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Abstract

This paper addresses the open debate about the usefulness of high-frequency (HF) data in
large-scale portfolio allocation. We consider the problem of constructing global minimum
variance portfolios based on the constituents of the S&P 500 over a four-year period cov-
ering the 2008 financial crisis. HF-based covariance matrix predictions are obtained by
applying a blocked realized kernel estimator, different smoothing windows, various regu-
larization methods and two forecasting models. We show that HF-based predictions yield a
significantly lower portfolio volatility than methods employing daily returns. Particularly
during the volatile crisis period, these performance gains hold over longer horizons than

previous studies have shown and translate into substantial utility gains from the perspective
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of an investor with pronounced risk aversion.
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1 Introduction

With the rise in mutual fund and exchange-traded fund (ETF) investing, quantitative short-term
management of vast portfolios has emerged as a topic of great interest. For allocation decisions,
forecasts of high-dimensional covariance matrices constitute a crucial input, which initiated a
body of literature on the performance of various methods based on asset return data measured
up to a daily frequency (see, e.g., Chan et al., 1999; Jagannathan and Ma, 2003). Although the
work of Andersen et al. (2001), Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen
et al. (2011), among others, opened up a new channel for increasing the precision of covariance
matrix estimates and forecasts by exploiting high-frequency (HF) data, existing empirical studies
examine its benefits for portfolio selection only in moderate dimensions (e.g. Fleming et al.,
2003; Liu, 2009). This paper evaluates the potential of HF data for portfolio selection in a
realistic high-dimensional framework.

While ensuring high precision, we face major technical and practical challenges when
constructing covariance matrix forecasts for vast-dimensional portfolio applications. First,
forecasts have to be both positive definite and well-conditioned. These properties can be
guaranteed by having sufficiently long estimation windows, sampling frequently enough within a
fixed window, imposing a parametric specification or applying suitable regularization techniques.
The latter include factor structures, e.g., based on principal components, methods from random
matrix theory, such as eigenvalue cleaning (see Laloux et al., 1999), or shrinkage techniques as
proposed in Ledoit and Wolf (2003). Second, covariance matrix predictions have to balance
responsiveness (to new information) and a certain degree of stability. The latter property is
crucial for preventing high transaction costs caused by excessive portfolio re-balancing and can
be ensured by appropriately smoothing the estimates.

Motivated by these requirements, we address the following research questions: (i) Do
HF-based forecasts generally outperform low-frequency-based approaches and — if yes — over
which time horizons? (ii) Which regularization methods are (empirically) superior? (iii) How
important is it to smooth estimates over time? (iv) How well do naive predictions of covariance
matrices (i.e., random walk forecasts) perform compared to corresponding dynamic forecasting

models? (v) How do results change in dependence of the dimension of the underlying portfolio?



We answer these questions in an extensive empirical study by focusing on the problem of
constructing global minimum variance (GMV) portfolios based on the constituents of the S&P
500 index over a four-year period covering the 2008 financial crisis. Studying global minimum
variance portfolios (in contrast to minimum variance portfolios for a given expected return)
has the important advantage that the corresponding weights are determined solely by forecasts
of the conditional covariance matrices over the given investment horizon. This property is
tantamount to pure volatility timing strategies and avoids the inherent noisiness of conditional
mean predictions overshadowing the analysis and blurring the role of covariance forecasts (see,
e.g., Jagannathan and Ma, 2003). We obtain HF-based covariance matrix estimates by applying
the blocked realized kernel (BRK) by Hautsch et al. (2012) to mid-quote data. These estimates
are smoothed over different time windows, regularized by eigenvalue cleaning or imposing a
factor structure and, finally, utilized to construct both naive predictions and forecasts based on
a simple dynamic specification. We benchmark the HF forecasts with prevailing approaches
employing daily returns. In particular, we use multivariate GARCH models, rolling-window
sample covariance matrices regularized in different ways as well as classic and state-of-the-art
RiskMetrics approaches. The competing methods are evaluated in terms of the (estimated)
conditional portfolio volatility and important characteristics of the implied portfolio allocations,
such as portfolio turnovers and the amount of short-selling. Finally, we examine the economic
significance of differences in portfolio volatility by a refined version of the utility-based method
introduced in West et al. (1993) and Fleming et al. (2001). This approach provides performance
fees (net of transaction costs) that a risk-averse investor would be willing to pay to switch from,
for instance, covariance forecasts employing daily returns to HF-based forecasts. To provide
finite-sample inference for these performance characteristics, we embed the entire evaluation
methodology into a stylized “portfolio bootstrap” framework based on a random sampling of
asset sub-sets.

We summarize the major results as follows. First, even naive HF-based forecasts outperform
all low-frequency (LF) methods in terms of portfolio volatility. This is particularly true during
the turbulent crisis period. Here, an investor with high risk aversion and a daily horizon would
be willing to pay up to 199 basis points to benefit from a lower portfolio volatility produced
from HF data. This superiority of HF-based forecasts persists up to a monthly horizon with the
corresponding performance fee being still 99 basis points. Second, while eigenvalue cleaning,
as applied to BRK estimates by Hautsch et al. (2012), performs well as a robust baseline
approach, adaptive or fixed factor structures constitute an effective alternative. Third, short-term
smoothing of HF-based covariance matrix estimates can be beneficial for further reducing
portfolio volatility. In contrast, smoothing over too long time intervals increases volatility but

lowers portfolio turnover. The latter, however, is of importance if the transaction cost level is



particularly high. Fourth, constructing forecasts based on a simple dynamic specification of
(realized) covariances further improves the performance of HF-based forecasts. During the crisis
period, the performance fees an investor with pronounced risk aversion would pay for switching
from LF-based predictions amount to 328 and 239 basis points for a daily and monthly horizon,
respectively. Fifth, we demonstrate that exploiting HF data for portfolio selection is challenging
in a vast investment universe including relatively illiquid assets. In contrast, focusing on the 100
and 30 most heavily-traded stocks out of the S&P 500 universe, we find that basis point fees for
switching to HF-based forecasts increase by a multiple.

This paper contributes to (the few existing) studies on the benefits of HF data for portfolio
allocation. In their seminal work, Fleming et al. (2003) apply the evaluation methodology by
Fleming et al. (2001) to volatility timing strategies in a general mean-variance context. For a
daily forecasting horizon, they find that a risk-averse investor would be willing to pay between
50 and 200 basis points to switch from covariance forecasts based on daily returns to those
employing five-minute returns. However, these results are based on allocations across only
three highly-liquid futures contracts. Liu (2009) extends the size of the asset universe to 30
by constructing minimum tracking error portfolios (tracking the S&P 500 index) based on
the constituents of the Dow Jones Industrial Average. He confirms the benefits of HF-based
forecasts in terms of tracking error volatility. Apart from examining the value of HF data for
portfolio selection in general, the studies by Bandi et al. (2008) and de Pooter et al. (2008)
also aim to determine the optimal intraday sampling frequency. While the former minimize
a mean-squared error criterion for three S&P 500 stocks and conduct an ex-post economic
evaluation, the latter directly compare the performance of volatility timing strategies based on
different frequencies considering the constituents of the S&P 100 index.

However, to our best knowledge, no study thoroughly analyzed HF-based forecasts of
portfolios covering several hundreds of assets as commonly used in practice. In addition, our
contributions to this strand of literature are twofold. First, the above studies are restricted
to intraday data sampled at fixed time intervals (e.g., five minutes). We consider the highest
frequency possible employing tailor-made covariance estimators that offer substantial precision
gains (see, e.g., Barndorff-Nielsen et al., 2011; Hautsch et al., 2012). Second, the predominant
evaluation method is to examine unconditional sample moments of implied portfolio returns
(or utilities depending on the latter), which however, can distort the ranking of the underlying
covariance matrix forecasts (see Voev, 2009). Our evaluation approach relies on estimated
conditional portfolio volatilities allowing for a more reliable ranking of competing covariance
predictions.

The remainder of the paper is organized as follows. Section 2 introduces the general GMV

framework, as well as the corresponding evaluation methodology for conditional covariance



matrix forecasts. In Section 3, we discuss the methods for the construction of conditional
covariance predictions based on both HF and LF data. Section 4 presents the S&P 500 dataset,

more details on the evaluation procedure and the empirical results. Finally, Section 5 concludes.

