
López Cabrera, Brenda; Odening, Martin; Ritter, Matthias

Working Paper

Pricing rainfall derivatives at the CME

SFB 649 Discussion Paper, No. 2013-005

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: López Cabrera, Brenda; Odening, Martin; Ritter, Matthias (2013) : Pricing rainfall
derivatives at the CME, SFB 649 Discussion Paper, No. 2013-005, Humboldt University of Berlin,
Collaborative Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/79601

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/79601
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 

 
 
 
 
 

SFB 649 Discussion Paper 2013-005 

Pricing Rainfall 
Derivatives 
at the CME 

 
Brenda López Cabrera* 

   Martin Odening* 
    Matthias Ritter* 

 
* Humboldt-Universität zu Berlin, Germany 

 
 
 
 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



Pricing Rainfall Derivatives at the CME∗
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Abstract

Abstract. Many business people such as farmers and financial investors are
affected by indirect losses caused by scarce or abundant rainfall. Because of the
high potential of insuring rainfall risk, the Chicago Mercantile Exchange (CME)
began trading rainfall derivatives in 2011. Compared to temperature derivatives,
however, pricing rainfall derivatives is more difficult. In this article, we propose to
model rainfall indices via a flexible type of distribution, namely the normal-inverse
Gaussian distribution, which captures asymmetries and heavy-tail behaviour. The
prices of rainfall futures are computed by employing the Esscher transform, a well-
known tool in actuarial science. This approach is flexible enough to price any rainfall
contract and to adjust theoretical prices to market prices by using the calibrated
market price of risk. This empirical analysis is conducted with U.S. precipitation
data and CME futures data providing first results on the market price of risk for
rainfall derivatives.

Keywords: Weather derivatives, precipitation, Esscher transform, market price of risk
JEL classification: G19, G29, G22, Q59

1 Introduction

In the past decade, the literature on weather derivatives has focused on the temperature
market because most traded weather derivatives are based on temperature indices. Several
economic sectors, however, are exposed to rainfall risk. For example, farmers and financial
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investors are affected by indirect losses caused by scarce or abundant rainfall. With
rainfall derivatives, firms have the possibility to transfer precipitation risk to the capital
market. They give the buyer the opportunity to reduce precipitation risk exposure, to
profit from weather uncertainty, and to stabilize cash flows and earnings. The buyer
of a weather derivative receives a payout at the pre-determined settlement period if the
weather event occurs, no matter what the loss caused by the weather condition was.
Sellers of weather derivatives eliminate moral hazard and avoid the higher administrative
and loss adjustment expenses of insurance contracts. Thus, it is not surprising that the
Chicago Mercantile Exchange (CME) launched the trade of rainfall derivatives in 2011.
Now, market prices of rainfall derivatives are available from not only over-the-counter
trading, but also from exchange trading.

There are some peculiarities causing theoretical challenges for pricing rainfall derivatives
compared to temperature derivatives. In contrast to temperature, daily rainfall is a bi-
nary event that cannot be modelled by a geometric Brownian motion which underlies the
most common pricing models. Moreover, the process is not as smooth as the tempera-
ture process and can have abrupt peaks. The literature on pricing rainfall derivatives is
thin. Cao et al. (2004) were among the first who proposed a pricing model for rainfall.
Their approach is based on a daily rainfall model which captures the most important
characteristics of precipitation; however, they calculate a fair premium and do not take
into account the market price of rainfall risk. Carmona and Diko (2005) propose a jump
Markov process model for the stochastic dynamics of the underlying precipitation. To
price derivatives, they assume the existence of traded rainfall assets and rely on the util-
ity indifference approach. Leobacher and Ngare (2011) construct a suitable Markovian
gamma model for the rainfall process which accounts for the seasonal change of precipi-
tation and shows utility indifference prices with exponential utility. Both Lee and Oren
(2010) and Härdle and Osipenko (2011) obtain equilibrium prices for weather derivatives
on cumulative monthly rainfall by simulating realistic market conditions with two agent
types: farmers with profits highly exposed to weather risk and financial investors aim-
ing to diversify their financial portfolios. The goal of this paper is to develop a flexible
framework for modelling and pricing rainfall risk.

Classical arbitrage theory assumes that options written on tradable assets can be perfectly
replicated by stocks. However, for futures written on temperature or rainfall indices, we
cannot rely on hedging principles since the underlying cannot be traded. Thus, there
will be many equivalent martingales to price rainfall futures since the market is incom-
plete. Moreover, the dynamics of the rainfall futures should be free of arbitrage since
these futures are indeed tradable. In this article, we find arbitrage-free prices for rainfall
derivatives by using an equivalent martingale measure via the Esscher transform with a
constant Market Price of Risk (MPR).

The Esscher transform is a generalization of the Girsanov transform for Brownian pro-
cesses. The Esscher transform was introduced for density approximations by Esscher
(1932) and later was developed as a general probabilistic model by Barndorff-Nielsen
(1997). It has been well-established in mathematical finance and insurance. Gerber and
Shiu (1994, 1996) successfully used Esscher transforms in option pricing and obtained
many important results. They used several special cases of the Lévy process to describe
the future evolution of the logarithm of stock prices. The use of Esscher transforms in
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pricing stock options has also been discussed in papers such as Bühlmann et al. (1998),
Bingham and Kiesel (1998), Chan (1999), Panjer (2001), and Shiryaev (1998). An inter-
esting feature of the transformation is that it preserves the parametric form of the index
distribution after the measure change.

