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Copula Dynamics in CDOs. ∗

Barbara Choroś-Tomczyk†, Wolfgang Karl Härdle‡, Ludger Overbeck§

January 9, 2012

Abstract

Values of tranche spreads of collateralized debt obligations (CDOs) are driven by
the joint default performance of the assets in the collateral pool. The dependence
between the names in the portfolio mainly depends on current economic conditions.
Therefore, a correlation implied from tranches can be seen as a measure of the gen-
eral health of the credit market. We analyse the European market of standardized
CDOs using tranches of iTraxx index in the periods before and during the global
financial crisis. We investigate the evolution of the correlations using different cop-
ula models: the standard Gaussian, the NIG, the double-t, and the Gumbel copula
model. After calibration of these models one obtains a time varying vector of pa-
rameters. We analyse the dynamic pattern of these coefficients. That enables us to
forecast future parameters and consequently calculate Value-at-Risk measures for
iTraxx Europe tranches.

Keywords: CDO, multivariate distributions, copula, implied correlations, Value-
at-Risk.

JEL classification: C13, C22, C53, G32

1 Introduction

Financial institutions have been facing difficulties over the years for a wide variety of rea-

sons, however, the last financial crisis has shown that one of the major source of problems

was the credit risk management. The credit derivatives market was the most innovative

and fastest growing derivative market during the past ten years. The rapid development
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was due to new possibilities that were offered by credit derivatives. Credit instruments are

flexible financial products that enable the efficient repackaging and transfer of credit risk.

Credit derivatives are attractive for yield seeking investors and banks that need to hedge

their investments and fulfil the capital requirements. The most popular securities traded

on open markets are credit default swaps (CDS), default baskets, and collateralized debt

obligations (CDO). In this paper we consider tranches of the iTraxx Europe index because

of the availability of market quotes. iTraxx tranches have a structure of a synthetic CDO.

They are written on the portfolio of the 125 most liquid CDS on European companies.

The market standard tool for pricing CDO tranches is the one factor Gaussian copula

model. The core assumption of this model is that one value of the correlation is sufficient

to model the correlation of every pair of assets. The one factor model for the CDO

valuation is an analogy to the Black-Scholes option pricing model where the implied

correlation plays the role of the implied volatility parameter. The correlations implied

from the different tranches of the same CDO are not equal and the observed phenomenon

is called a correlation smile.

Modelling the risk of CDOs involves determining the loss distribution of the underlying

portfolio. If we have a portfolio of several assets, we have to quantify the default risk of

each obligor and also take into account the synergy of these risks. Because of the high

dimensionality, the valuation of a CDO is usually achieved by applying a factor model.

For a guide to credit risk models and credit derivatives we refer to Bluhm & Overbeck

(2006) and Bluhm, Overbeck & Wagner (2010).

There has been a multitude of CDO pricing methods proposed. The most popular mod-

els are based on copula functions. The market standard is the Gaussian copula model

proposed by Li (2000). Burtshell, Gregory & Laurent (2008) compare selected copula

approaches. The alternative valuations methods are the random factor loading model

(Andersen & Sidenius 2004), the intensity based models (Duffie & Gârleanu 2001), the

multivariate asset value models (Zhou 2001, Overbeck & Schmidt 2005). Another stream

of CDO pricing models come from a top-down framework. Representatives of this ap-

proach are Schönbucher (2005), Bennani (2005), Sidenius, Piterbarg & Andersen (2008),

Filipovic, Overbeck & Schmidt (2011).

Most of the above cited models are fully parametric and static. The focus of this research is

on the dynamics of CDO parameters. We compare different copula models and investigate

the dynamic evolution of the calibrated base parameters, which we explain in the next

section. We study the dynamic pattern in data, check the stability of coefficients over

time, and forecast the models’ parameters. We calculate Value-at-Risk (VaR) measures for

iTraxx Europe tranches with the aim to improve the understanding of the risk associated

with trading credit derivatives.

An issue of the VaR estimation has appeared already in CDO studies. O’Kane & Schlögl

(2005) calculate VaR for credit portfolios using the Gaussian, Student-t, Clayton, and

Gumbel copula models. Fender, Tarashev & Zhu (2008) compare VaR of corporate bonds

and CDO tranches of the same ratings. However, both works do not use empirical data

and do not carry any investigations over time. In consequence, they do not analyse the
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dynamics in CDO models, neither conduct any backtesting for VaR which are the main

contributions of this research.

The paper is structured as follows. Section 2 introduces the concept of CDOs. Section 3

presents the models. Section 4 shows results. Section 5 concludes.

2 CDOs

2.1 Market for credit risk transfer

The international standards for measuring and recognizing risk are provided in the Basel

I and II Accords developed by the Basel Committee on Banking Supervision. The Basel

capital requirements rules state that credit institutions must at all times maintain a

minimum amount of financial capital, in order to cover the risks to which they are exposed.

In relation to credit risk, Basel II permits two approaches. Banks can assess risk using the

standardised approach, which involves external credit assessments, or they can use their

own internal systems for rating credit risk. The latter possibility encouraged banks to

develop more sophisticated risk management techniques. The strong capital requirements

motivated banks to transfer risk from their balance sheets directly to investors leading

to the development of new risk dispersal instruments like CDS, default baskets, CDOs.

We judge the magnitude of losses incurred by the CDO tranches by calculating VaR.

VaR is the most widely used risk measure, mostly because of Basel II requirements for

financial services. The effectiveness of VaR models is commonly assessed by a backtesting

procedure. For an overview of VaR we refer to Jorion (2006).

