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Abstract

Standard fixed symmetric kernel type density estimators are known to encounter problems

for positive random variables with a large probability mass close to zero. We show that in

such settings, alternatives of asymmetric gamma kernel estimators are superior but also

differ in asymptotic and finite sample performance conditional on the shape of the density

near zero and the exact form of the chosen kernel. We therefore suggest a refined version of

the gamma kernel with an additional tuning parameter according to the shape of the density

close to the boundary. We also provide a data-driven method for the appropriate choice of

the modified gamma kernel estimator. In an extensive simulation study we compare the

performance of this refined estimator to standard gamma kernel estimates and standard

boundary corrected and adjusted fixed kernels. We find that the finite sample performance

of the proposed new estimator is superior in all settings. Two empirical applications based

on high-frequency stock trading volumes and realized volatility forecasts demonstrate the

usefulness of the proposed methodology in practice.
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1 Introduction

There are many applications in particular in economics where densities of positive random

variables are the object of interest or an essential model ingredient to be estimated from data.

Compare e.g. income data, financial transaction data, volatility models but also duration and

survival times data. In a lot of these situations, however, appropriate functional forms are

unknown or controversial, such that a nonparametric estimate is needed. And it is often the

point estimates close to the boundary which are in the focus of practical interest thus require

good precision.

For cases of densities where most of the data is concentrated away from the boundary, there

is a huge literature on boundary correction techniques of the standard symmetric fixed kernel

density estimator. Such adjustments are needed at points close to the boundary since fixed

kernels might assign positive weight outside the support yielding inconsistent results. Among

these techniques count e.g. the cut- and normalized kernel, see Gasser and Müller (1979), and

the reflection method, see Schuster (1958).

If, however, the true density might have substantial mass close the boundary, there are

superior methods such as the boundary kernel of Jones (1993). As this estimator could yield

negative point estimates, this is corrected in Jones and Foster (1996) at some minor cost of

performance (see Jones (1993)). In comparison, the combination of polynomial transformation

followed by reflection as in Marron and Ruppert (1994) is much less flexible working well

exclusively at boundaries if the initial transformation is close enough to the density shape near

zero.

Nonparametric kernel density estimators with asymmetric kernels such as gamma kernels

have been introduced to improve upon the performance of fixed kernels at the boundary. In

particular for positive random variables their flexible shape avoids the boundary consistency

problem and directly yields positive estimates by construction. We illustrate in an extensive

simulation study that especially in cases where the true density f approaches the boundary

with a derivative f ′ significantly different from zero, gamma kernel estimates yield superior

results to corrected or adjusted fixed kernels. Such density shapes naturally appear in high-

frequency data e.g., when studying aggregated trading volumes (see Figure 1) but also in many

other applications such as spectral density estimation of long memory time series or when

modeling volatilities in particular on the intra-daily level (see e.g. Robinson and Henry (2003)

and Corradi et al. (2009)). But we also show that depending on the underlying shape of the

true density, the two existing gamma kernel estimators, the so called standard and modified

version as introduced in Chen (2000), might also differ substantially in boundary performance

and still leave significant room for improvement. In particular, our asymptotic considerations
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(a) Volume (b) Realized Kernel

Figure 1: Histograms of Intraday Trading Volume and Realized Kernel Estimates
We consider deseasonalized nonzero 15-Second trading volumes of Citigroup and realized kernel
estimates for JP Morgan. Sample period: February 2009 (trading volumes), January 2006 – December
2009 (realized kernel). For details on the seasonal adjustment of trading volumes and computation of the
realized kernel, see Section 4.

and a thorough finite sample study suggest that in particular in cases with a pole at zero the

standard gamma kernel significantly outperforms the modified version, which is generally used

in practice. We therefore introduce a simple data-driven criterion identifying such extreme

settings. For all other situations, we propose a refined gamma kernel, which introduces a

modification parameter according to the shape of f and its first two derivatives close to the

boundary. For determining the appropriate specification of this refined gamma kernel estimator

in practice we also provide an automatic procedure.

In an extensive simulation study we compare the performance of this refined estimator to

standard gamma kernel estimates and standard boundary corrected and adjusted fixed kernels.

We find that the finite sample performance of the proposed new estimator is superior in all

settings. Our two applications on high frequency stock trading volumes and realized variance

forecasts demonstrate the usefulness of our proposed methodology.

2 Kernel Density Estimation at the Boundary

Throughout the paper, we study density estimation for the case that the support SX ⊂ R of

an unknown density is bounded from one side. Without loss of generality, we take this bound

to be a lower bound and equal to zero as in many applications as e.g. wage distributions,

distribution of trading volumes, etc.. Obtained results, however, can be easily generalized by

appropriate translations and reflections at the y-axis. Note also that we restrict our exposition to

the case of univariate densities for ease of notation. Multivariate extensions are systematically

straightforward via product kernels.
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For a random sample {Xi}ni=1 from a distribution with unknown density fX(x), the con-

ventional kernel density estimator has the form

f̂X(x) =
1

nb

n∑
i=1

K

(
x−Xi

b

)
, (1)

where is b a smoothing bandwidth with b → 0 and nb → ∞ as n → ∞ and K is a kernel

function which integrates to unity i.e.,
∫
K (u) du = 1. If the shape ofK is symmetric and fixed

across the support, estimation and inference are generally simplified for unbounded support.

But if zero bounds the support SX from below, f̂X is inconsistent at the boundary [0, b) for such

simplistic choices of K. The literature has therefore provided many suggestions for adjustments

in fixed kernel estimation, which we will outline in more detail when they appear as benchmarks

in the simulation section 3. What characterizes all these approaches, however, is that they

mostly work well only for specific forms of fx in the boundary region and/or can yield negative

estimates. In particular, for densities with non-vanishing probability mass close to zero as

in Figures 1 these standard correction methods perform poorly at the boundary. Though in

applications, it is exactly this boundary region which is in the focus of attention and requires

precise estimates.

2.1 Standard Asymmetric Kernel Density Estimators

Density estimators with locally varying form kernels have shown good performance for a wide

range of shapes of the underlying true density. Such kernels are nonnegative, but no longer

symmetric adjusting in skewness along the support. For the considered one-sided boundary

problem, gamma kernel estimators are the simplest and most popular forms of such flexible

estimators. In case of a two-sided boundary which is not our focus here, beta kernels would be

the appropriate choice (see Chen (1999)). There are two alternative specifications of gamma

kernel estimators proposed by Chen (2000) of which the first kind is defined as

f̂γX(x) =
1

n

n∑
i=1

Kγ
x/b+1,b (Xi) , (2)

where Kγ
x/b+1,b denotes the density of the gamma distribution with shape parameter x/b+ 1

and scale parameter b, i.e.

