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Abstract: We consider a special class of multiple testing problems, con-
sisting of M simultaneous point hypothesis tests in local statistical experi-
ments. Under certain structural assumptions the global hypothesis contains
exactly one element ϑ∗ (say), and ϑ∗ is least favourable parameter con-
figuration with respect to the family-wise error rate (FWER) of multiple
single-step tests, meaning that the FWER of such tests becomes largest
under ϑ∗.

Furthermore, it turns out that concepts of positive dependence are ap-
plicable to the involved test statistics in many practically relevant cases,
in particular, for multivariate normal and chi-squared distributions. Alto-
gether, this allows for a relaxation of the adjustment for multiplicity by
making use of the intrinsic correlation structure in the data. We represent
product-type bounds for the FWER in terms of a relaxed Šidák-type cor-
rection of the overall significance level and compute ”effective numbers of
tests”.

Our methodology can be applied to a variety of simultaneous location
parameter problems, as in analysis of variance models or in the context
of simultaneous categorical data analysis. For example, simultaneous chi-
square tests for association of categorical features are ubiquitous in genome-
wide association studies. In this type of model, Moskvina and Schmidt
(2008) gave a formula for an effective number of tests utilizing Pearson’s
haplotypic correlation coefficient as a linkage disequilibrium measure. Their
result follows as a corollary from our general theory and will be generalized.
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1. Introduction

Simultaneous statistical inference and, in particular, multiple statistical hypoth-
esis testing has become a major branch of mathematical and applied statistics
during the past 20 years, cf. [1] for some bibliometric details. This growing in-
terest is not least due to the novel challenges posed by the need to analyze
ultra high-dimensional data from genetic applications. Consider, for instance,
genome-wide association studies. In these, it is common to evaluate hundreds of
thousands of genetic markers simultaneously with respect to their association
with a given phenotype. For the theory of multiple tests, one major resulting
problem is that many classical multiple test procedures or, equivalently, the
corresponding adjustments for multiplicity of the overall significance level lead
to extremely small local significance levels if (strong) control of the family-wise
error rate (FWER) is targeted. This implies extremely low power for detecting
true effects. In [2], it was proposed to relax the type I error criterion, to allow for
a few false rejections and to control the expected proportion of false significances.
The mathematical formalization of this idea, the false discovery rate (FDR) has
proven attractive for practitioners and the so-called ”Benjamini-Hochberg cor-
rection” can meanwhile be found in many statistical software packages. However,
in cases with strong dependencies among test statistics or p-values, respectively,
it has been shown that, even for large systems of hypotheses, the false discovery
proportion (FDP) is typically not well concentrated around its expectation, the
FDR (see, for example, [11] for the case of positively dependent, exchangeable
test statistics). Consequently, FDR control in such a setting does not imply any
type I error control guarantee for the actual experiment at hand, although pos-
itive dependency in the sense of multivariate total positivity of order 2 (MTP2)
or positive regression dependency on subsets (PRDS) ensures FDR-control of
the linear step-up test proposed in [2], as proved independently in [3] and [21].

Such a counter-intuitive behavior cannot occur for FWER-controlling single-
step tests, the main objects of the present work. As shown in [20], the MTP2

property is also useful for control of the FWER. More specifically, the critical val-
ues introduced by Simes ([23]) can be used as the basis for an FWER-controlling
closed test procedure, provided that the joint distribution of test statistics or
p-values, respectively, is MTP2. This result allows to improve a closed Bonfer-
roni test uniformly. However, the result is generic in the sense that, apart from
MTP2, no further (concrete) properties of the multivariate joint distribution of
test statistics are exploited.

We will demonstrate how finer-grained knowledge about the second- (or
higher-) order positive dependency structure of the underlying joint distribu-
tion of test statistics can be utilized to establish a non-trivial lower bound for
the amount of possible multiplicity adjustment relaxation in comparison with
the independent case. This will mathematically be formalized by the ”effective

number of tests” of degree i, M
(i)
eff. for short. For i ≥ 2, the number M

(i)
eff. mea-

sures the ”degree of positive dependency” in the sense that a relaxed Šidák-type

(cf. [22]) multiplicity adjustment with M replaced by M
(i)
eff. ≤ M controls the

FWER, where M denotes the total number of tests to be performed. The term
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”effective number of tests” is already used for a longer time in the context of
genetic epidemiology and genome-wide association studies (cf. our bibliographic
references in Section 4), but a formal mathematical foundation of it is yet lack-
ing.

In this work, we will restrict attention to two-sided marginal tests, because
corresponding test statistics often exhibit positive correlations, even if their
counterparts for the one-sided case are negatively correlated. Especially, we will
be considered with distributions that are monotonically sub-Markovian with
respect to lower orthants in the sense of [4].

The paper is organized as follows. In Section 2, we set up the necessary
notational framework and introduce important structural properties regarding
multiple point hypothesis test problems (MPHTPs), multiple tests and multi-
variate distributions. Section 3 shows how these properties can be combined to
calculate the effective number of tests of degree i. Applications of this general
theory are provided in Section 4. We conclude with a discussion in Section 5.
Our own contributions will be denoted as theorems, while we label reported
results from the literature as propositions.

2. Notation and Preliminaries

Throughout the work, we let (X ,F , (Pϑ)ϑ∈Θ) denote a statistical experiment
and (S,S) a measurable space with S a subset of R. We identify hypotheses
with non-empty subsets of the parameter space Θ. The tuple (X ,F , (Pϑ)ϑ∈Θ,H)
denotes a multiple test problem, where H = (Hi, 1 ≤ i ≤ M) defines a finite
family of null hypotheses. We fix the cardinality M of H for the remainder of
the work and suppress it notationally wherever possible to increase readability.
The resulting alternative hypotheses are denoted by Ki = Θ \ Hi, 1 ≤ i ≤ M .