2 Global Minimum Variance Portfolios and Covariance Forecasts

The practical implementation of a general mean-variance framework in the spirit of Markowitz
(1952) relies on forecasts of the first two conditional moments of asset returns. Consequently, the
performance of the predicted (optimal) portfolio allocation depends on the predictability of both
conditional means and conditional covariances. However, it is well-known that the predictability
of first conditional moments of asset returns is much lower than the predictability of conditional
(co-)variances (e.g. Merton, 1980). Consequently, mean forecasts are subject to substantial
prediction errors which in turn can completely dominate and distort the analysis (e.g. Michaud,
1989). As a result, isolating the explicit effects of high-dimensional covariance forecasts on the
resulting portfolio performance is virtually impossible. Hence, in order to eliminate the impact
of conditional mean predictions and to solely focus on the value of covariance forecasts we
consider global minimum variance portfolios. This proceeding is backed by empirical evidence
showing that the noisiness of mean predictions leads to highly unstable portfolio allocations
which are typically outperformed by approaches explicitly avoiding the need of mean forecasts
(e.g. DeMiguel et al., 2009; Jagannathan and Ma, 2003; Michaud, 1989). In this sense, our
analysis provides insights into the impact of covariance forecasts on portfolio performance
without being affected by assumptions or estimation errors associated with mean predictions.
We assume a risk-averse investor with a horizon of i days and an asset universe of m stocks

whose optimization problem at day ¢ can be formulated as

. / /
wmm Wi ih Yt trh Wegyn ST Wy gy pt = 1, (1)
t,t+h

where wy (1, is the (m x 1) vector of portfolio weights and ¢ is a (m x 1) vector of ones.
Further, 3 ;1 p, := Cov[ry 1| F:] denotes the (m x m) conditional covariance matrix of 7 ¢y p,
i.e., the (m x 1) vector of log returns from day ¢ to ¢ + h, given the information set at ¢,
Fi. If, for simplicity, we assume that Cov[riyy—1 t4r, Mt4ys—1,t4s|Ft] = 0, 1,8 > 1, 17 # s,
then ¥ 4y, = Zf}:l E[Xi+r—1t4r|Ft]. For h = 1, we write ryy; := 74 +41 and equivalently,
41 = Xy 441. Solving (1) yields the GMV portfolio weights given by
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We investigate the benefits of HF data for GMV portfolio selection in terms of forecasts of
the conditional covariance matrix, it,Hh, with corresponding weights w; ;1. To evaluate
these predictions, we exploit the basic result of Patton and Sheppard (2008) showing that the
conditional variances of the portfolios based on the true conditional covariance matrix > ;1

and its forecast it’t_;'_h obey

~/ ~ ! * . S
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This result yields a natural evaluation criterion as resulting portfolio variances approach a lower
bound if forecasts it,H r, approach their population counterparts. Consequently, we consider a
forecast f],;Hh as being superior if it produces a smaller conditional portfolio variance. As will
be discussed below, the conditional portfolio variances can be proxied using HF data.

Importantly, Voev (2009) shows that the above criteria are valid only for conditional, but not
unconditional variances. Employing the latter introduces a bias, which is driven by the variance
of the conditional mean of portfolio returns. The bias is negligible only if a mean of zero can be
assumed, which is problematic for horizons of more than, e.g., a day. In addition, it is shown
that due to the bias term, estimators implying higher variations in portfolio weights become
(unjustifiably) disadvantaged. This property becomes particularly restrictive when comparing
covariance matrix forecasts based on LF and HF data, as intuitively, the latter should be able to
incorporate new information faster, however, implying more variability in the weights. Hence,
gains from employing HF data might be understated when unconditional portfolio variances are
considered for evaluation.

We assess the economic significance of a lower (conditional) portfolio variance by adapting
the utility-based evaluation approach suggested by West et al. (1993) and Fleming et al. (2001)
to a conditional framework. Accordingly, we assume that the investor has quadratic preferences

of the form

ol 2
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p . ~/ . . . . . . .
where 7y, ., 1= Wi, p, Tte+n 18 the portfolio return with v denoting the relative risk aversion.

Following Fleming et al. (2003), we consider the two levels v = 1 and v = 10. For two

competing covariance forecasts, f]% ¢4, and i?t 4 » implying the GMV portfolio returns rf tI h
and rf tli 5» We then determine a value A, , such that
T—h T—h
D, _ D,
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A, can be interpreted as a fee the investor is willing to pay in order to switch from a GMV
strategy based on f]%t p, to its counterpart employing i{lt 1, As we show in Appendix A, the
solution to (5) depends on the conditional portfolio variances, @ft h Dttth @i,t 4 and the
conditional means, @g’t < h Mttvhs Where pig o, i= E[ry 45| F] is the (m x 1) vector of condi-
tional expected returns and ¢ = I, I. To isolate the effects of differences in (average) conditional
portfolio variances, we assume expected returns being constant over time and identical across

all stocks, i.e. ji¢4p = (h/252) pid 1, t = 1,...,T — h. This yields the relationship

T—h
; 2,p 2,p 2p._ 1 i e P —
Ay >0 iff o > oy, ot g Wi gy p Dt trh Wigyp, ©=LIL  (6)
t=1
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under the assumption that (h/252) ;' < 1/v (see Appendix A).! To control for the impact
of the assumption on the level of 1'¢ on the performance fee A, we consider a grid of values
satisfying the above restriction for the different investment horizons and rates of risk aversion
utilized, i.e., ' € {—0.05,0,0.05,0.1}. However, as we discuss below, our results are very

robust to the specific value of .

3 Covariance Estimation and Forecasting in Vast Dimensions

3.1 Forecasts Based on High-Frequency Data

Estimating asset return covariances based on high-frequency data requires addressing four
major challenges: (i) using high-frequency information at the highest sampling frequencies to
maximize the estimator’s efficiency, while (ii) avoiding biases due to microstructure noise (e.g.
Hansen and Lunde, 2006) and the asynchronous arrival of observations across assets (e.g. Epps,
1979), as well as (iii) ensuring positive definiteness and (iv) well-conditioning of covariance
estimates, i.e. numerical stability of their inverse. Satisfying all criteria simultaneously is chal-
lenging, as for instance, fulfilling (i), (iii) and (iv) requires sampling at the highest frequencies,
which in turn, causes substantial biases ruled out by (ii). Conversely, sparse sampling, e.g.,
based on five-minute returns, as utilized by the classical realized covariance estimator proposed
by Andersen et al. (2001), satisfies (ii) but violates (i) and — if the dimension of the portfolio is
high — also (iv).

A widely used estimator that is both consistent in the presence of microstructure noise

and provides positive semi-definite estimates (thus satisfying (ii) and (iii)) is the multivariate

"Even in case (h/252) Y > 1/, we always have that A, > 0 if 0" > o1’ However, the above condition on
14 is not overly restrictive. For the longest investment horizon and highest level of risk aversion we consider, i.e.
h = 20 and v = 10, we need to impose that ' < 1.26. That is, the assumed annualized expected return may not
exceed 126 percentage points.



realized kernel proposed by Barndorff-Nielsen et al. (2011). As an important ingredient, this
approach involves so-called refresh time sampling for synchronization, implying to sample
prices whenever all assets have been traded (i.e., have been refreshed) at least once. This
naturally implies a loss of efficiency as the sampling frequency is driven by those assets trading
slowest. As stressed and illustrated by Hautsch et al. (2012), this loss of efficiency can be
substantial (thus violating (i)) if the number of assets and their heterogeneity in terms of
trading frequency is high. In the extreme case, covariance matrix estimates might even become

ill-conditioned (thus violating (iv)).

The Blocked Realized Kernel

To address this problem and construct estimates which satisfy all criteria, we consider the
blocked realized kernel put forward by Hautsch et al. (2012). The idea behind the blocked
realized kernel is to assign the assets to groups according to their (average) trading frequency
and to estimate the underlying correlation matrix groupwise.

In a general framework, we denote the log price of asset ¢ at time 7 by pg), 1=1,...,m.
For the assumptions on the price process ensuring consistency of the (blocked) multivariate
realized kernel, we refer to Barndorff-Nielsen et al. (2011). Onday ¢,¢t = 1,...,7, the j-th
price observation of asset ¢ is at time Tt(f]), where j =1,..., Nt(i) andi =1,...,m. Let G be the
specified number of liquidity groups, yielding the blocks b= 1,..., B, with B =G (G + 1) /2.
Further, we denote the set of indices of the m;, assets associated with block b by Z;,. Applying the
multivariate realized kernel methodology to the assets in Z, then requires refresh time sampling
with refresh times defined as the time it takes for all the assets in this set to trade or refresh

posted prices, i.e.

bo._ (4) b (4)
"1 = 08X {%,1 } o T P TEX {TLN(Z-)(TT&)H ; (7

where N ()(7) denotes the number of price observations of asset i before time 7. Accordingly,

vectors of synchronized returns are obtained as rf 1°= Prrb, = Pprb s l=1,... ,nf , where n?
) t, t,l—

is the number of refresh time observations in block b.

The multivariate realized kernel on block b is defined as

HY

h
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Figure 1: Visualization of the Blocking Strategy According to Hautsch et al. (2012)

where k(-) is given by the Parzen Kernel and F? *is an autocovariance matrix, i.e.

b
e b b
Zl=h+1 Ty T, for h=0

I’ = ny b b
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HY is a block-specific smoothing bandwidth that is chosen as in Section 3.4 of Barndorff-Nielsen

et al. (2011). Based on (8), we compute the corresponding estimate of the correlation block b as

1/2

LoV = diag KT i =1, (10)

R = (V) TURY (V)

where K f ’(ii), 1=1,...,my, are the diagonal elements of Kf .

BEK is then obtained as a hierarchical combination of the corre-

The correlation matrix R
lation blocks RtK ’b, b=1,..., B. Figure 1 from Hautsch et al. (2012) illustrates the blocking
strategy in a covariance matrix, where the top-left corner is associated with the most liquid assets
and the bottom-right corner associated with the least liquid assets. The data is decomposed into
three equal-sized liquidity groups (G = 3), yielding six correlation blocks. Then, in a first step,
the entire correlation matrix (block one) is estimated. Subsequently, we obtain estimates of
blocks two and three associated with the correlations between the less liquid and more liquid
assets, respectively. Finally, blocks four to six contain the correlations within each liquidity
group. Efficiency gains arise due to a more effective synchronization and thus a higher (refresh
time) sampling frequency within each block. Consequently, all blocks — except block one — are
estimated with higher precision than in the plain realized kernel. Finally, from the (block-wise)

BRK
t

estimated correlation matrix R , the BRK estimate of the covariance matrix is constructed



according to

. )1/2 .
BRE; = V;RK RPEK VEK yRK . Giag RKM]", i =1,...,m, (11)
with RKt(i), t = 1,...,m, denoting variance estimates based on the univariate version of
the realized kernel (Barndorff-Nielsen et al., 2008a). Consequently, the variance elements are
estimated with highest precision, since in a univariate setting synchronization by refresh time
sampling is not necessary. We implement the realized kernel estimator following the procedure

from Barndorff-Nielsen et al. (2008b).

