2Khµ (Xt,j − u) , (24)

and take µ̂(u) = âµ. Then, given u, v ∈ J we choose (âφ, b̂φ,1, b̂φ,2) = (aφ, bφ,1, bφ,2) to
minimize

T∑

t=1

∑

j,k:1≤j 6=k≤Jt

{Yt,jYt,k − aφ − bφ,1(u−Xt,j)− bφ,2(v −Xt,k)}2 (25)

×Khφ (Xt,j − u)Khφ (Xt,k − v) ,

and take φ̂(u, v) = âφ.

Here Kh denotes the two-dimensional product kernel, Kh(q̄) = kh1(q̄1) × kh2(q̄2), h =
(h1, h2)>, based on one-dimensional kh(q̄) = h−1k(h−1q̄). For our application we selected
the quartic kernel, where k(q̄) = 15/16(1− q̄2)2 for |q̄| < 1 and 0 otherwise. For both (24)
and (25) kernel bandwidths hµ = (hµ,1, hµ,2)> and hφ = (hφ,1, hφ,2)> are to be selected.
The procedure is described in Appendix C. Figure 4 shows an example of µ̂(u) estimated
using the dataset described in Section 4 for DAX ICS from August 2010 until July 2011.
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Figure 4: µ̂(u) of the DAX ICS with corresponding data points, estimated from 20100802
until 20110801 with hµ = (hµ,1, hµ,2)> = (0.12, 0.17)>

Finally, having estimates µ̂(u) and φ̂(u, v), we compute ψ̂(u, v) using (20) and take its L
eigenfunctions corresponding to the largest eigenvalues as m̂l, l ∈ {1, . . . , L}. Parameter
L is chosen in such a way that the selected eigenfunctions explain a big share of variability
in original data. It is also necessary to mention that ψ̂(u, v) is a matrix of a very large
dimensionality. To obtain its consistent estimator, suitable for further spectral decom-
position, various matrix regularization techniques can be used., e.g. banding as in Bickel
and Levina (2008b), thresholding in Bickel and Levina (2008a), eigenvalues cleaning as
in Laloux et al. (1999) and factor models described in Fan et al. (2008). We use the later
in this step.

In the second step using m̂ we obtain the estimates Ẑt = (1, Ẑt,1, . . . , Ẑt,L)> as mini-
mizers of the following least squares criterion:

Ẑt = arg min
Zt

T∑

t=1

Jt∑

j=1

{
Yt,j − Z>t m̂(Xt,j)

}2
. (26)

4 Data

We study the dispersion strategy over the two years sample period from 20100802 to
20120801 on the German market represented by the DAX basket. The basket is composed
of 23 stocks, constituents of DAX, with the most liquidly traded options and weights
proportional to the current market capitalization. To model the dynamics of IC and
construct the dispersion trade we operate with tree main variables representing different
correlation estimates. MFIC, RC, and IC. The datasets are described in Table 1.
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Min. Max. Mean Median Stdd. Skewn. Kurt
IC κ 0.8000 1.2000 0.9825 0.9825 0.0986 0.0690 2.0661

τ 0.0274 0.9671 0.2442 0.1753 0.1979 1.3717 4.3941
ρ̂t(κ, τ) 0.0587 0.9998 0.6150 0.6290 0.1566 -0.2739 2.6115

MFIC ρ̃t(0.083) 0.3895 0.4860 0.6061 0.6193 0.0834 0.0696 0.1957
ρ̃t(0.25) 0.4446 0.9795 0.6549 0.6573 0.0850 0.0613 0.1631
ρ̃t(0.5) 0.4997 1.4730 0.7037 0.6953 0.0866 1.8188 0.1305
ρ̃t(1) 0.5611 1.0851 0.7496 0.7422 0.0905 0.7764 0.6788

RC ρt+0.083 0.1754 0.8955 0.5373 0.5013 0.1331 0.5221 -0.2154
ρt+0.25 0.2774 0.8149 0.5566 0.5363 0.1192 0.2489 -0.8083
ρt+0.5 0.3794 0.7343 0.5759 0.5713 0.1053 -0.0243 -1.4012
ρt+1 0.4312 0.6581 0.5924 0.6050 0.0522 -1.2443 0.9875

Table 1: Summary statistics: IC data computed from DAX index and constituents options
over the period from 20090803 to 20120801 including the 1 year estimation period (3
years, 770 trading days, 135 obs./day). MFIC computed from daily variance swaps rates.
RC computed from daily stock returns from 20100802 to 20120801 (2 years, 515 trading
days). The figures are given after filtering and data preparation.