2.2 CDO Valuation

Assume the existence of a risk neutral pricing measure P, under which all discounted

price processes are martingales. All expectations are taken with respect to this measure.

Consider a CDO with a maturity T , J tranches and a pool of d entities at the valuation

day t0. Every obligor i is represented by a default indicator

Γi(t) = 1(τi ≤ t), i = 1, . . . , d, (1)

such that the obligor defaults at time t within a period [t0, T ] if the time of default variable

τi ≤ t. The portfolio loss at time t is defined as

L(t) =
LGD

d

d∑
i=1

Γi(t), t ∈ [t0, T ], (2)

where LGD is a common loss given default. Each tranche j = 1, . . . , J is defined by the

detachment lj and attachment uj point which are the percentages of the portfolio losses

and lj < uj. The loss Lj at time t is expressed as

Lj(t) = Lu(t, uj)− Lu(t, lj),
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where Lu is specified from (2)

Lu(t, x) = min{L(t), x} for x ∈ [0, 1].

The outstanding notional Fj(t) of the tranche j is written as

Fj(t) = F u(t, uj)− F u(t, lj),

where F u is

F u(t, x) = x− Lu(t, x) for x ∈ [0, 1].

The fair spread of a CDO tranche is defined by the equivalence of the protection (called

also default) and premium leg. The protection leg DLj is calculated as the expected value

of the discounted stream of payments made upon defaults

DLj(t0) =
T∑

t=t1

β(t0, t) E{Lj(t)− Lj(t−∆t)}, j = 1, . . . , J, (3)

where β is a discount factor and ∆t is a time between t and the previous payment day.

The premium leg PLj is expressed as the expectation of the present value of all premium

payments

PLj(t0) =
T∑

t=t1

β(t0, t)sj(t0)∆tE{Fj(t)}, j = 2, . . . , J, (4)

where sj denotes the spread of tranche j. For the equity tranche, the premium leg (4)

turns into

PL1(t0) = α(t0)(u1 − l1) +
T∑

t=t1

β(t0, t) · 500 ·∆tE{F1(t)},

with un upfront payment α and a fixed spread of 500 bp. The tranche spread is found by

solving PLj(t0) = DLj(t0) for sj(t0)

sj(t0) =

∑T
t=t1

β(t0, t) E{Lj(t)− Lj(t−∆t)}∑T
t=t1

β(t0, t)∆tE{Fj(t)}
, for j = 2, . . . , J. (5)

By denoting the denominator of (5) by PL∗j(t0) we get

sj(t0) =
DLj(t0)

PL∗j(t0)
, for j = 2, . . . , J.

For the equity tranche the upfront payment is

α(t0) =
100

u1 − l1

T∑
t=t0

(β(t, t0) [E{L1(t)− L1(t−∆t)} − 0.05∆tE{F1(t)}])

=
100

u1 − l1
{DL1(t0)− 0.05PL∗1(t0)}.

For more details we refer to Chapter 3 in Bluhm & Overbeck (2006).
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2.3 Types of Dependence Parameters

The standard CDO pricing methods are based on the Gaussian distribution. Therefore, it

is common to equate the problem of modelling CDOs with modelling correlations. How-

ever, there are numerous approaches where the dependency is represented by a parameter

(or parameters) that is not a linear correlation.

Compound correlation and compound parameter

In a given copula model, a compound dependency parameter ρ(lj, uj), j = 1, . . . , J , is a

parameter that prices the tranche j so that it fits the market value. A present value PVj

of a tranche j is given by

PVj(t0) =
T∑

t=t1

β(t0, t)
[
sj(t0)∆tEρ(lj ,uj){Fj(t)} − Eρ(lj ,uj){Lj(t)− Lj(t−∆t)}

]
, j = 2, . . . , J,

where the expected value is calculated with respect to the distribution determined by the

compound parameter ρ(lj, uj).

In this work we investigate implied correlations and implied dependency parameters.

An implied dependency parameter is a parameter calculated out of a market spread by

inverting the pricing model. The standard Gaussian model uses only one correlation to

specify the loss distribution and price all the tranches. However, the implied correlations

are not the same across the tranches. The phenomenon observed is called a correlation

smile and has been widely studied in the literature, see Amato & Gyntelberg (2005).

The main disadvantage of the compound parameters is that the mezzanine tranches are

not monotonic in correlation. In consequence, there could be two parameters that yield

the same market spread. Moreover, there is no guarantee that the implied parameter

exists. These shortcomings motivate us to turn to base parameters.

Base correlation and base parameter

The base correlations were introduced by McGinty & Ahluwalia (2004) from JP Morgan

in the framework of the Homogeneous Large Pool Gaussian copula model, see Section

3. The main idea behind the concept of the base correlation is that every tranche can

be decomposed into two tranches that have lower attachment point zero. Being long

the mezzanine tranche with the attachment points lj and uj can be viewed as being

simultaneously long the equity tranche with upper attachment point uj and short the

equity tranche with upper attachment point lj. The base correlations are computed using

a bootstrapping technique, i.e. we use the base correlation of the first tranche to calculate

the second tranche, and so on. The expected losses of successive tranches are calculated

recursively

E{L(3%,6%)} = Eρ(0,6%){L(0,6%)} − Eρ(0,3%){L(0,3%)},
E{L(6%,9%)} = Eρ(0,9%){L(0,9%)} − Eρ(0,6%){L(0,6%)}, . . .
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A present value PVj of a tranche j = 2, . . . , J in this approach is given by

PVj(t0) =
T∑

t=t1

β(t0, t)
(
sj(t0)∆t

[
Eρ(0,uj){F u

j (t)} − Eρ(0,lj){F l
j(t)}

]
− (6)

Eρ(0,uj){Lu
j (t, uj)− Lu

j (t−∆t, uj)}+ Eρ(0,lj){Ll
j(t, lj)− Ll

j(t−∆t, lj)}
)
.