Smoothing, Regularization and Construction of Forecasts

Variations in portfolio weights require a re-balancing of the portfolio and thus cause transaction
costs. The latter can be reduced by keeping covariance matrix forecasts sufficiently stable. The
explicit consideration of transaction costs in the underlying portfolio optimization problem,
however, results in an empirically challenging problem, as it requires bounding the variability
of portfolio weights and thus of the covariance matrix over time. Although the derivation of an
explicit solution of this problem is beyond the scope of this paper, we still aim at studying the
impact of competing covariance forecast constructions on the resulting portfolio turnover. A
straightforward method to stabilize covariance matrix estimates is to “smooth” them over time
by computing simple averages over S days, i.e. BRK; g := (1/.5) Zle BRK; 411, where

BRK;1 = BRK,.? Then, a smoothed correlation matrix is obtained as

RPEN .= (VBT BRE,s (V) VK = diag[RKt(jg]m, i=1,....,m, (12)

with RK t(g = (1/5) Zle RKt(i)S 41, © = 1,...,m, being smoothed univariate realized
kernel estimates.

Estimating correlation matrices block-wise implies efficiency gains, but yields estimates
(even after smoothing) which are not guaranteed to be positive semi-definite and well-
conditioned. Indefinite matrices feature negative eigenvalues, while ill-conditioned matrices
possess eigenvalues that are close to zero, which makes inversions numerically unstable. Particu-
larly for the computation of minimum variance portfolio weights as in (2), however, it is crucial
that covariance matrices are both positive definite and well-conditioned. These requirements

make it necessary to employ suitable regularization techniques.

2Obviously, one might also “smooth” in a more sophisticated way by applying weighting schemes, e.g., based on
kernel methods. We leave this for further research but show that even smoothing utilizing simple averages yields
superior results, see Section 4.3.
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As a first alternative, we follow Hautsch et al. (2012) employing the eigenvalue cleaning
procedure proposed by Laloux et al. (1999). This method rests on the idea of comparing the
(empirical) distribution of eigenvalues of the estimated correlation matrix with the theoretical
distribution of eigenvalues one would obtain under independence of the m processes. The latter
is derived from random matrix theory and yields the expected distribution of eigenvalues if
these are completely driven by noise. Consequently, eigenvalues strongly departing from the
theoretical distribution are identified as ‘“signals” carrying significant information on cross-
sectional dependencies. Conversely, eigenvalues being close to zero, and thus to the benchmark
distribution, are identified as “noisy”. They are likely to be non-informative, while causing
the correlation matrix to be ill-conditioned. Hence, these eigenvalues can be inflated, making
estimates well-conditioned without significantly losing information. See Appendix B for details.

As a second regularization technique, we consider a factor structure based on the spectral
components of the correlation matrix. Covariance forecasts based on factor models have been
demonstrated to improve the performance of minimum variance portfolios (e.g. Chan et al.,
1999). Moreover, a factor structure ensures fast convergence of the factor inverse if the number
of factors is small relative to the number of assets (see Fan et al., 2008). Accordingly, we

consider a spectral decomposition of the smoothed correlation matrix estimate on day ¢, i.e.,

REGN = Qi M s Q) s, (13)

where A; g is the diagonal (m x m) matrix of eigenvalues ordered from largest to smallest,
while Q¢ s denotes the orthonormal (m x m) matrix of corresponding eigenvectors. Then, by
retaining only the first k; 5 < m correlation eigenvalues and associated eigenvectors we obtain

the factorized estimate of the correlation matrix

BRK

Rt,s,(kt,s) = Q1.9 (ks, ) M5, (ke ) Qts (kes) T ( — Qs k'tS)) ) (14)
where Q; g (r, 5) is a diagonal (m x m) matrix containing the diagonal elements of
Qt,S,(kt,s)At,S,(kt,s)Q::,S,(kt,s)' The number of factors £; g is chosen in two ways. First, we
select the number of factors for each day ¢ separately employing the criteria by Bai and Ng
(2002). For implementation details, we refer to Appendix C. Second, we consider a factor

structure with the numbers of factors fixed to one or three.
Hence, our combined framework for smoothing and regularizing BRK estimates can be

summarized as

EURnB . RanB ‘/t s, where v € {E7 F, IF, 3F}, (15)
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with Rf’%“B corresponding to the smoothed correlation matrix estimates from (12) regularized
by eigenvalue cleaning (E) or by imposing an adaptive (F) or fixed (1F and 3F) factor structure.
Following Hautsch et al. (2012), in all cases we regularize only if ngl{ is non-positive definite
or ill-conditioned. The latter is defined to be the case if ‘A% / A%) | > 10 x m, where Agg and
Agg) are the largest and smallest eigenvalue of RE?K , respectively.

Further possibilities to regularize the covariance matrix are, for instance, thresholding
techniques (Wang and Zou, 2010). However, the latter rely on a sparsity assumption for the un-
derlying covariance matrix, which is problematic given the strong cross-sectional dependencies
typical for equity data. Alternatively, as shown by Jagannathan and Ma (2003), regularization
can be achieved by imposing no-short-sale constraints in the portfolio optimization problem (1).
A related result for general gross portfolio constraints is put forward by Fan et al. (2012b)
and applied to evaluate covariance matrix estimates using HF data, e.g., in Fan et al. (2012a).
Here, we focus on an unconstrained framework, since it explicitly allows us to compare the
performance of different regularization methods and to evaluate the forecasting accuracy not
only with respect to the covariance matrix, but also to its inverse.

We construct forecasts of ¥; ;1 ;, based on the information set ; by two alternative ap-
proaches. First, we evaluate random walk (“naive”) forecasts of the form itﬂ%h =h if’%“B,
which will be referred to as vRnB(S), v € {E,F, IF,3F}. As an alternative to a pure ran-
dom walk forecast, we propose a simple dynamic model for non-smoothed covariance matrix
estimates. When choosing a suitable dynamic specification for covariance matrices, positive
definiteness of forecasts, model parsimony and ease of implementation are important factors to
ensure feasibility in a vast-dimensional setting. To guarantee positive definiteness, we follow
Andersen et al. (2003) and Chiriac and Voev (2011) in modeling the Cholesky decomposition of
covariance matrix estimates, i.e., if}}nB = L; L}, where L, is a lower triangular matrix. As L;
contains m (m + 1) /2 distinct elements, we ensure tractability in high dimensions by modeling
each row or column of L; independently. Due to its triangular form, modeling the rows or
columns of L; implies a hierarchical specification of dynamics, depending on the ordering of
assets. Consequently, (co-)variances associated with assets being ranked first widely follow
their individual dynamics, while volatilities associated with higher ranks are subject to several
Jjoint dynamics. For instance, in case of row modeling, the volatility of the first asset and, in case
of column modeling, all scaled covariances thereof with all other stocks follow independent

dynamics.? To account for this hierarchy, we order the assets according to their (average) trading

frequency during the estimation period.

3The first row of L; contains the diagonal element \/ig’ll‘”, while the first column equals the vector
S(1,1) (1,2 S(L,m)\’ (11
(EEA,I )a Eg,l >7 L) Z:1(5,1 >) / Zg,l >
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Let L,§9 *) denote the (g x 1) vector of elements from the g-th row of L; and Lg.g ) the
((m — g+ 1) x 1) vector of elements from the g-th column, g = 1,. .., m. Dynamic specifi-
cations for ng *) and LE'Q ) should capture the well-known persistence properties of volatility
processes, which can be achieved by fractionally integrated processes (e.g., Andersen et al.,
2003), appropriately mixing different frequencies using, e.g., mixed data sampling (MIDAS)
techniques as proposed by Ghysels et al. (2006) or heterogeneous autoregressive (HAR) pro-
cesses introduced by Corsi (2009). We follow the latter strategy, which is in the spirit of
Chiriac and Voev (2011) applying HAR dynamics to the Cholesky factors of realized covariance
estimates. Accordingly, we consider the HAR(1, 5, 20) specifications

(g') 5
(g®) _ (ge (ge) 7 (ge) (90 _
L =99 4 oY L)+ = 5 ; ZL Yog=1,....m,
(16)
. . ('g) 5 (og
Lg'!}) (‘9) + Oé( Q)L( 9) 5 Z Z L + gt.g g= 1 m,
s=1

where ¢(9*) and ¢(*9) are (g x 1) and ((m — g 4+ 1) x 1) parameter vectors, respectively, while
the remaining parameters are scalars. We will refer to these specifications as Row- and Column-
Cholesky-HAR (RCHAR and CCHAR) models. Based on (least-squares) parameter estimates,
the models (16) yield h-step ahead forecasts Ll(i }2 and Lg f}g g =1,...,m, which are combined
to form Et+h. Finally, we construct forecasts of >; ;. as Et7t+h = Zle EHT E; 1 These
forecasts involve a bias, as they rely on a nonlinear transformation of the covariance matrix.
However, we abstain from a bias correction, as, e.g., Chiriac and Voev (2011) demonstrate that
this bias is empirically negligible. In any case, this issue should be of minor relevance when

considering an economic, instead of a statistical loss function.