The MFIC dataset contains daily series of MFICs with maturities 0.083, 0.25, 0.5 and
1 years computed via (12) from variance swap rates given by Bloomberg as discrete
approximation of (9).

The RC dataset contains daily series of RCs computed with (11) and (13) from the
Bloomberg end-of-day stock prices over estimation windows 0.083, 0.25, 0.5 and 1 years.

The IC dataset is constructed using out-of-the-money (OTM) DAX and single stock
options from the EUREX database. To estimate the DSFM model and produce forecasts
for the sample period the dataset covers one additional year from 20090803 to 20100730.
The dataset is transaction-based, meaning every trade is registered with the date it
occurred, expiry date, underlying ticker, exercise price (strike) and settlement price .
To obtain IV from option prices via (10) we distinguish between index and single stock
options. For index options, which have the European type of option payoff, Black-Sholes
(BS) model is used. To account for dividends and early execution in options on single
stocks (American payoff) we use binomial trees, Cox et al. (1979), and bisection algorithm.
Another necessary model parameters, such as stock prices, index levels, dividend amounts
for constituent stocks, interest rates and stock market capitalization are taken from the
Bloomberg database. As a risk free rate proxy we take daily values of EURIBOR (Euro
Interbank Offered Rate) with 1 week up to 1 year maturities and use linear interpolation

15



to obtain values for required option τ . We use the most liquid segment of data with κ
ranging from 0.8 to 1.2 and τ from 10 days to 1 year. Options from original EUREX
dataset are not given on a regular (κ, τ)-grid, required in (17). In τ -dimension maturities
are standardized by market regulation, so every t one can find several τt, similar for the
index and all constituents. However, in κ-dimension one needs to interpolate. At every t
we use the original (κt, τt) grid of the index and linearly interpolate IVs of all constituents
to obtain values corresponding to this grid. To avoid computational problems with highly
skewed empirical distribution of (κt, τt), we transform the initial space [0.8, 1.2]× [0.03, 1]
to [0, 1]2 using empirical distribution function. Also we remove options with extremely
high IVs (bigger than 50%) considering them the misprints in trade registration. After
this we use (17) to obtain IC, which produces on average 135 observations per day.

Figure 1 shows there is a linear dependence between basket correlation and volatility.
We check this finding in the RC dataset for different estimation windows and in IC
dataset for different maturities. The RC data allows to identify a breakpoint, a threshold,
after which the strength of the dependence changes, Appendix G. This phenomenon is
persistent over different estimation windows. The IC dataset does not show any clear
change in correlation/volatility dependence, Appendix H. Since the IC is used to obtain
a forecast of a floating leg of the dispersion strategy, that is RC, we propose to make a
regime dependent correction of the IC dataset as described in Appendix I.

5 Empirical results

5.1 Estimation Results and Factor Modeling

Using the IC dataset described in Section 4 we estimate the DSFM model for three non-
overlapping subsamples 20090803 - 20100730, 20100802 - 20110729, 20110802 - 20120801,
and for the entire sample 20090803 - 20120801. All subsamples include particularly
volatile periods caused by the stock market falls in May 2010, “Flash Crash 2010”, and
more pronounced drop in August 2011.