Although the base correlations overcome some limitations of the compound correlations,

they also have drawbacks. The analysis of the Gaussian base correlations can be found in

Willemann (2005). Willemann (2005) lists problems with the use of base correlations. He

shows that even if the true default correlation increases, base correlations might decrease.

Moreover, the expected losses for mezzanine tranches can be negative.

The concept of the base correlation can be applied to non-Gaussian copula. Then the

expectations in the above formulae are taken with respect to a given distribution of the

portfolio loss and the dependence parameters calculated using the above approach we call

the base parameters.

3 CDO Dynamics

The most popular CDO pricing models are based on a factor approach combined with

various copula functions. In this study we apply and compare the following one-factor

models: the Gaussian copula model, the Normal Inverse Gaussian (NIG) copula model,

the double-t copula model, the Gumbel Archimedean copula model. The copulae de-

termine the dependency structure between entities in the pool. The industry standard

methodology assumes that the values of assets are driven by one unobserved factor such

that the individual defaults are conditionally independent given the realization of the

factor. The factor reflects a state of economy and is common to all assets. We assume,

according to the market practice, that the portfolio is homogeneous. For all models we

use the factor representation and the large portfolio approximation technique.

3.1 Copula models

Let (τ1, . . . , τd)
> be a vector of default times with a (risk-neutral) joint cumulative distri-

bution function

F (t1, . . . , td) = P(τ1 ≤ t1, . . . , τd ≤ td) for all (t1, . . . , td)
> ∈ Rd

+.

We denote by F1, . . . , Fd the marginal distribution functions. From the Sklar theorem

we know that there exists a copula C : [0, 1]d → [0, 1], such that

F (t1, . . . , td) = C{F1(t1), . . . , Fd(td)}.
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For a survey over the mathematical foundations of copulae we refer to Nelsen (2006). A

default time τi of the asset i = 1, . . . , d is taken to be the first jump time of a Poisson

process with an intensity λi(t) and with exponentially distributed jumps

Fi(t) = P (τi ≤ t) = 1− exp

{
−

∫ t

t0

λi(u)du

}
, t ≥ t0

An intensity function λi(t) represents the instantaneous default probability of the obligor

at time t. We assume that every individual name has a constant intensity function

λi(t) = λi. Then the default probability is calculated as

pi(t) = Fi(t) = 1− exp{−λi(t− t0)}. (7)

Large portfolio approximation

In the one-factor model, introduced by Vasicek (1987), default times are calculated from a

vector of latent variables (X1, . . . , Xd)
> and each variable Xi, i = 1, . . . , d is represented

as

Xi =
√
ρY +

√
1− ρZi, (8)

where Y is a systematic risk factor, {Zi}d
i=1 are idiosyncratic risk factors and all are

independent.

The analytical tractability of the factor model is reached by assuming that the portfolio is

homogeneous i.e. all the assets have the same exposure, share the same pairwise correlation

ρ, default probability p, and recovery rate R and all these values are constant for all time

horizons. The number of obligors in the reference portfolio is large so that one may apply

asymptotic techniques. A default occurs when the value of the variable Xi drops below

the default threshold C = F−1
X (p), where FX is a distribution function of Xi.

From the representation (8) we get that conditionally on the realization of the systematic

factor Y , the variables Xi, i = 1, . . . , d, are independent. Therefore, the individual

probability that Xi < C given that Y = y is derived from (8) and equals

p(y) = P(Xi < C|Y = y) = FZ

(
C −√

ρy
√

1− ρ

)
, (9)

where Zi ∼ FZ . As a single default event is a binary variable, the conditional distribution

of the loss L of the portfolio of d assets follows a binomial distribution

P

(
L =

k

d

)
=

(
k

d

)
p(y)k{1− p(y)}d−k. (10)

For portfolios of a sufficiently large size d the fraction of defaulted obligors for a given

state of economy Y = y is approximately equal the conditional default probability (9).

By the law of large numbers the percentage loss given Y tends in probability to p(Y )

P(L ≤ x) = P{p(Y ) ≤ x}

= 1− FY

{
C −√

ρF−1
Z (x)

√
1− ρ

}
. (11)
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The expected tranche loss in (3) and (4) is calculated as an integral with respect to the

distribution (11) and with C(t) = F−1
X {p(t)} for t0 < t ≤ T .

Gaussian copula model

In the Gaussian copula model the variables (8) are decomposed by the factors Y and

{Zi}d
i=1 that are i.i.d. N(0, 1). In this framework the default times are given by τi =

F−1
i {Φ(Xi)} with Φ denoting the cdf of a standard normal. The Gaussian copula was

introduced in the CDO valuation by Li (1999). The large portfolio approximation for the

Gaussian one-factor model, which is often referred to as Homogeneous Large Pool Gaus-

sian Copula model, provides a simple and a fast solution, therefore, it quickly became

an industry standard for pricing CDOs. However, the Gaussian copula has fundamental

drawbacks. The main problem is that the Gaussian copula is not able to model prop-

erly the joint extreme events. The following copula models incorporate an effect of tail

dependence.