3.2 Forecasts Based on Daily Data

We assess the merits of covariance forecasts based on HF data for the portfolio selection
framework presented in Section 2 by benchmarking the former against methods employing daily
returns. A comprehensive overview of these approaches can be found in Sheppard (2012). The
three classes of estimators we consider are (i) multivariate GARCH models, (ii) (regularized)
rolling window sample covariance matrices, and (iii) RiskMetrics. (i) and (ii) have been shown
to perform well in the econometric and finance literature, while (iii) is of relevance in financial
practice. In this context, we will denote by u; the (m x 1) vector of demeaned returns at day

tie. ug =1 — g, t =1,...,T, where as for the utility-based evaluation above and in line
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with, e.g., Hansen and Lunde (2005) we assume that the vector of conditional mean returns ji;

18 constant over time.

Multivariate GARCH Models

Multivariate GARCH (MGARCH) models parameterize the dynamics of the conditional co-
variance matrix >4 1. For a survey of this model class, we refer to Bauwens et al. (2006). We
consider the scalar version of the vector GARCH model (S-VEC) introduced in Bollerslev
et al. (1988) and the dynamic conditional correlation (DCC) model proposed by Engle (2002).
The former is motivated by the results on spectral components of covariance and correlation
matrices in Zumbach (2009a) that favor a direct modeling of conditional covariance matrices.
For that purpose, the S-VEC model is the most parsimonious approach. Employing DCC speci-
fications is justified by their superior out-of-sample prediction accuracy within the MGARCH
class when considering various statistical loss functions and different dimensions (e.g. Caporin
and McAleer, 2012; Laurent et al., 2012). We estimate both models by Gaussian QML, i.e.,
assuming ug41|Fy ~ N(0,341).

The S-VEC model is a direct extension of the univariate GARCH specification. Ensuring

covariance targeting as proposed by Engle and Mezrich (1996), it can be formulated as
N1 =2 (1 —an =) +anurup + B Bty o, fr >0, ap+ B <1, (17)

where ¥ := E[u; u}] denotes the unconditional covariance matrix of u;, which is consistently
estimated by the corresponding sample moment. Then, oy and §; are estimated by QML
using the composite likelihood method proposed by Engle et al. (2008). Accordingly, the
joint likelihood is replaced by the sum of pairwise likelihoods ensuring tractability in high
dimensions.* Using the parameter estimates in specification (17), we construct h-step ahead
forecasts ¢, yielding it,prh = Zle S

The DCC model decomposes the conditional covariance matrix as >;11 = Vip1 Rir1 Vig1,

2,@)} 1/2 2,(i)

where V41 = diag[at X+ ,4=1,...,m, with the conditional variances o; +i following

univariate GARCH processes, while a similar dynamic structure is imposed on the conditional

“In our vast-dimensional setting, we follow a suggestion of Engle et al. (2008) and use only adjacent pairs of assets.
The results do not change qualitatively when modifying the ordering of assets.
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correlations in R;1, i.e.,
Ufjﬁ) —witaul? + 807w Bi >0, ai+Bi<1, i=1,...,m, (18

2\~ 2\l 1z : iz
Riy1 = (Vi) 1th+1 (Vi) g Vi = dlag[Zzt(+ﬂ , o i=1,...,m,

Zt+1:Z(l_az_ﬁz)+az€t€2+6zzt> aszZZOa O‘z+6z<1a

where Zfﬁ, i =1,...,m, are the diagonal elements of Z;, 1, €; := V[l uy is the (m x 1) vec-
tor of devolatilized returns and Z := E[e; €}]. Estimation is carried out in three steps. First,
we estimate the m univariate GARCH(1, 1) models. Second, Z is estimated by correlation
targeting, i.e., replacing E[e; €;] with its sample analogue.’ Finally, we estimate the correlation
parameters by the composite likelihood approach. Based on QML parameter estimates and the
dynamics in (18), one-step ahead covariance forecasts can be straightforwardly constructed as

S  _ O A D o g 2,72
Yir1 = Vig1 Rip1 Viqr, where Viyy = diag[,, 7]

,t=1,...,m. To obtain the multi-
step forecasts necessary for computing ¥ ;4 = fo:l 3tyr, b > 1, we use the approximations

suggested in Engle and Sheppard (2005) and Engle (2009, ch. 9.1).

Regularized Rolling Window Sample Covariance

The sample covariance matrix computed from L (demeaned) daily returns is defined as

L
1
Cri= ;utmu;_m. (19)

The covariance matrix estimate C; is positive definite whenever L. > m but inversion can be
numerically unstable even if the latter condition is fulfilled. Accordingly, we regularize C}
using alternative techniques if it is ill-conditioned according to the definition in Section 3.1.
We denote the resulting estimate by C;°%, where C;*® = C} if no regularization is imposed.
Covariance forecasts are then computed as §t7t+ n=nh C’Ifeg.

As a simple regularization method, we consider factor models based on the principal
components of Ct. The strong performance of factor structures in GMV portfolio applications
is documented by Chan et al. (1999), showing that a three-factor model mimicking the Fama
and French (1993) factors is sufficient. While the latter are factors constructed based on asset
return characteristics and economic fundamentals, an approximation thereof using principal
components can be motivated, for instance, by the results in Connor (1995) on the similar

explanatory power of fundamental and statistical factor models. Let A¢ be the diagonal
tv(kt)

3 Aielli (2011) shows that the resulting estimator of Z is inconsistent and proposes a “corrected” DCC (cDCC) model.
However, Caporin and McAleer (2012) find the latter having an inferior forecasting performance compared to the
original DCC specification.
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(k¢ x k¢) matrix of the first k; eigenvalues and Qf (ke the (m x ki) matrix of the corresponding

eigenvectors of C;. Then, the resulting factorized covariance matrix estimate is

CF% = Qf (o N5 ) @ + (V= Qa ) - (20)

where V; and QC ) are diagonal (m x m) matrices containing the diagonal elements of C; and
Qf ke t, ( kt)Q £ (ke)? respectlvely. In the spirit of Chan et al. (1999), we consider a three-factor
structure (i.e., k; = 3) and, alternatively, examine a more restrictive framework with k; = 1.
Further, we allow for a closer comparison with FRnB estimates by choosing k; on a dynamic
basis using the Bai and Ng (2002) criteria discussed in Appendix C.

As a second type of regularization, we use the shrinkage technique initially proposed
by Stein (1956) and adopted by Ledoit and Wolf (2003) for sample covariance matrices. The
resulting shrunk estimator is a weighted average of C'; and a restricted, positive definite target F7,

i.e.,
Cf=0F,+(1—-9¢)C;, 0<¢<1, (1)

where ¢ is an estimate of the optimal shrinkage intensity derived by Ledoit and Wolf (2003)
minimizing the squared error loss. As shrinkage target Fj, they consider the one-factor model
by Sharpe (1963) showing that the resulting estimator outperforms, e.g., the pure one-factor and
three-factor model. As an approximation, we employ the principal component structure (20)
with k&, = 1. In addition, we follow Ledoit and Wolf (2004) and let F; be given by the
equicorrelation model, i.e., the covariance matrix implied by setting the common correlation
equal to the cross-sectional average of all pair-wise sample correlations implied by C;.
Finally, we regularize C; by the eigenvalue cleaning procedure that is applied to BRK
estimates in Section 3.1 and discussed in more detail in Appendix B. Laloux et al. (2000)
demonstrate that sample covariance matrices regularized by this technique yield considerably
lower portfolio volatilities than their “uncleaned” counterparts in minimum-variance applica-

tions.

RiskMetrics

RiskMetrics covariance forecasts constitute the industry standard. The original RiskMetrics1994

approach is based on an exponentially-weighted moving average (EWMA) of the outer product
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of demeaned returns, i.e.,

LRI\/I
~ 11— _
Y1 = (1()\Lm21) Z At gy, 0 <A<, (22)

=1

where L®M denotes the window length. We follow the suggestion made in J.P. Morgan/Reuters
(1996) for daily returns and set A = 0.94. If the forecast it.}rl is ill-conditioned according to the
criterion in Section 3.1, we apply the tailored regularization technique suggested in Zumbach
(2009b), which relies on a two-stage shrinkage. See Zumbach (2009b) for details. Forecasts
of X 1+, are then computed as Zt t+h =h Et 11> Where Et 1 1s the regularized forecast with
Zt T1= S3¢41 if no regularization is necessary.

Additionally, we employ the updated RiskMetrics2006 methodology, which allows for long
memory dynamics by assuming a hyperbolic decay of the weights on lagged outer products of

returns. The corresponding one-step ahead covariance forecast is

LRM Umax
St = ) N Wity A= ZCU HLRM)1> 0, ", (23)
=1 -
1 ln(m) -1
U::i 1_ 701}:: _1 v/ U:: v 9
G =5 ( ln(m)> exp(—=1/my), M :=mp

where the constant D is specified such that ) |, (, = 1, 7 is a logarithmic decay factor, while
m and 7, denote the lower and upper cut-off, respectively. Moreover, p is an additional
tuning parameter and vn,y is determined by specifying the values of the other parameters. We
use the values suggested in Zumbach (2006), i.e., no = 1560, 71 = 4, ,,,,, = 512 and p = /2.
Finally, we construct forecasts of X ;. , according to it,t+h = Zle f]fgn, where multi-step
predictions EHT, r > 1, are computed following Appendix A of Zumbach (2006).