After obtaining the common factor loadings m̂0, m̂1, m̂2, m̂3, Figure 5, and the daily
time series of factors Ẑt,1, Ẑt,2, Ẑt,3, Figure 6, the modeling task is simplified to the low-
dimensional analysis of factor series. We fit the VAR model of order p for Ẑt,1, Ẑt,2, Ẑt,3.
Before proposing a proper VAR specification, we check if Ẑt have characteristics that
violate assumptions for linear multiple time series models. We perform the augmented
Dickey-Fuller (ADF) test to check each Ẑt,1, Ẑt,2, Ẑt,3 for stationarity, Appendix D. For Ẑt,2
in subsample 20100802 - 20110729 we cannot reject the hypothesis of a unit root and use
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Figure 5: Factor loadings m̂0, m̂1, m̂2, m̂3 estimated from 20090803 to 20100730
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Figure 6: Driving factors of the DAX ICS Ẑt,1, Ẑt,2, Ẑt,3 and ACF up to the 20th lag from
20090803 to 20100730

its first differences instead. Then we define the appropriate number of lags, or order p, by
computing Akaike’s information criterion (AIC), Schwarz’s Bayesian information criterion
(SBIC), and the Hannan and Quinn information criterion (HQIC) values, Appendix E. An
* appearing next to the test statistics indicates the optimal lag. Except the subsample
20110802 - 20120801, the test statistics suggest p = 2, so we make a choice in favor
of this specification. The estimation results are summarized in Appendix F. We also
conducted a portmanteau (Q) test the null hypothesis that a series of residuals exhibits no
autocorrelation. The test does not indicate the presence of serial correlation in residuals
in subsample regressions.

We can clearly distinguish the influence of each factor on the time evolution of the ICS.

17



The first factor can be interpreted as level, the second as moneyness and the third as
maturity effect. The relative size of the largest eigenvalues of the estimated (20) suggest
that m̂1 is capable to capture the biggest share of the surface variability. The variation
captured by the second m̂2 has a smaller influence, since it is only responsible for the
surface shape transformation in the τ dimension. Finally, since the variation of the ICS
in the κ dimension is relatively small, the m̂3 has a smaller impact, which is also reflected
in the Ẑt,3 series.

The forecast of Ẑt,1, Ẑt,2, Ẑt,3 modeled with VAR(2) together with estimated fixed m̂0,m̂1,m̂2,m̂3

give a forecast of the ICS.

5.2 Backtesting the dispersion strategy

Here we show that using the correlation forecast one can improve the original dispersion
strategy (14) and test it empirically over the 2-years sample period 20100801 - 20120802.
We compare the payoff of the strategy without hedging with the naïve hedging strategy
and propose its improvement, the advanced strategy.

To obtain the value of the naive hedge position to be held over ∆t days from t+ τ −∆t
till t + τ we make a ∆t-days ahead DSFM forecast ρ̂t+τ (1, t + τ) and use it as ρt+τ in
(14). Thus the size of the position is defined by

Dh
t+τ =

∑

i

∑

j 6=i

wiwjσ̃t,i(τ)σ̃t,j(τ) {ρ̃t(τ)− ρ̂t+τ (1, t+ τ)} . (27)

The corresponding relative hedging error is given by

εht+τ =
Dh
t+τ −Dt+τ

Dt+τ
= − ρ̂t+τ (1, t+ τ)− ρt+τ

ρ̃t(τ)− ρt+τ
, (28)

where εht+τ < 0(> 0) means that the hedge (27) under-(over-)estimates the actual position
(14). Table 2 gives summary statistics for the (28) over the studied sample period for 3
trades with four different maturities: 0.083, 0.25, 0.5 and 1 years. The statistic includes
515 trades originated every day and expired over the given 2 years sample period.