Normal Inverse Gaussian (NIG) copula model

The default times are modelled from a latent vector (X1, . . . , Xd)
> as in (8), where now

Y , {Zi}d
i=1 are independent NIG distributed variables

Y ∼ NIG

(
α, β,−βγ

2

α2
,
γ3

α2

)
, (12)

Zi ∼ NIG

(√
1− ρ
√
ρ

α,

√
1− ρ
√
ρ

β,−
√

1− ρ
√
ρ

βγ2

α2
,

√
1− ρ
√
ρ

γ3

α2

)
(13)

with 0 ≤ |β| < α and γ =
√
α2 − β2. For more detailed explanation of the NIG copula

model refer to Kalemanova, Schmid & Werner (2007). In order to simplify notation,

denote NIG
(
sα, sβ,−sβγ2

α2 , s
γ3

α2

)
as NIG(s). Hence, (12) and (13) can be rewritten as

Y ∼ NIG(1) and Zi ∼ NIG(√
1−ρ√

ρ

). The NIG distribution is stable under convolution

Xi ∼ NIG

(
α
√
ρ
,
β
√
ρ
,− 1

√
ρ

βγ2

α2
,

1
√
ρ

γ3

α2

)
= NIG(1/

√
ρ),

however, the vector (X1, . . . , Xd) is not multivariate NIG distributed. The default times

are computed as τi = F−1
i {NIG(1/

√
ρ)(Xi)}.

Double-t model

In this model default times are created from

Xi =
√
ρ

√
νY − 2

νY

Y +
√

1− ρ

√
νZ − 2

νZ

Zi, i = 1, . . . , d, (14)

where Y and Zi are t distributed with νY and νZ degrees of freedom respectively. The

double-t one-factor model was introduced by Hull & White (2004). Since the Student t

distribution is not stable under convolution, Xi are not t distributed and the copula is

not a Student t copula. The default times are such that

τi = F−1
i {FX(Xi)},

where the distribution FX of Xi needs to be approximated numerically.
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Gumbel Archimedean copula model

An Archimedean copula function C : [0, 1]d → [0, 1] is a copula that can be represented

in the following form

C(u1, . . . , ud) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (15)

where φ ∈ {φ : [0;∞) → [0, 1] |φ(0) = 1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . ,∞} is

called a generator of the copula and usually incorporates a parameter θ. Each generator

is a Laplace transform of a cumulative distribution function FY of a positive random

variable Y , i.e. φ(t) =
∫∞

0
e−twdFY (w).

The random variables of Archimedean copula possess a factor structure that allows us

to derive a large portfolio approximation similar to the one obtained in the classical

approach (11). The factor representation emerges from the sampling algorithm proposed

by Marshall & Olkin (1988). If we generate X1, . . . , Xd i.i.d. uniformly distributed on

[0, 1] and a variable Y that is independent of X1, . . . , Xd and whose Laplace transform

is φ, then the variables Ui = φ
(
− log Xi

Y

)
, i = 1, . . . , d, have the Archimedean copula

function (15) as the joint distribution function.

In this algorithm the dependence between the variables Ui, i = 1, . . . , d, is generated

by the mixing variable Y . Therefore, conditional on the realisation of Y , the random

variables Ui are independent.

Let

Ui = p̄i(τi) ∼ U[0, 1], i = 1, . . . , d,

where p̄i is a survival probability. Recall that the ith obligor survives until t < T if and

only if

τi ≥ t

or Ui ≤ p̄i(t). (16)

So instead of determining the joint default probability of τi one can specify a joint distri-

bution of Ui by a copula

C{p̄1(t), . . . , p̄d(t)} = P{U1 ≤ p̄1(t), . . . , Ud ≤ p̄d(t)},

where the margins satisfy P{Ui ≤ p̄i(t)} = p̄i(t). Hence, the default times are calculated

as τi = p̄−1
i (Ui), where Ui have a joint distribution of the Archimedean copula.

If Ui, i = 1, . . . , d, have the same unconditional survival probability p̄ and the number of

obligors d is very large, then the limiting loss distribution is

P (L ≤ x) = FY

{
− log(1− x)

φ−1(p̄)

}
,

where FY is a distribution of the mixing variable Y . For more details we refer to

Schönbucher (2003), Chapter 10.

From (16) we see that a default occurs when Ui is large. Since for the credit portfolios

we are mostly interested in modeling the joint defaults, in the applications we will use
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a Gumbel copula as it exhibits an upper tail dependence. Namely, it assigns a positive

probability to a simultaneous occurrence of positive extreme values. The Gumbel copula

is given by

C(u1, . . . , ud; θ) = exp

−{
d∑

j=1

(− log uj)
θ

}θ−1 ,
where the generator

φ(x; θ) = exp {−x1/θ}, 1 ≤ θ <∞, x ∈ [0,∞).

is a Laplace transform of an α-stable distribution with α = 1/θ.

A generalization of the one-parameter Archimedean copulae are hierarchical Archimedean

copulae (HAC), see Okhrin, Okhrin & Schmid (2010). HAC are flexible copulas that define

the dependency structure in a recursive way using multiple parameters. Choroś-Tomczyk,

Härdle & Okhrin (2010) apply HAC to CDO pricing.