Kγ
x/b+1,b (u) =

ux/b exp(−u/b)
bx/b+1 Γ(x/b+ 1)

. (3)
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Consistency and asymptotic normality of the above estimator are straightforward to derive

under standard assumptions (see e.g. Chen (2000) for the pointwise, and Hagmann and Scaillet

(2007) for the uniform version). For time series observations, consistency can also be obtained

under mixing assumptions in Bouezmarni and Rombouts (2010). In particular, for a sufficiently

smooth density fX ∈ C2(SX), it can be shown that bias and variance vanish asymptotically for

b→ 0 and nb→∞. Their asymptotic forms are

Bias
{
f̂γX(x)

}
= b

{
f ′X(x) +

1

2
xf ′′X(x)

}
+ o(b) , (4)

and

Var
{
f̂γX(x)

}
≈


fX(x)
nb Cb(x) if x/b→ κ;

fX(x)
2
√
π

(xb)−1/2 n−1 ifx/b→∞,
(5)

where κ is a nonnegative constant and Cb(x) = Γ(2κ+1)
21+2κ Γ2(κ+1)

. Accordingly, the asymptotic

mean squared error is

MSE
{
f̂γX(x)

}
≈

b2
{
f ′X(x) + 1

2xf
′′
X(x)

}2
+ fX(x)

nb Cb(x) if x/b→ κ;

b2
{
f ′X(x) + 1

2xf
′′
X(x)

}2
+ fX(x)

2
√
π

(xb)−1/2 n−1 ifx/b→∞.
(6)

Note that the asymptotic variance decreases for large x which is offset by an increasing bias. In

contrast to fixed kernel estimators, the asymptotic bias contains the first derivative of the density

f ′ which is due to the fact that the chosen flexible kernel shape has its mode rather than its mean

at the point of estimation x. The modified gamma kernel estimator improves on this for most of

the support without generating convergence problems in the boundary region. In particular, it

uses the pdf of a gamma distribution with shape parameter x/b and scale parameter b as kernel

function in the interior of the support. This has mean x, but is unbounded for x approaching zero.

Therefore the kernel function consists of two regimes where the boundary form is chosen ad

hoc to smoothly connect to the desired interior shape while avoiding unboundedness problems.

According to Chen (2000) the estimator is thus defined as

f̂γmX (x) =
1

n

n∑
i=1

Kγ
ρb(x),b (Xi) , (7)
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(a) b = 0.0091 (b) b = 0.0396

Figure 2: ξb(x)
Scale factor ξb(x) = (1− x) {ρb(x)− x/b} / {1 + bρb(x)− x} entering asymptotic bias and variance
of the modified gamma kernel estimator. Bandwidths of two DGPs from the simulation study in Section 3
are used.

where

ρb(x) =


1
4

(
x
b

)2
+ 1 ifx ∈ [0; 2b) ;

x/b if x ∈ [2b;∞) .
(8)

Note that the estimator fixes the size of the boundary region to the area from 0 to 2b independent

of the shape of the underlying true density. The asymptotic bias of the modified gamma kernel

estimator has the desired leading term

Bias
{
f̂γmX (x)

}
=

ξb(x) bf ′X(x) + o(b) ifx ∈ [0; 2b) ;

1
2xf

′′
X(x) b+ o(b) if x ∈ [2b;∞) ,

(9)

where ξb(x) = (1− x) {ρb(x)− x/b} / {1 + bρb(x)− x} which is in [0, 1] for standard

choices of b < 0.5 for all x ∈ [0, 2b) (see Figure 2). Its variance can be shown to have

the same structure as in (5) with modified constant C̃b(x) =
Γ(2κ2+1)

21+2κ2 Γ2(κ2+1)
and

MSE
{
f̂γmX (x)

}
≈

{ξb(x) bf ′X(x)}2 + fX(x)
nb C̃b(x) if x/b→ κ;{

1
2xf

′′
X(x) b

}2
+ fX(x)

2
√
π

(xb)−1/2 n−1 ifx/b→∞.
(10)

See Chen (2000) for details on the derivations.
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2.2 Choice of Estimators for Different Density Shapes Near Zero

In general in the literature, the modified gamma kernel estimator has been strictly preferred to

the standard gamma kernel version. While a simple comparison of their asymptotic variances,

however, reveals that the constant for the modified estimator C̃b is strictly larger than the one

for the standard gamma kernel Cb close to the boundary (for all κ < 1), this has been justified

by the similarity to fixed kernels in asymptotic bias behavior of the modified gamma kernel

as displayed in (9). Though, when carefully comparing the leading asymptotic bias terms of

both gamma type estimators, we find that there are also cases where it is asymptotically more

favorable to use the standard gamma kernel estimator. For all x > 2b in the interior of the

support with

|0.5xf ′′(x)| > |f ′(x) + 0.5xf ′′(x)| (11)

the standard gamma kernel is preferable to the modified version. This occurs in particular for

areas where the density satisfies the shape restrictions

0 < −f ′(x)/f ′′(x) < x . (12)

The lower bound is fulfilled for values x where f ′ and f ′′ have different sign, i.e. where the

density f is either decreasing and convex or where it is concave and increasing. In the first

case, it can be shown that if f has a pole at zero, then trivially also the upper bound of (12) is

satisfied. If additionally f does not have any local maxima, the standard gamma kernel should

be preferred to the modified version for the entire interior support (see Figure 3). Our simulation

study below confirms that this is also of significant importance in finite samples in particular for

smaller sample sizes. It can be easily shown, that a pole is a sufficient condition, but the same

logic also applies to all densities with f ′ < −c < 0, c not too small and f ′′ ≥ 0 close to the

boundary.

Apart from these pronounced cases at the boundary, any density whose support is unbounded

from the right will be convex and decreasing for large x in order to be integrable. In this

situation, the asymptotic variance regimes are identical for both gamma type estimators. And in

the asymptotic bias, independent from the rate of decay of f , the upper bound of (12) always

holds in these regions. For very large x, however, slopes and curvature values are generally small

yielding overall small biases for any kernel type estimator such that a measurable advantage of

the standard versus modified gamma kernel estimator might disappear. Besides these convex

cases, unimodal densities are concave around the mode, and increasing to the left of the mode

(see Figure 3). Also in this area, the use of the standard gamma kernel estimator might be

7



x

f(
x)

(a) Pole at x = 0 and no local maxima

x

f(
x)

(b) Unimodal

Figure 3: Density Shapes Favouring the Standard Gamma Kernel Estimator
Schematic densities for which the standard gamma kernel estimator in (2) and (3) should be preferred
over the modified version in (2) and (8) according to the shape restriction (12). Left figure: condition
(12) is satisfied globally for x > 2b. Right figure: condition (12) can be satisfied locally to the left of the
mode.

recommendable. In finite samples, however, observed differences are rather small even in the

extreme case of a strictly concave density between zero and the mode.

Moreover, on the boundary for x ∈ [0, 2b), it can happen that

|0.5xf ′′(x)| > |f ′(x)ξb(x)| (13)

where the standard gamma kernel estimator performs better than the modified one. This happens

in particular if |f ′(x)/f ′′(x)| < 0.5x, since ξ < 1 for x > 0. Though as this area is vanishingly

small, its influence on the overall estimation results is negligible (compare the simulation results

in Section 3).

In practice, it is therefore important to detect pole situations in advance in order to choose

the best performing estimator among standard and modified gamma kernel estimators. We

propose a simple but reliable measure to check for poles as opposed to standard cases. If f has

a pole at zero, it is the relative convergence and consistency of the estimator f̂ which is of main

importance in order to judge if the correct order of decay is detected. See e.g. Robinson and

Henry (2003) for how this is important regarding consistent estimation of the long memory

parameter in long range dependent time series. Thus it must hold that |f̂(x)/f(x)−1| = oP (1).

The governing term in the stochastic expansion for the right hand side controlling convergence

is xf
′
X(x)

fX(x) , which we write as xD(x) (See the proof of Theorem 5.3. in Bouezmarni and Scaillet

(2005)). The practically most important pole situations occur for densities which have or can be

bounded by densities with hypergeometric decay from zero, i.e. f(x) = bx−α with b < 0 and

0 < α < 1 (the cases with α > 1 are excluded by f being a density). Here the quantity xD(x)

equals the constant −α irrespective of the scaling b.