The improved version of the strategy uses the DSFM forecast ρ̂t+τ (1, t + τ) as a trigger
which defines whether one should hedge or not. If ρ̂t+τ (1, t+ τ) ≥ ρ̃t(τ) (DSFM predicts
loss in dispersion strategy), take an offsetting (with negative sign) position in (27); if
ρ̂t+τ (1, t+ τ) < ρ̃t(τ) (DSFM predicts gain in dispersion strategy), don’t hedge. Thus we
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τ Min. Max. Mean. Median Stdd. Skew. Kurt.
0.083 -108.04 72.30 -1.14 -0.71 8.00 -6.61 100.49
0.25 -255.48 49.53 -1.20 -0.41 11.49 -17.58 372.33
0.5 -216.04 32.78 -0.74 -0.30 9.37 -18.66 425.86
1 -64.84 76.59 -0.01 -0.38 7.47 2.74 46.85

Table 2: Performance of naïve hedge, summary statistics for εht+τ from 20100101 until
20120801

can write the payoff of the advanced strategy at t+ τ as follows:

Dadv
t+τ =

{
Dt+τ −Dh

t+τ , if ρ̂t+τ (1, t+ τ) ≥ ρ̃t(τ)
Dt+τ , if ρ̂t+τ (1, t+ τ) < ρ̃t(τ).

(29)

Since variance swap contract costs nothing to initiate (we ignore transactions costs),
the presented series of daily payoffs correspond to daily P&L of the hypothetical trade
where swaps expire daily over the whole period from 20100801 till 20120802. We compare
the cash flows from three strategies. As one can see in Table 3, the advanced strategy
outperforms the other two by having the smallest maximal losses, highest maximal gains
(τ = 0.25, 0.5) and the highest (second highest for τ = 1) average payoff over the studied
sample period.

6 Conclusions

In this study we investigated the implied correlation (IC) of the DAX index basket and
introduced a hedging approach for the dispersion trading strategy using the IC forecast.
We apply the dynamic semiparametric factor model (DSFM) to the IC dataset from
January 2010 to August 2012, recover four basis functions and three time series of factors
and use them to forecast the IC. The advanced dispersion strategy we employ using
the IC forecast shows the smallest maximal losses, the highest maximal gains and the
highest average payoff over the studied sample period and in comparison to the alternative
strategies. So we conclude that our modeling approach can be of potential use in equity
dispersion trading.

The choice of DSFM as a model for the IC surface (ICS) dynamics is motivated by
the degenerated dataset design, which has to be modeled nonparametrically. On the
other hand we were driven by the necessity to reduce the dimensionality of the problem
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Strategy τ Min. Max. Mean. Stdd.
Dt+τ 0.083 -1502.58 1080.23 87.09 356.94

(no hedge) 0.25 -1531.94 1282.31 101.92 440.54
0.5 -1270.90 1301.28 136.91 456.75
1 -872.76 760.92 134.26 299.01

Dt+τ −Dh
t+τ 0.083 -3237.72 617.40 15.35 203.09

(naïve hedge) 0.25 -1726.53 413.28 35.90 110.14
0.5 -1301.47 344.91 41.13 91.91
1 -914.27 327.03 79.62 93.14

Dadv
t+τ 0.083 -1375.99 1011.38 100.93 256.50

(advanced hedge) 0.25 -1137.79 1282.31 195.09 248.41
0.5 -760.85 1301.28 231.35 281.66
1 -367.89 623.38 123.04 190.80

Table 3: Summary statistics for Dt+τ (no hedge), Dt+τ − Dh
t+τ (naïve hedge), Dadv

t+τ

(advanced hedge) from 20100101 until 20120801, best results (highest min, max,mean
and smallest stdd.) are given in italic

and facilitate the forecasting. DSFM satisfies both requirements. It captures well the
form of the ICS by its nonparametric part and allows using simple parametric model
for dynamics. At the later modeling stage we fit the three-dimensional VAR(2) model,
which as is a good choice to carry out the forecasting exercise. In addition we found
that it is possible to separate the influence of each recovered basis function on the ICS
shape. The functions allow their interpretation as level, moneyness and maturity effects.
The strength of these effects is defined by the time series of corresponding factors, which
can be characterized as drivers of the correlation risk. An interesting task would be to
study the presence, size and magnitude of the correlation risk premia, captured by these
factors. We consider this findings to be important topics for further research.
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A Variance risk premia in DAX and its constituents

