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Abstract

This paper addresses the open debate about the usefulness of high-frequency (HF) data in

large-scale portfolio allocation. We consider the problem of constructing global minimum

variance portfolios based on the constituents of the S&P 500 over a four-year period cov-

ering the 2008 financial crisis. HF-based covariance matrix predictions are obtained by

applying a blocked realized kernel estimator, different smoothing windows, various regu-

larization methods and two forecasting models. We show that HF-based predictions yield a

significantly lower portfolio volatility than methods employing daily returns. Particularly

during the volatile crisis period, these performance gains hold over longer horizons than

previous studies have shown and translate into substantial utility gains from the perspective
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of an investor with pronounced risk aversion.

Keywords: portfolio optimization; spectral decomposition; regularization; blocked real-

ized kernel; covariance prediction

JEL classification: G11, G17, C58, C14, C38

1 Introduction

With the rise in mutual fund and exchange-traded fund (ETF) investing, quantitative short-term

management of vast portfolios has emerged as a topic of great interest. For allocation decisions,

forecasts of high-dimensional covariance matrices constitute a crucial input, which initiated a

body of literature on the performance of various methods based on asset return data measured

up to a daily frequency (see, e.g., Chan et al., 1999; Jagannathan and Ma, 2003). Although the

work of Andersen et al. (2001), Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen

et al. (2011), among others, opened up a new channel for increasing the precision of covariance

matrix estimates and forecasts by exploiting high-frequency (HF) data, existing empirical studies

examine its benefits for portfolio selection only in moderate dimensions (e.g. Fleming et al.,

2003; Liu, 2009). This paper evaluates the potential of HF data for portfolio selection in a

realistic high-dimensional framework.

While ensuring high precision, we face major technical and practical challenges when

constructing covariance matrix forecasts for vast-dimensional portfolio applications. First,

forecasts have to be both positive definite and well-conditioned. These properties can be

guaranteed by having sufficiently long estimation windows, sampling frequently enough within a

fixed window, imposing a parametric specification or applying suitable regularization techniques.

The latter include factor structures, e.g., based on principal components, methods from random

matrix theory, such as eigenvalue cleaning (see Laloux et al., 1999), or shrinkage techniques as

proposed in Ledoit and Wolf (2003). Second, covariance matrix predictions have to balance

responsiveness (to new information) and a certain degree of stability. The latter property is

crucial for preventing high transaction costs caused by excessive portfolio re-balancing and can

be ensured by appropriately smoothing the estimates.

Motivated by these requirements, we address the following research questions: (i) Do

HF-based forecasts generally outperform low-frequency-based approaches and – if yes – over

which time horizons? (ii) Which regularization methods are (empirically) superior? (iii) How

important is it to smooth estimates over time? (iv) How well do naive predictions of covariance

matrices (i.e., random walk forecasts) perform compared to corresponding dynamic forecasting

models? (v) How do results change in dependence of the dimension of the underlying portfolio?
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We answer these questions in an extensive empirical study by focusing on the problem of

constructing global minimum variance (GMV) portfolios based on the constituents of the S&P

500 index over a four-year period covering the 2008 financial crisis. Studying global minimum

variance portfolios (in contrast to minimum variance portfolios for a given expected return)

has the important advantage that the corresponding weights are determined solely by forecasts

of the conditional covariance matrices over the given investment horizon. This property is

tantamount to pure volatility timing strategies and avoids the inherent noisiness of conditional

mean predictions overshadowing the analysis and blurring the role of covariance forecasts (see,

e.g., Jagannathan and Ma, 2003). We obtain HF-based covariance matrix estimates by applying

the blocked realized kernel (BRK) by Hautsch et al. (2012) to mid-quote data. These estimates

are smoothed over different time windows, regularized by eigenvalue cleaning or imposing a

factor structure and, finally, utilized to construct both naive predictions and forecasts based on

a simple dynamic specification. We benchmark the HF forecasts with prevailing approaches

employing daily returns. In particular, we use multivariate GARCH models, rolling-window

sample covariance matrices regularized in different ways as well as classic and state-of-the-art

RiskMetrics approaches. The competing methods are evaluated in terms of the (estimated)

conditional portfolio volatility and important characteristics of the implied portfolio allocations,

such as portfolio turnovers and the amount of short-selling. Finally, we examine the economic

significance of differences in portfolio volatility by a refined version of the utility-based method

introduced in West et al. (1993) and Fleming et al. (2001). This approach provides performance

fees (net of transaction costs) that a risk-averse investor would be willing to pay to switch from,

for instance, covariance forecasts employing daily returns to HF-based forecasts. To provide

finite-sample inference for these performance characteristics, we embed the entire evaluation

methodology into a stylized “portfolio bootstrap” framework based on a random sampling of

asset sub-sets.

We summarize the major results as follows. First, even naive HF-based forecasts outperform

all low-frequency (LF) methods in terms of portfolio volatility. This is particularly true during

the turbulent crisis period. Here, an investor with high risk aversion and a daily horizon would

be willing to pay up to 199 basis points to benefit from a lower portfolio volatility produced

from HF data. This superiority of HF-based forecasts persists up to a monthly horizon with the

corresponding performance fee being still 99 basis points. Second, while eigenvalue cleaning,

as applied to BRK estimates by Hautsch et al. (2012), performs well as a robust baseline

approach, adaptive or fixed factor structures constitute an effective alternative. Third, short-term

smoothing of HF-based covariance matrix estimates can be beneficial for further reducing

portfolio volatility. In contrast, smoothing over too long time intervals increases volatility but

lowers portfolio turnover. The latter, however, is of importance if the transaction cost level is
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particularly high. Fourth, constructing forecasts based on a simple dynamic specification of

(realized) covariances further improves the performance of HF-based forecasts. During the crisis

period, the performance fees an investor with pronounced risk aversion would pay for switching

from LF-based predictions amount to 328 and 239 basis points for a daily and monthly horizon,

respectively. Fifth, we demonstrate that exploiting HF data for portfolio selection is challenging

in a vast investment universe including relatively illiquid assets. In contrast, focusing on the 100

and 30 most heavily-traded stocks out of the S&P 500 universe, we find that basis point fees for

switching to HF-based forecasts increase by a multiple.

This paper contributes to (the few existing) studies on the benefits of HF data for portfolio

allocation. In their seminal work, Fleming et al. (2003) apply the evaluation methodology by

Fleming et al. (2001) to volatility timing strategies in a general mean-variance context. For a

daily forecasting horizon, they find that a risk-averse investor would be willing to pay between

50 and 200 basis points to switch from covariance forecasts based on daily returns to those

employing five-minute returns. However, these results are based on allocations across only

three highly-liquid futures contracts. Liu (2009) extends the size of the asset universe to 30

by constructing minimum tracking error portfolios (tracking the S&P 500 index) based on

the constituents of the Dow Jones Industrial Average. He confirms the benefits of HF-based

forecasts in terms of tracking error volatility. Apart from examining the value of HF data for

portfolio selection in general, the studies by Bandi et al. (2008) and de Pooter et al. (2008)

also aim to determine the optimal intraday sampling frequency. While the former minimize

a mean-squared error criterion for three S&P 500 stocks and conduct an ex-post economic

evaluation, the latter directly compare the performance of volatility timing strategies based on

different frequencies considering the constituents of the S&P 100 index.

However, to our best knowledge, no study thoroughly analyzed HF-based forecasts of

portfolios covering several hundreds of assets as commonly used in practice. In addition, our

contributions to this strand of literature are twofold. First, the above studies are restricted

to intraday data sampled at fixed time intervals (e.g., five minutes). We consider the highest

frequency possible employing tailor-made covariance estimators that offer substantial precision

gains (see, e.g., Barndorff-Nielsen et al., 2011; Hautsch et al., 2012). Second, the predominant

evaluation method is to examine unconditional sample moments of implied portfolio returns

(or utilities depending on the latter), which however, can distort the ranking of the underlying

covariance matrix forecasts (see Voev, 2009). Our evaluation approach relies on estimated

conditional portfolio volatilities allowing for a more reliable ranking of competing covariance

predictions.

The remainder of the paper is organized as follows. Section 2 introduces the general GMV

framework, as well as the corresponding evaluation methodology for conditional covariance
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matrix forecasts. In Section 3, we discuss the methods for the construction of conditional

covariance predictions based on both HF and LF data. Section 4 presents the S&P 500 dataset,

more details on the evaluation procedure and the empirical results. Finally, Section 5 concludes.

2 Global Minimum Variance Portfolios and Covariance Forecasts

The practical implementation of a general mean-variance framework in the spirit of Markowitz

(1952) relies on forecasts of the first two conditional moments of asset returns. Consequently, the

performance of the predicted (optimal) portfolio allocation depends on the predictability of both

conditional means and conditional covariances. However, it is well-known that the predictability

of first conditional moments of asset returns is much lower than the predictability of conditional

(co-)variances (e.g. Merton, 1980). Consequently, mean forecasts are subject to substantial

prediction errors which in turn can completely dominate and distort the analysis (e.g. Michaud,

1989). As a result, isolating the explicit effects of high-dimensional covariance forecasts on the

resulting portfolio performance is virtually impossible. Hence, in order to eliminate the impact

of conditional mean predictions and to solely focus on the value of covariance forecasts we

consider global minimum variance portfolios. This proceeding is backed by empirical evidence

showing that the noisiness of mean predictions leads to highly unstable portfolio allocations

which are typically outperformed by approaches explicitly avoiding the need of mean forecasts

(e.g. DeMiguel et al., 2009; Jagannathan and Ma, 2003; Michaud, 1989). In this sense, our

analysis provides insights into the impact of covariance forecasts on portfolio performance

without being affected by assumptions or estimation errors associated with mean predictions.

We assume a risk-averse investor with a horizon of h days and an asset universe of m stocks

whose optimization problem at day t can be formulated as

min
wt,t+h

w′t,t+h Σt,t+hwt,t+h s.t. w′t,t+hι = 1, (1)

where wt,t+h is the (m× 1) vector of portfolio weights and ι is a (m× 1) vector of ones.