3.2 Time dynamics

The copula structures of the above presented models contain only one parameter. This

parameter reflects the strength of the dependence between the entities. As the market

conditions change over time, the relation between the companies also change. In this study

we investigate the evolution of the parameters over time and calculate their forecasts. The

parameters’ forecasts are used to compute the Value-at-Risk (VaR) measures for spreads.

VaR states the maximum expected loss of a particular investment for a defined time

horizon and for a given confidence level. It is especially useful if we are interested in

assessing the tail risk. Big portfolios of financial assets are characterised by a high risk

of joint extreme outcomes. The ability of a pricing model to describe the joint downward

and upward movements is crucial for assigning the correct CDO prices.

In this paper we calculate a one-day VaR for the CDO tranches. The forecast of the next

day tranche spreads are computed from the forecasted models’ parameters.

Let θj(t) denote a copula parameter implied from a tranche j = 1, . . . , J at time t

using a copula-based CDO model. By calibrating the models to data day by day we

construct time series of parameters. The econometric analysis is further conducted on

the first difference Xj(t) = θj(t) − θj(t − 1) or on the first difference of logarithms of

the parameters Xj(t) = log θj(t) − log θj(t− 1). The stationarity is checked using the

augmented Dickey-Fuller test and the heteroskedasticity is detected by the Engle test for

residual heteroscedasticity. Afterwards, we choose a time series model to describe the

dynamic behavior of Xj(t). The models considered are ARMA(R,M)-GARCH(P,Q)

Xj(t) = µj(t) + εj(t),

Xj(t) = Cj +
R∑

i=1

φj,iXj(t− i) +
M∑
l=1

ψj,lεj(t− l) + εj(t), (17)
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where εj(t) = σj(t)Zj(t) are innovations, Zj(t) are standardised innovations that follow

the standard normal or t distribution, and

σ2
j (t) = Kj +

P∑
i=1

Gj,iσ
2
j (t− i) +

Q∑
l=1

Aj,lε
2
j(t− l) (18)

with the following constraints
∑P

i=1Gj,i +
∑Q

l=1Aj,l < 1, Kj > 0, Gj,i ≥ 0, and Aj,i ≥ 0.

The following investigation is carried out in moving windows. A moving window procedure

is used when only the most recent data are considered to be relevant for estimation. Here,

a static window of h = 250 elements is applied. Then for every time t0 between h and

T̃ , the end of the period considered, we look at {Xj(t)}t0−1
t=t0−h. In our work the size of

the interval is fixed, however, more advance methods estimate the size of the window

adaptively, see Giacomini, Härdle & Spokoiny (2009).

We restrict the orders in (17) and (18) to be R, M , P , Q ∈ {0, 1, 2}. The selection is

done in the first window {Xj(t)}h
t=1 using AIC and BIC criteria. Then the orders of the

time series models are fixed but in each following window we re-estimate the parameters.

The normality of the standardised residuals is also checked in the first window. If the

normality is rejected, we impose a t distribution.

After selecting a model and fitting it in the moving window we forecast the conditional

mean {µ̂j(t)}T̃
t=h+1 and the conditional standard deviations {σ̂j(t)}T̃

t=h+1 of the residuals of

the processXj(t). Using these results we calculate predictions of X̂j(t) and then transform

them into θ̂j(t) which are needed for calculating VaR measures for tranche spreads.

For a given level α and a time horizon, the VaR is an α-quantile of a profit-loss distribution.

A profit-loss process is the first difference of the spread process ∆sj(t) = sj(t)− sj(t− 1)

and the probability that ∆sj(t) exceeds the value of VaR1−α
sj

(t) or is smaller than VaRα
sj

(t)

is equal α:

P{∆sj(t) > VaR1−α
sj

(t)} = α,

P{∆sj(t) < VaRα
sj

(t)} = α.

The calculation of VaRα
sj

(t) requires prediction of ŝj(t) as the value of sj(t− 1) is known.

The spread is a function of correlations and default probabilities and both have to be

forecasted in order to get the next day spread. As the predictor of the intensity λ̂(t) (7)

one applies a forecast of the conditional mean of an ARMA model.

The spread of a tranche j = 2, . . . , J depends on two dependence parameters θ̂j(t)

and θ̂j−1(t). Therefore, we investigate the dependence of Xj(t) and Xj−1(t). Because of

the representation (17-18) we determine the join distribution of the innovations. A pair

[εj(t), εj−1(t)] follows a certain distribution Gj. As the marginals are known εj ∼ Fεj
, the

join distribution can be modeled with a copula function

CGj
(u1, u2) = Gj{F−1

εj
(u1), F

−1
εj−1

(u2)}.

The copula chosen in this instance are a bivariate Gaussian, Gumbel and Clayton.

11



Afterwards, we generate N random bivariate vectors from a copula CGj
and then we

transform them into bivariate vectors
[
θ̂j(t), θ̂j−1(t)

]
. The set of theta parameters gives

us a vector of possible next day spreads. Finally, V̂aR
α

sj
(t) is calculated as a sample

quantile from N values.

The adequacy of VaR is examined by performing a backtesting on historical spreads. The

basic technique is to calculate an exceedances ratio of the number of exceedances to the

number of observations

α̂u
j =

1

T̃ − h

T̃∑
t=h+1

1{∆sj(t) > V̂aR
1−α

sj
(t)}, (19)

α̂l
j =

1

T̃ − h

T̃∑
t=h+1

1{∆sj(t) < V̂aR
α

sj
(t)}. (20)

If a model works well, the exceedances ratio is close to the confidence level. The test that

checks the frequency of exceedances is Kupiec’s likelihood ratio test with the statistics

LRj = −2 log{(1− αj)
T̃−h−nαn

j }+ 2 log{(1− α̂j)
T̃−h−nα̂j

n} ∼ χ2(1), (21)

where αj is either αu
j or αl

j and n is a number of corresponding exceedences.