4 Empirical Results

4.1 Data and Empirical Setup

We employ mid-quotes for the constituents of the S&P 500 index extracted from the Trade and
Quote (TAQ) database. We focus on the 400 assets with the longest continuous trading history
during the sample period between January 2006 and December 2009 covering approximately

1,000 trading days and including the financial crisis after the bankruptcy filing of Lehman
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Figure 2: Cross-Sectional Averages of Volatility and Absolute Correlation Estimates
Based on smoothed BRK estimates using daily, monthly or yearly window. Volatilities are annualized
square roots of diagonal elements and are reported in percentage points.

Brothers Inc. We discard the first 15 minutes of each trading day to avoid opening effects and
conduct additional steps to clean the raw quote data. Details are provided in the web appendix.®

Based on the cleaned mid-quote data, we compute BRK estimates as outlined in Section 3.1
using G = 4 liquidity groups. The choice of GG will be motivated below. Further, we smooth
the BRK estimates over weekly, monthly, quarterly, half-yearly and yearly windows, i.e. S €
{1,5,20,63,126,252}. For three smoothing windows, Figure 2 depicts the resulting averages
of the square roots of diagonal elements, i.e., volatility estimates, and of the absolute values of
pairwise correlations. Two major features are apparent. First, there is a considerable increase
of both volatility and absolute correlation during the peak of the financial crisis in the later
part of 2008. Second, employing BRK estimates smoothed over monthly and yearly windows
implies a noticeable stabilization. The latter effect is also confirmed for the eigenvalues of the
corresponding correlation matrix estimates displayed in Figure 3. Here, smoothing is helpful to
separate the dynamics of the first (largest) eigenvalue, which allows for a better signal extraction.
The result that the first eigenvalue follows different dynamics than the rest of the eigenvalues is
in contrast to findings based on correlation matrices estimated over long-term rolling windows
of daily data (e.g. Zumbach, 2009a).

Following Section 3.1, we regularize indefinite or ill-conditioned smoothed BRK estimates
by eigenvalue cleaning (ERnB) or imposing a factor structure (FRnB, 1FRnB and 3FRnB). As
we show in the web appendix in more detail, regularization is necessary for all days in the

sample and every smoothing window. Figure 4 gives the number of factors based on BRK

The web appendix is available at
http://amor.cms.hu-berlin.de/~malecpet/MHFDPF_appendix.pdf.
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Figure 4: Sample Distribution of Number of Factors for FRnB Estimates
Number of factors is determined by applying the Bai and Ng (2002) criteria from Appendix C to BRK
estimates smoothed over different windows.

estimates smoothed over different windows resulting from adaptive factor selection using the
Bai and Ng (2002) criteria (FRnB). The positive relation between the length of the smoothing
window and the parsimony of the factor structure is apparent.

Our analysis focuses on open-to-close covariance matrices, whereby noisy overnight returns
do not have to be included. This approach is in line with Andersen et al. (2010) treating
overnight returns as deterministic jumps. Accordingly, we measure the vector of daily returns,
r¢, by the vector of open-to-close returns, which can be interpreted as close-to-close returns
corrected for the above deterministic jumps. To implement the methods based on daily returns
from Section 3.2, we then obtain the vector of demeaned returns, u;, by subtracting the sample
mean during the respective estimation period.

Using data up to day ¢, we compute out-of-sample forecasts of the conditional covariance

matrices X; ¢y, for daily, weekly and monthly horizons, i.e., h € {1,5,20}. Rolling window
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sample covariance matrices are computed using a baseline window length of L = 252 days,
although alternative window sizes will be examined in a sensitivity analysis given below.
RiskMetrics forecasts are computed employing all available data up to day ¢ with an initial
in-sample period of 252 days. Both the sample covariance matrix and RiskMetrics estimates
need to be regularized for each day (see web appendix). Finally, we construct covariance
forecasts based on MGARCH, as well as R- and CCHAR models using the same expanding
windows as for RiskMetrics. R- and CCHAR parameters are re-estimated at each step. In the
case of MGARCH models, we estimate the parameters over the entire sample for reasons of
numerical stability.

The initial in-sample period comprises observations from 01/2006 to 12/2006. Motivated
by the descriptive results above and in order to gain insights into the forecasting performance
during “normal” and “non-normal” market periods, we conduct a separate evaluation for a
period of 375 days before the financial crisis, covering the time from 01/2007 until 06/2008
(“pre-crisis period”), and the period of 377 days from 07/2008 to 12/2009 including the financial

crisis (“crisis period”).

4.2 Evaluation and Inference in the Portfolio Selection Framework

The forecasts of the conditional covariance matrix, §t7t+ n. are used as inputs for the GMV port-
folio selection framework in (1) and (2), yielding the weights w; ;. The resulting conditional
portfolio variance, {U\;,t th Yt +4+h We 41, is then estimated by the five-minute realized portfolio
variance
ort iy = Wy RCOV gy Wy gy, (24)
where RCov; ¢, is the five-minute realized covariance from day ¢ to t + h, i.e., the sum of
outer products of the five-minute return vectors obtained by previous-tick interpolation (e.g.
Dacorogna et al., 2001). The realized portfolio variances based on competing covariance
forecasts are used to compute performance fees A, v € {1, 10}, according to (4) and (5).
In addition, we examine several basic characteristics of the GMV portfolio allocations.
Following de Pooter et al. (2008), we evaluate portfolio turnover rates to proxy transaction costs
proportional to the traded dollar amount for every stock. For a horizon h, the total return of

the portfolio from ¢ — h to ¢ is given by rfﬁht = @E )ht . h ;» where o (©)

topeandr, o,

are the weight and return of stock %, respectively. Then, before re-balancing to the next period,

(i) 147 E”ht

the weight of stock ¢ in the portfolio changes to w,”;, ; i

. Consequently, the portfolio
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turnover is given by

o ~(4) ~(1) t—ht
PO:p, = E : Wyiip = Wi py 1+ ? : (25)
i=1 t—h,t

Second, we quantify the portfolio concentration of resulting GMV portfolio weights. For
instance, Oomen (2009) stresses that estimation errors might imply extreme positions and may
cause practical pitfalls, such as disproportionate transaction costs or an excessive market impact.

We measure portfolio concentration in terms of the norm of the vector of portfolio weights,

R m 2 1/2
Py, = [[Weasnlly = <Z wt(,t)+h> ) (26)

=1

which is minimized for an equally-weighted portfolio, i.e., W ¢+, = (1/m) ¢. Finally, motivated
by the analysis in Liu (2009), we evaluate the size of short positions in the portfolio. Verifying
to which extent short sale constraints would be violated is of practical relevance since many
portfolio managers are prohibited from taking such positions. Hence, we compute the sum of

negative portfolio weights as
o 0 0
i = Dy {0, < 0} @7)
i=1

To assess the statistical significance of performance differences between competing forecasts,
we perform a stylized “portfolio bootstrap”. First, we create asset indices by drawing random
samples of size 350 without replacement from the uniform distribution on the integers 1, . . . , 400,
which is repeated 1000 times. Second, for each random set of assets and every covariance
matrix forecasting model, we compute: (i) the GMV portfolio weights for each horizon and
day, (ii) the square root of the sample average of the (annualized) realized portfolio variance
in (24), o, (iii) the resulting annualized performance fees relative to competing forecasts, Ai;,
v € {1, 10}, for all considered values of the (identical) conditional mean ,uid, as well as (iv) the
sample averages of the above portfolio characteristics in (25), (26), and (27), i.e., po, p¢c and
sp, respectively. For the quantities in (ii)-(iv), we examine median values across all random
samples. Additionally, we report the standard deviations of ;. The empirical implementation
of the outlined re-sampling procedure is computationally demanding, as it requires the inversion

of more than two million 350 x 350 covariance matrices for each forecasting method.
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4.3 The Economic Value of High-Frequency Data
Global Minimum Variance Portfolio Performance

Table 1 reports the GMV portfolio performance of ERnB, RCHAR and CCHAR forecasts, with
the latter utilizing non-smoothed ERnB estimates. Throughout the analysis, we fix the number
of groups in the blocking strategy to G = 4 and will justify this choice in a robustness analysis
below. Table 1 also reports the performance of factor-based forecasts. For sake of brevity,
however, we only show the best-performing factor models minimizing the median realized
portfolio volatility for each smoothing window. The complete results are available in the web
appendix.

The following findings can be summarized. First, covariance predictions based on a dynamic
model yield better GMV portfolio performances than those based on a “naive” forecast. Prior to
the crisis, the median realized portfolio volatility declines by five standard deviations (s.d.’s)
when switching from random walk ERnB(1) to RCHAR forecasts. During the crisis period,
the gains induced by dynamic forecasts even increase up to 13 s.d.’s. HAR-based forecasts
correspond to weighted averages of past realized covariances and thus are by construction
“smoother” in time than random walk forecasts. This property pays off in terms of less volatile
portfolio weights and thus lower portfolio turnover. The gains even increase for weekly and
monthly forecasts. Moreover, it turns out that CCHAR forecasts are superior to RCHAR
forecasts. In particular, in the pre-crisis period, the difference in median realized portfolio
volatility is less than one s.d. for h = 1, but during the crisis period, CCHAR forecasts yield a
median portfolio volatility that is lower by three s.d.’s. This is also reflected by lower portfolio
turnovers induced by CCHAR forecasts.