By means of a daily rainfall model, we perform a Monte Carlo simulation of the monthly
rainfall paths to obtain the index distribution under the physical measure. Then, this
index distribution is approximated by a non-normal distribution, e.g., the Normal-Inverse
Gaussian (NIG) distribution. The NIG distribution is a flexible class of Lévy processes
that is able to capture semi-heavy tails and skewness which is observed in the simulated
index distribution. Moreover, we use the Radon-Nikodym derivative determined by the
Esscher transform. Our proposed method relies on the simulation of the risk-neutral
process and is independent of the assumed underlying dynamics. It is found that the
transformation provides a consistent and efficient framework for pricing weather deriva-
tives. We discuss the consequences of choosing different MPRs that replicate real CME
market prices.

The outline of the paper is as follows: Section 2 describes our approach for pricing rainfall
derivatives, including the model for daily rainfall and more information on the Esscher
transform; Section 3 introduces the data, applies our approach to calculate theoretical
prices of futures on monthly rainfall, and calibrates the market prices of rainfall risk
from market data; and Section 4 provides a discussion and conclusion. All computations
were carried out in Matlab version 7.13. The rainfall data and rainfall futures data for
different cities in the U.S. were obtained from Bloomberg Professional Service. To simplify
notation, dates are denoted in the “yyyymmdd” format.

2 Methods

2.1 General framework

The market for weather derivatives is an example of an incomplete market in the sense
that the underlying weather indices are non-tradable assets and cannot be replicated by
other risk factors. In general, the standard approach of pricing a weather futures contract
F (t; τ1, τ2) at time t with accumulation period [τ1, τ2] is done by calculating the risk-
neutral expectation Q of an index I(τ1, τ2) with accumulation period [τ1, τ2] based on the
information set Ft available at time t. Therefore, a model for the index I(τ1, τ2) or the
underlying weather variable is required.

In this paper, we concentrate on monthly rainfall derivatives and introduce a new pricing
approach for rainfall futures. It is important to remark that the difference between our
proposed method and the other methods presented in the literature is the conditional risk
adjusted expectation, i.e. the price is given under the risk-neutral valuation. The risk-
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neutral price at time t for a futures contract on the sum of rainfall I(τ1, τ2) =
∑τ2

t=τ1
Rt

with accumulation period [τ1, τ2] is given by:

F (t; τ1, τ2) = EQ [I(τ1, τ2)|Ft] = E Q

[
τ2∑

τ=τ1

Rτ |Ft

]
. (1)

One typical way of calculating the price, which is known from pricing temperature deriva-
tives, is finding a model for the daily weather process consisting of a trend, a seasonality,
an autoregressive part and normally distributed residuals. Then, the pricing formula
for Cumulative Average Temperature (CAT) futures from Benth et al. (2007) could be
adapted to price futures on the monthly sum of rainfall and then calibrated to the MPR
from market data. Daily rainfall, however, shows a completely different behaviour than
the daily average temperature: First, it is a binary event with abrupt peaks and is there-
fore not as smooth; second, there is no seasonal mean in precipitation where the process
reverts to; third, opposite to temperature, the amount of rainfall is strictly non-negative.
Hence, a standard model for daily temperature driven by a Brownian motion cannot be
applied. Another way is to model the index directly, i.e. the monthly sum of rainfall,
which smooths the process. With a direct model for the monthly index, however, the
price can only be calculated each month because the underlying data has only monthly
updates, whereas futures are traded daily. Hence, the pricing model has to be able to
calculate prices on a daily basis.

Our proposed method captures the typical behaviour of daily rainfall and allows for daily
pricing. Moreover, the resulting theoretical prices can be adjusted to market data by
calibrating the MPR. This approach consists of several steps (see Fig. 1). At first, a stan-
dard model for daily rainfall is fitted to the available historical rainfall data. With this
model, the rainfall can be simulated for every day in the future, especially in the accu-
mulation period [τ1, τ2], which leads to a certain index outcome I(τ1, τ2). This procedure
is repeated 10 000 times, leading to 10 000 index outcomes. The mean of these values can
be considered as the expected price under the canonical measure P.

To calculate prices under the risk-neutral measure Qθ, however, a few more steps are
required. Since the market is incomplete, there will be many equivalent martingales Q.
We find arbitrage-free prices for rainfall derivatives by using an equivalent martingale
measure Q = Qθ via the Esscher transform, which requires an additional parameter
θ, the MPR. For this, the type of the distribution of the simulated index outcomes is
determined and the parameters are fitted to the data. As the distribution is non-normal,
an Esscher transform of the distribution is performed with constant MPR. The mean
of this transformed distribution then leads to the expected price under the risk-neutral
measure Qθ, where θ is calibrated to the market data.

Details for these steps are explained in the following sections.

2.2 Daily rainfall model

The daily rainfall model used in this study is a widely applied model, which is the single-
site version of the multi-site rainfall model by Wilks (1998) (cf. Cao et al., 2004; Odening
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Daily rainfall model Daily rainfall records 

Distribution of the simulated index 

Simulated daily rainfall 

Aggregated rainfall index Expected price under P 

Expected price under Q Esscher transform of the distribution Market price of risk ≠ 0 

Figure 1: General framework

et al., 2007; Ritter et al., 2012). The daily rainfall amount Rt at time t is described as
the product of a rainfall amount process rt and a rainfall occurrence process Xt.