The intersection hypothesis H0 =
⋂M

i=1 Hi will occasionally be referred to as
global hypothesis. For a given ϑ ∈ Θ, we will denote the index set of true null
hypotheses in H by I0 ≡ I0(ϑ) = {1 ≤ i ≤ M : ϑ ∈ Hi}. A (non-randomized)
multiple test is a measurable mapping ϕ = (ϕi)1≤i≤M : X → {0, 1}M the
components of which have the usual interpretation of a statistical test for Hi

versus Ki. The family-wise error rate, FWER for short, of a multiple test ϕ is
(for a given ϑ ∈ Θ) defined as the probability under ϑ of at least one type I

error, i. e., FWERϑ(ϕ) = Pϑ

(

⋃

i∈I0(ϑ){ϕi = 1}
)

and ϕ is said to control the

FWER at a pre-specified level α ∈ (0, 1) if supϑ∈Θ FWERϑ(ϕ) ≤ α.
Under this general framework, our main objects of interest are defined as

follows.

Definition 2.1 (MPHTP, VOLTS and SCRAT). Assume that (X ,F , (Pϑ)ϑ∈Θ)
can be decomposed into local statistical experiments in the sense that there exist
statistical experiments (Xj ,Fj , (Pϑj

)ϑj∈Θj
)1≤j≤M such that

X =
M
×

j=1
Xj , F =

M
⊗

j=1
Fj , Θ =

M
×

j=1
Θj , Pϑj

(Aj) = Pϑ(π−1
j (Aj)) for Aj ∈ Fj ,
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where πj : (X ,F) → (Xj ,Fj) denotes the projection on the j-th coordinate.
Then we call

a) (X ,F , (Pϑ)ϑ∈Θ,H) a multiple point hypothesis testing problem (MPHTP),
if for all 1 ≤ j ≤ M we have Hj = {ϑ ∈ Θ |ϑj = ϑ∗

j} for pre-defined values
ϑ∗

j , and H0 contains exactly one element ϑ∗ = (ϑ∗
1, . . . , ϑ

∗
M ) ∈ Θ.

b) T = (T1, . . . , TM )⊤ a vector of local test statistics (VOLTS), if
∀j ∈ {1, . . . ,M}, Tj : (Xj ,Fj) → (S,S) is a measurable mapping.

c) ϕ ≡ ϕ(T ) = (ϕ1, . . . , ϕM ) a single-step componentwise rectangular re-
jection area test (SCRAT) defined by T , if T is a VOLTS and ∀j ∈
{1, . . . ,M} there exist rectangles Γj := {s ∈ S | s > cj} for fixed con-
stants c1, . . . , cM ∈ S such that ϕj = 1Γj

(Tj) = 1(cj ,∞)(Tj). We denote
by Oj := {ϕj = 0} = {Tj ≤ cj} the event that Hj is not rejected.

MPHTPs appear naturally in various statistical applications. For instance, by
means of appropriate (re-) parametrization, multiple comparisons with a control
group (Dunnett contrasts) and all pairwise comparisons (Tukey contrasts) under
the one-factorial analysis of variance model can be formalized as MPHTPs. A
leading example for our further considerations is a multiple (two-sided) homo-
geneity test problem for many contingency tables, which is ubiquitous in genetic
association studies with case-control setup (association between many genetic
markers and a categorical or binary phenotype). In such a case, often a SCRAT
(based on a multivariate chi-square distributed VOLTS) is performed. We will
provide more details on the latter situation in Section 4.

In order to maintain a self-contained presentation, we now briefly recall some
concepts of positive dependency for multivariate probability distributions.

Definition 2.2 (Concepts of positive dependence). Let (X ,F , P) be a proba-
bility space and let T = (T1, . . . , TM )⊤ : X → SM be a random vector. In all
definitions below, t = (t1, . . . , tM ) denotes an arbitrary element of SM .

(i) For 1 ≤ j ≤ M , let Pj ≡ Pj(t) = P( max
1≤h≤j

Th ≤ th), γj,1 ≡ γj,1(t) =

P(Tj ≤ tj), and

γj,i ≡ γj,i(t) = P(Tj ≤ tj | max
j−i+1≤h≤j−1

Th ≤ th), 1 < i ≤ j.

Due to chain factorization, it holds PM = Pi ·
∏M

j=i+1 γj,j for every fixed

1 ≤ i ≤ M − 1. Following [4], we call βi = Pi ·
∏M

j=i+1 γj,i the product-
type probability bound of degree i. Moreover, we call T sub-Markovian
of degree i (SMi), if γk,k ≥ γk,i for all i + 1 ≤ k ≤ M , entailing that
PM ≥ βi. We call T monotonically sub-Markovian of degree i (MSMi), if
γk,k ≥ γk,i ≥ γk,i−1 ≥ ... ≥ γk,1 for k ≥ i and γk,k ≥ γk,k−1 ≥ ... ≥ γk,1

for i > k ≥ 1, entailing PM ≥ βi ≥ βi−1 ≥ ... ≥ β1.
(ii) T is called positive lower orthant dependent (PLOD), if

P(T1 ≤ t1, . . . , TM ≤ tM ) ≥
M
∏

j=1

P(Tj ≤ tj).
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In other words, PLOD is equivalent to PM ≥ β1.
(iii) T is called multivariate totally positive of order 2 (MTP2), if its distribu-

tion P
T on (SM ,S⊗M ) has a probability density function (pdf) f : SM →

[0,∞) with respect to a measure σ⊗M , such that for all u, v ∈ SM :

f(u) · f(v) ≤ f(min(u, v)) · f(max(u, v)),

where the minimum or maximum, respectively, is being taken component-
wise.

(iv) T is called positive regression dependent on a subset I0 of the set of indices
{1, . . . ,M} (PRDS on I0), if for every increasing set D ⊂ SM and for
every index i ∈ I0

P(T ∈ D |Ti = u) is non-decreasing in u.

Therein, the set D is called increasing if u1 ∈ D and u2 ≥ u1 (jointly)
imply u2 ∈ D.

As outlined in the introduction, the MTP2 and PRDS properties have been
investigated deeply in connection with test statistics for multiple test problems
in previous literature. For instance, it is well-known that MTP2 implies PRDS
on any subset and that PRDS in turn implies FWER control or FDR control,
respectively, of classical multiple test procedures. In Section 3, we will make use
of the MSMi property and demonstrate its relevance for computing the effective
number of tests.