Further, Σt,t+h := Cov[rt,t+h|Ft] denotes the (m×m) conditional covariance matrix of rt,t+h,

i.e., the (m× 1) vector of log returns from day t to t + h, given the information set at t,

Ft. If, for simplicity, we assume that Cov[rt+r−1,t+r, rt+s−1,t+s|Ft] = 0, r, s ≥ 1, r 6= s,

then Σt,t+h =
∑h

r=1 E[Σt+r−1,t+r|Ft]. For h = 1, we write rt+1 := rt,t+1 and equivalently,

Σt+1 := Σt,t+1. Solving (1) yields the GMV portfolio weights given by

w∗t,t+h =
Σ−1t,t+h ι

ι′Σ−1t,t+h ι
. (2)
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We investigate the benefits of HF data for GMV portfolio selection in terms of forecasts of

the conditional covariance matrix, Σ̂t,t+h, with corresponding weights ŵt,t+h. To evaluate

these predictions, we exploit the basic result of Patton and Sheppard (2008) showing that the

conditional variances of the portfolios based on the true conditional covariance matrix Σt,t+h

and its forecast Σ̂t,t+h obey

ŵ′t,t+h Σt,t+h ŵt,t+h > w∗
′
t,t+h Σt,t+hw

∗
t,t+h if Σ̂t,t+h 6= Σt,t+h. (3)

This result yields a natural evaluation criterion as resulting portfolio variances approach a lower

bound if forecasts Σ̂t,t+h approach their population counterparts. Consequently, we consider a

forecast Σ̂t,t+h as being superior if it produces a smaller conditional portfolio variance. As will

be discussed below, the conditional portfolio variances can be proxied using HF data.

Importantly, Voev (2009) shows that the above criteria are valid only for conditional, but not

unconditional variances. Employing the latter introduces a bias, which is driven by the variance

of the conditional mean of portfolio returns. The bias is negligible only if a mean of zero can be

assumed, which is problematic for horizons of more than, e.g., a day. In addition, it is shown

that due to the bias term, estimators implying higher variations in portfolio weights become

(unjustifiably) disadvantaged. This property becomes particularly restrictive when comparing

covariance matrix forecasts based on LF and HF data, as intuitively, the latter should be able to

incorporate new information faster, however, implying more variability in the weights. Hence,

gains from employing HF data might be understated when unconditional portfolio variances are

considered for evaluation.

We assess the economic significance of a lower (conditional) portfolio variance by adapting

the utility-based evaluation approach suggested by West et al. (1993) and Fleming et al. (2001)

to a conditional framework. Accordingly, we assume that the investor has quadratic preferences

of the form

U
(
rpt,t+h

)
= 1 + rpt,t+h −

γ

2 (1 + γ)

(
1 + rpt,t+h

)2
, (4)

where rpt,t+h := ŵ′t,t+h rt,t+h is the portfolio return with γ denoting the relative risk aversion.

Following Fleming et al. (2003), we consider the two levels γ = 1 and γ = 10. For two

competing covariance forecasts, Σ̂I
t,t+h and Σ̂II

t,t+h, implying the GMV portfolio returns rp,It,t+h
and rp,IIt,t+h, we then determine a value ∆γ , such that

T−h∑
t=1

E
[
U
(
rp,It,t+h

)∣∣∣Ft] =
T−h∑
t=1

E
[
U
(
rp,IIt,t+h −∆γ

)∣∣∣Ft] . (5)
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∆γ can be interpreted as a fee the investor is willing to pay in order to switch from a GMV

strategy based on Σ̂I
t,t+h to its counterpart employing Σ̂II

t,t+h. As we show in Appendix A, the

solution to (5) depends on the conditional portfolio variances, ŵi
′
t,t+h Σt,t+h ŵ

i
t,t+h, and the

conditional means, ŵi
′
t,t+h µt,t+h, where µt,t+h := E[rt,t+h|Ft] is the (m× 1) vector of condi-

tional expected returns and i = I, II. To isolate the effects of differences in (average) conditional

portfolio variances, we assume expected returns being constant over time and identical across

all stocks, i.e. µt,t+h = (h/252)µid ι, t = 1, . . . , T − h. This yields the relationship

∆γ > 0 iff σ2,pI > σ2,pII , σ2,pi :=
1

T − h

T−h∑
t=1

ŵi
′
t,t+h Σt,t+h ŵ

i
t,t+h, i = I, II, (6)

under the assumption that (h/252)µid ≤ 1/γ (see Appendix A).1 To control for the impact

of the assumption on the level of µid on the performance fee ∆γ , we consider a grid of values

satisfying the above restriction for the different investment horizons and rates of risk aversion

utilized, i.e., µid ∈ {−0.05, 0, 0.05, 0.1}. However, as we discuss below, our results are very

robust to the specific value of µid.

3 Covariance Estimation and Forecasting in Vast Dimensions

3.1 Forecasts Based on High-Frequency Data

Estimating asset return covariances based on high-frequency data requires addressing four

major challenges: (i) using high-frequency information at the highest sampling frequencies to

maximize the estimator’s efficiency, while (ii) avoiding biases due to microstructure noise (e.g.

Hansen and Lunde, 2006) and the asynchronous arrival of observations across assets (e.g. Epps,

1979), as well as (iii) ensuring positive definiteness and (iv) well-conditioning of covariance

estimates, i.e. numerical stability of their inverse. Satisfying all criteria simultaneously is chal-

lenging, as for instance, fulfilling (i), (iii) and (iv) requires sampling at the highest frequencies,

which in turn, causes substantial biases ruled out by (ii). Conversely, sparse sampling, e.g.,

based on five-minute returns, as utilized by the classical realized covariance estimator proposed

by Andersen et al. (2001), satisfies (ii) but violates (i) and – if the dimension of the portfolio is

high – also (iv).

A widely used estimator that is both consistent in the presence of microstructure noise

and provides positive semi-definite estimates (thus satisfying (ii) and (iii)) is the multivariate

1Even in case (h/252)µid > 1/γ, we always have that ∆γ > 0 if σ2,p
I > σ2,p

II . However, the above condition on
µid is not overly restrictive. For the longest investment horizon and highest level of risk aversion we consider, i.e.
h = 20 and γ = 10, we need to impose that µid ≤ 1.26. That is, the assumed annualized expected return may not
exceed 126 percentage points.
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realized kernel proposed by Barndorff-Nielsen et al. (2011). As an important ingredient, this

approach involves so-called refresh time sampling for synchronization, implying to sample

prices whenever all assets have been traded (i.e., have been refreshed) at least once. This

naturally implies a loss of efficiency as the sampling frequency is driven by those assets trading

slowest. As stressed and illustrated by Hautsch et al. (2012), this loss of efficiency can be

substantial (thus violating (i)) if the number of assets and their heterogeneity in terms of

trading frequency is high. In the extreme case, covariance matrix estimates might even become

ill-conditioned (thus violating (iv)).

The Blocked Realized Kernel

To address this problem and construct estimates which satisfy all criteria, we consider the

blocked realized kernel put forward by Hautsch et al. (2012). The idea behind the blocked

realized kernel is to assign the assets to groups according to their (average) trading frequency

and to estimate the underlying correlation matrix groupwise.

In a general framework, we denote the log price of asset i at time τ by p(i)τ , i = 1, . . . ,m.

For the assumptions on the price process ensuring consistency of the (blocked) multivariate

realized kernel, we refer to Barndorff-Nielsen et al. (2011). On day t, t = 1, . . . , T , the j-th

price observation of asset i is at time τ (i)t,j , where j = 1, . . . , N
(i)
t and i = 1, . . . ,m. LetG be the

specified number of liquidity groups, yielding the blocks b = 1, . . . , B, withB = G (G+ 1) /2.

Further, we denote the set of indices of themb assets associated with block b by Ib. Applying the

multivariate realized kernel methodology to the assets in Ib then requires refresh time sampling

with refresh times defined as the time it takes for all the assets in this set to trade or refresh

posted prices, i.e.

rτ bt,1 := max
i∈Ib

{
τ
(i)
t,1

}
, rτ bt,l+1 := max

i∈Ib

{
τ
(i)

t,N(i)(rτbt,l)+1

}
, (7)

where N (i)(τ) denotes the number of price observations of asset i before time τ . Accordingly,

vectors of synchronized returns are obtained as rbt,l := prτbt,l
− prτbt,l−1

, l = 1, . . . , nbt , where nbt
is the number of refresh time observations in block b.

The multivariate realized kernel on block b is defined as

Kb
t :=

Hb
t∑

h=−Hb
t

k

(
h

Hb
t + 1

)
Γh,bt , (8)
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Figure 1: Visualization of the Blocking Strategy According to Hautsch et al. (2012)

where k(·) is given by the Parzen Kernel and Γh,bt is an autocovariance matrix, i.e.

Γh,bt :=


∑nbt

l=h+1 r
b
t,l r

b′
t,l−h for h ≥ 0∑nbt

l=−h+1 r
b
t,l+h r

b′
t,l for h < 0.

(9)

Hb
t is a block-specific smoothing bandwidth that is chosen as in Section 3.4 of Barndorff-Nielsen

et al. (2011). Based on (8), we compute the corresponding estimate of the correlation block b as

RK,bt :=
(
V b
t

)−1
Kb
t

(
V b
t

)−1
, V b

t := diag
[
K
b,(ii)
t

]1/2
, i = 1, . . . ,mb, (10)

where Kb,(ii)
t , i = 1, . . . ,mb, are the diagonal elements of Kb

t .

The correlation matrix RBRKt is then obtained as a hierarchical combination of the corre-

lation blocks RK,bt , b = 1, . . . , B. Figure 1 from Hautsch et al. (2012) illustrates the blocking

strategy in a covariance matrix, where the top-left corner is associated with the most liquid assets

and the bottom-right corner associated with the least liquid assets. The data is decomposed into

three equal-sized liquidity groups (G = 3), yielding six correlation blocks. Then, in a first step,

the entire correlation matrix (block one) is estimated. Subsequently, we obtain estimates of

blocks two and three associated with the correlations between the less liquid and more liquid

assets, respectively. Finally, blocks four to six contain the correlations within each liquidity

group. Efficiency gains arise due to a more effective synchronization and thus a higher (refresh

time) sampling frequency within each block. Consequently, all blocks – except block one – are

estimated with higher precision than in the plain realized kernel. Finally, from the (block-wise)

estimated correlation matrix RBRKt , the BRK estimate of the covariance matrix is constructed

9



according to

BRKt := V RK
t RBRKt V RK

t , V RK
t := diag

[
RK

(i)
t

]1/2
, i = 1, . . . ,m, (11)

with RK(i)
t , i = 1, . . . ,m, denoting variance estimates based on the univariate version of

the realized kernel (Barndorff-Nielsen et al., 2008a). Consequently, the variance elements are

estimated with highest precision, since in a univariate setting synchronization by refresh time

sampling is not necessary. We implement the realized kernel estimator following the procedure

from Barndorff-Nielsen et al. (2008b).