8



For distinguishing a pole situation from a no pole situation, it is favorable to study D(x)

directly to get sufficient power of the criterion against alternatives. Therefore we estimate D(x)

by exploiting the simple relation

D(x) =
f ′X(x)

fX(x)
=

d

dx
ln fX(x). (14)

Note that for x approaching 0, in a pole situation D(x) is significantly negative, approaching

infinity at rate −αx in case of densities decreasing with hypergeometric speed and -1 for expo-

nential type behavior. In all other settings where the modified gamma kernel is the method of

choice D(x) is significantly positive. As a criterion, D(x) combines properties of the density

and its slope to distinguish the pole situation from other density shapes. This is more powerful

than checking density and slope separately in isolation. In practice, D(x) can be estimated by

the difference quotient based on modified gamma kernels

D̂(x) =
ln f̂γmX (x+ b)− ln f̂γmX (x)

b
, (15)

where b > 0 is the same bandwidth as for the density estimates at x and x + b. For the

practical scope of this paper it is sufficient to work with a rough criterion checking if D̂(x)

is significantly negative or not. Developing a novel formal test for H0 of a hypergeometric

pole situation is beyond the scope of this paper. Though, we conjecture that using the results

in Fernandes and Grammig (2005) for specification testing in the simple density case, the

corresponding asymptotic distribution of the centered test statistic nb2
(
D̂(x) + α

x

)
could be

derived. However, as calculations are quite involved and should be complemented with a valid

bootstrap approximation scheme for finite samples, we leave this for future research and a paper

on its own.

2.3 Refined Estimation with Modified Gamma Kernels

In cases where we can exclude a pole at the boundary, the modified gamma kernel generally

should be the method of choice in terms of best asymptotic performance. Though in the

literature, its chosen form in particular in the boundary region has mainly been justified by

(computational) convenience. Our simulation results, however, clearly indicate that alternative

slightly more flexible specifications can significantly improve upon the performance of standard

modified gamma kernels.

In particular, we propose simple refined versions of the modified gamma kernel, where an

additional specification parameter c allows for higher accuracy if appropriately chosen in a

data-driven way. We study two types of refined modified gamma kernels, i.e.

9



ρvI
b (x) =



[
1
4

(
x
bc

)2
+ 1
]

[c+ 2b (1− c)] ifx ∈ [0; 2bc) ;

x
bc (c+ 2b− x) if x ∈ [2bc; 2b) ;

x/b if x ∈ [2b;∞) ,

(16)

and

ρvII
b (x) =


1
4

(
x
bc

)2
+ 1 ifx ∈ [0; 2bc) ;

x/(bc) if x ∈ [2bc;∞) ,
(17)

where c ∈ (0, 1] with c = 1 yielding the original parametrization in both cases. Specification vI

shifts the boundary regime below one and introduces a flexible quadratic middle part. In the

latter regime, for ρb(x) > x/b we have that x/b < ρvI
b (x) < ρb(x), if

x

b

2b− x
ρb(x)− x/b

< c < 1; x ∈ [2bc; 2b) , (18)

where ρb(x) is defined as in (8). Importantly, fulfilment of the condition implies that specification

vI is closer to the theoretically optimal situation with the mean of the kernel being at the

observation point as compared to the original modified gamma kernel. The second alternative,

vII, keeps two regimes and the general structure of the original specification but shrinks the

boundary region proportionally to the value of the tuning parameter c. This modification also

affects asymptotics in the interior of the support, as the mean of the kernel equals x/c and,

hence, only in the trivial case c = 1 coincides with the point of estimation.

Figure 4 shows plots of ρb(x) based on the specification proposed by Chen (2000) along

with the above refined versions for different values of the constant c and using the bandwidths

of two DGPs from the simulation study in Section 3. In addition, we include x/b, which

corresponds to the interior component of the original specification and implies a gamma kernel

with mean at the point of estimation. In its middle regime, ρvI
b is closer to x/b than the original

specification for c = 0.6 in the right and for both values of c in the left figure, as in these cases

condition (18) is satisfied. Close to the boundary, the shape function of specification vI takes

values below one, implying that the resulting gamma densities and thus, gamma kernels are

unbounded at the origin (see Figure 5). But the finite sample study below clearly reveals that

this specification outperforms the original modified and the refined version vII in all settings

where a modified gamma kernel should be applied.
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(a) b = 0.0091 (b) b = 0.0396

Figure 4: Shape Parameter ρb(x) of Modified Gamma Kernel
Black solid and short-dashed line: c = 0.6 and c = 0.05 for refined kernel vI (see (16)). Grey solid and
short-dashed line: c = 0.6 and c = 0.05 for refined kernel vII (see (17)). Black long-dashed line: original
modified kernel (see (8)). Grey long-dashed line: interior regime of original specification and refined
version vI, x/b. Bandwidths of the modified gamma kernel estimator for two DGPs from the simulation
study in Section 3 are used.

(a) b = 0.0091 (b) b = 0.0396

Figure 5: Gamma Kernel Depending on Shape Parameter
Gamma kernel Kγ

ρb(x),b
(u) for different values of shape parameter ρb. Black solid line: ρb = 0.5. Black

short-dashed line: ρb = 1. Black long-dashed line: ρb = 1.5. Grey solid line: ρb = 2. Bandwidths of the
modified gamma kernel estimator for two DGPs from the simulation study in Section 3 are used.
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For a feasible implementation of these refined estimators, we provide an automatic procedure

to select the tuning parameter c: for a fixed bandwidth b, we determine the threshold xc = b κ

for which the two MSE expressions of the modified gamma kernel in (10) coincide. Then the

optimal value of c can then be obtained as c∗ = κ/2 = xc/ (2 b). In practice, this approach

requires minimizing the objective function in 0 ≤ x ≤ 2 b

M(x) =

{[
ξb(x) bf ′X(x)

]2
+
fX(x)

nb
Cb(x)−

[
1

2
xf ′′X(x) b

]2

(19)

− fX(x)

2
√
π

(xb)−1/2 n−1

}2

.

Evaluation of the objective function requires estimates of the unknown density and its first

two derivatives. fX(x) and f ′X(x) = D(x) fX(x) can be estimated using the original modified

gamma kernel. An estimate of f ′′X(x) can be obtained by differentiating, e.g., the simple gamma

kernel estimator:

f̂ ′′γX (x) =
1

n b2

n∑
i=1

∂2

∂x2
Kγ
x/b+1,b (Xi) , (20)

=
1

n b2

n∑
i=1

Kγ
x/b+1,b (Xi)

{[
ln(Xi/b)− ψ(x/b+ 1)

]2

− ψ1(x/b+ 1)

}
,

where ψ(u) = (d/du) ln Γ(u) and ψ1(u) =
(
d2/du2

)
ln Γ(u) denote the digamma and

trigamma function, respectively.

3 Simulation Study

For a complete picture, we compare basic, modified and refined gamma kernel estimators for

a wide range of test densities representing all potential types of shapes near the boundary to

standard boundary corrected versions of the symmetric fixed kernel density estimator (1). This

also complements simulation studies in the literature for the two standard gamma kernels such

as Chen (2000) which only focusses on very specific density settings and Hagmann and Scaillet

(2007) which is restrictive in the range of fixed boundary kernel competitors.