τ = 0.25 τ = 0.5 τ = 1
σ σ̃ σ− σ̃ σ σ̃ σ− σ̃ σ σ̃ σ− σ̃

Adidas AG 27.62 31.26 -3.64 28.33 31.88 -3.55 28.60 31.96 -3.37
Allianz SE 31.21 34.25 -3.04 32.16 34.93 -2.77 32.61 34.98 -2.37
BASF SE 29.74 32.67 -2.92 30.43 32.89 -2.45 30.79 32.70 -1.92
Bayer AG 28.13 31.92 -3.78 28.28 32.01 -3.73 28.19 31.77 -3.58
BMW AG 35.74 39.01 -3.27 36.22 39.84 -3.63 35.92 39.61 -3.69
Commerzbank AG 49.04 55.85 -6.80 48.97 54.61 -5.64 48.53 53.40 -4.87
Daimler AG 34.86 39.13 -4.27 35.68 39.83 -4.15 35.82 39.88 -4.05
Deutsche Bank AG 39.19 45.08 -5.89 40.08 45.12 -5.04 40.89 44.23 -3.35
Lufthansa AG 32.15 35.57 -3.42 32.96 35.80 -2.84 33.05 36.01 -2.96
Deutsche Post AG 24.98 28.25 -3.27 25.71 28.64 -2.93 26.23 29.22 -2.98
DeutscheTelekom
AG

24.02 26.93 -2.91 24.57 27.07 -2.50 24.78 27.94 -3.16

E.ON AG 29.31 31.07 -1.75 30.00 31.17 -1.17 30.13 31.50 -1.37
Fresenius 19.11 23.41 -4.30 19.47 23.79 -4.31 19.79 24.02 -4.23
Henkel AG 23.48 27.23 -3.74 23.97 27.46 -3.49 24.25 27.61 -3.36
Infineon AG 39.50 43.01 -3.51 40.17 43.75 -3.57 41.06 44.37 -3.30
Linde AG 22.83 26.60 -3.77 23.08 27.51 -4.43 23.20 27.73 -4.53
Metro AG 32.23 33.30 -1.07 32.69 33.61 -0.92 32.16 33.48 -1.32
Munich Re 25.01 28.16 -3.15 25.47 28.84 -3.37 24.94 29.43 -4.48
RWE AG 30.34 31.39 -1.04 30.65 31.64 -0.99 30.29 31.84 -1.55
SAP AG 21.67 24.32 -2.66 21.51 25.51 -3.99 21.71 26.93 -5.23
Siemens AG 25.23 29.79 -4.56 26.22 30.77 -4.55 27.64 30.92 -3.28
ThyssenKrupp AG 37.68 39.23 -1.55 37.97 39.57 -1.60 37.78 39.57 -1.79
Volkswagen AG 33.89 37.55 -3.67 34.38 37.97 -3.59 35.35 37.93 -2.57
DAX Index 22.51 26.45 -3.94 23.10 27.54 -4.45 23.44 28.47 -5.02

Table 4: Mean of the
√
RV (σ) and

√
MFIV (σ̃) and their difference

√
RV −

√
MFIV

(σ− σ̃), for DAX index and 23 selected constituent stocks computed over the time period
20100802 - 20120801 for 3 different maturities/estimation windows: τ = 0.25, 0.5, 1)
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τ = 0.25 τ = 0.5 τ = 1
Allianz SE 0.0563 0.0526 0.0225
E.ON AG 0.2519 0.3176 0.0814
Metro AG 0.2931 0.1884 0.0196
RWE AG 0.6322 0.5655 0.0707
ThyssenKrupp AG 0.1964 0.0700 0.0100

Table 5: The results of t-test for H0 that on average RV = MFIV against the alternative
RV < MFIV of stocks for which the the H0 is not rejected at 5% significance level.
Results are presented for DAX index and 23 selected constituent stocks computed over
the time period 20100802 - 20120801 for 3 different maturities/estimation windows: τ =
0.25, 0.5, 1)

B Realized versus model free implied correlation

τ = 0.25 τ = 0.5 τ = 1
ρ 0.5566 0.5759 0.5924
ρ̃ 0.6549 0.7037 0.7496
ρ− ρ̃ -0.0983 -0.1278 -0.1572
p-value 0.0000 0.0000 0.0000