Smoothing, Regularization and Construction of Forecasts

Variations in portfolio weights require a re-balancing of the portfolio and thus cause transaction

costs. The latter can be reduced by keeping covariance matrix forecasts sufficiently stable. The

explicit consideration of transaction costs in the underlying portfolio optimization problem,

however, results in an empirically challenging problem, as it requires bounding the variability

of portfolio weights and thus of the covariance matrix over time. Although the derivation of an

explicit solution of this problem is beyond the scope of this paper, we still aim at studying the

impact of competing covariance forecast constructions on the resulting portfolio turnover. A

straightforward method to stabilize covariance matrix estimates is to “smooth” them over time

by computing simple averages over S days, i.e. BRKt,S := (1/S)
∑S

s=1BRKt−s+1, where

BRKt,1 = BRKt.2 Then, a smoothed correlation matrix is obtained as

RBRKt,S :=
(
V RK
t,S

)−1
BRKt,S

(
V RK
t,S

)−1
, V RK

t,S := diag
[
RK

(i)
t,S

]1/2
, i = 1, . . . ,m, (12)

with RK(i)
t,S := (1/S)

∑S
s=1RK

(i)
t−s+1, i = 1, . . . ,m, being smoothed univariate realized

kernel estimates.

Estimating correlation matrices block-wise implies efficiency gains, but yields estimates

(even after smoothing) which are not guaranteed to be positive semi-definite and well-

conditioned. Indefinite matrices feature negative eigenvalues, while ill-conditioned matrices

possess eigenvalues that are close to zero, which makes inversions numerically unstable. Particu-

larly for the computation of minimum variance portfolio weights as in (2), however, it is crucial

that covariance matrices are both positive definite and well-conditioned. These requirements

make it necessary to employ suitable regularization techniques.

2Obviously, one might also “smooth” in a more sophisticated way by applying weighting schemes, e.g., based on
kernel methods. We leave this for further research but show that even smoothing utilizing simple averages yields
superior results, see Section 4.3.
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As a first alternative, we follow Hautsch et al. (2012) employing the eigenvalue cleaning

procedure proposed by Laloux et al. (1999). This method rests on the idea of comparing the

(empirical) distribution of eigenvalues of the estimated correlation matrix with the theoretical

distribution of eigenvalues one would obtain under independence of the m processes. The latter

is derived from random matrix theory and yields the expected distribution of eigenvalues if

these are completely driven by noise. Consequently, eigenvalues strongly departing from the

theoretical distribution are identified as “signals” carrying significant information on cross-

sectional dependencies. Conversely, eigenvalues being close to zero, and thus to the benchmark

distribution, are identified as “noisy”. They are likely to be non-informative, while causing

the correlation matrix to be ill-conditioned. Hence, these eigenvalues can be inflated, making

estimates well-conditioned without significantly losing information. See Appendix B for details.

As a second regularization technique, we consider a factor structure based on the spectral

components of the correlation matrix. Covariance forecasts based on factor models have been

demonstrated to improve the performance of minimum variance portfolios (e.g. Chan et al.,

1999). Moreover, a factor structure ensures fast convergence of the factor inverse if the number

of factors is small relative to the number of assets (see Fan et al., 2008). Accordingly, we

consider a spectral decomposition of the smoothed correlation matrix estimate on day t, i.e.,

RBRKt,S = Qt,S Λt,S Q
′
t,S , (13)

where Λt,S is the diagonal (m×m) matrix of eigenvalues ordered from largest to smallest,

while Qt,S denotes the orthonormal (m×m) matrix of corresponding eigenvectors. Then, by

retaining only the first kt,S ≤ m correlation eigenvalues and associated eigenvectors we obtain

the factorized estimate of the correlation matrix

RBRKt,S,(kt,S)
= Qt,S,(kt,S)Λt,S,(kt,S)Q

′
t,S,(kt,S)

+
(
Im −Qt,S,(kt,S)

)
, (14)

where Qt,S,(kt,S) is a diagonal (m×m) matrix containing the diagonal elements of

Qt,S,(kt,S)Λt,S,(kt,S)Q
′
t,S,(kt,S)

. The number of factors kt,S is chosen in two ways. First, we

select the number of factors for each day t separately employing the criteria by Bai and Ng

(2002). For implementation details, we refer to Appendix C. Second, we consider a factor

structure with the numbers of factors fixed to one or three.

Hence, our combined framework for smoothing and regularizing BRK estimates can be

summarized as

Σ̃vRnB
t,S := V RK

t,S RvRnB
t,S V RK

t,S , where v ∈ {E,F, 1F, 3F} , (15)
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with RvRnB
t,S corresponding to the smoothed correlation matrix estimates from (12) regularized

by eigenvalue cleaning (E) or by imposing an adaptive (F) or fixed (1F and 3F) factor structure.

Following Hautsch et al. (2012), in all cases we regularize only if RBRKt,S is non-positive definite

or ill-conditioned. The latter is defined to be the case if
∣∣Λ(1)

t,S/Λ
(m)
t,S

∣∣ > 10×m, where Λ
(1)
t,S and

Λ
(m)
t,S are the largest and smallest eigenvalue of RBRKt,S , respectively.

Further possibilities to regularize the covariance matrix are, for instance, thresholding

techniques (Wang and Zou, 2010). However, the latter rely on a sparsity assumption for the un-

derlying covariance matrix, which is problematic given the strong cross-sectional dependencies

typical for equity data. Alternatively, as shown by Jagannathan and Ma (2003), regularization

can be achieved by imposing no-short-sale constraints in the portfolio optimization problem (1).

A related result for general gross portfolio constraints is put forward by Fan et al. (2012b)

and applied to evaluate covariance matrix estimates using HF data, e.g., in Fan et al. (2012a).

Here, we focus on an unconstrained framework, since it explicitly allows us to compare the

performance of different regularization methods and to evaluate the forecasting accuracy not

only with respect to the covariance matrix, but also to its inverse.

We construct forecasts of Σt,t+h based on the information set Ft by two alternative ap-

proaches. First, we evaluate random walk (“naive”) forecasts of the form Σ̂t,t+h = h Σ̃vRnB
t,S ,

which will be referred to as vRnB(S), v ∈ {E,F, 1F, 3F}. As an alternative to a pure ran-

dom walk forecast, we propose a simple dynamic model for non-smoothed covariance matrix

estimates. When choosing a suitable dynamic specification for covariance matrices, positive

definiteness of forecasts, model parsimony and ease of implementation are important factors to

ensure feasibility in a vast-dimensional setting. To guarantee positive definiteness, we follow

Andersen et al. (2003) and Chiriac and Voev (2011) in modeling the Cholesky decomposition of

covariance matrix estimates, i.e., Σ̃vRnB
t,1 = Lt L

′
t, where Lt is a lower triangular matrix. As Lt

contains m (m+ 1) /2 distinct elements, we ensure tractability in high dimensions by modeling

each row or column of Lt independently. Due to its triangular form, modeling the rows or

columns of Lt implies a hierarchical specification of dynamics, depending on the ordering of

assets. Consequently, (co-)variances associated with assets being ranked first widely follow

their individual dynamics, while volatilities associated with higher ranks are subject to several

joint dynamics. For instance, in case of row modeling, the volatility of the first asset and, in case

of column modeling, all scaled covariances thereof with all other stocks follow independent

dynamics.3 To account for this hierarchy, we order the assets according to their (average) trading

frequency during the estimation period.

3The first row of Lt contains the diagonal element
√

Σ̃
(1,1)
t,1 , while the first column equals the vector(

Σ̃
(1,1)
t,1 , Σ̃

(1,2)
t,1 , . . . , Σ̃

(1,m)
t,1

)′
/
√

Σ̃
(1,1)
t,1 .
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Let L(g•)
t denote the (g × 1) vector of elements from the g-th row of Lt and L(•g)

t the

((m− g + 1)× 1) vector of elements from the g-th column, g = 1, . . . ,m. Dynamic specifi-

cations for L(g•)
t and L(•g)

t should capture the well-known persistence properties of volatility

processes, which can be achieved by fractionally integrated processes (e.g., Andersen et al.,

2003), appropriately mixing different frequencies using, e.g., mixed data sampling (MIDAS)

techniques as proposed by Ghysels et al. (2006) or heterogeneous autoregressive (HAR) pro-

cesses introduced by Corsi (2009). We follow the latter strategy, which is in the spirit of

Chiriac and Voev (2011) applying HAR dynamics to the Cholesky factors of realized covariance

estimates. Accordingly, we consider the HAR(1, 5, 20) specifications

L
(g•)
t = c(g•) + α

(g•)
d L

(g•)
t−1 +

α
(g•)
w

5

5∑
s=1

L
(g•)
t−s +

α
(g•)
m

20

20∑
s=1

L
(g•)
t−s + ε

(g•)
t , g = 1, . . . ,m,

(16)

L
(•g)
t = c(•g) + α

(•g)
d L

(•g)
t−1 +

α
(•g)
w

5

5∑
s=1

L
(•g)
t−s +

α
(•g)
m

20

20∑
s=1

L
(•g)
t−s + ε

(•g)
t , g = 1, . . . ,m,

where c(g•) and c(•g) are (g × 1) and ((m− g + 1)× 1) parameter vectors, respectively, while

the remaining parameters are scalars. We will refer to these specifications as Row- and Column-

Cholesky-HAR (RCHAR and CCHAR) models. Based on (least-squares) parameter estimates,

the models (16) yield h-step ahead forecasts L̂(g•)
t+h and L̂(•g)

t+h , g = 1, . . . ,m, which are combined

to form L̂t+h. Finally, we construct forecasts of Σt,t+h as Σ̂t,t+h =
∑h

r=1 L̂t+r L̂
′
t+r. These

forecasts involve a bias, as they rely on a nonlinear transformation of the covariance matrix.