All fixed kernels are based on the Epanechnikov kernelK(u) = 3/4(1− u2)1I(−1 ≤ u ≤ 1),

where 1I(·) denotes an indicator function limiting the support of K to [−1, 1]. In particular

we report results for the following five competing fixed kernel adjustments. The reflection
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estimator proposed by Schuster (1958) has the form

f̂Refl
X (x) =

∑
i=1

K

(
x−Xi

b

)
+K

(
x+Xi

b

)
. (21)

In the inside of the support for x ≥ 2h, it coincides with the standard kernel density estimator

f̂Fixed
X in (1). In the cut-and-normalized estimator f̂CaN

X introduced by Gasser and Müller (1979),

the kernel function K on the boundary is truncated at ν := x/b and normalized ensuring

integration to unity. For the Epanechnikov kernel, it has the form

KCaN (u) =

(
1− u2

)∫ ν
−1 (1− u2) du

1I{−1≤u≤ν} . (22)

General boundary corrected estimators f̂Bound
X (see, e.g., Jones, 1993) replace the standard kernel

function on the boundary by a modified version KBound, which is chosen to meet the following

conditions∫ 1

ν
KBound (u) du = 0,

∫ ν

−1
KBound (u) du <∞,

∫ ν

−1
KBound (u)u du = 0. (23)

We use the boundary kernel based on the Epanechnikov kernel, which has the following form

KBound (u) = 12
(1 + u)

(1 + ν)4

[
3ν2 − 2ν + 1

2
+ u (1− 2u)

]
1I{−1≤u≤ν}. (24)

A method that corrects for the possible negativity of the boundary kernel estimates was proposed

e.g. by Jones and Foster (1996). The estimator has the following form

f̂ JF
X (x) = f̂CaN

X (x) exp

{
f̂Bound
X (x)

f̂CaN
X (x)

− 1

}
. (25)

We compare the performance of the estimators for seven different density functions with

nonnegative support, which reflect the variety of practically relevant types of shapes on left-

bounded support. The densities of DGP 1 and DGP 2 are entirely decreasing and convex

with DGP 2 exhibiting pole behavior at zero. The remaining densities are increasing near the

boundary. For DGP 3 and 4, the density is locally convex in the boundary region, while for

5,6 and 7 it is concave with varying degree of steepness. The corresponding density shapes

are depicted in Figure 6. All DGPs are generated from different specifications of the flexible

generalized F distribution, which is based on a gamma mixture of the generalized gamma
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Table 1: Data Generating Processes for Simulation Study
DGPs are generated from i.i.d. samples of different specifications of the generalized F distribution (26).
We use the following tuples of shape parameters a, m and η. The scale parameter λ is chosen such that
the expectation of each DGP is normalized to one. Corresponding shapes of the densities are depicted in
Figure 6.

DGP a m η

1 1 1 ∞
2 0.9 0.7 1.2
3 14 0.2 0.5
4 35 0.08 0.1
5 0.8 2 ∞
6 0.55 3 5
7 5 0.3 ∞

(a) DGPs 1 to 4 (b) DGPs 5 to 7

Figure 6: Densities Corresponding to Different DGPs
Densities corresponding to tuples of shape parameters in Table 1. Left: DGP 1 (black solid), DGP 2
(black short-dashed), DGP 3 (black long-dashed) and DGP 4 (grey solid). Right: DGP 5 (black solid),
DGP 6 (black short-dashed) and DGP 7 (black long-dashed).

distribution (see, e.g., Lancaster, 1997). Its marginal density function is given by

fx(x) =
a xam−1 [η + (x/λ)a](−η−m) ηη

λam B(m, η)
, (26)

where a > 0,m > 0, η > 0 and λ > 0. B(·) describes the full Beta function with B(m, η) :=
Γ(m)Γ(η)
Γ(m+η) . Table 1 shows the values of the shape parameters a, m and η for the seven DGPs

considered. To ensure comparability across the different DGPs, the expectation is restricted to

one by setting the scale parameter λ equal to

λ−1 = η−1/a Γ(m) Γ(η)

Γ(m+ 1/a) Γ(η − 1/a)
. (27)
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Table 2: Bandwidths
Bandwidths chosen by minimizing the mean integrated squared error (28) using simulated samples with
n = 200. The following estimators are used. Gamma and Gammamod: basic and modified gamma kernel
estimator. Fixed: fixed kernel estimator based on the epanechnikov kernel. Refl: reflection estimator.
CaN: cut-and-normalized estimator. Bound: boundary kernel estimator. JF: Jones-Foster estimator.

Est. DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7
n = 400

Gam 0.0768 0.0042 0.0096 0.0088 0.0571 0.0319 0.0308
Gamm 0.1163 0.0166 0.0099 0.0091 0.0634 0.0396 0.0336
Fixed 0.1821 0.0176 0.2058 0.1820 0.2678 0.0888 0.4015
Refl 0.4643 0.0391 0.2054 0.1818 0.3569 0.2144 0.3609
CaN 0.4223 0.0307 0.2044 0.1808 0.4308 0.1868 0.3494
Bound 0.7471 0.0086 0.2064 0.1825 0.3824 0.3141 0.4024
JF 0.4223 0.0307 0.2044 0.1808 0.4308 0.1868 0.3494

n = 4000

Gam 0.0485 0.0027 0.0061 0.0055 0.0360 0.0201 0.0195
Gamm 0.0734 0.0104 0.0062 0.0058 0.0400 0.0250 0.0212
Fixed 0.1149 0.0111 0.1299 0.1148 0.1689 0.0561 0.2533
Refl 0.2930 0.0247 0.1296 0.1147 0.2252 0.1353 0.2277
CaN 0.2664 0.0194 0.1290 0.1141 0.2718 0.1179 0.2204
Bound 0.4714 0.0054 0.1302 0.1152 0.2413 0.1982 0.2539
JF 0.2664 0.0194 0.1290 0.1141 0.2718 0.1179 0.2204

From each DGP, we draw 1000 random samples {Xi}ni=1 of size n = 400 and n = 4000.

To minimize the effects of sampling variation, we follow Zhang (2010) and select the optimal

bandwidth for each estimator and DGP by minimizing the integrated mean squared error (IMSE)

IMSE
{
f̂X(x)

}
=

1

1000

1000∑
r=1

∫ ∞
τ

{
fX(x)− f̂ rX(x)

}2
dx, (28)

where τ is a small number and f̂ rX(x) denotes the density estimate for the rth simulated

sample. Bandwidth selection is conducted using the sample size nb = 200, which requires

multiplying the resulting bandwidths by the factor (n/nb)
−1/5 for the subsequent analysis. The

rescaled bandwidths for n = 400 and n = 4000 are reported in Table 2. The two gamma

kernel estimators estimators exhibit noticeably smaller bandwidths in comparison to the other

estimators, which can be explained by the reduced variance of the former in the interior part of

the support.

Table 3 and 4 report the IMSEs of the different estimators for the seven DGPs and two

samples sizes. IMSEs are computed over the interval [0, 2]. For DGPs 3 to 7, we additionally

consider shorter intervals that encompass and exclude the mode of the distribution, respectively.

Four major results are apparent. First, in a general comparison with the standard fixed kernel
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adjustments, gamma kernel estimators appear to offer a satisfactory performance. They are

clearly more precise for DGPs 2, 5 and 6, while yielding similar (or only slightly higher) IMSEs

in the remaining cases. In particular, the single largest improvement in favor of the (basic)

gamma kernel is achieved in the pole scenario of DGP 2. Note that when the applied polynomial

transformation for the method of Marron and Ruppert (1994) was close to the true pole behavior,

we could also construct a fixed kernel estimator with a similar or even better precision for DGP

2. Corresponding results, however, were not robust to deviations of the transformation from the

true density shape near zero implying a high risk of extremely large IMSEs in practice. Due to

the tailored construction of the above method for pole situations only, also the IMSE records for

any other form of the density were largely inferior to the rest. We therefore do not report results

for this estimator.