Table 6: The results of t-test for H0 that on average RC = MFIC against the alternative
RC < MFIC, which is rejected for all maturities/estimation windows: τ = 0.25, 0.5, 1 at
5% significance level. RC and MFIC are computed using (2), (11) and (9) correspondingly
over the time period 20100802 - 20120801
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C Smoothing Parameters Selection

For both (24) and (25) kernel bandwidths hµ = (hµ,1, hµ,2)> and hφ = (hφ,1, hφ,2)> are to
be selected. As suggested in Härdle et al. (2004) we use the penalizing function approach
to select optimal hoptµ , minimizing mean integrated squared error (MISE):

1
T

T∑

t=1

1
Jt

Jt∑

j=1

{
Yt,j −

L∑

l=1

Ẑt,lm̂l(Xt,j)
}2

wh∗,t(Xt,j)ΞAIC

{
Wh∗,t,j(Xt,j)

TJt

}
, (30)

with the Akaike (1970) Information Criterion (AIC) as penalizing function ΞAIC(q) =
exp(2q) and Wh∗,t,j(Xt,j) defined by

Wh∗,t,j(Xt,j) = Kh(0)
J−1
t

∑Jt
k=1Kh (Xt,k −Xt,j)

, (31)

for every Xt,j, 1 ≤ t ≤ T , 1 ≤ j ≤ Jt.

Since the distribution of the observations is very uneven, we are using the weighted
version of the criterion with weights wh∗,t(ū) def= p−1

h∗,t(ū), where ph∗,t(ū) is the average
design density. For every Xt,j, 1 ≤ t ≤ T , 1 ≤ j ≤ Jt it is defined by:

ph∗,t(Xt,j) = J−1
t

Jt∑

k=1

Kh (Xt,k −Xt,j) , (32)

The bandwidth hoptµAIC = (hµ1, hµ2)> corresponding to the minimal criterion 30 is taken
as optimal. The bandwidth h∗ of the weighting function is constant and does not depend
of choice of hµ.
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D Testing Factor Time Series for Stationarity

Ẑt,1 Ẑt,2 Ẑt,3
20090803 - 20100730 (1st year) -2.991 (1) -6.982 (1) -5.710 (3)
20100802 - 20110729 (2nd year) -1.666* (3) -3.090 (2) -4.480 (1)
20110802 - 20120801 (3rd year) -3.511 (2) -3.796 (3) -3.480 (2)
20090803 - 20120801 (entire sample) -4.025 (1) -6.912 (3) -8.979 (1)

Table 7: Augmented Dickey-Fuller (ADF) test on Ẑt,1, Ẑt,2, Ẑt,3. Number of lags included
in the ADF regression (in brackets) is chosen by starting with 3 lags and subsequently
deleting lag terms, until the last one is significant at 5% level. Test statistics that does
not reject the hypothesis of a unit root at 5% level are denoted by *.

E Determining Number of Lags for VAR Model

AIC HQIC SBIC
20090803 - 20100730 (1st year) 1 1.923 2.061 2.162

2 1.839* 1.975* 2.152*
3 1.856 2.052 2.304
4 1.882 2.060 2.389

20100802 - 20110729 (2nd year) 1 -2.868 -2.800 -2.699
2 -3.075* -2.932* -2.755*
3 -3.068 -2.898 -2.645
4 -3.051 -2.854 -2.525

20110802 - 20120801 (3rd year) 1 -0.118 -0.051 0.048
2 -0.355 -0.238* -0.064*
3 0.361* -0.193 0.055
4 -0.360 -0.144 0.179

20090803 - 20120801 (entire sample) 1 0.745 0.773 0.818
2 0.384* 0.461* 0.539*
3 0.397 0.467 0.579
4 0.412 0.475 0.621

Table 8: Akaike’s information criterion (AIC), Schwarz’s Bayesian information criterion
(SBIC), and the Hannan and Quinn information criterion (HQIC) for defining the optimal
lag order p of a VAR model for DAX and S&P100 ICS factors Ẑt,1, Ẑt,2, Ẑt,3. * appearing
next to the test statistics indicates the optimal lag at 5% significance level.
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F Parameters of VAR model for DAX ICS factors