Rt = rt ·Xt (2)

The occurrence process and the amount process are modelled separately and explained in
the following sections.

2.2.1 Occurrence process

The daily occurrence process Xt is modelled as a zero-one process for rain (=1) or no rain
(=0):

Xt =

{
0 if day t is dry,
1 if day t is wet.

where Xt is assumed to follow a first-order, two-state Markov process implying that the
probability of rainfall occurrence depends only on the situation from the previous day (cf.
Katz, 1977; Roldán andWoolhiser, 1982; Wilks andWilby, 1999). The process is described
by the following transition probabilities p01t and p11t , which capture the probability of rain
based on whether it rained the previous day:

p01t = Pr{Xt = 1|Xt−1 = 0},
p11t = Pr{Xt = 1|Xt−1 = 1}.

In the following, we write pX1
t as an abbreviation for p01t and p11t .

The transition probabilities are modelled to change daily within a year and are approxi-
mated by truncated Fourier series. Between years, transition probabilities stay constant,
i.e. pX1

t = pX1
t+365. The coefficients of the Fourier series are estimated by maximizing log-

likelihood functions (cf. Woolhiser and Pegram, 1979). The order of the Fourier series is
determined by means of the Akaike Information Criterion (AIC).
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The occurrence process can be simulated recursively by using a uniform random variable
u1,t ∼ U(0, 1) and a starting value X0:

Xsim
t =

{
1 if u1,t ≤ pX1

t ,

0 otherwise.

Note that pX1
t requires knowing the value of the occurrence process of the previous day,

Xt−1, to decide whether p01t or p11t is used.

2.2.2 Amount process

The daily rainfall amount process rt is assumed to follow a mixed exponential distribution
(cf. Woolhiser and Roldán, 1982; Foufoula-Georgiou and Lettenmaier, 1987; Wilks and
Wilby, 1999):

f [rt] =
αt
βt

exp

[
−rt
βt

]
+

1− αt
γt

exp

[
−rt
γt

]
with βt ≥ γt > 0 and 0 < αt < 1 for all t. It is the sum of two exponential distributions,
one with a higher mean βt and one with a lower mean γt, mixed by the parameter αt.

These parameters are also approximated by truncated Fourier series. The coefficients
are estimated by maximizing log-likelihood functions and their orders are determined by
the AIC. When the parameters αt, βt, and γt are estimated, the amount process can be
simulated with two independent uniform random variables u2,t, u3,t ∼ U(0, 1), independent
from u1,t, via:

rsim
t = rmin − δt ln [u2,t] ,

where rmin describes the minimal amount that is detected as rain (0.01 inch = 0.254 mm),
and δt is given by

δt =

{
βt if u3,t ≤ αt,k,

γt if u3,t > αt,k.

After this estimation of the occurrence and the amount processes, they can be combined
to simulate future rainfall using Eq. (2).

The simulated rainfall paths are used to compute the rainfall index. By repeating this
procedure, a distribution of the index is derived. Results show that the distribution is
not normal. Instead, the data is usually skewed and heavy-tailed. Hence, instead of the
Girsanov transform for a Brownian motion, we apply the Esscher transform since it is
valid for Lévy processes.

2.3 Esscher transform

To derive an expression for future rainfall prices in Eq. (1), we need to take into account
risk preferences of investors. This is traditionally given by a MPR charged for issuing the
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derivative. The MPR is an important parameter of the equivalent martingale measure.
For this, we first need to specify the risk-neutral probability Q. We say that Q ∼ P such
that all tradable assets in the market are martingales after discounting. In the Black and
Scholes model, the unique equivalent martingale measure could be obtained by changing
the drift in the Brownian motion.

The market for rainfall derivatives and for weather derivatives in general, however, are
inherently incomplete since weather is not a tradable asset and hence it is impossible
to construct a riskless hedge portfolio containing the weather derivative. In turn, it is
impossible to find a unique risk-neutral measure Q, i.e. a martingale measure equivalent
to the physical measure P. Instead, many equivalent martingales exist and as a result,
only bounds for prices on contingent claims can be provided on the basis of no-arbitrage
arguments (Jensen and Nielsen, 1996, pp. 221–2, Benth, 2004, p. 88). We specify a class
of probability measures using the Esscher transform, which will provide us with the MPR
parametrized by θ.

Originally, the Esscher transform has been used as a premium principle in actuarial sci-
ence. Bühlmann (1980) shows that the Esscher premium can be derived as the pareto-
optimal solution to a market situation where all market participants are characterized by
an exponential utility function and all risks are stochastically independent. Risk aversion
of market participants is reflected by the parameter θ. Kremer (1982) proves that the
Esscher transform yields the distribution Q that is closest to P (measured by a Kullback-
Leibler distance) when calculating the net premium. The application of the Esscher trans-
form for pricing financial securities has been pioneered by Gerber and Shiu (1994). They
extend the change of measure for a single random variable to a stochastic process and
apply it to an option pricing problem. Assuming a Gaussian return process, the Black-
Scholes formula can be recovered by means of the Esscher transform. Moreover, Gerber
and Shiu (1994) show that in the incomplete market case, the Esscher transform provides
a risk-neutral measure that can be justified by assuming a representative investor who
wants to maximize expected utility. In line with the work of Gerber and Shiu (1994), the
use of the Esscher transform for option pricing can also be justified by minimizing relative
entropy between an equivalent martingale measure and a real world probability. Its dual
representation with the exponential utility maximization has been discussed in Frittelli
(2000). More recently, Badescu et al. (2009) show the relationship between Esscher-type
transforms and equilibrium valuation based on the Consumption Capital Asset Pricing
Model (CCAPM). In view of these arguments, we conclude that the Esscher transform
constitutes a reasonable choice for the risk-neutral measure of rainfall-based insurance
contracts.