Checking PRDS and MSMi in practice can be very cumbersome, because the
conditional probabilities occurring in these definitions are often hard to handle.
The MTP2 property is often more convenient to deal with. The following propo-
sition shows that there exists a hierarchy in the concepts of positive dependence
introduced in parts (i) - (iii) of Definition 2.2.

Proposition 2.1. Under the assumptions of Definition 2.2, it holds

(i) MTP2 implies MSMM−1.
(ii) MSMi implies MSMh for all 1 ≤ h ≤ i. In particular, MSMi for i ≥ 2

implies PLOD.

Proof. The assertions under (ii) are obvious and the assertion under (i) has been
proven in [13].

Finally, we recall the following additional condition regarding the (joint) dis-
tribution of the vector of test statistics which has been introduced and exten-
sively been made use of in [25] for resampling.

Definition 2.3 (Subset pivotality condition). Under our general framework,
assume that the global hypothesis H0 is non-empty. Let T = (T1, . . . , TM )⊤ :
(X ,F) −→ (SM ,S⊗M ) be a vector of test statistics (not necessarily a VOLTS).
Then, T is said to satisfy the subset pivotality condition (SPC), if

∀ϑ ∈ Θ : ∃ϑ∗ ∈ H0 : P
TI0(ϑ)

ϑ = P
TI0(ϑ)

ϑ∗ ,
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where the subvector TI0(ϑ) corresponds to the indices of true hypotheses in H
under ϑ ∈ Θ.

In an informal manner, we can now summarize our main result which we will
prove in the next section:

MPHTP + SCRAT + SPC + MSMi ⇒ M
(i)
eff. . (1)

Equation (1) means that for an MPHTP an effective number of tests M
(i)
eff. ≤ M

in the sense mentioned in the introduction can be computed if the structural as-
sumptions SCRAT, SPC and MSMi can be established. Section 4 will exemplify
practically relevant situations where this is the case.

3. General Theory

As in ordinary, one-dimensional test problems with composite null hypotheses,
for strong control of the FWER it is helpful to determine the ”worst case sit-
uation”, i. e., the parameter value(s) for which the FWER becomes largest.
Any such parameter value is called a least favorable parameter configuration
(LFC). Our first result is concerned with finding the LFC in our setup. Lemma
3.1 states that for an MPHTP with the structural properties given in (1) weak
control (under H0) of the FWER is equivalent to strong control (under any
arbitrary ϑ ∈ Θ) of the FWER. In other words, the LFC is located in H0.

Lemma 3.1. Let (X ,F , (Pϑ)ϑ∈Θ,H) be an MPHTP with intersection hypothesis
H0 = {ϑ∗}. Let T : (X ,F) −→ (SM ,S⊗M ) be a VOLTS which satisfies the SPC.

Then ϑ∗ is the unique LFC for any SCRAT ϕ = (ϕ1, . . . , ϕM ) defined by T
with respect to the FWER, i. e.,

∀ϑ ∈ Θ : FWERϑ(ϕ) ≤ FWERϑ∗(ϕ).

Proof. Let ϑ ∈ Θ be an arbitrary parameter value with resulting index set of
true hypotheses I0 ≡ I0(ϑ). Since ϕ is a SCRAT, the event that none of the
true hypotheses is falsely rejected only depends on TI0

≡ TI0(ϑ). Let OI0
=

⋂

i∈I0(ϑ) Oi, with Oi as in Definition 2.1.(c). Utilizing the SPC, we obtain

Pϑ(OI0
) = P

TI0

ϑ

(

×
i∈I0

(S \ Γi)

)

= P
TI0

ϑ∗

(

×
i∈I0

(S \ Γi)

)

= Pϑ∗(OI0
),

and, consequently,

FWERϑ(ϕ) = 1 − Pϑ(OI0
) = 1 − Pϑ∗(OI0

) = Pϑ∗





⋃

i∈I0(ϑ)

{ϕi = 1}



 .

From the fact that I0(ϑ) ⊆ {1, . . . ,M}, we conclude

FWERϑ(ϕ) ≤ Pϑ∗





M
⋃

j=1

{ϕj = 1}



 = FWERϑ∗(ϕ).
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Our main theorem connects all assumptions and provides a formula for com-
puting effective numbers of tests.

Theorem 3.1 (Effective numbers of tests). Under the assumptions of Lemma
3.1, let T fulfill the MSMi property for some i ≥ 1 under ϑ∗. Define cut-offs
c = (c1, . . . , cM ) ∈ SM such that ∀j ∈ {1, . . . ,M} : Pϑ∗

j
(ϕ = 1) = Pϑ∗

j
(Tj >

cj) = αloc. for a fixed local significance level αloc. ∈ (0, 1) in each marginal.

(i) In case of i ≤ 2, set ξ(i) = 0. Otherwise, let

ξ(i) =

i−1
∑

ℓ=2

log(γℓ,ℓ(c))

log(1 − αloc.)
.

Moreover, for every i ≤ j ≤ M , define

κ
(i)
j ≡ κ

(i)
j (αloc.;T1, . . . , Tj) =

log(γj,i(c))

log(1 − αloc.)
. (2)

Then it holds

sup
ϑ∈Θ

FWERϑ(ϕ) ≤ 1 − (1 − αloc.)
M

(i)

eff. (3)

for an ”effective number of tests” of degree i, given by

M
(i)
eff. ≡ M

(i)
eff. (αloc., T ) = 1 + ξ(i) +

M
∑

j=i∨2

κ
(i)
j . (4)

(ii) Optimized bounds κ̄
(i)
j and M̄

(i)
eff. :

If, for every permutation π ∈ SM , the MSMi property is preserved if
T = (T1, . . . , TM ) is replaced by (Tπ(1), . . . , Tπ(M)), it is possible to opti-

mize κ
(i)
j and, consequently, M

(i)
eff. in that the maximum strength of positive

dependence between Tj and the preceding Th, 1 ≤ h ≤ j − 1, is used. For
i = 2, this leads to an optimized version

κ̄
(2)
j ≡ κ̄

(2)
j (αloc.;T1, . . . , Tj) =

log(maxk<j Pϑ∗(Tj ≤ cj |Tk ≤ ck))

log(1 − αloc.)
. (5)

An optimized effective number of tests of degree i is given by M̄
(i)
eff. =

1 + ξ(i) +
∑M

j=i∨2 κ̄
(i)
j .