The model applied to compute VaR is correctly specified if the exceedances happen only

in the effect of unpredictable events. Moreover, the exceedances should not cluster over

time. However, this dependence in time is not taken into account by the Kupiec test.

Therefore, we use a dynamic quantile (DQ) test proposed by Engle & Manganelli (2004).

Define a hit Hj as {Hu
j (t)}T̃

t=h+1 for the upper VaR or {H l
j(t)}T̃

t=h+1 for the lower VaR

such that

Hu
j (t) = 1{∆sj(t) > V̂aR

1−α

sj
(t)} − α,

H l
j(t) = 1{∆sj(t) < V̂aR

α

sj
(t)} − α. (22)

The test regresses the hits on their lags and the other variables. The statistics is given

by

DQj = HjV
>
j (V >j Vj)

−1V >j Hj/{α(1− α)(T̃ − h− n)}, (23)

where Vj is a vector of explanatory variables. Following Engle & Manganelli (2004) we

include in Vj a constant, Hj, V̂aRsj
, defined for the upper VaR as {V̂aR

1−α

sj
(t)}t0−1

t=t0−h and

for the lower VaR as {V̂aR
α

sj
(t)}t0−1

t=t0−h, and also their four lagged values. The test’s null

hypothesis states that Hj and Vj are orthogonal. Under the null hypothesis the statistics

DQj ∼ χ2(qj), where qj = rank(Vj).

4 Empirical Results

The empirical research of this study was performed using iTraxx Euro indices with a

maturity of 5 years for a time period between 20 September 2006 and 2 February 2009.

12



This time interval is especially interesting as it covers time before and during the global

financial crisis. In the 4th quarter of 2008 the European market of credit derivatives

suffered from lack of demand. In the first quarter of 2009 the iTraxx tranches became

highly illiquid. Many missing data made the analysis for the year 2009 impossible.

The time series are constructed from the on-the-run indices of series 6, 7, 8 and 9 consec-

utively plus observations of series 9 till the end of the term considered. The construction

of our data set is motivated by the fact that the latest series of the index are the most

liquid. However, we observed that at the end of 2008 the tranches on Series 9 of iTraxx,

as well as of the American equivalent index CDX, were more liquid than the tranches of

the on-the-run Series 10. For that reason Series 10 was not included in this study.

The following series and time periods are concatenated as follows:

1. Series 6: 20060920-20070322

2. Series 7: 20070323-20070919

3. Series 8: 20070920-20080320

4. Series 9: 20080321-20090202

In total we have 619 days. We assume a flat correlation structure, deterministic LGD of

60%, and constant intensity parameters derived from iTraxx indices. The discount curve

is calculated from rates of Euribor and Euro Swaps.
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Figure 1: Square root of the base correlation from the Gaussian (upper panel, left), the

NIG (upper panel, right), the double-t (lower panel, left) model. Gumbel base parameter

(lower panel, right). Tranches: 1 (blue), 2 (black), 3 (red), 4 (pink), 5 (green).
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Model Tranche Mean Std. Dev Maximum Minimum

Gaussian 1 0.573 0.097 0.798 0.400

2 0.652 0.096 0.845 0.453

3 0.704 0.088 0.867 0.494

4 0.745 0.082 0.898 0.529

5 0.846 0.067 0.959 0.610

NIG 1 0.635 0.158 0.866 0.375

2 0.629 0.148 0.867 0.354

3 0.634 0.135 0.864 0.354

4 0.645 0.127 0.864 0.324

5 0.703 0.116 0.890 0.371

Double-t 1 0.630 0.119 0.857 0.427

2 0.636 0.135 0.866 0.366

3 0.647 0.138 0.870 0.338

4 0.664 0.140 0.873 0.328

5 0.733 0.146 0.938 0.288

Gumbel 1 1.124 0.078 1.337 1.017

2 1.124 0.082 1.350 1.011

3 1.129 0.085 1.352 1.011

4 1.138 0.090 1.360 1.007

5 1.202 0.132 1.561 1.014

Table 1: Summary statistics for the implied square root of the base parameter for the

Gaussian, NIG, double-t, and Gumbel model.

Figure 1 shows the implied square root of the base parameter from the Gaussian, the

NIG, the double-t, and the Gumbel model. Table 1 presents their summary statistics.

We see that the parameters for mezzanine and senior tranches are much lower for the

NIG and the double-t model than for the Gaussian copula. In addition, the tranches of

the benchmark model are the least volatile.

In general, the NIG distribution has four free parameters. In the model (12) and (13) two

parameters are chosen in such a way that the NIG distributions have zero mean and unit

variance. In consequence, the copula has two free parameters α and β. As it was shown

by Kalemanova et al. (2007), setting β to zero does not significantly affect the results.

However, α has to be calibrated to data. Since from one market value of a tranche spread

we can imply only one parameter, and this is in our case the correlation, other parameters

have to be determined through a preliminary investigation. Therefore, we calibrate the

NIG model to data of all five tranches simultaneously by minimizing the sum of the

relative difference between the calculated and historical spread. Hence, at any time t > 0

two parameters α(t) and ρ(t) price all tranches, see Figure 2. {α(t)}T̃
t=0 obtained with

this procedure are afterwards used in the individual calibration of the tranches.