Second, varying the length of the smoothing window has a twofold effect. On the one hand,
non-smoothed or only moderately smoothed forecasts result in lower portfolio volatility, fewer
short positions and lower portfolio concentration (i.e., more diversification). These benefits
of highly responsive forecasts have to be confronted, however, with a higher variability in
portfolio weights, causing a higher portfolio turnover and hence higher transaction costs. These
effects yield a natural tradeoff between responsiveness and (excessive) variability of covariance
forecasts. Not surprisingly, portfolio turnover is minimized by maximizing smoothing intervals,
i.e., one year in our setting.

Third, we show that eigenvalue cleaning generally produces lowest portfolio turnovers and
yields less concentrated weights and smaller short positions. Factor-based regularization (e.g.,
FRnB and 3FRnB), however, becomes effective only if the underlying estimates are sufficiently
smoothed. In this case, they yield the lowest portfolio volatility and turnover. These effects

are particularly apparent during the crisis period. Here, the combination of smoothing and
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Figure 5: Median Portfolio Volatility of CCHAR Forecasts Relative to Benchmarks (h = 1)
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Time series of ratios m(of ) /m(oyy 1), where o, ., is the square root of the realized portfolio

variance in (24) computed for h = 1. m(-) denotes the median across 1,000 random samples with each
random sample containing 350 assets out of the entire 400 asset universe.

factor-based regularization yields the best portfolio performance in terms of lower portfolio
volatility and turnover. In more stable market periods, such as prior to the crisis, the necessity of
smoothing and thus the effectiveness of factor-based regularization declines, making eigenvalue
cleaning superior. In contrast, factor structures based on non-smoothed BRK estimates result in
highly non-stable forecasts and are not reported here (for details, see web appendix).

Table 2 shows the corresponding results based on forecasting models utilizing daily returns
as presented in Section 3.2. We find that covariance forecasts based on HF data as evaluated
in Table 1 outperform all “low-frequency” (LF) benchmarks up to a weekly horizon. The
best-performing LF methods in terms of median portfolio volatility are the RiskMetrics1994
estimator as well as the rolling window sample covariance matrix regularized by eigenvalue
cleaning. The strong performance of the latter, particularly during volatile periods, indicates
that the strength of a proper conditioning scheme might be even more important than imposing
a dynamic forecasting model. Nevertheless, during the pre-crisis period, (random-walk-type)
ERnB(1) forecasts yield a median portfolio volatility which is three s.d.’s lower than the best-
performing LF benchmark. This performance gain increases to seven s.d.’s if not naive but
(dynamic) RCHAR specifications are used. During the volatile crisis period, the superiority
of HF-based approaches becomes even stronger, resulting into a decrease in median realized
portfolio volatility of up to 17 s.d.’s in case of a CCHAR model. The dominance of HF-based
forecasts particularly during the crisis period is graphically highlighted by Figure 5, which
displays the time series of median portfolio volatility implied by CCHAR forecasts relative to

the two best-performing LF benchmarks.
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Not surprisingly, the aforementioned effects are strongest for daily horizons (h = 1)
and become weaker for longer forecasting horizons. However, although the informational
advantage of HF data naturally declines with the length of the prediction interval, we still
identify performance gains from HF data even at a monthly horizon. While in the pre-crisis
period, the best LF and HF one-month forecast yield exactly the same median portfolio volatility,
the latter can be still significantly reduced during the crisis if HF-based forecasts are used.

The dominance of HF-based approaches is due to the efficient use of more recent information,
making forecasts more responsive and adaptable to structural changes. These effects particularly
pay off during highly volatile periods, such as in 2008. Moreover, we show that HF-based
forecasts also yield less concentrated (and thus more diversified) positions and imply less short-
selling. However, as stressed above, the downside of a higher responsiveness of forecasts is a
higher variability in portfolio weights increasing portfolio turnover and transaction costs. These
costs could be reduced at the expense of a higher portfolio volatility by using longer, i.e., at
least quarterly, smoothing windows. Addressing this tradeoff more thoroughly is a challenging
avenue for further research but is clearly beyond the scope of the current study.

Finally, we also evaluate the performance of a naive investment strategy assigning equal
weights (1/m) to all assets. Interestingly, the 1/m-portfolio yields a significantly higher median
volatility than all other methods. This finding is at odds with the study of DeMiguel et al. (2009)
reporting that strategies based on covariance matrix forecasts cannot consistently outperform
a naive diversification strategy. However, it has to be noted that DeMiguel et al. examine
unconditional Sharpe ratios while our evaluation focuses on the conditional portfolio volatility

(approximated by the realized volatility).

Economic Significance

We evaluate the economic gains of employing HF-based covariance forecasts using the utility-
based evaluation approach in (4) and (5). To incorporate the effect of transaction costs, we
follow de Pooter et al. (2008) assuming that the latter are proportional to portfolio turnover.
Accordingly, (5) is extended by defining performance fees net of the difference in transaction
costs between the two competing strategies, i.e., AS := Ay — ¢ (ﬁn — ﬁl), where c denotes
the proportional transaction costs on each traded dollar and po’ is the (average) turnover implied

i

by the GMV strategy based on the covariance forecasts f]t the

1 = I, II. However, to avoid
assumptions on the level ¢, we focus on “break-even” trading costs levels implying A5 = 0 and
thus ¢ := A,/ (pioH — ﬁl). Note that the economic interpretation depends on the signs of the
performance fee A, and the turnover difference D, := poll —pol. If Ay > 0, Dy, > 0 implies
that ¢, yields the maximum level of positive transaction costs under which the risk-averse

investor is still willing to pay for employing strategy Il instead of I, while for Dy, < 0, ¢, gives
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the minimum level (in absolute terms) of negative transaction costs, i.e. transaction credits,
under which this is no longer the case. In contrast, given that A, < 0, %, denotes the minimum
positive (for D, < 0) or negative (for D, > 0) transaction cost level necessary to make
strategy Il superior to strategy 1.

Table 3 reports the median values of the (annualized) performance fees A in basis points
(bp) the investor would pay in order to switch from the best LF benchmarks to HF-based
forecasting methods. Moreover, we show the median values of the corresponding annualized
break-even transaction costs ¢}. The underlying expected returns are assumed to be identical
across stocks and are fixed to *¢ = 0.05. In the web appendix, we demonstrate that alternative
values of *? yield quantitatively almost identical results. As LF benchmarks, we choose those
strategies minimizing the median portfolio volatility or turnover. Among HF-based forecasts,
for each smoothing window, we select the regularization method yielding the lowest median
portfolio volatility. The corresponding findings for all other models are given in the web
appendix.

The major observations are as follows. First, by utilizing HF-based covariance forecasts, a
risk-averse investor can achieve noticeable economic gains which become substantial during
the crisis period. Before the crisis and for a daily horizon, an investor with low (high) risk
aversion would be willing to pay 2 (17) bp to switch from the best LF strategy to the best
random-walk-type HF forecast (ERnB(1)) and 4 (40) bp to switch to a CCHAR forecast. During
the crisis period, these values increase to 20 (199) bp in the naive (FRnB(5)) and 33 (328) bp
in the dynamic case. Focusing on longer forecasting intervals, these gains become smaller,
however they are still substantial even for a monthly horizon if the investor exhibits a high risk
aversion. In the latter case, the median performance fees for switching to FRnB(5) and CCHAR
forecasts amount to 99 and 238 bp, respectively. Figure 6 shows the nonparametrically estimated
performance fee densities resulting from the underlying portfolio bootstrap approach. The plots
confirm the statistical significance of the results, particularly during the crisis period. Moreover,
CCHAR covariance forecasts yield slightly less dispersed performance fee distributions than
random-walk-type FRnB(5) forecasts.

Second, using HF data remains valuable for more risk averse investors even in the presence
of transaction costs. During the crisis period, the annualized median break-even transaction
costs associated with the above performance fees for the daily horizon are 0.2 (2) percentage
points (pp) for FRnB(5) and 0.9 (9) pp for CCHAR forecasts in case of low (high) risk aversion.
These are the median values of the transaction cost levels at which the net performance fee paid
by a risk-averse investor for switching from the low-volatility LF benchmark to the HF-based
forecasts would just remain positive. When benchmarking against the LF-based forecast yielding

the lowest turnover, i.e., rolling window sample covariances regularized by a one-factor structure,
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Figure 6: Kernel Estimates of Performance Fee Density

Kernel density estimates across 1,000 random samples of the annualized basis point fee (AY) a risk-averse
investor with quadratic utility and relative risk aversion v = 10 would pay to switch from covariance
forecasts using daily data to high-frequency-based forecasts. Each random sample contains 350 assets
out of the entire 400 asset universe. The assumed constant conditional mean return is identical across all
stocks and set to Y = 0.05 (annualized). Density estimates are based on the Gaussian kernel and the

rule-of-thumb bandwidth with normal reference.

the median break-even transaction costs associated with the CCHAR specification increase to
1.4 (14) pp, which is moderate compared to the increase in the corresponding performance
fees. This finding is induced by the low portfolio turnover implied by the one-factor structure,
naturally decreasing the impact of transaction costs.

Finally, in several cases, we observe a combination of negative (median) performance
fees and positive (median) break-even transaction costs. Here, the explicit consideration of
transaction costs favors HF-based covariance forecasts as long as these costs exceed a certain
level. For instance, ERnB(252) forecasts yield negative median performance fees vis-a-vis
the low-volatility LF benchmark regardless of the level of risk aversion. However, after the
introduction of transaction costs of at least 1.8 pp in case of low risk aversion and 18 pp in case

of high risk aversion, the net performance fee turns positive. These effects materialize whenever
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the smoothing window is sufficiently long driving down the turnover of HF-based approaches

compared to their LF competitors.