20090803 - 20120801 (entire sample) 20090803 - 20100730 (1st year)
Z1,t Z2,t Z3,t Z1,t Z2,t Z3,t

Z1,t−1 0.645* -0.012 -0.019 0.630* -0.032 0.029
Z1,t−2 0.310* 0.008 0.029 0.276* 0.013 -0.060*
Z2,t−1 -0.104* 0.259* 0.156 -0.036 0.047 0.036
Z2,t−2 0.057* 0.406* -0.014 -0.039 0.339 -0.104*
Z3,t−1 -0.07 0.140* 0.471* -0.091 -0.494* 0.525*
Z3,t−2 0.149* 0.118* 0.251* 0.046 0.181 -0.208*
c 0.004 0.006 -0.003 -0.004 -0.001 0.001

20100802 - 20110729 (2nd year) 20110802 - 20120801 (3rd year)
Z1,t Z2,t Z3,t Z1,t Z2,t Z3,t

Z1,t−1 0.809* 0.048 -0.202* 0.339* 0.191* -0.001
Z1,t−2 0.254* -0.029 0.112* 0.351* 0.041 -0.036
Z2,t−1 0.188* 0.687* -0.223* 0.355* 0.264* 0.132*
Z2,t−2 0.091 0.262* 0.018 0.084 0.302* -0.045
Z3,t−1 0.453* 0.051 0.162* -0.197 -0.008 0.623*
Z3,t−2 0.118 0.118 0.275* 0.044 0.240* 0.204*
c -0.004 0.001 -0.002 0.003 -0.001 -0.002

Table 9: The estimated parameters for VAR(2) model for DAX ICS factors. * marks
estimates which are not significant at 5% level.
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G Piecewise linear dependence of ρt+τ and σB,t+τ

Figure 7: DAX σB,t+τ (solid line) vs ρt+τ (dashed line), scatter plot σB,t+τ vs ρt+τ , for
t+ τ from 20100104 till 20120801, estimated with (11) and (2) respectively over 1 month
(τ = 0.083), 3 months (τ = 0.25) and 6 months (τ = 0.5) window. Shaded area: Aug
2011 market fall. Switch point for two regression line is defined as described in Appendix
I
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H Linear dependence of σ̂t,B(κ, τ ) and ρ̂t(κ, τ )

Figure 8: DAX σ̂t,B(1, τ) (solid line) vs ρ̂t(1, τ) (dashed line), scatter plot σ̂t,B(1, τ) and
ρ̂t(1, τ), for t + τ from 20100104 till 20120801, estimated from IVs with (17) for option
with 1 month (τ = 0.083), 3 months (τ = 0.25) and 6 months (τ = 0.5) maturity. Shaded
area: Aug 2011 market fall.

30



I Switch point selection for correlation regimes

τ σB,t+τ ρt+τ Slope 1 Slope 2

0.083 20.24 0.5917 0.0361 0.0085
0.25 20.34 0.5728 0.0336 0.0093
0.5 22.42 0.6008 0.0286 0.0094

Average 21.00 0.5884 0.0328 0.0091

Table 10: Segmented linear regression of ρt+τ on σB,t+τ with one break point, τ =
0083, 0.25, 0.5 for t+ τ , from 20100104 till 20120801

The dependence of ρ and σB observed in RV and RC (Appendix G) is not pronounced in
case of ATM IV and IC (Appendix H). Therefore we propose a market regime correction
scheme for the IC dataset. The idea is to find a breakpoint between two segments of a
piecewise linear regression of ρt+τ on σB,t+τ . Using the procedure described in Muggeo
(2003) we fit a segmented linear regression with one break point.

Based on results summarized in Table 10 we make a following state dependent correction:
if σ̂B,t(1, τ) > 21 (high volatility regime), then ρ̂t(κ, τ) = 0.0091σ̂B,t(κ, τ)
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