However, we abstain from a bias correction, as, e.g., Chiriac and Voev (2011) demonstrate that

this bias is empirically negligible. In any case, this issue should be of minor relevance when

considering an economic, instead of a statistical loss function.

3.2 Forecasts Based on Daily Data

We assess the merits of covariance forecasts based on HF data for the portfolio selection

framework presented in Section 2 by benchmarking the former against methods employing daily

returns. A comprehensive overview of these approaches can be found in Sheppard (2012). The

three classes of estimators we consider are (i) multivariate GARCH models, (ii) (regularized)

rolling window sample covariance matrices, and (iii) RiskMetrics. (i) and (ii) have been shown

to perform well in the econometric and finance literature, while (iii) is of relevance in financial

practice. In this context, we will denote by ut the (m× 1) vector of demeaned returns at day

t, i.e. ut := rt − µt, t = 1, . . . , T , where as for the utility-based evaluation above and in line
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with, e.g., Hansen and Lunde (2005) we assume that the vector of conditional mean returns µt
is constant over time.

Multivariate GARCH Models

Multivariate GARCH (MGARCH) models parameterize the dynamics of the conditional co-

variance matrix Σt+1. For a survey of this model class, we refer to Bauwens et al. (2006). We

consider the scalar version of the vector GARCH model (S-VEC) introduced in Bollerslev

et al. (1988) and the dynamic conditional correlation (DCC) model proposed by Engle (2002).

The former is motivated by the results on spectral components of covariance and correlation

matrices in Zumbach (2009a) that favor a direct modeling of conditional covariance matrices.

For that purpose, the S-VEC model is the most parsimonious approach. Employing DCC speci-

fications is justified by their superior out-of-sample prediction accuracy within the MGARCH

class when considering various statistical loss functions and different dimensions (e.g. Caporin

and McAleer, 2012; Laurent et al., 2012). We estimate both models by Gaussian QML, i.e.,

assuming ut+1|Ft ∼ N(0,Σt+1).

The S-VEC model is a direct extension of the univariate GARCH specification. Ensuring

covariance targeting as proposed by Engle and Mezrich (1996), it can be formulated as

Σt+1 = Σ̄ (1− αh − βh) + αh ut u
′
t + βh Σt, αh, βh ≥ 0, αh + βh < 1, (17)

where Σ̄ := E[ut u
′
t] denotes the unconditional covariance matrix of ut, which is consistently

estimated by the corresponding sample moment. Then, αh and βh are estimated by QML

using the composite likelihood method proposed by Engle et al. (2008). Accordingly, the

joint likelihood is replaced by the sum of pairwise likelihoods ensuring tractability in high

dimensions.4 Using the parameter estimates in specification (17), we construct h-step ahead

forecasts Σ̂t+h yielding Σ̂t,t+h =
∑h

r=1 Σ̂t+r.

The DCC model decomposes the conditional covariance matrix as Σt+1 = Vt+1 Rt+1 Vt+1,

where Vt+1 := diag
[
σ
2,(i)
t+1

]1/2
, i = 1, . . . ,m, with the conditional variances σ2,(i)t+1 following

univariate GARCH processes, while a similar dynamic structure is imposed on the conditional

4In our vast-dimensional setting, we follow a suggestion of Engle et al. (2008) and use only adjacent pairs of assets.
The results do not change qualitatively when modifying the ordering of assets.
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correlations in Rt+1, i.e.,

σ
2,(i)
t+1 = ωi + αi u

(i),2
t + βi σ

2,(i)
t , ωi, αi, βi ≥ 0, αi + βi < 1, i = 1, . . . ,m, (18)

Rt+1 =
(
V z
t+1

)−1
Zt+1

(
V z
t+1

)−1
, V z

t+1 := diag
[
Z

(ii)
t+1

]1/2
, i = 1, . . . ,m,

Zt+1 = Z̄ (1− αz − βz) + αz εt ε
′
t + βz Zt, αz, βz ≥ 0, αz + βz < 1,

where Z(ii)
t+1, i = 1, . . . ,m, are the diagonal elements of Zt+1, εt := V −1t ut is the (m× 1) vec-

tor of devolatilized returns and Z̄ := E[εt ε
′
t]. Estimation is carried out in three steps. First,

we estimate the m univariate GARCH(1, 1) models. Second, Z̄ is estimated by correlation

targeting, i.e., replacing E[εt ε
′
t] with its sample analogue.5 Finally, we estimate the correlation

parameters by the composite likelihood approach. Based on QML parameter estimates and the

dynamics in (18), one-step ahead covariance forecasts can be straightforwardly constructed as

Σ̂t+1 = V̂t+1 R̂t+1 V̂t+1, where V̂t+1 := diag
[
σ̂
2,(i)
t+1

]1/2
, i = 1, . . . ,m. To obtain the multi-

step forecasts necessary for computing Σ̂t,t+h =
∑h

r=1 Σ̂t+r, h > 1, we use the approximations

suggested in Engle and Sheppard (2005) and Engle (2009, ch. 9.1).

Regularized Rolling Window Sample Covariance

The sample covariance matrix computed from L (demeaned) daily returns is defined as

Ct :=
1

L

L∑
l=1

ut−l+1u
′
t−l+1. (19)

The covariance matrix estimate Ct is positive definite whenever L ≥ m but inversion can be

numerically unstable even if the latter condition is fulfilled. Accordingly, we regularize Ct
using alternative techniques if it is ill-conditioned according to the definition in Section 3.1.

We denote the resulting estimate by Creg
t , where Creg

t = Ct if no regularization is imposed.

Covariance forecasts are then computed as Σ̂t,t+h = hC
reg
t .

As a simple regularization method, we consider factor models based on the principal

components of Ct. The strong performance of factor structures in GMV portfolio applications

is documented by Chan et al. (1999), showing that a three-factor model mimicking the Fama

and French (1993) factors is sufficient. While the latter are factors constructed based on asset

return characteristics and economic fundamentals, an approximation thereof using principal

components can be motivated, for instance, by the results in Connor (1995) on the similar

explanatory power of fundamental and statistical factor models. Let Λct,(kt) be the diagonal

5Aielli (2011) shows that the resulting estimator of Z̄ is inconsistent and proposes a “corrected” DCC (cDCC) model.
However, Caporin and McAleer (2012) find the latter having an inferior forecasting performance compared to the
original DCC specification.
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(kt × kt) matrix of the first kt eigenvalues and Qct,(kt) the (m× kt) matrix of the corresponding

eigenvectors of Ct. Then, the resulting factorized covariance matrix estimate is

C
reg
t = Qct,(kt)Λ

c
t,(kt)

Qc
′

t,(kt)
+
(
V c
t −Qct,(kt)

)
, (20)

where V c
t andQct,(kt) are diagonal (m×m) matrices containing the diagonal elements ofCt and

Qct,(kt)Λ
c
t,(kt)

Qc
′

t,(kt)
, respectively. In the spirit of Chan et al. (1999), we consider a three-factor

structure (i.e., kt = 3) and, alternatively, examine a more restrictive framework with kt = 1.

Further, we allow for a closer comparison with FRnB estimates by choosing kt on a dynamic

basis using the Bai and Ng (2002) criteria discussed in Appendix C.

As a second type of regularization, we use the shrinkage technique initially proposed

by Stein (1956) and adopted by Ledoit and Wolf (2003) for sample covariance matrices. The

resulting shrunk estimator is a weighted average of Ct and a restricted, positive definite target Ft,

i.e.,

C
reg
t = φFt + (1− φ) Ct, 0 ≤ φ ≤ 1, (21)

where φ is an estimate of the optimal shrinkage intensity derived by Ledoit and Wolf (2003)

minimizing the squared error loss. As shrinkage target Ft, they consider the one-factor model

by Sharpe (1963) showing that the resulting estimator outperforms, e.g., the pure one-factor and

three-factor model. As an approximation, we employ the principal component structure (20)

with kt = 1. In addition, we follow Ledoit and Wolf (2004) and let Ft be given by the

equicorrelation model, i.e., the covariance matrix implied by setting the common correlation

equal to the cross-sectional average of all pair-wise sample correlations implied by Ct.

Finally, we regularize Ct by the eigenvalue cleaning procedure that is applied to BRK

estimates in Section 3.1 and discussed in more detail in Appendix B. Laloux et al. (2000)

demonstrate that sample covariance matrices regularized by this technique yield considerably

lower portfolio volatilities than their “uncleaned” counterparts in minimum-variance applica-

tions.

RiskMetrics

RiskMetrics covariance forecasts constitute the industry standard. The original RiskMetrics1994

approach is based on an exponentially-weighted moving average (EWMA) of the outer product
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of demeaned returns, i.e.,

Σ̂t+1 =
(1− λ)(

1− λLRM−1
) LRM∑
l=1

λl−1 ut−l+1u
′
t−l+1, 0 ≤ λ ≤ 1, (22)

where LRM denotes the window length. We follow the suggestion made in J.P. Morgan/Reuters

(1996) for daily returns and set λ = 0.94. If the forecast Σ̂t+1 is ill-conditioned according to the

criterion in Section 3.1, we apply the tailored regularization technique suggested in Zumbach

(2009b), which relies on a two-stage shrinkage. See Zumbach (2009b) for details. Forecasts

of Σt,t+h are then computed as Σ̂t,t+h = h Σ̂
reg
t+1, where Σ̂

reg
t+1 is the regularized forecast with

Σ̂
reg
t+1 = Σ̂t+1 if no regularization is necessary.

Additionally, we employ the updated RiskMetrics2006 methodology, which allows for long

memory dynamics by assuming a hyperbolic decay of the weights on lagged outer products of

returns. The corresponding one-step ahead covariance forecast is

Σ̂t+1 =
LRM∑
l=1

λl ut−l+1u
′
t−l+1, λl :=

vmax∑
v=1

ζv
(1− θv)(

1− θLRM−1v

) θl−1v , (23)

ζv :=
1

D

(
1− ln(ηv)

ln(η0)

)
, θv := exp(−1/ηv), ηv := η1 ρ

v−1,

where the constant D is specified such that
∑

v ζv = 1, η0 is a logarithmic decay factor, while

η1 and ηvmax denote the lower and upper cut-off, respectively. Moreover, ρ is an additional

tuning parameter and vmax is determined by specifying the values of the other parameters. We

use the values suggested in Zumbach (2006), i.e., η0 = 1560, η1 = 4, ηvmax = 512 and ρ =
√

2.