Proof. First, we apply Lemma 3.1 which yields

sup
ϑ∈Θ

FWERϑ(ϕ) = Pϑ∗





M
⋃

j=1

{ϕj = 1}



 = Pϑ∗





M
⋃

j=1

{Tj > cj}





= 1 − Pϑ∗





M
⋂

j=1

Oj



 = 1 − Pϑ∗(O1) ×
M
∏

j=2

γj,j(c),
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where the probability measure Pϑ∗ is used in all γj,j(c).
Next, notice that Pϑ∗(Oj) = 1−αloc. for all 1 ≤ j ≤ M . Application of MSMi

under ϑ∗ entails (defining the value of an empty product as 1 and the value of
an empty sum as 0) that

FWERϑ∗(ϕ) ≤ 1 − (1 − αloc.)

i−1
∏

ℓ=2

γℓ,ℓ(c)

M
∏

j=i∨2

γj,i(c)

= 1 − exp



log(1 − αloc.) +

i−1
∑

ℓ=2

log(γℓ,ℓ(c)) +

M
∑

j=i∨2

log(γj,i(c))





= 1 − exp



log(1 − αloc.)



1 + ξ(i) +

M
∑

j=i∨2

κ
(i)
j







 ,

completing the proof of part (i). Part (ii) is then obvious.

Remark 3.1.

(i) The numbers (κ
(i)
j )M

j=2 quantify the ”degree of positive dependency” be-
tween the components of T . In particular, if T consists of jointly indepen-

dent local test statistics, all κ
(i)
j are equal to one (all M marginal tests

”fully count”) and we have M
(i)
eff. = M . The same holds true if i = 1.

This special case has already been considered in [22]. On the other hand,
if all Tj, 1 ≤ j ≤ M , are perfectly correlated in the sense that for all

2 ≤ j ≤ M : γj,i(c) = 1 leading to κ
(i)
j = 0, ”effectively” only one single

test is performed and we have M
(i)
eff. = 1. Obviously, in the general case we

have 1 ≤ M
(i)
eff. ≤ M .

(ii) For FWER control at a pre-specified (overall) significance level α in practi-

cal applications (assuming, for the moment, fixed given values of the κ
(i)
j ),

Theorem 3.1 suggests the following algorithm: (i) Start with a reasonable

upper bound for αloc., (ii) Iteratively, compute M
(i)
eff. and decrease the value

for αloc., until the bound in (3) equals α.
(iii) Since P2 = β2 in the case of M = 2, inequality (3) is an equality for

M = i = 2, even without any assumptions on the dependency structure
between the components of T . We will use this fact in Example 3.1 below.

Example 3.1. In order to illustrate the importance of the two-sidedness of the
marginal test problems for our theory, let us consider the very simple example of
two simultaneous Z-tests. More specifically, consider M = 2 and two normally
distributed random variables Z1 and Z2, where Z = (Z1, Z2)

⊤ ∼ N2(µ,Σ),

with unknown mean vector µ, but known covariance matrix Σ =

(

1 ρ
ρ 1

)

,

|ρ| < 1. Moreover, let µ∗ = (µ∗
1, µ

∗
2) ∈ R

2. In the two-sided case, we let
H = (H1,H2) with point hypotheses H1 = {(µ1, µ2) ∈ R

2|µ1 = µ∗
1}, H2 =

{(µ1, µ2) ∈ R
2|µ2 = µ∗

2}. In this case, a suitable SCRAT at local significance
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level αloc. is given by ϕ = (ϕ1, ϕ2), where ϕj = 1(c,∞)(|Zj − µ∗
j |), j = 1, 2, with

c = Φ−1(1 − αloc./2) and Φ denoting the cumulative distribution function (cdf)
of the standard normal distribution. Letting Tj = |Zj − µ∗

j |, it is easy to show
that

Pµ∗(T2 ≤ c |T1 ≤ c) = 1 − 2

1 − αloc.

∫ c

−c

φ(x)Φ

(

ρx − c
√

1 − ρ2

)

dx,

with φ the pdf of N (0, 1). Here, for given αloc., κ ≡ κ
(2)
2 is a function of ρ ∈

(−1, 1) solely, given by

κ(ρ) =
1

log(1 − αloc.)
log

(

1 − 2

1 − αloc.

∫ c

−c

φ(x)Φ

(

ρx − c
√

1 − ρ2

)

dx

)

. (6)

Simple calculus yields that κ is decreasing in |ρ|, with maximum κ(0) = 1
and infimum lim|ρ|→1 κ(ρ) = 0. Consequently, for the multiple test ϕ we get

αloc. ≤ FWERµ∗(ϕ) = 1 − (1 − αloc.)
1+κ(ρ) ≤ 1 − (1 − αloc.)

2,

with equalities if and only if Z1
D
= Z2, or Z1 and Z2 are stochastically inde-

pendent, respectively. Plainly phrased, this means that any non-zero correlation
ρ allows an improvement of the Šidák-corrected local significance level in this
two-sided case. This calculation may be regarded as a proof for the fact that the
absolute values of any bivariate normal distribution are positive quadrant depen-
dent (i. e., PLOD) for the special case that both quadrant bounds are identical.

Contrarily, consider the two one-sided hypotheses Hj : {µj ≤ µ∗
j} and, conse-

quently, Kj : {µj > µ∗
j}, j = 1, 2. Now, one would choose as a suitable SCRAT

at local significance level αloc. the test ϕ = (ϕ1, ϕ2), where ϕj = 1(c,∞)(Zj −µ∗
j ),

j = 1, 2, with c = Φ−1(1 − αloc.). Clearly, our theory does not apply here, and
negative values of ρ even require a stronger multiplicity correction for control of
the FWER than in the Šidák case, where we have αloc. = 1 − (1 − α)1/2. To see
this, consider the case µ = µ∗ in the global hypothesis (which is not simple in
the one-sided case). We obtain, with Tj = Zj − µ∗

j , j = 1, 2, that

FWERµ∗(ϕ) = Pµ∗({T1 > c} ∪ {T2 > c}) = 1 − FN2(0,Σ)(c, c) = h(ρ) (say).