The Esscher transform changes a probability density f(x) of a random variable X to a
new probability density f(x; θ) with parameter θ:

f(x; θ) =
exp (θx)f(x)∫∞

−∞ exp(θx)f(x)dx

and thus corresponds to the Radon-Nikodym derivative with an exponential specification.
We need to choose θ so that the discounted process is a martingale. Since the transfor-
mation is state-dependent, however, it cannot reproduce the martingale property of the
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Distribution f(x) Esscher transform

Bernoulli Ber(p) exp (θk)pk(1−p)n−k

1−p+p exp θ

Binomial B(n, p) exp (θk)pk(1−p)n−k

(1−p+p exp (θ))n

Normal N(µ, σ) 1√
2πσ2

exp (− (x−µ−σ2θ)2

2σ2 )

Poisson Po(λ) exp (θ−λ exp (θ))λk

k!
Normal-inverse Gaussian NIG(µ, α, β, δ) NIG(µ, α, β + θ, δ)

Table 1: Esscher transform

initial process. This is contrary to what we observed in stock markets where the spot
price is a martingale under the Esscher transform.

In other words, the state price density f(x) can be represented in an exponential form;
this assumption has been explicitly or implicitly used in many papers, such as Black
and Scholes (1973), Merton (1973), Rubinstein (1976), Vasicek (1977), Cox et al. (1985),
Heston (1993) and Duffie and Kan (1996).

We mentioned before that the Esscher transform corresponds to the Girsanov transform
when the process is a Brownian motion type. Thus, similar to the Girsanov theorem,
with the Esscher transform, equivalent changes of measures will be simply associated
with changes of drift. However, the Esscher transform will change the jump intensity and
jump size under the new probability measure Qθ.

Advantages of using the Esscher transform are that it can be applied to any distribution
function F (x) and that the statistical properties of the model are preserved in the sense
that the risk factor of the underlying are still independent increment processes after the
measure change. Table 1 shows different distribution functions and their corresponding
Esscher transforms (Gerber and Shiu, 1994; Vyncke et al., 2003). In many cases, the
probability density function retains its original form under the Esscher tranform.

In the empirical analysis, we use simulated paths of monthly rainfall indices under the
historical measure P and the Radon-Nikodym derivative determined by the Esscher trans-
form. The advantage of this approach is that it does not require risk-neutral dynamics,
which are difficult to find. Imposing the Esscher transform directly to the distribution
is advantageous and easier from a statistical point of view than modelling the price di-
rectly. An alternative to this approach is to calibrate of the state density function f(x, θ)
directly from the real option data and to compare it with the original f(x) (see Härdle
et al., 2012).
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New York City

Month Trading period Code Payoff

Mar11 01.11.2010–01.04.2011 YJRH11 5.97
Apr11 01.11.2010–02.05.2011 YJRJ11 5.07
May11 01.11.2010–02.06.2011 YJRK11 3.97
Jun11 01.11.2010–05.07.2011 YJRM11 3.85
Jul11 01.11.2010–02.08.2011 YJRN11 2.94
Aug11 01.11.2010–02.09.2011 YJRQ1 17.32
Sep11 01.11.2010–03.10.2011 YJRU1 7.61
Oct11 01.11.2010–02.11.2011 YJRV1 4.56

Table 2: Trading period, code and payoff (in index points) of the montly CME rainfall
index futures 2011 for New York City

3 Empirical analysis

3.1 Data

The rainfall derivatives offered at the CME are futures and options for monthly or seasonal
rainfall indices.1 Rainfall contracts are available for ten cities in the U.S.A., namely
Chicago, Dallas, Des Moines, Detroit, Jacksonville, Kansas City, Los Angeles, New York
City, Portland, and Raleigh.

The daily rainfall defined at the CME is given as the total rainfall recorded at a partic-
ular location between 12:01 a.m. and 12:00 midnight as reported by MDA Information
Systems, Inc. The rainfall index I(τ1, τ2) is defined as the sum of the daily rainfall Rτ for
a particular location with accumulation period [τ1, τ2]:

I(τ1, τ2) =

τ2∑
τ=τ1

Rτ .

For the monthly index, the accumulation period is one calendar month between March
and October; for the seasonal index, it is between two and eight consecutive months
between March and October. The notional value of one U.S. rainfall contract is 50 USD
per 0.1 index point (1 index point = 1 inch of rainfall).

In this article, we use daily prices and volumes of the rainfall futures with monthly ac-
cumulation period between March and October of 2011. The reference stations are New
York City (see Table 2 for details), Detroit, and Jacksonville (see Table A.7). These
data are obtained from Bloomberg via the Risk Data Center (RDC) of the Collaborative
Research Center (CRC) 649.