Finally, we construct forecasts of Σt,t+h according to Σ̂t,t+h =
∑h

r=1 Σ̂reg
t+r, where multi-step

predictions Σ̂t+r, r > 1, are computed following Appendix A of Zumbach (2006).

4 Empirical Results

4.1 Data and Empirical Setup

We employ mid-quotes for the constituents of the S&P 500 index extracted from the Trade and

Quote (TAQ) database. We focus on the 400 assets with the longest continuous trading history

during the sample period between January 2006 and December 2009 covering approximately

1, 000 trading days and including the financial crisis after the bankruptcy filing of Lehman
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Figure 2: Cross-Sectional Averages of Volatility and Absolute Correlation Estimates
Based on smoothed BRK estimates using daily, monthly or yearly window. Volatilities are annualized
square roots of diagonal elements and are reported in percentage points.

Brothers Inc. We discard the first 15 minutes of each trading day to avoid opening effects and

conduct additional steps to clean the raw quote data. Details are provided in the web appendix.6

Based on the cleaned mid-quote data, we compute BRK estimates as outlined in Section 3.1

using G = 4 liquidity groups. The choice of G will be motivated below. Further, we smooth

the BRK estimates over weekly, monthly, quarterly, half-yearly and yearly windows, i.e. S ∈
{1, 5, 20, 63, 126, 252}. For three smoothing windows, Figure 2 depicts the resulting averages

of the square roots of diagonal elements, i.e., volatility estimates, and of the absolute values of

pairwise correlations. Two major features are apparent. First, there is a considerable increase

of both volatility and absolute correlation during the peak of the financial crisis in the later

part of 2008. Second, employing BRK estimates smoothed over monthly and yearly windows

implies a noticeable stabilization. The latter effect is also confirmed for the eigenvalues of the

corresponding correlation matrix estimates displayed in Figure 3. Here, smoothing is helpful to

separate the dynamics of the first (largest) eigenvalue, which allows for a better signal extraction.

The result that the first eigenvalue follows different dynamics than the rest of the eigenvalues is

in contrast to findings based on correlation matrices estimated over long-term rolling windows

of daily data (e.g. Zumbach, 2009a).

Following Section 3.1, we regularize indefinite or ill-conditioned smoothed BRK estimates

by eigenvalue cleaning (ERnB) or imposing a factor structure (FRnB, 1FRnB and 3FRnB). As

we show in the web appendix in more detail, regularization is necessary for all days in the

sample and every smoothing window. Figure 4 gives the number of factors based on BRK

6The web appendix is available at
http://amor.cms.hu-berlin.de/˜malecpet/MHFDPF_appendix.pdf.
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(b) Monthly Smoothing Window
Figure 3: Eigenvalues of BRK Correlation Matrix Estimates (Logarithmic Scale)
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Figure 4: Sample Distribution of Number of Factors for FRnB Estimates
Number of factors is determined by applying the Bai and Ng (2002) criteria from Appendix C to BRK
estimates smoothed over different windows.

estimates smoothed over different windows resulting from adaptive factor selection using the

Bai and Ng (2002) criteria (FRnB). The positive relation between the length of the smoothing

window and the parsimony of the factor structure is apparent.

Our analysis focuses on open-to-close covariance matrices, whereby noisy overnight returns

do not have to be included. This approach is in line with Andersen et al. (2010) treating

overnight returns as deterministic jumps. Accordingly, we measure the vector of daily returns,

rt, by the vector of open-to-close returns, which can be interpreted as close-to-close returns

corrected for the above deterministic jumps. To implement the methods based on daily returns

from Section 3.2, we then obtain the vector of demeaned returns, ut, by subtracting the sample

mean during the respective estimation period.

Using data up to day t, we compute out-of-sample forecasts of the conditional covariance

matrices Σt,t+h for daily, weekly and monthly horizons, i.e., h ∈ {1, 5, 20}. Rolling window
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sample covariance matrices are computed using a baseline window length of L = 252 days,

although alternative window sizes will be examined in a sensitivity analysis given below.

RiskMetrics forecasts are computed employing all available data up to day t with an initial

in-sample period of 252 days. Both the sample covariance matrix and RiskMetrics estimates

need to be regularized for each day (see web appendix). Finally, we construct covariance

forecasts based on MGARCH, as well as R- and CCHAR models using the same expanding

windows as for RiskMetrics. R- and CCHAR parameters are re-estimated at each step. In the

case of MGARCH models, we estimate the parameters over the entire sample for reasons of

numerical stability.

The initial in-sample period comprises observations from 01/2006 to 12/2006. Motivated

by the descriptive results above and in order to gain insights into the forecasting performance

during “normal” and “non-normal” market periods, we conduct a separate evaluation for a

period of 375 days before the financial crisis, covering the time from 01/2007 until 06/2008

(“pre-crisis period”), and the period of 377 days from 07/2008 to 12/2009 including the financial

crisis (“crisis period”).

4.2 Evaluation and Inference in the Portfolio Selection Framework

The forecasts of the conditional covariance matrix, Σ̂t,t+h, are used as inputs for the GMV port-

folio selection framework in (1) and (2), yielding the weights ŵt,t+h. The resulting conditional

portfolio variance, ŵ′t,t+h Σt,t+h ŵt,t+h, is then estimated by the five-minute realized portfolio

variance

σ2,pt,t+h := ŵ′t,t+h RCovt,t+h ŵt,t+h, (24)

where RCovt,t+h is the five-minute realized covariance from day t to t + h, i.e., the sum of

outer products of the five-minute return vectors obtained by previous-tick interpolation (e.g.

Dacorogna et al., 2001). The realized portfolio variances based on competing covariance

forecasts are used to compute performance fees ∆γ , γ ∈ {1, 10}, according to (4) and (5).

In addition, we examine several basic characteristics of the GMV portfolio allocations.

Following de Pooter et al. (2008), we evaluate portfolio turnover rates to proxy transaction costs

proportional to the traded dollar amount for every stock. For a horizon h, the total return of

the portfolio from t − h to t is given by rpt−h,t :=
∑

i ŵ
(i)
t−h,t r

(i)
t−h,t, where ŵ(i)

t−h,t and r(i)t−h,t
are the weight and return of stock i, respectively. Then, before re-balancing to the next period,

the weight of stock i in the portfolio changes to ŵ(i)
t−h,t

1+r
(i)
t−h,t

1+rpt−h,t
. Consequently, the portfolio
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turnover is given by

pot,h :=

m∑
i=1

∣∣∣∣∣ŵ(i)
t,t+h − ŵ

(i)
t−h,t

1 + r
(i)
t−h,t

1 + rpt−h,t

∣∣∣∣∣. (25)

Second, we quantify the portfolio concentration of resulting GMV portfolio weights. For

instance, Oomen (2009) stresses that estimation errors might imply extreme positions and may

cause practical pitfalls, such as disproportionate transaction costs or an excessive market impact.

We measure portfolio concentration in terms of the norm of the vector of portfolio weights,

pct,h := ‖ŵt,t+h‖2 =

( m∑
i=1

ŵ
(i) 2

t,t+h

)1/2

, (26)

which is minimized for an equally-weighted portfolio, i.e., ŵt,t+h = (1/m) ι. Finally, motivated

by the analysis in Liu (2009), we evaluate the size of short positions in the portfolio. Verifying

to which extent short sale constraints would be violated is of practical relevance since many

portfolio managers are prohibited from taking such positions. Hence, we compute the sum of

negative portfolio weights as

spt,h :=
m∑
i=1

ŵ
(i)
t,t+h 1I

{
ŵ

(i)
t,t+h < 0

}
. (27)

To assess the statistical significance of performance differences between competing forecasts,

we perform a stylized “portfolio bootstrap”. First, we create asset indices by drawing random

samples of size 350 without replacement from the uniform distribution on the integers 1, . . . , 400,

which is repeated 1000 times. Second, for each random set of assets and every covariance

matrix forecasting model, we compute: (i) the GMV portfolio weights for each horizon and

day, (ii) the square root of the sample average of the (annualized) realized portfolio variance

in (24), σ̄ap , (iii) the resulting annualized performance fees relative to competing forecasts, ∆a
γ ,

γ ∈ {1, 10}, for all considered values of the (identical) conditional mean µid, as well as (iv) the

sample averages of the above portfolio characteristics in (25), (26), and (27), i.e., po, pc and

sp, respectively. For the quantities in (ii)-(iv), we examine median values across all random

samples. Additionally, we report the standard deviations of σ̄ap . The empirical implementation

of the outlined re-sampling procedure is computationally demanding, as it requires the inversion

of more than two million 350× 350 covariance matrices for each forecasting method.
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4.3 The Economic Value of High-Frequency Data

Global Minimum Variance Portfolio Performance

Table 1 reports the GMV portfolio performance of ERnB, RCHAR and CCHAR forecasts, with

the latter utilizing non-smoothed ERnB estimates. Throughout the analysis, we fix the number

of groups in the blocking strategy to G = 4 and will justify this choice in a robustness analysis

below. Table 1 also reports the performance of factor-based forecasts. For sake of brevity,

however, we only show the best-performing factor models minimizing the median realized

portfolio volatility for each smoothing window. The complete results are available in the web

appendix.

The following findings can be summarized. First, covariance predictions based on a dynamic

model yield better GMV portfolio performances than those based on a “naive” forecast. Prior to

the crisis, the median realized portfolio volatility declines by five standard deviations (s.d.’s)

when switching from random walk ERnB(1) to RCHAR forecasts. During the crisis period,

the gains induced by dynamic forecasts even increase up to 13 s.d.’s. HAR-based forecasts

correspond to weighted averages of past realized covariances and thus are by construction

“smoother” in time than random walk forecasts. This property pays off in terms of less volatile

portfolio weights and thus lower portfolio turnover. The gains even increase for weekly and

monthly forecasts. Moreover, it turns out that CCHAR forecasts are superior to RCHAR

forecasts. In particular, in the pre-crisis period, the difference in median realized portfolio

volatility is less than one s.d. for h = 1, but during the crisis period, CCHAR forecasts yield a

median portfolio volatility that is lower by three s.d.’s. This is also reflected by lower portfolio

turnovers induced by CCHAR forecasts.