In the double-t model (14) one has to choose the number of degrees of freedom for the

common and the idiosyncratic factor. We follow Hull & White (2004) and set both to be

equal four.
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Figure 2: Square root of the base correlation (left) and α parameter (right) calibrated for

all tranches using the NIG model.

All integrals in (6) are computed using the Legendre-Gauss quadrature.

The ARMA-GARCH models (17)-(18) are estimated for the first difference and for the

first difference of logarithms of the parameters. The model type is chosen in the first

window using AIC and BIC criteria and then estimated for the whole period. The final

model selection for parameters is also based on the Kupiec test (21) and the dynamic

quantile test (23). The parameters’ forecasts that are incorporated in the calculations of

the spreads’ forecasts are computed from the ARMA-GARCH models that provide the

best quantiles predictions. We do not present these intermediate results as we find them

of minor interest to the reader.

Table 2 depicts the exceedance ratios and Tables 3-10 present the p-values of the Kupiec

test (21) and the dynamic quantile test (23) for the VaR at the level α equal 0.05 and

0.95. Each table shows the results of the CDO valuation approaches: the Gaussian, NIG,

double-t, and Gumbel copula model. In Tables 2-10 the columns refer to the bivariate

copulae (Gaussian, Gumbel and Clayton) that are applied to model the parameters of

the neighbor tranches. A sample from which the VaR is calculated has a size of 1000

elements. Figure 3 illustrates selected results.

The results of the Kupiec and the DQ tests are different in nearly 38% of the cases which

confirms that it is important to check the time series dependence of the exceedances. The

number of statistically significant results for every CDO pricing model for both tests are

shown in Table 11. The results detect that the bivariate Gumbel copula was most often

the optimal choice for modelling the dependence between the parameters according to the

Kupiec test and the bivariate Gaussian copula according to the DQ test.

Tables 12 and 13 present the highest computed p-values for every tranche and every pricing

method. Here each column refers to a different CDO valuation approach but each item

is a largest p-value out of three obtained from the models where the bivariate Gaussian,

Gumbel and Clayton copulae were used to model the parameters. Using the Kupiec test

for the lower VaR the Gumbel copula was the optimal model for the equity tranche and

NIG for other tranches from 2 to 5. For the tranche 3 also the Gaussian model can be

selected. According to the Kupiec test for the upper VaR the Gumbel model is the best
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choice for the equity tranche, the double-t for the tranches 2 and 4, the Gaussian model

for the tranches 3 and 5. Regarding the DQ test, which is more reliable, both lower and

upper VaR is best calculated by the double-t model for the tranches 2 and 4, and by the

NIG model for the tranches 3 and 5. The optimal result for the equity tranche for the

lower VaR was achieved by the Gaussian model and for the upper VaR by the Gumbel

model. As we see from both tests, against all the odds, the simple Gaussian copula is not

entirely outperformed by the more sophisticated models. However, the Gaussian and the

Gumbel model perform better for the equity tranche, and the NIG and the double-t are

rather better for more senior tranches.

VaR(5%) VaR(95%)

Tranche Gauss Gumbel Clayton Gauss Gumbel Clayton

Gaussian

1 0.035 0.054

2 0.038 0.038 0.014 0.065 0.054 0.046

3 0.033 0.038 0.016 0.068 0.052 0.052

4 0.016 0.008 0.003 0.016 0.008 0.003

5 0.019 0.027 0.005 0.060 0.071 0.052

NIG

1 0.019 0.030

2 0.054 0.087 0.011 0.052 0.087 0.046

3 0.068 0.120 0.038 0.082 0.120 0.035

4 0.030 0.038 0.016 0.043 0.057 0.016

5 0.038 0.087 0.008 0.038 0.057 0.016

Double-t

1 0.033 0.057

2 0.030 0.033 0.016 0.038 0.049 0.041

3 0.033 0.033 0.011 0.060 0.065 0.043

4 0.022 0.024 0.008 0.054 0.046 0.030

5 0.008 0.022 0.000 0.035 0.038 0.030

Gumbel

1 0.044 0.046

2 0.024 0.030 0.014 0.027 0.030 0.033

3 0.019 0.014 0.003 0.011 0.008 0.008

4 0.011 0.005 0.003 0.014 0.008 0.005

5 0.011 0.024 0.003 0.005 0.008 0.005

Table 2: Backtesting results. Exceedance ratios for all VaR models.

Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.174 0.706

2 0.273 0.273 0.000 0.200 0.706 0.735

3 0.103 0.273 0.001 0.133 0.886 0.886

4 0.001 0.000 0.000 0.001 0.000 0.000

5 0.002 0.028 0.000 0.403 0.086 0.886

Table 3: Backtesting results for the Gaussian copula model. Kupiec test’s p-values.
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Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.755 0.011

2 0.735 0.723 0.111 0.000 0.008 0.005

3 0.513 0.425 0.184 0.000 0.003 0.000

4 0.188 0.037 0.009 0.063 0.037 0.009

5 0.244 0.474 0.019 0.000 0.000 0.000

Table 4: Backtesting results for the Gaussian copula model. DQ test’s p-values.

Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.002 0.056

2 0.706 0.003 0.000 0.886 0.003 0.735

3 0.133 0.000 0.273 0.011 0.000 0.174

4 0.056 0.273 0.001 0.557 0.543 0.001

5 0.273 0.003 0.000 0.273 0.543 0.001

Table 5: Backtesting results for the NIG copula model. Kupiec test’s p-values.

Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.137 0.068

2 0.119 0.000 0.068 0.009 0.000 0.000

3 0.126 0.000 0.780 0.000 0.000 0.067

4 0.014 0.165 0.026 0.001 0.000 0.122

5 0.484 0.000 0.037 0.335 0.052 0.165

Table 6: Backtesting results for the NIG copula model. DQ test’s p-values.

Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.103 0.543

2 0.056 0.103 0.001 0.273 0.924 0.401

3 0.103 0.103 0.000 0.403 0.200 0.557

4 0.005 0.013 0.000 0.706 0.735 0.056

5 0.000 0.005 0.000 0.174 0.273 0.056

Table 7: Backtesting results for the double-t copula model. Kupiec test’s p-values.

Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.653 0.020

2 0.574 0.741 0.182 0.223 0.001 0.240

3 0.740 0.738 0.054 0.000 0.000 0.005

4 0.382 0.221 0.033 0.001 0.089 0.510

5 0.036 0.019 - 0.269 0.031 0.114

Table 8: Backtesting results for the double-t copula model. DQ test’s p-values.
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Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.558 0.735

2 0.013 0.056 0.000 0.028 0.056 0.103

3 0.002 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.013 0.000 0.000 0.000 0.000

Table 9: Backtesting results for the Gumbel copula model. Kupiec test’s p-values.

Tranche
VaR(5%) VaR(95%)

Gauss Gumbel Clayton Gauss Gumbel Clayton

1 0.605 0.085

2 0.482 0.596 0.110 0.001 0.132 0.003

3 0.137 0.118 0.009 0.009 0.035 0.033

4 0.055 0.018 0.009 0.026 0.034 0.018

5 0.050 0.251 0.009 0.018 0.033 0.017

Table 10: Backtesting results for the Gumbel copula model. DQ test’s p-values.

Test VaR(5%) VaR(95%)

(Significance Level) Gauss NIG double-t Gumbel Gauss NIG double-t Gumbel

Kupiec (0.01) 7 7 7 9 3 4 0 9

Kupiec (0.05) 8 7 8 11 3 5 0 10

DQ (0.01) 1 3 1 3 10 7 5 3

DQ (0.05) 3 6 4 5 12 7 7 11

Table 11: Number of statistically significant results.

Tranche
VaR(5%) VaR(95%)

Gauss NIG double-t Gumbel Gauss NIG double-t Gumbel

1 0.174 0.002 0.103 0.557 0.706 0.056 0.543 0.735

2 0.273 0.706 0.103 0.056 0.735 0.886 0.924 0.103

3 0.273 0.273 0.103 0.002 0.886 0.174 0.557 0.000

4 0.001 0.273 0.013 0.000 0.001 0.557 0.735 0.000

5 0.028 0.273 0.005 0.013 0.886 0.543 0.273 0.000

Table 12: Backtesting results for all VaR models. Kupiec test’s p-values.

Tranche
VaR(5%) VaR(95%)

Gauss NIG double-t Gumbel Gauss NIG double-t Gumbel

1 0.755 0.137 0.653 0.605 0.011 0.068 0.020 0.085

2 0.735 0.119 0.741 0.596 0.008 0.009 0.240 0.132

3 0.513 0.780 0.740 0.137 0.003 0.067 0.005 0.035

4 0.188 0.165 0.382 0.055 0.063 0.122 0.510 0.034

5 0.474 0.484 0.036 0.251 0.000 0.335 0.269 0.033

Table 13: Backtesting results for all VaR models. DQ test’s p-values.
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Figure 3: VaR for the tranche 1 calculated with the Gumbel model (first row), for the

tranche 2 calculated with the double-t model with the inner Gumbel copula (second

row), for the tranche 3 calculated with the NIG model with the inner Gaussian copula

(third row), and for the tranche 5 calculated with the Gaussian model with the inner

Gumbel copula (fourth row). Left: spread difference (blue), VaRα
sj

(red), VaR1−α
sj

(pink),

exceedances (black). Right: market spreads (blue), spread predictions (green, dashed

black)
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Tranche Gauss NIG double-t Gumbel

1 5.474 5.485 5.179 5.379

2 1524.232 1510.394 1474.177 1532.652

3 510.229 563.453 508.706 646.390

4 219.462 274.981 211.025 495.953

5 33.687 39.228 33.199 46.246

Total 2293.083 2393.541 2232.286 2726.620

Table 14: Mean squared error of the spread predictions.

In addition to the VaR, Table 14 shows the mean squared error of the spread predictions.

The best next day spread was forecasted by the double-t model for all the tranches.

5 Conclusions

This paper investigates the dynamic changes in the dependence structure in Collater-

alized Debt Obligations (CDOs). The CDO valuation procedure and four risk models,

Gaussian, NIG, double-t, Gumbel, are presented. The empirical study is conducted using

iTraxx Europe tranches for the time period between 20 September 2006 and 2 February

2009. We imply base correlations and analyse their evolution in time. By applying time

series models we forecast the implied parameters. Afterwards, the predictions are used

to compute the spread forecasts. The forecasting ability of the CDO models is exploited

by calculating Value-at-Risk measures for spreads and carrying out a backtesting using

the Kupiec test and the dynamic quantile test. The performance of the Gaussian and

the more advance models are comparable. The empirical results do not confirm that

the benchmark approach is entirely inefficient in assessing risk. Therefore, the simple

Gaussian model should not be excluded from the analysis of the iTraxx spreads.
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