The rainfall data used in this study consist of the daily rainfall amount (in inches) for
New York City, Detroit, Jacksonville from 19800101 to 20110102 provided by the National
Climatic Data Center (NCDC). Fig. 2 shows the daily rainfall in New York City from 2006

1All details about the CME rainfall derivatives can be found at: http://www.cmegroup.com/trading/
weather.
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Figure 2: Empirical daily rainfall and the monthly sum of rainfall, 2006-2011, New York
City

to 2010 and the resulting monthly index. Here, the aforementioned varying behaviour
of daily rainfall compared to daily temperature as well as the smoothing effect of the
calculation of the monthly rainfall index become clear. In Fig. 3, the empirical distribution
of the monthly sum of rainfall in New York City in March is exemplarily depicted. This
empirical histogram already indicates that the index distribution is not normal because
of its skewness and heavy tail. Because of the the scarce data (this histogram is based
on 31 values representing 31 years), we do not fit the distribution to the historical index
distribution. Instead, we fit the daily rainfall model to the historical daily data to generate
the index distribution based on more values.

3.2 Estimating the daily rainfall model

For calculating theoretical prices via the daily rainfall model, the parameters of the model
are estimated based on all data available on the calculation day, i.e. the price on day t is
calculated based on the historical rainfall data until day t− 1. The orders of the Fourier
series of the transition probabilities p01t and p11t and of the rainfall amount parameters αt,
βt, and γt are estimated using data of complete years, i.e. 1980 to 2010. The parameters
of the Fourier series, however, are fitted to all data available so that they can change on
a daily basis.

The empirical and estimated transition probabilities as well as the parameters of the rain-
fall amount process for New York City over the year are depicted in Fig. 4 based on data
from 1980–2010 (see Fig. A.6 for Detroit and Jacksonville). The proposed precipitation
model captures the stylized facts of daily rainfall: the probability of rainfall occurrence
follows a seasonal pattern (winter times are wetter than summer times) with intertem-
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Figure 3: Empirical distribution of the monthly sum of rainfall in March, 1980–2010, New
York City

poral correlations (the probability of a rainy day is higher if the previous day was wet)
and the amount of precipitation varies with the season (summer is more intensive than
winter).

3.3 Estimating the index distribution

The specified model for daily rainfall is used for a Monte Carlo simulation of 10 000 paths
of the rainfall index in a specific month. The resulting histograms for New York City
contracts are depicted in Fig. 5, and those for Detroit and Jacksonville are depicted in
Figures A.7 and A.8, respectively.

The statistical properties of these simulated distributions deviate from the normal dis-
tribution: Spikes in the simulated rainfall may cause heavy tails and skewness. Table 3
shows the results of a two-sample Kolmogorov-Smirnov (KS) test where the index out-
comes are compared with a normal, log-normal, exponential, and NIG distribution. The
parameters of these distributions were chosen to maximize the p-values of the KS test.
The results confirm the non-normality of the index distribution for New York City and
recommend the NIG distribution as the best fit. The p-values for Detroit and Jacksonville
approve this finding and are reported in Table A.8.

The NIG distribution is a flexible four parameter distribution belonging to the class of
generalized hyperbolic distributions with λ = −0.5. Note that the normal distribution,
the Student’s t-distribution, and the Cauchy distribution also belong to this family. The
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Figure 4: Parameters of occurrence and amount process, New York City, data 1980–2010

New York City

pKS Mar12 Apr12 May12 Jun12 Jul12 Aug12 Sep12 Oct12

Normal <10−23 <10−19 <10−21 <10−21 <10−23 <10−22 <10−29 <10−28

Log-normal <10−20 <10−31 <10−24 <10−25 <10−32 <10−102 <10−123 <10−54

Exponential 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NIG 0.910 0.802 0.976 0.851 0.854 0.804 0.618 0.916

Table 3: p-values from a two-sample Kolmogorov-Smirnov (KS) test for selected distribu-
tions, New York City
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Histogram March 2011
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Histogram April 2011
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Histogram May 2011
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Histogram June 2011
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Histogram July 2011
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Histogram August 2011
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Histogram September 2011
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Histogram October 2011
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Figure 5: Histogram and fitted NIG distributions for contracts, 2011 (calculated for
20110103), New York City
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New York City

NIG Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11

α 43.90 39.27 36.39 35.25 31.86 34.14 40.84 43.22
β 42.77 38.16 35.45 34.41 31.02 33.31 40.08 42.44
µ -2.95 -3.48 -3.53 -3.63 -4.36 -4.11 -3.23 -2.86
δ 1.55 1.80 1.87 1.85 2.17 1.94 1.41 1.31

Table 4: Estimated parameters of the NIG distributions for 20110103, New York City

NIG distribution was introduced by Barndorff-Nielsen (1997) as a model for log returns
of stock prices and its density function has a closed form:

fX(x) =
αδ exp(δ

√
α2 − β2 + β(x− µ))

π
√
δ2 + (x− µ)2

·K1

(
α
√
δ2 + (x− µ)2

)
(3)

where K1 denotes the modified Bessel function of second kind. The parameter α controls
the steepness of the distribution, µ the location, β the skewness, and δ is the scaling
parameter. Its tail behaviour is often classified as "semi-heavy", i.e. the tails are lighter
than those of non-Gaussian stable laws, but much heavier than those of the Gaussian
distribution. As a member of the family of generalized hyperbolic distribution, the NIG
distribution is infinitely divisible and thus generates a Lévy process Lt, t ≥ 0. For an
increment of length s, the NIG Lévy process satisfies Lt+s−Lt ∼ NIG(α, β, µs, δs). Thus,
the NIG process is a pure jump process such that Lt ∼ NIG(α, β, µt, δt). Then, it follows
that the NIG is a Lévy process NIG(α, β, µt, δt) (cf. Barndorff-Nielsen, 1997).