Here, we get limρ→1 h(ρ) = αloc., while we have limρ→−1 h(ρ) = 2αloc., hence, in
the worst case, even a Bonferroni correction (setting αloc. = α/2) is necessary.

Of course, Example 3.1 is not convincing for applying our theory, because the
full joint distribution of the test statistics under H0 is available in explicit form
and, consequently, the exact calculation of the value of αloc. required for FWER
control would in practice not take the detours via our Šidák-type bound making

use of M
(2)
eff. . However, some of the calculations in Example 3.1 will prove useful

for treating more complicated situations which we will investigate in the next
section.
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4. Applications

4.1. Genetic association studies

In genetic association studies, a (often large) number M of positions on the
human genome is simultaneously tested with respect to their association with
a binary outcome (typically, a disease indicator). One study design is the case-
control design, which retrospectively samples a fixed number n1. of cases (dis-
eased individuals) and n2. healthy controls. We denote the total sample size by
n = n1. +n2.. Technically, the genetic positions 1 ≤ j ≤ M are marked by single
nucleotide polymorphisms (SNPs). A SNP can be described by a pair of two
alleles A1, A2 ∈ {A,C,G, T} (the single bases on the two strands of deoxyri-
bonucleic acid at this position). Here, we restrict attention to bi-allelic SNPs,
meaning that exactly two of the four letters A,C,G, T are possible at every
position under investigation.

We start with a rather simple disease model, assuming that presence of one
allele (the risk allele) alone may already confer an increased disease risk. This
leads to high-dimensional categorical data analysis in (2×2) contingency tables.
In Definition 4.1, we make the convention that the table rows correspond to the
binary disease status (diseased / healthy) and the columns to the allele types
(risk allele / wild type allele). In order to keep notation feasible, we abuse
it a little bit in Definition 4.1 and denote the number of observational units
(alleles) in the study, in the subsample of cases and in the subsample of controls,
respectively, by n, n1. and n2..

Definition 4.1 (Multiple allelic association test problem). Consider an MPHTP
with local statistical experiments (Xj ,Fj , (Pϑj

)ϑj∈Θj
)1≤j≤M , such that Xj =

N
2×2 and Fj = 2Xj . An observation xj =

(

x
(j)
11 x

(j)
12

x
(j)
21 x

(j)
22

)

∈ Xj necessarily

fulfills x
(j)
11 + x

(j)
12 = n1. and x

(j)
21 + x

(j)
22 = n2. by experimental design. Denoting

the multinomial distribution with c categories, sample size n and vector of prob-
abilities p by Mc(n, p), we have that, for every j, the pair of random variables

(X
(j)
11 ,X

(j)
12 ) is distributed as M2(n1., pj), with pj = (p1j , p2j) taking the role of

ϑj in our general setup. The point hypothesis Hj that we are concerned with is
then given by pj = Pj, where Pj = (P1j , P2j) denotes the vector of (expected)
allele frequencies at position j in the entire population (which is unknown in
practice). We refer to this MPHTP as a multiple allelic association test prob-

lem. Letting n
(j)
.1 = x

(j)
11 + x

(j)
21 , n

(j)
.2 = x

(j)
12 + x

(j)
22 , p̂1j = n

(j)
.1 /n, p̂2j = n

(j)
.2 /n, a

VOLTS for this MPHTP is given by T = (T1, . . . , TM ) with

Tj =
(X

(j)
11 − n1.p̂1j)

2

n1.p̂1j
+

(X
(j)
12 − n1.p̂2j)

2

n1.p̂2j
=

(X
(j)
11 − n1.p̂1j)

2

n1.p̂1j p̂2j
, 1 ≤ j ≤ M. (7)

Under Hj, Tj is asymptotically (n → ∞) χ2
1-distributed, and we have a SCRAT

at asymptotic local significance level αloc., given by ϕ = (ϕj : 1 ≤ j ≤ M) with
ϕj = 1(c,∞)(Tj), where c = F−1

χ2
1

(1 − αloc.).
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Such multiple allelic association test problems have already been considered
in [18] with respect to the effective number of tests. As a preparation for our
investigations regarding the genotypic test problem below, we briefly summarize
how to compute effective numbers of tests for a multiple allelic association test
problem. To this end, it is convenient to formalize the problem from a slightly
different perspective: In principle, 2M haplotypes (combinations of all M SNP-
wise alleles) are possible. We assume that the (expected) haplotype frequencies
in the population can be described by a probability measure π on {1, . . . , 2M},
with πℓ ≡ π({ℓ}) denoting the probability that a randomly chosen individual
exhibits haplotype ℓ. Without loss of generality, assume that πℓ > 0 for 1 ≤ ℓ ≤
h with

∑h
ℓ=1 πℓ = 1 for some h ≤ 2M . Let A(j) denote the set of haplotypes

which imply the risk allele (corresponding to the first column in the (2×2)-table)
at position j. Then, P1j = 1 − P2j =

∑

ℓ∈A(j) πℓ.
By Sn,ℓ, 1 ≤ ℓ ≤ h, we denote the random number of individuals in the sample

with haplotype ℓ and set Sn = (Sn,1, . . . , Sn,h)⊤ with values in N
h. Analogously,

we use the notation Sn1.
= (Sn1.,1, . . . , Sn1.,h)⊤ if only the sub-sample of cases

is considered.

Lemma 4.1. Consider the allelic association test model as in Definition 4.1.

(i) Sn ∼ Mh(n, (π1, . . . , πh)) and X
(j)
11 =

∑

ℓ∈A(j)

Sn1.,ℓ.

(ii) Letting

ξn =

(

Sn,1 − nπ1√
nπ1

, . . . ,
Sn,h − nπh√

nπh

)

,

it holds ξn
D→ ξ ∼ Nh(0, C), n → ∞, with C = Eh − ηη⊤ and η =

(
√

π1, . . . ,
√

πh)⊤, where Eh denotes the identity matrix in R
h×h.