Second, varying the length of the smoothing window has a twofold effect. On the one hand,

non-smoothed or only moderately smoothed forecasts result in lower portfolio volatility, fewer

short positions and lower portfolio concentration (i.e., more diversification). These benefits

of highly responsive forecasts have to be confronted, however, with a higher variability in

portfolio weights, causing a higher portfolio turnover and hence higher transaction costs. These

effects yield a natural tradeoff between responsiveness and (excessive) variability of covariance

forecasts. Not surprisingly, portfolio turnover is minimized by maximizing smoothing intervals,

i.e., one year in our setting.

Third, we show that eigenvalue cleaning generally produces lowest portfolio turnovers and

yields less concentrated weights and smaller short positions. Factor-based regularization (e.g.,

FRnB and 3FRnB), however, becomes effective only if the underlying estimates are sufficiently

smoothed. In this case, they yield the lowest portfolio volatility and turnover. These effects

are particularly apparent during the crisis period. Here, the combination of smoothing and
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Figure 5: Median Portfolio Volatility of CCHAR Forecasts Relative to Benchmarks (h = 1)
Time series of ratios m(σp,CCHAR

t,t+1 )/m(σp,bench
t,t+1 ), where σpt,t+1 is the square root of the realized portfolio

variance in (24) computed for h = 1. m(·) denotes the median across 1,000 random samples with each
random sample containing 350 assets out of the entire 400 asset universe.

factor-based regularization yields the best portfolio performance in terms of lower portfolio

volatility and turnover. In more stable market periods, such as prior to the crisis, the necessity of

smoothing and thus the effectiveness of factor-based regularization declines, making eigenvalue

cleaning superior. In contrast, factor structures based on non-smoothed BRK estimates result in

highly non-stable forecasts and are not reported here (for details, see web appendix).

Table 2 shows the corresponding results based on forecasting models utilizing daily returns

as presented in Section 3.2. We find that covariance forecasts based on HF data as evaluated

in Table 1 outperform all “low-frequency” (LF) benchmarks up to a weekly horizon. The

best-performing LF methods in terms of median portfolio volatility are the RiskMetrics1994

estimator as well as the rolling window sample covariance matrix regularized by eigenvalue

cleaning. The strong performance of the latter, particularly during volatile periods, indicates

that the strength of a proper conditioning scheme might be even more important than imposing

a dynamic forecasting model. Nevertheless, during the pre-crisis period, (random-walk-type)

ERnB(1) forecasts yield a median portfolio volatility which is three s.d.’s lower than the best-

performing LF benchmark. This performance gain increases to seven s.d.’s if not naive but

(dynamic) RCHAR specifications are used. During the volatile crisis period, the superiority

of HF-based approaches becomes even stronger, resulting into a decrease in median realized

portfolio volatility of up to 17 s.d.’s in case of a CCHAR model. The dominance of HF-based

forecasts particularly during the crisis period is graphically highlighted by Figure 5, which

displays the time series of median portfolio volatility implied by CCHAR forecasts relative to

the two best-performing LF benchmarks.
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Not surprisingly, the aforementioned effects are strongest for daily horizons (h = 1)

and become weaker for longer forecasting horizons. However, although the informational

advantage of HF data naturally declines with the length of the prediction interval, we still

identify performance gains from HF data even at a monthly horizon. While in the pre-crisis

period, the best LF and HF one-month forecast yield exactly the same median portfolio volatility,

the latter can be still significantly reduced during the crisis if HF-based forecasts are used.

The dominance of HF-based approaches is due to the efficient use of more recent information,

making forecasts more responsive and adaptable to structural changes. These effects particularly

pay off during highly volatile periods, such as in 2008. Moreover, we show that HF-based

forecasts also yield less concentrated (and thus more diversified) positions and imply less short-

selling. However, as stressed above, the downside of a higher responsiveness of forecasts is a

higher variability in portfolio weights increasing portfolio turnover and transaction costs. These

costs could be reduced at the expense of a higher portfolio volatility by using longer, i.e., at

least quarterly, smoothing windows. Addressing this tradeoff more thoroughly is a challenging

avenue for further research but is clearly beyond the scope of the current study.

Finally, we also evaluate the performance of a naive investment strategy assigning equal

weights (1/m) to all assets. Interestingly, the 1/m-portfolio yields a significantly higher median

volatility than all other methods. This finding is at odds with the study of DeMiguel et al. (2009)

reporting that strategies based on covariance matrix forecasts cannot consistently outperform

a naive diversification strategy. However, it has to be noted that DeMiguel et al. examine

unconditional Sharpe ratios while our evaluation focuses on the conditional portfolio volatility

(approximated by the realized volatility).

Economic Significance

We evaluate the economic gains of employing HF-based covariance forecasts using the utility-

based evaluation approach in (4) and (5). To incorporate the effect of transaction costs, we

follow de Pooter et al. (2008) assuming that the latter are proportional to portfolio turnover.

Accordingly, (5) is extended by defining performance fees net of the difference in transaction

costs between the two competing strategies, i.e., ∆c
γ := ∆γ − c

(
poII − poI

)
, where c denotes

the proportional transaction costs on each traded dollar and poi is the (average) turnover implied

by the GMV strategy based on the covariance forecasts Σ̂i
t,t+h, i = I, II. However, to avoid

assumptions on the level c, we focus on “break-even” trading costs levels implying ∆c
γ = 0 and

thus c∗γ := ∆γ/
(
poII − poI

)
. Note that the economic interpretation depends on the signs of the

performance fee ∆γ and the turnover differenceDpo := poII − poI. If ∆γ > 0,Dpo > 0 implies

that c∗γ yields the maximum level of positive transaction costs under which the risk-averse

investor is still willing to pay for employing strategy II instead of I, while for Dpo < 0, c∗γ gives
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the minimum level (in absolute terms) of negative transaction costs, i.e. transaction credits,

under which this is no longer the case. In contrast, given that ∆γ < 0, c∗γ denotes the minimum

positive (for Dpo < 0) or negative (for Dpo > 0) transaction cost level necessary to make

strategy II superior to strategy I.

Table 3 reports the median values of the (annualized) performance fees ∆a
γ in basis points

(bp) the investor would pay in order to switch from the best LF benchmarks to HF-based

forecasting methods. Moreover, we show the median values of the corresponding annualized

break-even transaction costs c∗γ . The underlying expected returns are assumed to be identical

across stocks and are fixed to µid = 0.05. In the web appendix, we demonstrate that alternative

values of µid yield quantitatively almost identical results. As LF benchmarks, we choose those

strategies minimizing the median portfolio volatility or turnover. Among HF-based forecasts,

for each smoothing window, we select the regularization method yielding the lowest median

portfolio volatility. The corresponding findings for all other models are given in the web

appendix.

The major observations are as follows. First, by utilizing HF-based covariance forecasts, a

risk-averse investor can achieve noticeable economic gains which become substantial during

the crisis period. Before the crisis and for a daily horizon, an investor with low (high) risk

aversion would be willing to pay 2 (17) bp to switch from the best LF strategy to the best

random-walk-type HF forecast (ERnB(1)) and 4 (40) bp to switch to a CCHAR forecast. During

the crisis period, these values increase to 20 (199) bp in the naive (FRnB(5)) and 33 (328) bp

in the dynamic case. Focusing on longer forecasting intervals, these gains become smaller,

however they are still substantial even for a monthly horizon if the investor exhibits a high risk

aversion. In the latter case, the median performance fees for switching to FRnB(5) and CCHAR

forecasts amount to 99 and 238 bp, respectively. Figure 6 shows the nonparametrically estimated

performance fee densities resulting from the underlying portfolio bootstrap approach. The plots

confirm the statistical significance of the results, particularly during the crisis period. Moreover,

CCHAR covariance forecasts yield slightly less dispersed performance fee distributions than

random-walk-type FRnB(5) forecasts.

Second, using HF data remains valuable for more risk averse investors even in the presence

of transaction costs. During the crisis period, the annualized median break-even transaction

costs associated with the above performance fees for the daily horizon are 0.2 (2) percentage

points (pp) for FRnB(5) and 0.9 (9) pp for CCHAR forecasts in case of low (high) risk aversion.

These are the median values of the transaction cost levels at which the net performance fee paid

by a risk-averse investor for switching from the low-volatility LF benchmark to the HF-based

forecasts would just remain positive. When benchmarking against the LF-based forecast yielding

the lowest turnover, i.e., rolling window sample covariances regularized by a one-factor structure,
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(a) Pre-Crisis: FRnB(5) vs. RM1994
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(b) Crisis: FRnB(5) vs. S-EvCl
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(c) Pre-Crisis: CCHAR vs. RM1994
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(d) Crisis: CCHAR vs. S-EvCl
Figure 6: Kernel Estimates of Performance Fee Density
Kernel density estimates across 1,000 random samples of the annualized basis point fee (∆a

γ) a risk-averse
investor with quadratic utility and relative risk aversion γ = 10 would pay to switch from covariance
forecasts using daily data to high-frequency-based forecasts. Each random sample contains 350 assets
out of the entire 400 asset universe. The assumed constant conditional mean return is identical across all
stocks and set to µid = 0.05 (annualized). Density estimates are based on the Gaussian kernel and the
rule-of-thumb bandwidth with normal reference.

the median break-even transaction costs associated with the CCHAR specification increase to

1.4 (14) pp, which is moderate compared to the increase in the corresponding performance

fees. This finding is induced by the low portfolio turnover implied by the one-factor structure,

naturally decreasing the impact of transaction costs.

Finally, in several cases, we observe a combination of negative (median) performance

fees and positive (median) break-even transaction costs. Here, the explicit consideration of

transaction costs favors HF-based covariance forecasts as long as these costs exceed a certain

level. For instance, ERnB(252) forecasts yield negative median performance fees vis-a-vis

the low-volatility LF benchmark regardless of the level of risk aversion. However, after the

introduction of transaction costs of at least 1.8 pp in case of low risk aversion and 18 pp in case

of high risk aversion, the net performance fee turns positive. These effects materialize whenever
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the smoothing window is sufficiently long driving down the turnover of HF-based approaches

compared to their LF competitors.