Second, the simulation evidence confirms the relationship between the performance of the

basic and modified gamma kernel estimator and the shape of the underlying density. If the latter

has first and second derivatives of opposing sign in the interior of the support, as is the case for

DGPs 3, 4, 6 and 7 in the subinterval to the right of the mode, the basic gamma kernel yields

noticeably lower IMSEs (see bottom panel). When considering the entire interval [0, 2], the

basic gamma kernel is more precise for DGPs 2 and 6 with the most striking gains occurring in

the former scenario, as it corresponds to a globally convex density with pole at zero. Finally,

the above relation breaks down within the boundary region due to the involvement of the factor

ξb(x) in the asymptotic bias (see (9)). For DGPs 5 and 6, the modified gamma kernel implies

lower IMSEs over the leftmost subinterval in which the corresponding densities are increasing

and concave (see lower top panel).

The simulation results stress the importance of determining pole situations in advance, which

can be achieved by examining the normalized density derivative D(x) in the boundary region.

We estimate the latter as in (15) using the modified gamma kernel for the points x ∈ {0, b, 2b},
where b is the bandwidth of the corresponding estimator. Table 5 reports descriptive statistics of

the estimates for n = 400. In case of DGP 2, these estimates are highly negative at all three

points, demonstrating that our simple method is able to detect a pole at zero. We obtain negative

estimates at all or at distinct points also for DGPs 1 and 6 but their magnitude is considerably

lower than in the above true pole scenario.

As was argued in Section 2.2, whenever no pole situation has been detected, the modified

gamma kernel in its original or refined form should be used. The IMSEs of the three correspond-

ing estimators are displayed in Table 6. For the refined kernels vI and vII, a set of values for the

threshold c is considered. To ensure comparability, we apply the bandwidths b of the original

modified gamma kernel to all estimators and also use 2b as the upper integration limit in the

IMSE calculations. The main finding is that the refined kernel vI, exhibits a high precision in all
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Table 3: Integrated Mean-Squared Errors (n=400)
For DGP 3, 4 and 7, limits x1 and x2 are chosen such that [x1, x2] encompasses the mode.
x1 ∈ {0.888, 0.600, 0.500} and x2 ∈ {1.292, 1.090, 1.700}. For DGP 5 and 6, x1 = x2 is chosen
such that [0, x1] includes the mode, where x1 = x2 ∈ {0.600, 0.200}. The following estimators are
used. Gamma and Gammamod: basic and modified gamma kernel estimator. Fixed: fixed kernel estimator
based on the epanechnikov kernel. Refl: reflection estimator. CaN: cut-and-normalized estimator. Bound:
boundary kernel estimator. JF: Jones-Foster estimator. Results are re-scaled by the factor 103.

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7
0 ≤ x ≤ 2

Gamma 4.185 75.151 8.857 9.759 5.828 14.572 5.286
Gammamod 3.575 279.733 8.720 9.623 5.422 14.879 4.575
Fixed 17.659 287.118 7.293 8.63 7.182 26.125 3.462
Refl 3.854 320.621 7.309 8.645 9.815 16.738 4.943
CaN 4.171 177.666 7.340 8.67 10.16 17.46 5.308
Bound 3.039 356.335 7.279 8.621 6.651 18.096 3.594
JF 4.259 923.101 7.274 8.612 7.235 17.629 3.792

0 ≤ x ≤ x1
Gamma 2.880 1.729 4.691 11.902 1.804
Gammamod 2.553 1.502 4.330 11.59 1.501
Fixed 2.015 1.125 4.991 17.248 0.934
Refl 2.037 1.143 8.285 13.032 2.309
CaN 2.083 1.178 8.956 13.339 2.619
Bound 1.993 1.109 5.25 14.616 1.066
JF 2.017 1.120 6.030 13.508 1.104

x1 ≤ x ≤ x2
Gamma 4.702 6.416 3.224
Gammamod 4.304 6.038 2.549
Fixed 3.788 5.316 2.190
Refl 3.783 5.312 2.303
CaN 3.770 5.295 2.358
Bound 3.796 5.326 2.189
JF 3.770 5.295 2.358

x2 ≤ x ≤ 2

Gamma 1.220 1.573 1.136 2.670 0.258
Gammamod 1.806 2.039 1.092 3.289 0.525
Fixed 1.433 2.134 2.190 8.877 0.339
Refl 1.432 2.136 1.530 3.706 0.330
CaN 1.431 2.141 1.204 4.122 0.331
Bound 1.434 2.131 1.401 3.479 0.339
JF 1.431 2.141 1.204 4.122 0.331
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Table 4: Integrated Mean-Squared Errors (n=4000)
For DGP 3, 4 and 7, limits x1 and x2 are chosen such that [x1, x2] encompasses the mode.
x1 ∈ {0.888, 0.600, 0.500} and x2 ∈ {1.292, 1.090, 1.700}. For DGP 5 and 6, x1 = x2 is chosen
such that [0, x1] includes the mode, where x1 = x2 ∈ {0.600, 0.200}. The following estimators are
used. Gamma and Gammamod: basic and modified gamma kernel estimator. Fixed: fixed kernel estimator
based on the epanechnikov kernel. Refl: reflection estimator. CaN: cut-and-normalized estimator. Bound:
boundary kernel estimator. JF: Jones-Foster estimator. Results are re-scaled by the factor 103.

Estimator DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7
0 ≤ x ≤ 2

Gamma 1.011 21.601 2.246 2.758 2.069 6.924 1.218
Gammamod 0.679 161.086 2.237 2.76 1.734 7.307 0.986
Fixed 8.122 46.145 1.331 1.683 1.960 8.504 0.734
Refl 0.803 154.026 1.332 1.684 4.415 10.797 1.203
CaN 0.890 56.600 1.334 1.682 5.443 10.075 1.318
Bound 0.471 62.457 1.329 1.684 2.106 10.593 0.684
JF 0.585 616.087 1.327 1.676 2.663 8.142 0.721

0 ≤ x ≤ x1
Gamma 0.450 0.271 1.831 6.484 0.322
Gammamod 0.349 0.207 1.532 6.567 0.216
Fixed 0.360 0.193 1.592 7.029 0.267
Refl 0.362 0.194 4.149 10.148 0.723
CaN 0.367 0.198 5.227 9.364 0.830
Bound 0.357 0.191 1.859 9.886 0.216
JF 0.360 0.192 2.447 7.431 0.234

x1 ≤ x ≤ x2
Gamma 1.495 2.200 0.826
Gammamod 1.337 2.055 0.567
Fixed 0.721 1.118 0.405
Refl 0.720 1.116 0.421
CaN 0.717 1.11 0.430
Bound 0.722 1.121 0.405
JF 0.717 1.110 0.430

x2 ≤ x ≤ 2

Gamma 0.293 0.281 0.238 0.440 0.071
Gammamod 0.542 0.488 0.202 0.741 0.202
Fixed 0.239 0.361 0.369 1.475 0.062
Refl 0.239 0.361 0.266 0.650 0.058
CaN 0.239 0.362 0.216 0.711 0.058
Bound 0.239 0.361 0.247 0.706 0.062
JF 0.239 0.362 0.216 0.711 0.058
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Table 5: Summary Statistics of Normalized Density Derivative
Descriptives for estimate of the ratio D(x) := f ′(x) /f(x) based on the modified gamma kernel. The
estimator from equation (15) is used. n = 400.

x DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7
Mean

0 -0.226 -13.982 73.923 80.433 1.899 1.265 4.71
b -0.711 -27.341 182.844 205.189 3.26 0.756 8.741
2b -0.941 -23.57 185.301 198.408 1.892 -1.558 6.763

1st Quartile

0 -0.399 -15.110 67.995 73.900 1.473 0.737 2.707
b -1.017 -29.185 165.094 184.470 2.467 -0.257 4.562
2b -1.180 -25.188 161.913 172.373 1.247 -2.386 3.800

Median

0 -0.220 -13.928 75.557 82.861 1.922 1.284 4.89
b -0.727 -27.382 187.737 212.998 3.209 0.710 8.395
2b -0.939 -23.557 191.768 208.193 1.865 -1.568 6.629

3rd Quartile

0 -0.059 -12.794 81.790 89.863 2.350 1.798 7.020
b -0.421 -25.602 206.611 235.238 4.025 1.764 12.854
2b -0.703 -21.906 216.830 236.042 2.493 -0.786 9.496

situations, for which the modified kernel should be considered, i.e. all DGPs except the second

one. The improvement with respect to the original specification is particularly pronounced,

accompanied by low optimal values of the constant c, in case of densities with concave shape

near the boundary, as in DGPs 5,6 and 7. Further, the refined kernel vII is at roughly the same

level as the traditional parameterization and even yields the lowest IMSE for DGP 1 when

n = 400. However, recall that this specification makes the boundary region smaller and has

neither its mean nor mode at the point of estimation for x > 2bc (see Section 2.3). These

properties cause a vastly lower precision compared to the other specifications in the interior part

of the support. Corresponding simulation results are available upon request.

Finally, Table 6 shows that the performance of the refined modified gamma kernel estimators

is highly dependent on the value of the threshold c. This is underlined by Figure 7, which depicts

plots of the root mean squared errors (RMSEs) of the estimators based on the original modified

gamma kernel and the refined version vI for several values of c. The plots also illustrate that

the choice of c determines for which part of the support the original estimator can or cannot

be outperformed. E.g. in case of DGP 4, specification vI almost consistently exhibits lower

RMSEs for c = 0.6 or c = 0.1, while providing precise estimates only in a small neighborhood

of x = 0 if c = 0.01.
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Table 6: Integrated MSE for refined Modified Gamma KDE vI & vII
Refined modified gamma kernel estimators as defined in (7) and (16) or (17). c = 1∗ denotes original
modified gamma kernel from (7) and (8). IMSEs are computed from 0 to 2b. Bandwidths of the original
modified gamma kernel are used. Results for n = 400 and n = 4000 are rescaled by the factor 104 and
105, respectively.

c DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7
n = 400

1∗ 18.230 1971.501 0.005 0.009 24.452 99.402 2.713

v I

0.9 18.389 2238.201 0.005 0.008 22.112 98.176 2.555
0.8 18.927 3280.673 0.005 0.008 19.936 97.139 2.416
0.7 19.976 6045.533 0.004 0.007 17.94 96.462 2.299
0.6 21.776 13836.526 0.004 0.007 16.123 96.310 2.201
0.3 39.301 16309119 0.004 0.007 11.443 96.476 1.991
0.1 74.542 3193544.7 0.004 0.007 9.150 69.093 1.872
0.05 99.107 29681669 0.004 0.007 18.179 45.087 2.162
0.01 623.499 3640.61 0.008 0.012 72.511 144.333 10.431

v I
I

0.9 17.878 1453.286 0.006 0.01 23.301 97.185 2.722
0.8 18.157 1040.206 0.007 0.011 22.507 95.373 2.78
0.7 19.768 837.209 0.008 0.013 22.47 94.715 2.937
0.6 24.05 996.348 0.009 0.015 23.755 96.878 3.285
0.3 104.500 6653.866 0.027 0.042 43.068 195.018 8.734
0.1 629.167 24190.131 0.364 0.530 81.172 874.974 48.989
0.05 1115.938 32319.507 3.483 5.224 170.476 1460.694 105.8
0.01 1688.05 38771.282 69.245 70.217 321.568 2185.416 48.598

n = 4000

1∗ 25.397 10185.573 0.002 0.002 94.207 594.231 5.050

v I

0.9 23.982 16235.41 0.002 0.002 80.85 562.997 4.439
0.8 23.446 29262.905 0.002 0.001 68.844 533.361 3.912
0.7 24.057 55516.877 0.001 0.001 58.242 506.235 3.472
0.6 26.498 110274.880 0.001 0.001 49.013 483.124 3.115
0.3 109.444 16058082 0.001 0.001 27.206 431.343 2.493
0.1 721.532 561573.060 0.001 0.001 11.743 283.302 2.029
0.05 740.051 57227048 0.001 0.001 31.993 131.333 2.011
0.01 1716.071 6091.886 0.002 0.002 523.996 244.364 16.592

v I
I

0.9 25.709 5653.425 0.002 0.002 88.817 571.585 5.026
0.8 27.903 2185.219 0.002 0.002 86.931 550.769 5.212
0.7 33.997 682.415 0.003 0.003 91.895 534.382 5.827
0.6 47.993 2474.760 0.003 0.003 108.945 526.934 7.271
0.3 306.934 53804.758 0.009 0.011 334.800 750.698 31.256
0.1 2502.053 207647.900 0.145 0.209 634.147 3412.288 212.589
0.05 5517.404 277217.360 1.424 2.168 757.340 6670.104 540.434
0.01 10682.698 335603.280 373.201 424.930 1566.361 12161.535 433.552
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(a) DGP 1 (b) DGP 4

(c) DGP 5 (d) DGP 6

Figure 7: RMSE of Refined Modified Gamma KDE vI
Refined modified gamma kernel vI as defined in (7) and (16). Black solid line: c = 0.6. Black short-
dashed line: c = 0.1. Black long-dashed line: c = 0.01. Grey solid line: c = 1∗ (original modified
gamma kernel). n = 400. Bandwidths of the original modified gamma kernel are used.
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(a) DGP 4 (b) DGP 5

(c) DGP 6 (d) DGP 7

Figure 8: Objective Function for Choice of c
Mean (black solid), median (grey solid), first (black long-dashed) and third (black short-dashed) quartile
of (transformed) objective function for choice of the constant c in the refined modified gamma kernel
vI as defined in (7) and (16). The transformed objective function is Q(c) :=M(2bc), whereM(x) is
given in (19) and b denotes the bandwidth of the original modified gamma kernel. n = 400.

Since, in practice, the constant c has to be chosen ex-ante, we examine how well the data-

driven method introduced in Section 2.3 can “track” the optimal values according to Table 6.

We estimate the unknown quantities entering the objective function (19) as was outlined above.

Figure 8 displays averages, medians and quartiles of the resulting estimates of the (transformed)

objective function Q(c) :=M(2bc), where b is the bandwidth of the modified gamma kernel.