Besides the good fit of the index distribution, the main advantage of using the NIG
distribution in our context is the fact that an NIG(α, β, µ, δ) distributed random variable
keeps its shape under the Esscher transform with parameter θ and becomes NIG(α, β +
θ, µ, δ) distributed (see Table 1).

3.4 Theoretical prices

3.4.1 Daily rainfall modelling approach

With the daily rainfall model, the index distribution for every monthly contract and every
city is simulated. Then, the NIG distribution is fitted to the data. The parameters of
the NIG distribution (α, β, µ, δ) are estimated to maximize the p-value of the KS test
when comparing the sample distribution with the NIG(α, β, µ, δ) distribution. Given the
flexibility of the NIG distribution, the simulated index distributions for all contracts can
be approximated, i.e. the p-value is clearly higher than the significance level of 0.01 (see
Tables 3 and A.8). The sample distributions and the fitted NIG distributions are depicted
for all contracts in 2011 for New York City (Fig. 5), as well as for Detroit and Jacksonville
(Figures A.7 and A.8, respectively). The NIG parameters for New York City contracts
are shown in Table 4, and those for Detroit and Jacksonville are in Table A.9.

By assuming a constant MPR risk, we estimate the Esscher transform of the NIG distri-
bution (displayed in Fig. 5). In fact, we verified that under the new probability measure
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New York City

Method MPR θ Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11

CME – 4.20 4.40 3.20 5.00 4.50 4.30 4.20 4.60

DRM -2.00 0.92 0.76 0.83 0.69 0.42 0.34 0.42 0.64
-1.00 1.82 1.80 1.97 1.87 1.74 1.55 1.40 1.58
-0.75 2.16 2.18 2.37 2.33 2.23 2.03 1.82 1.95
-0.50 2.54 2.62 2.90 2.87 2.86 2.64 2.30 2.43
-0.30 2.97 3.07 3.46 3.50 3.50 3.21 2.84 2.92
-0.15 3.34 3.47 3.94 3.98 4.10 3.85 3.35 3.40
0.00 3.75 3.96 4.54 4.69 4.85 4.53 3.99 3.98
0.15 4.28 4.50 5.31 5.55 5.81 5.43 4.78 4.83
0.30 4.87 5.23 6.31 6.78 7.13 6.77 6.11 5.89
0.50 6.09 6.64 8.30 9.55 10.21 9.77 9.24 8.66
0.75 8.71 9.77 14.55 21.64 23.20 24.29 70.04 35.24

BA 0 4.26 4.30 3.76 4.42 4.93 4.52 3.88 3.90

Table 5: The CME market price and theoretical prices for New York City calculated on
20110103 through the daily rainfall modelling (DRM) approach and the Burn Analysis
(BA)

Qθ, the Esscher transform shifts the mean and the variance of the distribution. This is
because it takes into account jumps in the underlying.

Theoretical prices of the monthly rainfall futures under P and Qθ are estimated by taking
the mean of the sample of the simulated index outcome (MPR=0) or of the transformed
distribution (MPR 6=0). The advantage of this approach, however, is the possibility of ap-
plying a non-zero MPR. In Tables 5 (New York City) and A.10 (Detroit and Jacksonville)
we investigate the sensitivity of the futures prices with respect to the choice of the MPR.
For each city the prices are calculated for all eight monthly contracts (March–October)
offered at the CME in 2011. The calculation date is January 3rd, 2011, which was the
first business day of the year. Hence, historical rainfall data until January 2nd, 2011, were
used for estimating the daily rainfall model.

The values for the MPR are arbitrarily chosen up to the upper bound. These upper
bounds are from the condition in Eq. (3) that α2− (β+ θ)2 ≥ 0. This condition, however,
bounds only the choice of the MPR and not the results because the theoretical prices
explode when β + θ gets close to α. Consequently, every price can be calculated by
choosing the appropriate MPR. By doing this, the Esscher transform may produce a sign
change in the risk premium structure.

3.4.2 Burn analysis

An alternative and quite simple method to calculate prices under P is the Burn Analysis
(BA). This approach is widely used in the insurance industry and answers the question
of what would have been the cost and payout of the same contract in the previous years.

15



The BA is a pure data driven approach. It computes the empirical mean of the observed
historical index value I(τ1, τ2) and prices plus a possible risk premium. In this approach,
the conditional expectation in Eq. (1) is transformed into a standard expectation:

FBA(t; τ1, τ2) = EP [I(τ1, τ2)] = EP

[
τ2∑

τ=τ1

Rτ

]

Therefore, the pricing measure is Q = P and the MPR equals zero. The method is quick,
simple, and provides rough estimates, yet it lacks any analytical formulas that could
significantly improve the analysis.

Theoretical prices from the BA are included in Tables 5 and A.10. Note that the calculated
price FBA(t; τ1, τ2) changes yearly because the historical payoff is measured only once a
year. Hence, the price from the BA can be used as a benchmark, but it cannot be used
to calculate daily prices.