(iii) Under the global hypothesis H0, there exist linearly independent unit vec-
tors (v1, . . . , vM ) ∈ R

h, each of which perpendicular to η, such that

Tj
D→ 〈ξ, vj〉2 for all 1 ≤ j ≤ M .

(iv) Letting

∀ 1 ≤ j ≤ M : Zj =
X

(j)
11 − n1.p̂1j
√

n1.p̂1j p̂2j

and Z = (Z1, . . . , ZM ), it holds L(Z)
w→ NM (0,Σ) under H0, where

Σij = 〈vi, vj〉 = ρij (say), and ρij is equal to Pearson’s haplotypic cor-
relation coefficient of SNPs i and j (which is tabulated for several target
populations).

Proof. Part (i) is obvious. Part (ii) is due to Section 30.1 in [8]. Part (iii) is a
condensed version of Appendix A in [18] and part (iv) immediately follows from
part (iii) and the construction of the vectors vj in [18].

Proposition 4.1. Let X = (X1, . . . ,XM ) denote a centered multivariate Gaus-
sian random vector, X ∼ NM (0,Σ) with Σ positive definite and let |X| =
(|X1|, . . . , |XM |).
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(i) Independently of Σ, |X| is PLOD.
(ii) |X| is MTP2 if and only if there exists a diagonal matrix D with diagonal

elements ±1 such that the off-diagonal elements of −DΣ−1D are all non-
negative.

(iii) For any Σ with diagonal elements all equal to some σ2 > 0, PM ≥ β2 ≥ β1

for Tj = X2
j , 1 ≤ j ≤ M , if all tj > 0, 1 ≤ j ≤ M , are identical and

equal to u (say). Furthermore, the optimized version M̄
(2)
eff. of the effective

number of tests of degree 2 is applicable in this case.

Proof. Part (i) is Corollary 1 in [22]. Part (ii) is Theorem 3.1 in [15]. To prove
part (iii), we first notice that P(X2

j ≤ c) = P(|Xj | ≤
√

c) for all 1 ≤ j ≤ M and
all c ≥ 0. Since all bivariate marginal distributions of a normal distribution are
bivariate normal and the PLOD property for the absolute values of a Gaussian
random vector is valid without any assumptions on the dimension or on Σ, we
have that every pair (|Xk|, |Xℓ|) is PLOD. This entails β2 ≥ β1, even without
the extra assumption on t. Moreover, in Appendix A in [18] it is stated that for
any 2 ≤ j ≤ M : P(|Xj | ≤ u | max

1≤h≤j−1
|Xh| ≤ u) ≥ P(|Xj | ≤ u | |Xk| ≤ u) for

any k < j. Following the reasoning of Theorem 3.1.(A) in [4], we conclude the
assertion of part (iii).

Making use of our general Theorem 3.1 with i = 2, we obtain the main result
in [18].

Corollary 4.1 (Moskvina and Schmidt, 2008). For the multiple allelic associ-
ation test problem defined in Definition 4.1, we asymptotically (n → ∞) get

sup
ϑ∈Θ

FWERϑ(ϕ) ≤ 1 − (1 − αloc.)
M̄

(2)

eff.

for the effective number of simultaneous χ2-tests of degree 2, i. e.,

M̄
(2)
eff. ≡ M̄

(2)
eff. (αloc., T1, . . . , TM ) = 1 +

M
∑

j=2

κ̄
(2)
j ,

where κ̄
(2)
j = κ̄

(2)
j (Σ) is computed as κ(ρ) in (6) with ρ replaced by maxk<j ρjk.

Proof. We notice that for all 2 ≤ j ≤ M and with p∗ denoting the unique
element in H0, it holds

∀k < j : Pp∗(Tj ≤ c |Tk ≤ c) = Pp∗(|Zj | ≤
√

c | |Zk| ≤
√

c).

Since
√

c = Φ−1(1−αloc./2), we can further proceed exactly as in the first part of
Example 3.1, by making use of the asymptotic result in part (iv) of Lemma 4.1

and the optimized version M̄
(2)
eff. which is valid due to Proposition 4.1.(iii).

In the remainder of this section, we will demonstrate that our methodology
also applies for genotypic association tests, in which the allele pairs forming
the SNPs are analyzed instead of the risk alleles alone. This leads to analyzing
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many (2 × 3) contingency tables simultaneously. Thereby, the two rows again
correspond to the phenotypic (disease) status and the three columns now con-
ventionally refer to A1A1 (column 1), A1A2 (column 2) and A2A2, where A1

denotes the minor allele (less prevalent in the population) and A2 the major al-
lele at the respective genetic position. As we will see, this requires a non-obvious
extension of the considerations for multiple allelic association test problems.
Moreover, in contrast to the allelic tests considered before, in Definition 4.2
every observational unit is one individual.

Definition 4.2 (Multiple genotypic association test problem). Consider an
MPHTP with local statistical experiments (Xj ,Fj , (Pϑj

)ϑj∈Θj
)1≤j≤M , such that

Xj = N
2×3 and Fj = 2Xj . An observation xj =

(

x
(j)
11 x

(j)
12 x

(j)
13

x
(j)
21 x

(j)
22 x

(j)
23

)

∈ Xj

fulfills x
(j)
11 +x

(j)
12 +x

(j)
13 = n1. and x

(j)
21 +x

(j)
22 +x

(j)
23 = n2. by experimental design.

For every j, the triple of random variables (X
(j)
11 ,X

(j)
12 ,X

(j)
13 ) is distributed as

M3(n1., pj), with unknown parameter vector pj = (p1j , p2j , p3j). The point hy-
pothesis Hj that we are concerned with is then given by pj = Pj = (P1j , P2j , P3j),
where Pj denotes the vector of expected genotype frequencies at position j in the
entire population. We refer to this MPHTP as a multiple genotypic association

test problem. As in Definition 4.1, we let n
(j)
.1 = x

(j)
11 + x

(j)
21 , n

(j)
.2 = x

(j)
12 + x

(j)
22 ,

n
(j)
.3 = x

(j)
13 + x

(j)
23 , and p̂ij = n

(j)
.i /n, i = 1, 2, 3. A VOLTS for this MPHTP is

given by T = (T1, . . . , TM ) where for all 1 ≤ j ≤ M :

Tj =
(X

(j)
11 − n1.p̂1j)

2

n1.p̂1j
+

(X
(j)
12 − n1.p̂2j)

2

n1.p̂2j
+

(X
(j)
13 − n1.p̂3j)

2

n1.p̂3j

=
(X

(j)
11 − n1.p̂1j)

2

n1.p̂1j(1 − p̂1j)
+

[p̂2j(X
(j)
11 − n1.p̂1j) + (1 − p̂1j)(X

(j)
12 − n1.p̂2j)]

2

n1.p̂2j(1 − p̂1j)(1 − p̂1j − p̂2j)
.