4.4 Sensitivity Analysis and Robustness Checks
Number of Liquidity Groups

An important parameter underlying BRK estimates is the number of liquidity groups G. In-
creasing GG allows for additional efficiency gains by further reducing the impact of refresh
time sampling, however, on the other hand, requires an even stronger regularization. From
both the theoretical and practical perspective, it is very unclear to which extent regularization
might overcompensate efficiency gains and whether there is a tradeoff between both steps. If,
moreover, our focus is not only on the (in-sample) estimation of asset return covariances but
particularly on the optimization of (out-of-sample) portfolio allocations, the problem of finding
an “optimal” choice of GG balancing efficiency gains and the need for regularization is even
harder and a challenging avenue for further research.

Nevertheless, aiming for empirical insights in the impact of G on portfolio allocations,
Table 4 reports (for daily horizons) the forecasting performance of non-smoothed BRK estimates
regularized by eigenvalue cleaning (ERnB(1)) for different values of G. Prior to the crisis,
using four liquidity groups (G = 4) yields the lowest volatility. In this case, the choice of
four liquidity groups seems to (empirically) balance the tradeoff between efficiency gains and
the need of a tighter regularization. During the volatile crisis period, however, the effect of
additional efficiency gains by increasing G seems to become more crucial. In this case, we
observe the median portfolio volatility monotonously declining for rising GG. Nonetheless, as
soon as GG exceeds four, the magnitude of additional reductions in portfolio volatility exhibits a
noticeable decay and becomes smaller than one standard deviation. These results are in line
with Hautsch et al. (2012) reporting that blocking-based efficiency gains are mainly due to a
separation between liquid and illiquid assets which is ensured by a moderate number of liquidity
groups.

Hence, a universal choice of G = 4, as used in the analysis above, is justifiable and
constitutes a reasonable (data driven) tradeoff between induced efficiency gains and tightness
of regularization. In any case, the dominance of HF-based portfolio optimization compared to
LF-based approaches might be even stronger (particularly in volatile periods) if G is further

increased.
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Table 4: Number of Liquidity Groups G and GMV Portfolio Volatility of ERnB(1) Forecasts
Medians (m(-)) and standard deviations (s(+)) across 1,000 random samples of the square root of the
annualized average realized portfolio variance (7)) using predicted GMV weights for the horizon h = 1
(in percentage points). Each random sample contains 350 assets out of the entire 400 asset universe.
Evaluation is performed for the pre-crisis period, 01/2007 to 06/2008, and the period including the crisis,
07/2008 to 12/2009.

Pre-Crisis Crisis
€ m(o}) 5(55) m(a}) 5(55)
1 8.38 0.28 14.43 0.11
2 8.25 0.29 14.25 0.11
4 7.49 0.07 14.02 0.11
5 8.15 0.30 13.98 0.11
8 8.13 0.30 13.94 0.11
10 8.12 0.30 13.93 0.11

Length of the Estimation Window

To gain insights into the role of the (local) estimation window utilized for the sample covariance
of daily returns, we consider alternative window lengths of 378, 126, 63 and 20 days. Based
on these settings, we investigate the impact on the median performance fees for switching to
HF-based predictions as well as on the corresponding median break-even transaction costs. We
focus on FRnB(5) and ERnB(252) forecasts, representing “slight” and “heavy” smoothing,
respectively. As LF benchmarks, we compute the sample covariance matrix regularized by those
techniques (according to Section 3.2) yielding the lowest median portfolio volatility or turnover,
respectively.

Table 5 reports the results based on the crisis period. The corresponding analysis for the pre-
crisis sample along with the complete results of the above benchmark selection procedure can
be found in the web appendix. For the low-volatility benchmarks, reducing the window length
from 252 to, ultimately, 20 days implies a severe precision loss, as the median performance
fees for switching to both FRnB(5) and ERnB(252) forecasts increase sharply. In these cases,
the portfolio turnover of the LF benchmarks rises considerably making HF forecasts even
more superior and thus leading to an increase in the median break-even transaction costs. A
further lengthening of estimation windows to 378 days, however, causes only small additional
reductions of median performance fees, thus indicating rather mild precision gains due to even
longer local windows.

Reducing the local window length in case of the LF benchmark implying the smallest
portfolio turnover (one-factor structure) yields lower median performance fees for switching
to HF-based forecasts. This finding suggests that the loss of efficiency induced by a smaller
observation window is outweighed by a higher responsiveness of forecasts induced by the use of

more recent information. This is particularly true in case of a relatively tight regularization (as,
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e.g., induced by a one-factor structure), where the imposed structure itself limits the efficiency
loss caused by shrinking local windows.

Notably, shortening the estimation window does not necessarily imply an excessive rise
in portfolio turnover, as we observe decreasing median break-even transaction costs vis-a-vis
FRnB(5) forecasts. However, when compared to the more severely smoothed ERnB(252)
forecasts, break-even transaction costs increase or even become negative as long as the median
performance fee is positive. In this situation, negative (median) break-even transaction costs
reflect the higher (average) turnover induced by LF-based covariance forecasts in comparison to

their long-term smoothed HF counterparts.

Dimension of the Asset Universe

In the analysis above, we consider a high-dimensional asset universe comprising 400 stocks
exhibiting a considerable heterogeneity in terms of their liquidity.” In order to examine to which
extent the gains from HF data depend on both the dimensionality and the trading frequency of
underlying assets, we redo the analysis for subsets containing those 100 or 30 stocks revealing
the highest number of mid-quote revisions during the sample period. The chosen cross-sectional
dimensions and asset decompositions are comparable to those of the S&P 100 and the Dow
Jones Industrial Average, which, e.g., constitute the asset universes for the studies by de Pooter
et al. (2008) and Liu (2009), respectively.

For the portfolio bootstrap procedure outlined in Section 4.2, we draw random samples
based on asset indices consisting of 85 or 25 constituents, respectively. The covariance matrix
forecasting approaches from Section 3.1 and 3.2 are implemented as in the sections above with,
however, three exceptions. First, we compute BRK estimates employing a smaller number of
liquidity groups, particularly G = 2 and G = 1 in the 100 and 30 asset case, respectively. As
shown in the web appendix, up to these values of GG, reductions in median realized portfolio
volatility amounting to at least one standard deviation can be achieved. Second, the parameters
of MGARCH models are estimated on a day-by-day basis using expanding estimation windows
as for R- and CCHAR specifications above. In the 30 asset case, we also consider the full
quasi-likelihood instead of the composite likelihood approach. Finally, we account for the fact
that the regularization of BRK estimates, rolling window sample covariances and RiskMetrics
forecasts is not always necessary according to the conditions discussed in Section 3.1 and
3.2. For BRK estimates and the LF sample covariance, Figure 7 shows that the proportion of

regularized estimates is positively related to the dimension and negatively related to the length

"The average number of mid-quote revisions is about 5, 000 in case of very liquid stocks and only 250 in case of
very illiquid assets.
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Figure 7: Proportion of Regularized Covariance Estimates Depending on Smoothing or Estima-
tion Window

BRK estimates are regularized if any correlation eigenvalue is negative or the condition number of the
correlation matrix is greater than 10 x 100 or 10 x 30. The rolling-window sample covariance of daily
returns is regularized if the condition number of the corresponding correlation matrix is greater than the
above thresholds.

of the smoothing or estimation window.® Moreover, we compute forecasts based on estimates
which are regularized in any case, i.e., independent from the rule above.

The results of the entire analysis are available in the web appendix. Here, we focus on the
median performance fees for switching from the best LF forecasts to random-walk-type HF-
based predictions during the crisis period. The results are reported in Table 6. As LF benchmarks,
we again choose the best-performing low-volatility and minimal-turnover benchmarks. These
are found as the sample covariance estimator which is (unconditionally) shrunk towards an
equicorrelation model and the DCC specification in the 100 and 30 asset case, respectively.

The latter fact indicates that MGARCH models are more suitable for moderate dimensions

8The relative proportion of regularized RiskMetrics2006 covariance matrices drops to approximately 50% in the 30
asset case whereas RiskMetrics1994 forecasts need to be regularized in all cases (see web appendix).
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than for vast-dimensional settings. In case of HF forecasts, it turns out that an unconditional
regularization is not advantageous in any case. In particular, no regularization is necessary for
smoothing windows of one month or more in the 100 asset case and for all window lengths
when 30 assets are considered (see Figure 7). We refer to the corresponding non-regularized
random-walk-type forecasts based on a S-day smoothing window as BRK(.S).

The first major result is that, in general, the median basis point fees vis-a-vis the low-
volatility LF benchmarks increase considerably if the portfolio dimension becomes smaller. In
case of 100 assets and a daily horizon, the median performance fees for switching to ERnB(5)
forecasts assuming a low (high) risk aversion are 57 (567) bp, which is almost three times higher
than in the vast-dimensional setting. Very similar results are obtained based on 30 assets. The
increased benefits from HF data can be explained by the fact that we focus on more liquid assets
featuring a higher number of mid-quote revisions translating into more precise BRK estimates.
Second, the increased precision of BRK estimates yields large median performance fees even
at a monthly horizon. Given a high risk aversion, the median fees for switching to BRK(20)
forecasts are 427 and 526 bp in the 100 and 30 asset scenario, respectively, which is more than
four and five times the highest fee for this horizon found in Section 4.3.