3.5 Comparison with market data and the implied market price
of rainfall risk

The performance of the different approaches can be checked by comparing the theoretical
prices with real market data. Then, the MPR can be adjusted to the observed prices and
compared to different prices and cities. The current prices for rainfall futures reported
at the CME, however, are not the result of actual trading. At the moment, the trading
volume for all CME rainfall contracts is zero because they are new products which have
not yet been traded. Prices reported at the CME correspond to a historical average payoff
and are shown in Tables 5 and A.10.

It is apparent from these tables that the theoretical prices from our model can easily be
adjusted to any market price reported by the CME by changing the MPR. To illustrate
this, we determine the MPR based on prices reported for January 3rd, 2011, by the CME.
The MPR is chosen so that the resulting price under Qθ equals the reported CME price.
We refer to this appropriate choice of the MPR as the implied market price of rainfall
risk since it is calibrated from real data. Table 6 depicts the different MPRs for each city
and contract in 2011.

We observe that the implied market price of rainfall risk changes in sign and size with
passing time. It does not necessary increase and become positive during warmer months
for different cities. Instead, it can have a negative sign. This means that futures contracts
on months with extreme rainfall have a greater premium. A positive (negative) estimate
of the MPR implies that the monthly rainfall index under Qθ coincides with the index
written on the same underlying under P, but with a lower (higher) expected drift. The
reason for this is that hedgers decide to enter contracts even in presence of negative
expected payoffs to eliminate their risk since this hedging instrument is less expensive
than insurance contracts. To compensate speculators from bearing hedgers’ risk, there
must be an expectation of increasing future prices.
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MPR θ̂ Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11

Detroit -0.232 -0.216 0.198 0.014 -0.024 -0.235 -0.038 -0.282
Jacksonville -0.052 -0.165 -0.119 0.203 -0.054 -0.124 0.091 -0.334
New York City 0.138 0.117 -0.394 0.063 -0.063 -0.038 0.037 0.114

Table 6: Estimated MPRs for each city and contract, January 3rd, 2011

4 Discussion and conclusion

In this article, we presented a new method to calculate risk-neutral prices of rainfall
derivatives. A standard model for daily rainfall is used to simulate the rainfall index.
Then, the index distribution is shifted by the Esscher transform to obtain risk-neutral
prices. This procedure is very flexible and can be applied to any rainfall derivative. The
parameter of the Esscher transform describes the MPR and is calibrated from real market
prices.

Rainfall derivatives were only recently introduced at the CME in 2011 and the market is
still illiquid. Thus, CME-reported market prices are not from actual trades. In the future
when the CME market for rainfall derivatives is established, our approach can be used to
further investigate the nature of the MPR for rainfall derivatives as many studies have
done for the MPR for temperature derivatives (e.g., Härdle and López Cabrera, 2011).
Then, our exemplary calculation can be repeated for each day of the trading period to
analyze the temporal behaviour of the MPR and the spatial behaviour among different
places. Moreover, if the trading day is close to or already in the accumulation period,
meteorological weather forecasts should also be considered in the model like Ritter et al.
(2011) and Härdle et al. (2012) have shown for temperature derivatives.
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A Appendix

Detroit Jacksonville

Month Trading period Code Payoff Code Payoff

Mar11 01.11.2010–01.04.2011 VJRH11 3.61 LJRH11 2.43
Apr11 01.11.2010–02.05.2011 VJRJ11 5.61 LJRJ11 1.17
May11 01.11.2010–02.06.2011 VJRK11 5.38 LJRK11 2.05
Jun11 01.11.2010–05.07.2011 VJRM11 0.94 LJRM11 6.07
Jul11 01.11.2010–02.08.2011 VJRN11 7.66 LJRN11 7.39
Aug11 01.11.2010–02.09.2011 VJRQ1 2.16 LJRQ1 5.05
Sep11 01.11.2010–03.10.2011 VJRU1 6.28 LJRU1 6.57
Oct11 01.11.2010–02.11.2011 VJRV1 2.14 LJRV1 4.10

Table A.7: Trading period, code and payoff (in index points) of the montly CME rainfall
index futures, 2011, Detroit and Jacksonville
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Figure A.6: Parameters of occurrence and amount process, Detroit and Jacksonville,
1980–2010
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pKS Mar12 Apr12 May12 Jun12 Jul12 Aug12 Sep12 Oct12

Detroit

Normal <10−20 <10−5 <10−21 <10−19 <10−22 <10−19 <10−26 <10−25

Log-normal <10−19 <10−22 <10−21 <10−28 <10−54 <10−56 <10−52 <10−29

Exponential 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NIG 0.887 0.811 0.993 0.876 0.680 0.969 0.539 0.876

Jacksonville

Normal <10−27 <10−37 <10−31 <10−20 <10−17 <10−21 <10−26 <10−36

Log-normal <10−226 0.000 <10−198 <10−25 <10−19 <10−16 <10−26 <10−269

Exponential 0.000 <10−249 <10−282 0.000 0.000 0.000 0.000 <10−271

NIG 0.461 0.031 0.397 0.989 0.879 0.990 0.624 0.081

Table A.8: p-values from a two-sample Kolmogorov-Smirnov (KS) test for selected distri-
butions, Detroit and Jacksonville