Under Hj, Tj is asymptotically (n → ∞) χ2
2-distributed, and we have a SCRAT

at asymptotic local significance level αloc., given by ϕ = (ϕj : 1 ≤ j ≤ M) with
ϕj = 1(c,∞)(Tj), where c = F−1

χ2
2

(1 − αloc.).

In analogy to the allelic case, 3M haplotypes (combinations of all M SNPs)
with respect to allele pairs are possible (in principle). Again, we assume a prob-
ability measure π on {1, . . . , 3M} with πℓ > 0 for 1 ≤ ℓ ≤ g and

∑g
ℓ=1 πℓ = 1

for some g ≤ 3M to formalize genotypic haplotype probabilities. From this, we
can deduce the genotype probabilities for SNP j as

Pij =
∑

ℓ∈Bi(j)

πℓ, i = 1, 2, 3. (8)

In (8), B1(j), B2(j) and B3(j), respectively, denote the sets of haplotypes im-
plying the genotype A1A1, A1A2 and A2A2, respectively, at position j. Fur-
thermore, we make use of the notations Sn,ℓ, 1 ≤ ℓ ≤ g, Sn, and Sn1.

=
(Sn1.,1, . . . , Sn1.,g)

⊤ in corresponding manner as in the allelic situation.
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Lemma 4.2. Consider the genotypic association test model as in Definition
4.2.

(i) Sn ∼ Mg(n, (π1, . . . , πg)). Letting

ξn =

(

Sn,1 − nπ1√
nπ1

, . . . ,
Sn,g − nπg√

nπg

)

,

it holds ξn
D→ ξ ∼ Ng(0, C), n → ∞, with C = Eg − ηη⊤ and η =

(
√

π1, . . . ,
√

πg)
⊤.

(ii) For all 1 ≤ j ≤ M , it holds

X
(j)
11 =

∑

ℓ∈B1(j)

Sn1.,ℓ and X
(j)
12 =

∑

ℓ∈B2(j)

Sn1.,ℓ. (9)

Let g-dimensional vectors w1(j) and w2(j) be defined by setting for all
1 ≤ i ≤ g their i-th entries to

w
(i)
1 (j) =

√
πi1B1(j)(i),

w
(i)
2 (j) =

√
πi

(

P2,j1B1(j)(i) + (1 − P1,j)1B2(j)(i)
)

and put v1(j) = Cw1(j) {||Cw1(j)||}−1, v2(j) = Cw2(j) {||Cw2(j)||}−1.
Then, we have

〈ξn1.
, v1(j)〉 =

X
(j)
11 − n1.P1j

√

n1.P1j(1 − P1j)
= Z1,j (say), (10)

〈ξn1.
, v2(j)〉 =

P2j(X
(j)
11 − n1.P1j) + (1 − P1j)(X

(j)
12 − n1.P2j)

√

n1.P2j(1 − P1j)(1 − P1j − P2j)
(11)

= Z2,j (say).

Moreover, for n → ∞, we obtain that, under Hj, (Z1,j , Z2,j)
⊤ D→ (Z1, Z2)

⊤

with (Z1, Z2)
⊤ ∼ N2(0, E2) and Tj

D→ Z2
1 + Z2

2 .
(iii) Under the global hypothesis H0, it holds for all 1 ≤ j, k ≤ M : For any tuple

(ℓ,m) ∈ {1, 2}2, the joint distribution of (Zℓ,j , Zm,k)⊤ converges weakly to
a bivariate normal distribution with correlation coefficient given by

lim
n→∞

Cov(Zℓ,j , Zm,k) = rj,k(ℓ,m) = 〈vℓ(j), vm(k)〉. (12)

Consequently, the vector T = (T1, . . . , TM ) asymptotically follows a multi-
variate central chi-squared distribution in the sense of Definition 3.5.7 in
[24], with correlation structure given by

lim
n→∞

Cov(Tj , Tk) = 2
2
∑

ℓ=1

2
∑

m=1

r2
j,k(ℓ,m). (13)
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Proof. Part (i) and representation (9) are in analogy to parts (i) and (ii) in
Lemma 4.1. The validity of the representations (10) and (11) can easily be
verified by making use of (8), (9) and noticing that 〈ξn1., Cwi(j)〉 = 〈ξn1., wi(j)〉,
i = 1, 2, ||Cw1(j)||2 = ||w1(j)||2 − 〈η, w1(j)〉 = P1j − P 2

1j and ||Cw2(j)||2 =

||w2(j)||2 − 〈η, w2(j)〉 = P2j(1− P1j)(1− P1j − P2j). The remainder of part (ii)
is an application of the central limit theorem. Finally, part (iii) follows by the
asymptotic result in part (i), together with linearity of Gaussian distributions.

Remark 4.1. The correlations rj,k(ℓ,m) in (12) only depend on the expected
genotype frequencies Pij, Pik, i = 1, 2, 3 and the second-order joint probabilities
of genotype pairs, given in Table 1. This entails validity of the SPC for a multiple

Table 1

First-order and second-order probabilities of genotypes and genotype pairs, respectively, for
two positions j and k under the genotypic association test model as in Definition 4.2.

Genotypes A1A1 A1A2 A2A2

A1A1 P11,jk P12,jk P13,jk P1j

A1A2 P21,jk P22,jk P23,jk P2j

A2A2 P31,jk P32,jk P33,jk P3j

P1k P2k P3k

genotypic association test problem.