4.4 Sensitivity Analysis and Robustness Checks

Number of Liquidity Groups

An important parameter underlying BRK estimates is the number of liquidity groups G. In-

creasing G allows for additional efficiency gains by further reducing the impact of refresh

time sampling, however, on the other hand, requires an even stronger regularization. From

both the theoretical and practical perspective, it is very unclear to which extent regularization

might overcompensate efficiency gains and whether there is a tradeoff between both steps. If,

moreover, our focus is not only on the (in-sample) estimation of asset return covariances but

particularly on the optimization of (out-of-sample) portfolio allocations, the problem of finding

an “optimal” choice of G balancing efficiency gains and the need for regularization is even

harder and a challenging avenue for further research.

Nevertheless, aiming for empirical insights in the impact of G on portfolio allocations,

Table 4 reports (for daily horizons) the forecasting performance of non-smoothed BRK estimates

regularized by eigenvalue cleaning (ERnB(1)) for different values of G. Prior to the crisis,

using four liquidity groups (G = 4) yields the lowest volatility. In this case, the choice of

four liquidity groups seems to (empirically) balance the tradeoff between efficiency gains and

the need of a tighter regularization. During the volatile crisis period, however, the effect of

additional efficiency gains by increasing G seems to become more crucial. In this case, we

observe the median portfolio volatility monotonously declining for rising G. Nonetheless, as

soon as G exceeds four, the magnitude of additional reductions in portfolio volatility exhibits a

noticeable decay and becomes smaller than one standard deviation. These results are in line

with Hautsch et al. (2012) reporting that blocking-based efficiency gains are mainly due to a

separation between liquid and illiquid assets which is ensured by a moderate number of liquidity

groups.

Hence, a universal choice of G = 4, as used in the analysis above, is justifiable and

constitutes a reasonable (data driven) tradeoff between induced efficiency gains and tightness

of regularization. In any case, the dominance of HF-based portfolio optimization compared to

LF-based approaches might be even stronger (particularly in volatile periods) if G is further

increased.
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Table 4: Number of Liquidity Groups G and GMV Portfolio Volatility of ERnB(1) Forecasts
Medians (m(·)) and standard deviations (s(·)) across 1,000 random samples of the square root of the
annualized average realized portfolio variance (σ̄ap ) using predicted GMV weights for the horizon h = 1
(in percentage points). Each random sample contains 350 assets out of the entire 400 asset universe.
Evaluation is performed for the pre-crisis period, 01/2007 to 06/2008, and the period including the crisis,
07/2008 to 12/2009.

Pre-Crisis Crisis

G m(σ̄ap) s(σ̄ap) m(σ̄ap) s(σ̄ap)

1 8.38 0.28 14.43 0.11
2 8.25 0.29 14.25 0.11
4 7.49 0.07 14.02 0.11
5 8.15 0.30 13.98 0.11
8 8.13 0.30 13.94 0.11
10 8.12 0.30 13.93 0.11

Length of the Estimation Window

To gain insights into the role of the (local) estimation window utilized for the sample covariance

of daily returns, we consider alternative window lengths of 378, 126, 63 and 20 days. Based

on these settings, we investigate the impact on the median performance fees for switching to

HF-based predictions as well as on the corresponding median break-even transaction costs. We

focus on FRnB(5) and ERnB(252) forecasts, representing “slight” and “heavy” smoothing,

respectively. As LF benchmarks, we compute the sample covariance matrix regularized by those

techniques (according to Section 3.2) yielding the lowest median portfolio volatility or turnover,

respectively.

Table 5 reports the results based on the crisis period. The corresponding analysis for the pre-

crisis sample along with the complete results of the above benchmark selection procedure can

be found in the web appendix. For the low-volatility benchmarks, reducing the window length

from 252 to, ultimately, 20 days implies a severe precision loss, as the median performance

fees for switching to both FRnB(5) and ERnB(252) forecasts increase sharply. In these cases,

the portfolio turnover of the LF benchmarks rises considerably making HF forecasts even

more superior and thus leading to an increase in the median break-even transaction costs. A

further lengthening of estimation windows to 378 days, however, causes only small additional

reductions of median performance fees, thus indicating rather mild precision gains due to even

longer local windows.

Reducing the local window length in case of the LF benchmark implying the smallest

portfolio turnover (one-factor structure) yields lower median performance fees for switching

to HF-based forecasts. This finding suggests that the loss of efficiency induced by a smaller

observation window is outweighed by a higher responsiveness of forecasts induced by the use of

more recent information. This is particularly true in case of a relatively tight regularization (as,
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e.g., induced by a one-factor structure), where the imposed structure itself limits the efficiency

loss caused by shrinking local windows.

Notably, shortening the estimation window does not necessarily imply an excessive rise

in portfolio turnover, as we observe decreasing median break-even transaction costs vis-a-vis

FRnB(5) forecasts. However, when compared to the more severely smoothed ERnB(252)

forecasts, break-even transaction costs increase or even become negative as long as the median

performance fee is positive. In this situation, negative (median) break-even transaction costs

reflect the higher (average) turnover induced by LF-based covariance forecasts in comparison to

their long-term smoothed HF counterparts.

Dimension of the Asset Universe

In the analysis above, we consider a high-dimensional asset universe comprising 400 stocks

exhibiting a considerable heterogeneity in terms of their liquidity.7 In order to examine to which

extent the gains from HF data depend on both the dimensionality and the trading frequency of

underlying assets, we redo the analysis for subsets containing those 100 or 30 stocks revealing

the highest number of mid-quote revisions during the sample period. The chosen cross-sectional

dimensions and asset decompositions are comparable to those of the S&P 100 and the Dow

Jones Industrial Average, which, e.g., constitute the asset universes for the studies by de Pooter

et al. (2008) and Liu (2009), respectively.

For the portfolio bootstrap procedure outlined in Section 4.2, we draw random samples

based on asset indices consisting of 85 or 25 constituents, respectively. The covariance matrix

forecasting approaches from Section 3.1 and 3.2 are implemented as in the sections above with,

however, three exceptions. First, we compute BRK estimates employing a smaller number of

liquidity groups, particularly G = 2 and G = 1 in the 100 and 30 asset case, respectively. As

shown in the web appendix, up to these values of G, reductions in median realized portfolio

volatility amounting to at least one standard deviation can be achieved. Second, the parameters

of MGARCH models are estimated on a day-by-day basis using expanding estimation windows

as for R- and CCHAR specifications above. In the 30 asset case, we also consider the full

quasi-likelihood instead of the composite likelihood approach. Finally, we account for the fact

that the regularization of BRK estimates, rolling window sample covariances and RiskMetrics

forecasts is not always necessary according to the conditions discussed in Section 3.1 and

3.2. For BRK estimates and the LF sample covariance, Figure 7 shows that the proportion of

regularized estimates is positively related to the dimension and negatively related to the length

7The average number of mid-quote revisions is about 5, 000 in case of very liquid stocks and only 250 in case of
very illiquid assets.
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(a) 100 Assets: BRK Estimates (G = 2)
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(b) 100 Assets: Sample Covariance
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(c) 30 Assets: BRK Estimates (G = 1)
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(d) 30 Assets: Sample Covariance
Figure 7: Proportion of Regularized Covariance Estimates Depending on Smoothing or Estima-
tion Window
BRK estimates are regularized if any correlation eigenvalue is negative or the condition number of the
correlation matrix is greater than 10× 100 or 10× 30. The rolling-window sample covariance of daily
returns is regularized if the condition number of the corresponding correlation matrix is greater than the
above thresholds.

of the smoothing or estimation window.8 Moreover, we compute forecasts based on estimates

which are regularized in any case, i.e., independent from the rule above.

The results of the entire analysis are available in the web appendix. Here, we focus on the

median performance fees for switching from the best LF forecasts to random-walk-type HF-

based predictions during the crisis period. The results are reported in Table 6. As LF benchmarks,

we again choose the best-performing low-volatility and minimal-turnover benchmarks. These

are found as the sample covariance estimator which is (unconditionally) shrunk towards an

equicorrelation model and the DCC specification in the 100 and 30 asset case, respectively.

The latter fact indicates that MGARCH models are more suitable for moderate dimensions

8The relative proportion of regularized RiskMetrics2006 covariance matrices drops to approximately 50% in the 30
asset case whereas RiskMetrics1994 forecasts need to be regularized in all cases (see web appendix).
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than for vast-dimensional settings. In case of HF forecasts, it turns out that an unconditional

regularization is not advantageous in any case. In particular, no regularization is necessary for

smoothing windows of one month or more in the 100 asset case and for all window lengths

when 30 assets are considered (see Figure 7). We refer to the corresponding non-regularized

random-walk-type forecasts based on a S-day smoothing window as BRK(S).

The first major result is that, in general, the median basis point fees vis-a-vis the low-

volatility LF benchmarks increase considerably if the portfolio dimension becomes smaller. In

case of 100 assets and a daily horizon, the median performance fees for switching to ERnB(5)

forecasts assuming a low (high) risk aversion are 57 (567) bp, which is almost three times higher

than in the vast-dimensional setting. Very similar results are obtained based on 30 assets. The

increased benefits from HF data can be explained by the fact that we focus on more liquid assets

featuring a higher number of mid-quote revisions translating into more precise BRK estimates.

Second, the increased precision of BRK estimates yields large median performance fees even

at a monthly horizon. Given a high risk aversion, the median fees for switching to BRK(20)

forecasts are 427 and 526 bp in the 100 and 30 asset scenario, respectively, which is more than

four and five times the highest fee for this horizon found in Section 4.3.

Third, the median basis point fees remain positive when employing the three longest

smoothing windows regardless of the magnitude of risk aversion or the investment horizon. This

finding is of practical importance, as the corresponding forecasts yield a relatively low portfolio

turnover resulting in negative median break-even transaction costs. Hence, a risk-averse investor

is willing to pay for switching to long-term smoothed HF-based forecasts given any positive

transaction cost level. In addition, the fact that, compared to the vast-dimensional scenario, the

reduction in median performance fees is less pronounced when moving from short to yearly

smoothing windows indicates a higher persistence of the conditional covariance matrix process

in the lower dimensional case.