A comparison with the IMSEs from Table 6 shows that for DGPs 5, 6 and 7 the means, in

particular, have local minima close to the values of c yielding the lowest IMSEs of the estimator

based on the refined modified kernel vI. For DGP 4, finding a unique minimum is more difficult,

which corresponds to the fact that several values of c imply equal IMSEs. These results suggest

that, if suitable starting values are chosen, the above approach can determine the optimal value

of c with reasonable precision.
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4 Application: Intraday Trading Volumes and Return Volatility

To demonstrate the practical relevance of the above methodology, we employ the latter to com-

pute semiparametric estimates of the conditional distributions of high-frequency trading volumes

and return volatilities of stocks traded at the New York Stock Exchange (NYSE). Modeling

high-frequency trading volumes is, for instance, relevant for trading strategies replicating the

(daily) volume weighted average price (VWAP). Estimates of conditional volatility distributions

are crucial for the pricing of volatility derivatives. Examples include options and futures on the

CBOE Volatility Index (VIX) trading at the Chicago Board Options Exchange (CBOE).

4.1 Modeling Intraday Trading Volumes

We consider transaction data for Citigroup from the last trading week of February 2009. The raw

sample is filtered by deleting transactions that occurred outside regular trading hours from 9:30

am to 4:00 pm, computing cumulated trading volumes over 15 second intervals and removing

zero observations, which yields a sample size of 7452.1 To capture the well-known intraday

seasonalities of high-frequency trading variables (see, e.g., Hautsch (2004) for an overview), we

divide the cumulated volumes by a seasonality component which is pre-estimated employing a

cubic spline function.

An important property of the resulting (deseasonalized) trading volumes is the strong

persistence, as evidenced by the highly significant Ljung-Box statistics in Table 7. The most

widely-used parametric framework for this type of data, see, e.g., Brownlees et al. (2010), is

the multiplicative error model (MEM) originally proposed by Engle (2002). Accordingly, we

decompose the t-th trading volume, x(v)
t , as

x
(v)
t = µ

(v)
t ε

(v)
t , ε

(v)
t ∼ i.i.d. D(1) , (29)

where µ(v)
t denotes the conditional mean given the past information set F (v)

t−1 and is assumed

to evolve according to the dynamics described in Appendix A. ε(v)
t is a disturbance following

an unspecified distribution D(1) with positive support and E
[
ε

(v)
t

]
= 1. Assuming MEM-

type dynamics would allow to apply gamma kernel estimators to trading volumes directly

and estimate their unconditional density fx
(
x

(v)
t

)
consistently (see Bouezmarni and Rombouts,

2010). Our object of interest, the conditional density given the past information set F (v)
t−1, can

be estimated semiparametrically in a straightforward way, as the MEM structure implies the

1For a detailed discussion of the treatment of zero observations in the context of financial high-frequency data, see
Hautsch et al. (2010).
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Table 7: Ljung-Box Statistics for Intraday Trading Volume and Realized Kernel Estimates
Q(l): Ljung-Box statistic associated with l lags. The 5% (1%) critical values associated with lag lengths
20, 50 and 100 are 31.41 (37.57), 67.51 (76.15) and 124.34 (135.81). We consider deseasonalized
nonzero 15-Second trading volumes of Citigroup and realized kernel (RK) estimates for JP Morgan.

Volume RK
Q(20) 10349.281 5045.309
Q(50) 19447.096 9834.944
Q(100) 31353.699 14012.591

basic relationship

fx
(
x

(v)
t |F

(v)
t−1

)
= fε

(
x

(v)
t /µ

(v)
t

)
/µ

(v)
t . (30)

We consider a two-step approach. First, we estimate µ(v)
t by exponential QML and generate

residuals ε̂(v)
t := x

(v)
t /µ̂

(v)
t , which are consistent estimates of the i.i.d errors ε(v)

t (see, e.g.,

Drost and Werker, 2004). Second, we estimate fε
(
x

(v)
t /µ

(v)
t

)
nonparametrically employing

gamma kernels. The consistency and parametric rate of convergence of the conditional mean

estimates enable us to use the MEM residuals as inputs without affecting the asymptotics of the

kernel density estimators.

Nonparametric estimation of the error density requires the choice of the appropriate type of

gamma kernel, i.e. basic or modified in the original and refined version (specification vI). To

ensure comparability and boundary regions of equal size, we consider the least-squares cross-

validation (LSCV) bandwidth of the basic gamma kernel estimator in all cases. In particular, we

use the bandwidth b∗ that minimizes a nearly unbiased estimate of the integrated mean-squared

error, i.e.

CV (b) =
1

n2

∑
i

∑
j

∫ ∞
τ
Kγ
x/b+1,b

(
ε̂

(v)
i

)
Kγ
x/b+1,b

(
ε̂

(v)
j

)
dx (31)

− 2

n (n− 1)

∑
i

∑
j 6=i

Kγ
xi/b+1,b

(
ε̂

(v)
j

)
,

which yields the bandwidth b∗ = 0.0118. See Hjort and Glad (1995) for details on (nearly)

unbiased cross-validation. Further, we estimate the normalized density derivative D
(
ε

(v)
t

)
for

ε
(v)
t ∈ {0, b∗, 2b∗} as in (15) based on the modified gamma kernel. The corresponding results

in Table 8 show that two out of three estimates are considerably negative, which indicates

a possible pole situation and suggests the use of the basic gamma kernel. Figure 9 displays

estimates of the error density fε
(
ε

(v)
t

)
based on the basic and, for comparison, modified gamma

kernel for the boundary region and a larger part of the support. While for both density estimates,

the probability mass is quite concentrated close to the origin, the basic gamma kernel, being the
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Table 8: Estimates of Normalized Density Derivative for MEM Errors Based on Intraday Trading
Volume and Realized Kernel Values
Estimates of the ratio D

(
ε
(m)
t

)
:= f ′ε

(
ε
(m)
t

)
/fε
(
ε
(m)
t

)
, m = v, rk, based on the modified gamma kernel

in the boundary region as in (15). ε(m)
t are errors from the MEM structure (29) fitted to deseasonalized

nonzero 15-second trading volumes of Citigroup and realized kernel (RK) estimates for JP Morgan. b∗

is LSCV bandwidth of the basic gamma kernel estimator: 0.0118 for trading volumes and 0.0206 for
realized kernel estimates.

ε
(m)
t Volume RK

0 0.293 26.283
b∗ -10.100 59.915
2b∗ -14.399 53.235

(a) Full Support (b) Boundary

Figure 9: Estimates of MEM Error Density for Intraday Trading Volumes (Citigroup)
Estimates of the density fε

(
ε
(v)
t

)
from the MEM structure (29) fitted to deseasonalized nonzero 15-second

trading volumes of Citigroup. Black solid line: basic gamma kernel. Grey solid line: modified gamma
kernel. LSCV bandwidth of the basic gamma kernel, b∗ = 0.0118, is used for both estimators.

method of choice, yields an estimate that lies clearly below the density implied by the modified

kernel for the major part of the boundary region.

Finally, Figure 10 shows estimates of the conditional density of trading volumes for February

26 and 27, 2009, at 11am EST. On the latter day, Citigroup announced that the US treasury

would be taking a major equity stake in the company, while the former day is included for

comparison. As an alternative to the semiparametric approach, the plot also features the

conditional density implied by maximum likelihood estimates of the MEM (29) assuming that

the errors follow the widely-used gamma distribution (e.g. Engle and Gallo, 2006). The impact

of the announcement on trading activity related to the Citigroup stock is clearly visible, as

the conditional volume distribution for February 27 assigns considerably less weight to small

transactions. The semiparametric density estimates and their parametric counterparts are quite

close to each other in the interior of the support. The major difference occurs at the origin where

the parametric densities exhibit a pole, which is not the case for the semiparametric estimates.
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(a) Full Support (b) Boundary

Figure 10: (Semi-)Parametric Conditional Density of Intraday Volumes (Citigroup)
Conditional densities at t given past information F (v)

t−1 based on the MEM structure (29) and the
relationship (30). Parametric estimates (dashed lines) are implied by a ML approach assuming gamma
distributed errors ε(v)t . Semiparametric estimates (solid lines) rely on QML estimates of µ(v)

t and
nonparametric estimates of fε

(
x
(v)
t /µ

(v)
t

)
using the basic gamma kernel. Conditional densities are

estimated for 11am EST on February 26 (black lines) and February 27, 2009 (grey lines).