Proposition 4.2. Let T = (T1, . . . , TM ) follow a multivariate central chi-
squared distribution with ν degrees of freedom in every marginal and with co-
variance matrix Σ in the sense of Definition 3.5.7 in [24], where all diagonal
elements of Σ are equal to 1.

(i) Independently of the off-diagonal elements of Σ, T is PLOD.
(ii) Under exchangeability (entailing equi-correlation), T is MTP2.

Proof. To prove part (i), we notice that the distribution of T is equal to the joint
distribution of the diagonal elements S1,1, . . . , SM,M of a Wishart-distributed
random matrix S ∼ WM (ν,Σ). Corollary 4.1 in [9] yields the assertion. Part (ii)
is a consequence of Example 3.5. in [15].

Finally, let us calculate the optimized values κ̄
(2)
j of degree 2, defined in (5),

in the context of the MPHTP given in Definition 4.2. To this end, let p∗ denote
the unique parameter value in H0 and notice that for all 2 ≤ j ≤ M and for all
k < j:

Pp∗(Tj ≤ c |Tk ≤ c) =
Pp∗(Tj ≤ c, Tk ≤ c)

1 − αloc.

=
Fχ2

2(2,ρ(Tj ,Tk))(c, c)

1 − αloc.

,

where χ2
2(2, ρ) denotes the bivariate chi-squared distribution with two degrees

of freedom in both marginals and with correlation coefficient ρ between the two
marginal chi-squared variates. The cdf of χ2

2(2, ρ) is available in closed form, see,
for instance, formula (4.2) in [14]. From this, it is easy to check that Fχ2

2(2,ρ)(c, c)
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is isotone in ρ. Therefore, the maximum in (5) for any 2 ≤ j ≤ M is attained
for index k∗ = arg maxk<j ρ(Tj , Tk) and we obtain

∀2 ≤ j ≤ M : κ̄
(2)
j =

log
(

Fχ2
2(2,ρ(Tj ,Tk∗ ))(c, c)

)

log(1 − αloc.)
− 1.

Remark 4.2. Various attempts to determine the ”effective dimensionality” of a
multivariate chi-squared distribution have been discussed in the literature before.
Already in 1954, G. E. P. Box (see [6]) determined the ”effective degrees of free-
dom” h = h(ΣT ) of a sum of correlated chi-squared variates T = (T1, . . . , Tr),
see Theorem 3.1 in that paper. A linearized version of h has been proposed in
[7] and [19] as an effective number of tests in the context of genetic epidemiol-
ogy. However, the argumentation in the two latter papers is based on a heuristic
without formal mathematical arguments. Moreover, the resulting values of the
effective number of tests according to the method of [7] and [19] are in practice

typically much larger than M̄
(2)
eff. from Theorem 3.1, as demonstrated in [18].

Therefore, the method from [7] and [19] can not be recommended.

4.2. Further possible applications

Of course, multivariate normal and chi-squared distributions do not only appear
in statistical genetics, but are ubiquitous in various applications. The reasoning
in Example 3.1 can be applied to all kinds of multiple (two-sided) test problems
for high-dimensional location parameters under asymptotic normality. In such
a case, even if the correlation structure is known, it may not be feasible to de-
rive exact thresholds for FWER control, because the necessary high-dimensional
integrals are numerically intractable. For example, the R-package mvtnorm com-
putes multivariate t- and normal probabilities up to dimension 1000, but not
for higher dimensions. Therefore, it will often be more convenient to work with
the second- (or higher) order approximation given by the computation of the
effective number of tests of appropriate degree. We may mention here that our
methodology also applies for certain cases with unknown (marginal) variances,
because MTP2 characterizations for multivariate t-distributions are also avail-
able in the literature.

In [10], an application of the multivariate chi-squared distribution in the con-
text of multiple likelihood ratio tests for linear hypotheses is demonstrated. If
the asymptotic correlation structure of such likelihood ratio statistics can be
deduced as, for example, in [16], our method can readily be applied in that con-
text, too. Multiple tests for Gaussian variances constitute another application
field in which our methods can be applied in total analogy to the considerations
in Section 4.1.

The MTP2 property is well studied for a long time now and necessary and
sufficient conditions for its validity have been derived for a variety of distri-
butional classes. Proposition 2.1 yields that for all such MTP2 distributions
the product-type probability bounds of any degree apply and the precision of
approximation is in such cases mainly limited by computational restrictions.
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5. Discussion and Outlook

Of course, it is mathematically unsatisfactory that PM ≥ β2 ≥ β1 can only be
established under specific assumptions regarding the covariance structure within
the framework of a multiple genotypic association test problem as presented in
Definition 4.2. In high dimensions (M ≈ 5 × 105 or even M ≈ 106 is typical
in genome-wide association studies), these assumptions are impossible to check
in practice. However, Proposition 4.2.(i) at least guarantees that PM ≥ β1.
Moreover, the positive quadrant properties implied by Propositions 4.2.(i) yield
β2 ≥ β1 in this case, too. Since β2 is explicitly available in this case via the
bivariate chi-squared cdf, one may work with β2 although there is no theoretical
guarantee that the FWER is kept, because the ”true” effective number of tests

may lie between M
(2)
eff. and M . The findings of a genome-wide association study

have to be replicated independently by means of a subsequent study anyway in
most cases, such that the genetics community is willing to resort on notions of
effective numbers of tests that are not proved to control the FWER strictly in
all cases.

Moreover, it seems that general characterizations of the validity of the MSMi

property for i ≥ 2 in the case of absolute multivariate normal distributions are
still an open problem. This has been mentioned in the discussion of [5] and a
related remark can be found in [12]. In view of Proposition 2.1, it may be con-
jectured that subsequently sharper assumptions on the covariance structure are
necessary to establish the MSMi property for increasing i ≥ 2. It is interesting
that these problems are closely related to the Gaussian correlation conjecture,
see Section 2.4 in [17] and references therein.

Future research should address the obvious question of how to modify our
proposed effective numbers of tests in cases where the correlation structure itself
has to be estimated from data. In such a case, the two inferential problems
(estimation of the dependency structure / multiple testing) have to be solved
in parallel. This is a general topic in modern multiple testing research.
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