NIG Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11

Detroit

α 65.13 51.20 45.68 47.94 41.66 42.92 51.78 55.67
β 63.27 49.48 44.37 46.78 40.46 41.67 50.59 54.35
µ -1.92 -2.66 -2.73 -2.77 -3.31 -3.19 -2.58 -2.36
δ 1.10 1.51 1.53 1.40 1.72 1.67 1.23 1.17

Jacksonville

α 37.06 53.61 48.71 27.72 21.40 3.37 22.36 36.76
β 36.22 52.69 48.04 26.97 20.69 2.84 21.77 36.10
µ -3.92 -2.59 -2.07 -4.25 -6.01 -1.55 -6.12 -3.80
δ 1.71 1.02 0.89 2.37 3.58 6.28 3.04 1.52

Table A.9: Estimated parameters of the NIG distributions, Detroit and Jacksonville,
calculated for 20110103
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Histogram March 2011
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Histogram April 2011
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Histogram May 2011
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NIG(α,β+0.198,µ,δ)

0 5 10 15 20
0

50

100

150

200

250

300

350

400
Detroit

 

 

Histogram June 2011
NIG(α,β,µ,δ)
NIG(α,β+0.014,µ,δ)
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Histogram July 2011
NIG(α,β,µ,δ)
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Histogram August 2011
NIG(α,β,µ,δ)
NIG(α,β−0.235,µ,δ)
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Histogram September 2011
NIG(α,β,µ,δ)
NIG(α,β−0.038,µ,δ)
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Histogram October 2011
NIG(α,β,µ,δ)
NIG(α,β−0.282,µ,δ)

Figure A.7: Histogram and fitted NIG distributions for different contracts, Detroit, cal-
culated for 20110103
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Histogram March 2011
NIG(α,β,µ,δ)
NIG(α,β−0.052,µ,δ)
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Histogram April 2011
NIG(α,β,µ,δ)
NIG(α,β−0.165,µ,δ)

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500
Jacksonville

 

 

Histogram May 2011
NIG(α,β,µ,δ)
NIG(α,β−0.119,µ,δ)

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500
Jacksonville

 

 

Histogram June 2011
NIG(α,β,µ,δ)
NIG(α,β+0.203,µ,δ)
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Histogram July 2011
NIG(α,β,µ,δ)
NIG(α,β−0.054,µ,δ)
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Histogram August 2011
NIG(α,β,µ,δ)
NIG(α,β−0.124,µ,δ)
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Histogram September 2011
NIG(α,β,µ,δ)
NIG(α,β+0.091,µ,δ)
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Histogram October 2011
NIG(α,β,µ,δ)
NIG(α,β−0.334,µ,δ)

Figure A.8: Histogram and fitted NIG distributions for different contracts, Jacksonville,
calculated for 20110103
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Prices MPR θ Mar11 Apr11 May11 Jun11 Jul11 Aug11 Sep11 Oct11

Detroit

CME – 2.30 2.70 4.10 3.50 3.60 3.00 3.00 2.40

DRM -2.00 1.12 1.11 1.06 0.88 0.80 0.86 0.79 0.88
-1.16 1.55 1.68 1.72 1.55 1.57 1.61 1.38 1.42
-1.00 1.64 1.81 1.88 1.72 1.75 1.77 1.52 1.56
-0.50 2.04 2.33 2.56 2.40 2.51 2.48 2.14 2.09
-0.30 2.23 2.59 2.87 2.78 2.92 2.86 2.46 2.37
-0.15 2.38 2.79 3.15 3.06 3.25 3.20 2.75 2.64
0.00 2.57 3.05 3.52 3.45 3.69 3.60 3.09 2.91
0.15 2.77 3.34 3.96 3.91 4.17 4.08 3.52 3.23
0.30 3.01 3.66 4.41 4.52 4.77 4.62 4.02 3.64
0.50 3.36 4.19 5.27 5.53 5.92 5.68 4.90 4.38
1.16 5.50 7.53 16.18 68.71 35.62 23.07 35.01 12.77

BA 0 2.38 2.88 3.40 3.55 3.24 3.31 3.33 2.53

Jacksonville

CME – 3.70 2.40 2.80 7.50 7.00 7.00 8.10 2.60

DRM -2.00 0.19 0.37 0.49 0.68 0.44 0.07 -0.33 -0.02
-1.00 1.31 1.10 1.25 2.11 2.43 2.54 1.52 1.10
-0.52 2.22 1.71 1.87 3.30 4.14 4.41 3.17 2.05
-0.50 2.27 1.73 1.91 3.36 4.20 4.50 3.30 2.11
-0.30 2.80 2.11 2.31 4.14 5.27 5.66 4.38 2.77
-0.15 3.32 2.42 2.71 4.80 6.26 6.80 5.46 3.33
0.00 3.99 2.87 3.18 5.72 7.57 8.29 6.90 4.19
0.15 4.81 3.40 3.91 6.91 9.37 10.57 8.98 5.28
0.30 5.96 4.08 5.06 8.72 12.07 14.68 12.69 7.03
0.50 8.56 5.53 8.33 13.23 19.58 46.40 28.19 12.74
0.52 9.04 5.70 8.95 14.04 20.87 85.19 33.08 13.94

BA 0 3.87 2.84 2.50 6.16 6.32 6.44 8.02 4.03

Table A.10: The CME market price and theoretical prices for Detroit and Jacksonville
calculated on 20110103 through the daily rainfall modelling (DRM) approach and the
Burn Analysis (BA)
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