Finally, reducing the portfolio dimension does not imply the same performance fee gains as

above when HF forecasts are evaluated against the low-turnover LF benchmark (corresponding

to the sample covariance matrix unconditionally regularized by a one-factor structure). This

result might be explained by the less restrictive nature of the one-factor model as long as only

100 or 30 assets are considered. However, the reduced tightness of the structure also implies

that the corresponding portfolio turnover increases relative to HF-based forecasts employing

longer smoothing windows (see web appendix). For the 30 asset setting, in particular, the latter

effect is evidenced by the median break-even transaction costs becoming considerably negative.
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5 Conclusions

This paper provides insights into the value of high-frequency (HF) data for short-horizon

large-scale portfolio allocation decisions. We construct global minimum variance (GMV)

portfolios from the constituents of the S&P 500 index with weights being determined by

different conditional covariance matrix forecasts. We consider HF-based forecasts originating

from covariance estimates based on the blocked realized kernel proposed by Hautsch et al.

(2012). The estimates are smoothed, regularized by either eigenvalue cleaning or imposing a

factor structure and, finally, used to construct both random-walk-type predictions and forecasts

relying on a simple autoregressive specification. We employ an extensive set of benchmark

approaches based on daily returns and compare the competing forecasting methods in terms of

estimated conditional portfolio volatility and additional portfolio characteristics. We allow for

basic inference by using a “portfolio bootstrap” procedure and investigate the economic gains of

reduced portfolio volatility by means of a conditional version of the methodology put forward

in West et al. (1993) and Fleming et al. (2001).

Based on mid-quote data from 2006 to 2009, we show the following major results. First, HF-

based covariance forecasts outperform low-frequency (LF) approaches over investment horizons

of up to a month. The gains in terms of reduced portfolio volatility are considerably larger during

the volatile market period including the 2008 financial crisis and are of substantial economic

value from the point of view of an investor with pronounced risk aversion. Second, short-term

smoothing can be beneficial in terms of lower portfolio volatility, while long-term smoothing

always helps to reduce transaction costs. Third, the performance of HF-based strategies can be

further improved if naive random-walk-type forecasts are replaced by predictions relying on

(even simple) dynamic models. Fourth, our findings show that the use of HF data is beneficial

for dimensions of the portfolio around 500 and an asset universe that is relatively heterogeneous

in terms of liquidity. These performance gains, however, become even more substantial in case

of smaller portfolio dimensions when focusing on the most heavily-traded stocks. The other

way around, we expect the superiority of HF-based forecasts becoming smaller if the size of the

portfolio and the assets’ heterogeneity in terms of their liquidity further increase. In these cases,

the efficiency gains induced by the use of HF data vanish and are overcompensated by the need

for a tight regularization and for limiting portfolio turnover.

Possible avenues for future research are threefold. First, alternative regularization methods

could be considered. Recent examples are the subsampled principal component approach put

forward by Abadir et al. (2012) or nonlinear shrinkage as proposed in Ledoit and Wolf (2012).

Second, while our choice of a dynamic model for HF-based covariance matrix estimates is

mainly driven by parsimony and ease of estimation, richer specifications could be employed.
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In this context, utilizing HF data in a GARCH framework, as e.g., suggested by Hansen et al.

(2010) and Noureldin et al. (2012), appears particularly promising. Further possibilities, also

specifically for vast-dimensional settings, are presented in Andersen et al. (2011). Finally, the

naive smoothing of covariance matrix estimates could be replaced by an optimal smoothing

scheme that strikes a balance between the accuracy of forecasts, implying low portfolio volatility,

and the minimization of transaction costs caused by variation in portfolio weights. For this

purpose, the approach recently proposed by Kirby and Ostdiek (2012) could be adapted to a HF

framework.
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A Analytical Solution for the Performance Fee

Consider the GMV framework (1) and the preference structure (4). In addition, let

µpi :=
1

T − h

T−h∑
t=1

ŵi
′
t,t+h µt,t+h, µ

2,p
i :=

1

T − h

T−h∑
t=1

(
ŵi
′
t,t+h µt,t+h

)2
, i = I, II, (28)

and ϑ := 2 (1 + γ) /γ. Then, exploiting the fact that

E

[(
rp,it,t+h

)2∣∣∣∣Ft] = ŵi
′
t,t+h Σt,t+h ŵ

i
t,t+h +

(
ŵi
′
t,t+h µt,t+h

)2
, i = I, II, (29)

and using basic algebra, condition (5) can be rearranged to

∆2
γ + ∆γ

[
ϑ− 2

(
1 + µpII

)]
= (ϑ− 2)

(
µpII − µ

p
I

)
+ µ2,pI − µ

2,p
II + σ2,pI − σ2,pII , (30)

where σ2,pi , i = I, II, is defined as in (6). If we assume that µt,t+h = (h/252)µid ι,

t = 1, . . . , T − h, (30) becomes

∆2
γ + ∆γ

[
ϑ− 2

(
1 +

hµid

252

)]
= σ2,pI − σ2,pII , (31)

yielding the solution

∆γ =
hµid

252
− 1

γ
+

√(
hµid

252
− 1

γ

)2

+ σ2,pI − σ2,pII , (32)
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which, under the assumption that (h/252)µid ≤ 1/γ, is strictly positive only if σ2,pI > σ2,pII .

B Eigenvalue Cleaning

Eigenvalue cleaning is a regularization technique proposed by Laloux et al. (1999) and fur-

ther developed by Tola et al. (2008) that draws upon random matrix theory to determine the

distribution of the eigenvalues of a correlation matrix estimate R depending on the ratio of

n observations and m dimensions, q := n/m. The idea is to compare empirical correlation

eigenvalues with those implied by the null hypothesis of independent Gaussian asset returns,

which allows for an identification of those eigenvalues that deviate from the “noisy” ones and

hence constitute “signals”.

Denote by Λ := diag(λ1, . . . , λm) the diagonal matrix of eigenvalues of R ordered from

largest to smallest and by Q the matrix of corresponding eigenvectors, yielding the spectral

decomposition R = QΛQ′. For n→∞, under the null hypothesis R is given by the identity

matrix implying that all eigenvalues are equal to one. However, if m,n → ∞ with q ≥ 1

fixed, the eigenvalues of R follow a Marchenko–Pastur distribution with maximum eigenvalue

λmax :=
(
1 + 1/q+ 2

√
1/q
)
. Hautsch et al. (2012) argue that, for practical purposes, the above

threshold should be tightened to λ∗max := (1− λ1/m)
(
1 + 1/q + 2

√
1/q
)
. This adjustment

allows for a better identification of smaller signals, as it accounts for the fact that the largest

empirical eigenvalue λ1 often is associated with a dominating “market factor”. Then, eigenvalue

cleaning requires that all eigenvalues below λ∗max are transformed according to

λ̃i :=

λi if λi ≥ λ∗max,

δ otherwise,
(33)

where δ is the average of the positive parts of all “noisy” eigenvalues, i.e.

δ :=

∑
(λi<λ∗max)

λ+i(
# of λi < λ∗max

) . (34)

Finally, the cleaned correlation matrix estimate is obtained as R̃ = Q Λ̃Q′, where Λ̃ := diag
(
λ̃i
)
,

i = 1, . . . ,m. We apply the procedure to (smoothed) correlation matrix estimates based on

the blocked realized kernel, RBRKt,S , by setting the number of observations n equal to the

minimum number of refresh times in any block averaged over the smoothing window. For

the regularization of the rolling window sample covariance of daily returns, Ct, we apply

eigenvalue cleaning to the corresponding sample correlation matrix Rct with n equal to the

window length L.
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C Selection of the Number of Factors

To select the number of factors for the regularization approach discussed in Section 3.1, we

employ the criteria by Bai and Ng (2002) developed for linear factor models with m assets and

n observations. In the context of smoothed BRK estimates, we consider a factor model defined

in refresh time. Let r(i)t,S,l, i = 1, . . . ,m, denote the l-th refresh time return from days t− S + 1

to t. The resulting factor structure reads

r
(i)
t,S,l = ψ′t,S,i Ft,S,l + ε

(i)
t,S,l, i = 1, . . . ,m, l = 1, . . . , nt,S , (35)

where Ft,S,l is the (kt,S × 1) vector of common factors, ψt,S,i denotes the corresponding vector

of factor loadings and ε(i)t,S,l is the idiosyncratic component of r(i)t,S,l, i = 1, . . . ,m. Following

Bai and Ng (2002), we determine kt,S by employing the minima of the criteria

Cm,1t,S (kt,S) = σ̂2t,S(kt,S) + kt,S σ̂
2
t,S(kmax)

(
m+ nt,S
mnt,S

)
ln

(
mnt,S
m+ nt,S

)
, (36)

Cm,2t,S (kt,S) = σ̂2t,S(kt,S) + kt,S σ̂
2
t,S(kmax)

(
m+ nt,S
mnt,S

)
ln
[
min (

√
m,
√
nt,S)

2
]
,

where σ̂2t,S(kt,S) := 1
m

∑m
i=1 σ̂

2,(i)
t,S (kt,S) with σ̂2,(i)t,S (kt,S) being an estimate of the residual

variance V
[
ε
(i)
t,S,l

]
, while kmax is the exogenously fixed maximum number of factors.

In practice, we let nt,S be the minimum number of refresh times in any block of the blocked

realized kernel averaged over days t− S + 1 to t. Further, we set σ̂2,(i)t,S (kt,S) equal to the i-th

diagonal element of V RK
t,S

(
Im −Qt,S,(kt,S)

)
V RK
t,S , i = 1, . . . ,m, where V RK

t,S and Qt,S,(kt,S)
are defined as in (12) and (14), respectively. For the factor structure based on the rolling window

sample covariance of daily returns in (20), the number of observations is equal to the window

length L. The factor residual variance is estimated by σ̂2t (kt) := 1
m

∑m
i=1 σ̂

2,(i)
t (kt), where

σ̂
2,(i)
t (kt) is the i-th diagonal element of

(
V c
t −Qct,(kt)

)
, i = 1, . . . ,m.
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