Third, the median basis point fees remain positive when employing the three longest
smoothing windows regardless of the magnitude of risk aversion or the investment horizon. This
finding is of practical importance, as the corresponding forecasts yield a relatively low portfolio
turnover resulting in negative median break-even transaction costs. Hence, a risk-averse investor
is willing to pay for switching to long-term smoothed HF-based forecasts given any positive
transaction cost level. In addition, the fact that, compared to the vast-dimensional scenario, the
reduction in median performance fees is less pronounced when moving from short to yearly
smoothing windows indicates a higher persistence of the conditional covariance matrix process
in the lower dimensional case.

Finally, reducing the portfolio dimension does not imply the same performance fee gains as
above when HF forecasts are evaluated against the low-turnover LF benchmark (corresponding
to the sample covariance matrix unconditionally regularized by a one-factor structure). This
result might be explained by the less restrictive nature of the one-factor model as long as only
100 or 30 assets are considered. However, the reduced tightness of the structure also implies
that the corresponding portfolio turnover increases relative to HF-based forecasts employing
longer smoothing windows (see web appendix). For the 30 asset setting, in particular, the latter

effect is evidenced by the median break-even transaction costs becoming considerably negative.
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5 Conclusions

This paper provides insights into the value of high-frequency (HF) data for short-horizon
large-scale portfolio allocation decisions. We construct global minimum variance (GMV)
portfolios from the constituents of the S&P 500 index with weights being determined by
different conditional covariance matrix forecasts. We consider HF-based forecasts originating
from covariance estimates based on the blocked realized kernel proposed by Hautsch et al.
(2012). The estimates are smoothed, regularized by either eigenvalue cleaning or imposing a
factor structure and, finally, used to construct both random-walk-type predictions and forecasts
relying on a simple autoregressive specification. We employ an extensive set of benchmark
approaches based on daily returns and compare the competing forecasting methods in terms of
estimated conditional portfolio volatility and additional portfolio characteristics. We allow for
basic inference by using a “portfolio bootstrap” procedure and investigate the economic gains of
reduced portfolio volatility by means of a conditional version of the methodology put forward
in West et al. (1993) and Fleming et al. (2001).

Based on mid-quote data from 2006 to 2009, we show the following major results. First, HF-
based covariance forecasts outperform low-frequency (LF) approaches over investment horizons
of up to a month. The gains in terms of reduced portfolio volatility are considerably larger during
the volatile market period including the 2008 financial crisis and are of substantial economic
value from the point of view of an investor with pronounced risk aversion. Second, short-term
smoothing can be beneficial in terms of lower portfolio volatility, while long-term smoothing
always helps to reduce transaction costs. Third, the performance of HF-based strategies can be
further improved if naive random-walk-type forecasts are replaced by predictions relying on
(even simple) dynamic models. Fourth, our findings show that the use of HF data is beneficial
for dimensions of the portfolio around 500 and an asset universe that is relatively heterogeneous
in terms of liquidity. These performance gains, however, become even more substantial in case
of smaller portfolio dimensions when focusing on the most heavily-traded stocks. The other
way around, we expect the superiority of HF-based forecasts becoming smaller if the size of the
portfolio and the assets’ heterogeneity in terms of their liquidity further increase. In these cases,
the efficiency gains induced by the use of HF data vanish and are overcompensated by the need
for a tight regularization and for limiting portfolio turnover.

Possible avenues for future research are threefold. First, alternative regularization methods
could be considered. Recent examples are the subsampled principal component approach put
forward by Abadir et al. (2012) or nonlinear shrinkage as proposed in Ledoit and Wolf (2012).
Second, while our choice of a dynamic model for HF-based covariance matrix estimates is

mainly driven by parsimony and ease of estimation, richer specifications could be employed.
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In this context, utilizing HF data in a GARCH framework, as e.g., suggested by Hansen et al.
(2010) and Noureldin et al. (2012), appears particularly promising. Further possibilities, also
specifically for vast-dimensional settings, are presented in Andersen et al. (2011). Finally, the
naive smoothing of covariance matrix estimates could be replaced by an optimal smoothing
scheme that strikes a balance between the accuracy of forecasts, implying low portfolio volatility,
and the minimization of transaction costs caused by variation in portfolio weights. For this
purpose, the approach recently proposed by Kirby and Ostdiek (2012) could be adapted to a HF

framework.
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A Analytical Solution for the Performance Fee

Consider the GMV framework (1) and the preference structure (4). In addition, let

- 2
Z tt+h Ht,t+hs NZ Z (wt t+h Ht t+h) ;0 =LIIL (28)

and ¥ := 2 (1 4 ) /~. Then, exploiting the fact that

. \2 , " L 2
E [(Tg’;rh) ‘]: t] = Wi pn Stpth Wyprp + (wt,t-i-h Mt,t+h) ; o =LII (29)

and using basic algebra, condition (5) can be rearranged to

A2+ A, [19—2(1+/7ﬁ” =0 —2) (;ﬁ—;ﬁ’) N T e s e s N 1)

where af’p, i = LII, is defined as in (6). If we assume that ji ¢y, = (h/252) wid

t=1,...,T — h, (30) becomes

5 h ' —p  2p
AZ4+ A, [0—-2(1+ 555 )| =01 —ou’s (31)
yielding the solution
hpt 1 N A
A, = E— _ = 0 2p 32
T 950 4T \/( 252 ) T T on (32)
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which, under the assumption that (h/252) '@ < 1/, is strictly positive only if ? > @.

B Eigenvalue Cleaning

Eigenvalue cleaning is a regularization technique proposed by Laloux et al. (1999) and fur-
ther developed by Tola et al. (2008) that draws upon random matrix theory to determine the
distribution of the eigenvalues of a correlation matrix estimate X depending on the ratio of
n observations and m dimensions, ¢ := n/m. The idea is to compare empirical correlation
eigenvalues with those implied by the null hypothesis of independent Gaussian asset returns,
which allows for an identification of those eigenvalues that deviate from the “noisy” ones and
hence constitute “signals”.

Denote by A := diag(\1, . .., Ay,) the diagonal matrix of eigenvalues of R ordered from
largest to smallest and by () the matrix of corresponding eigenvectors, yielding the spectral
decomposition R = Q A Q. For n — oo, under the null hypothesis R is given by the identity
matrix implying that all eigenvalues are equal to one. However, if m,n — oo with ¢ > 1
fixed, the eigenvalues of R follow a Marchenko—Pastur distribution with maximum eigenvalue
Amax (= (1 +1/q+ 2@) Hautsch et al. (2012) argue that, for practical purposes, the above
threshold should be tightened to A%, = (1 — A1/m) (1 + 1/q +2,/1/q). This adjustment
allows for a better identification of smaller signals, as it accounts for the fact that the largest

empirical eigenvalue A\; often is associated with a dominating “market factor”. Then, eigenvalue

*

cleaning requires that all eigenvalues below A}, . are transformed according to

- Ao i A >

max?

0 otherwise,

where J is the average of the positive parts of all “noisy” eigenvalues, i.e.

> (<At M

0= (# of Ai < A\wr)

(34)

Finally, the cleaned correlation matrix estimate is obtained as R= Q A @', where A= diag(:\i),
i =1,...,m. We apply the procedure to (smoothed) correlation matrix estimates based on
the blocked realized kernel, RE?K , by setting the number of observations n equal to the
minimum number of refresh times in any block averaged over the smoothing window. For
the regularization of the rolling window sample covariance of daily returns, C;, we apply
eigenvalue cleaning to the corresponding sample correlation matrix Rf with n equal to the

window length L.
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C Selection of the Number of Factors

To select the number of factors for the regularization approach discussed in Section 3.1, we
employ the criteria by Bai and Ng (2002) developed for linear factor models with m assets and
n observations. In the context of smoothed BRK estimates, we consider a factor model defined
in refresh time. Let Tﬁ%,l’ 1 =1,...,m, denote the [-th refresh time return from days t — .S + 1

to t. The resulting factor structure reads

ik = U Fusi+ etk =1, m, L=1,.. s, (35)

where F} g is the (k; g x 1) vector of common factors, 1 5 ; denotes the corresponding vector
of factor loadings and 5% ; 18 the idiosyncratic component of ngg'l i =1,...,m. Following

Bai and Ng (2002), we determine k; s by employing the minima of the criteria

m m-+n mn
Ct’él(kt,S) = Ut S(kt S) + kt S Ut S(kmax) <t75> 1n<t7s); (36)

mng.g m —+ ng g
m 4+ nggs
mnts

C’Z"g?(kt,s) = &gs(kt,S) + ks 615275(1€max) < ) In |:H1111 (vV'm, \/n.9) }

where 6§S(kzt75) =Ly at S (kzt s) with &; (l)(k:t 5) being an estimate of the residual
variance V[EE% l} , while kp,x is the exogenously fixed maximum number of factors.

In practice, we let n; 5 be the minimum number of refresh times in any block of the blocked
realized kernel averaged over days t — S + 1 to ¢. Further, we set &1:2, é‘i)(ktﬁ) equal to the ¢-th
diagonal element of V;%K (Im - Qt,S,(kt,S)> VﬁqK i=1,...,m, where Vt%K and Q; 5 (k, <)
are defined as in (12) and (14), respectively. For the factor structure based on the rolling window
sample covariance of daily returns in (20), the number of observations is equal to the window
length L. The factor residual variance is estimated by 67 (k) := = >, &tz ’(i)(kt), where

6?’@(1{:0 is the i-th diagonal element of (Vtc - Q7 (k?t))’ i=1,...,m
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