4.2 Forecasting Realized Volatility

Realized volatility measures computed from high-frequency data allow to construct more

accurate estimates of the underlying lower frequency volatility (see, e.g., Andersen et al., 2010).

We employ mid-quotes for JP Morgan from January 2006 to December 2009, which corresponds

to 983 trading days, and clean the raw data as suggested in Barndorff-Nielsen et al. (2008b).

The realized volatility for day t is simply defined as the sum of squared (mid-quote) returns ri,t,

i = 1, . . . , Nt. Barndorff-Nielsen and Shephard (2002) show that, in the absence of noise and

with the number of intraday returns approaching infinity, this basic estimator is consistent for

the latent integrated volatility, which under regularity conditions provides an unbiased measure

of the conditional variance of (daily) returns. In practice, observed prices are contaminated by

microstructure effects causing an inconsistency of the basic realized volatility estimator (e.g.

Hansen and Lunde, 2006). Hence, we consider the noise-robust realized kernel estimator, which

was proposed by Barndorff-Nielsen et al. (2008a) and takes the form

x
(rk)
t := γ0 +

H∑
h=1

k

(
h− 1

H

)
(γh + γ−h) , γh :=

n∑
i=1

ri,tri−h,t, (32)

where k(·) is the Parzen kernel and H the bandwidth.2 Since (filtered) realized kernel estimates

are used as inputs for kernel density estimators below, the two bandwidths involved have to

2The number of returns used for the computation of the realized kernel, n, is lower than the total number of
observations Nt due to the so-called jittering procedure. See Barndorff-Nielsen et al. (2008a) for details.
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(a) Full Support (b) Boundary

Figure 11: Estimates of MEM Error Density for Realized Kernel Estimates (JP Morgan)
Estimates of the density fε

(
ε
(rk)
t

)
from the MEM structure (29) fitted to realized kernel estimates for JP

Morgan. Black solid line: basic gamma kernel. Grey solid line: modified gamma kernel. Black dashed
line: refined modified gamma kernel vI. LSCV bandwidth of the basic gamma kernel, b∗ = 0.0206, is
used for all estimators.

be balanced in a way similar to Corradi et al. (2009), who propose nonparametric conditional

density estimators for the integrated volatility. We ensure that their assumption A.1 is met by

choosing H as in section 4.3 of Barndorff-Nielsen et al. (2008a).3

Table 7 shows that the realized kernel estimates exhibit a similar persistence as trading

volumes, which we account for by following Engle and Gallo (2006) and imposing a flexible

MEM structure. Hence, we model the realized kernel value for day t, x(rk)
t , analogously to

(29), where the assumptions for the errors ε(rk)
t remain the same, while a slightly different

specification is chosen for the conditional mean µ(rk)
t (see Appendix A). We compute semi-

parametric estimates of the conditional density fx
(
x

(rk)
t |F (rk)

t−1

)
using the same approach as in

Section 4.1, which in the given application, can be considered as a simple alternative to the fully

nonparametric procedure proposed in Corradi et al. (2009). As Table 8 reports, the estimates of

the normalized density derivative for the MEM errors are consistently positive indicating that

the corresponding density should be estimated using a modified gamma kernel. Thus, we first

determine the optimal value of the constant c for the refined specification vI by minimizing the

objective function (19). We compute the required pilot estimates of the unknown density and its

first two derivatives as outlined in Section 2.3, which yields the threshold c∗ = 0.0863.

Estimates of the MEM error density implied by all three types of gamma kernels considered

are displayed in Figure 11 and indicate the following major results. First, as compared to the

error density based on trading volumes in Figure 9, the mode of the distribution is further to

the interior of the support. Second, the density exhibits a similar degree of right-skewness

3To estimate the so-called noise-to-signal ratio, we follow Barndorff-Nielsen et al. (2008b).
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(a) Full Support (b) Boundary

Figure 12: (Semi-)Parametric Conditional Density of Realized Kernel Estimates (JP Morgan)
Conditional densities at t given past information F (rk)

t−1 based on the MEM structure (29) and the
relationship (30). Parametric estimates (dashed lines) are implied by a ML approach assuming gamma
distributed errors ε(rk)t . Semiparametric estimates (solid lines) rely on QML estimates of µ(rk)

t and
nonparametric estimates of fε

(
x
(rk)
t /µ

(rk)
t

)
using the refined modified gamma kernel vI. Conditional

densities are estimated for October 10 (grey lines) and November 10, 2008 (black lines). Realized kernel
estimates are annualized.

as was reported for the unconditional distribution of realized volatilities by Andersen et al.

(2001). Finally, the density estimate based on the refined modified kernel tends to zero when

approaching the boundary, instead of taking a strictly positive value at ε(rk)
t = 0. This effect is

caused by the low value of the threshold c∗, which pushes the shape parameter ρvI
b

(
ε

(rk)
t

)
below

one when smoothing at the boundary (see eq. (16)). A distribution of stock return volatility with

vanishing probability mass close to the boundary is in line with financial theory, since stocks

are “risky” assets for which investors demand a volatility premium (e.g. Merton, 1973).

Figure 12 displays conditional density estimates of realized kernel values for two days

during the financial crisis 2007 – 2008: October 10, 2008, when the DJIA index fell by 8% at

the start of the trading day, and November 10, 2008, when a major restructuring of the AIG

bailout plan was announced. The density estimates are based on our semiparametric procedure

using the refined modified gamma kernel and the parametric approach from Section 4.1. Except

for some discrepancies around the mode and in the boundary region, the parametric estimates

roughly match the semiparametric ones indicating that the gamma distribution is a reasonable

assumption for the MEM errors. With respect to dynamic changes, the conditional densities

reflect the more unstable market environment on October 10, when the volatility distribution

has its mode further away from the origin and is more dispersed. Further, as in case of the

unconditional error density, the probability mass is vanishing close to the boundary for both

days and estimators considered.
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5 Conclusion

Gamma kernel estimators vary their shape according to the point of estimation along the

support. For positive random variables, this location adaptiveness thus avoids the boundary

bias of standard fixed kernel estimators while yielding strictly nonnegative density estimates by

construction. We show for various density shapes that in finite samples the two original gamma

kernel estimators outperform all boundary and boundary corrected fixed kernel type estimators

at the boundary, in particular for settings with a large probability mass close to zero. For all

other setups and in the interior of the support, their finite sample performance is comparable to

the one of fixed type boundary kernels. Moreover, with asymptotic considerations and finite

sample illustrations we find that for pole situations at zero, the two gamma kernel estimators

differ substantially. In fact the standard type is superior to the generally used modified version

in this case. We therefore suggest a simple criterion to check for such situations. For all other

settings, we propose a refined modified version of the gamma kernel estimator, which further

improves upon the performance of the modified gamma kernel. Our technique is complemented

by a data-driven way for choosing the specification parameters in the new refined gamma kernel.

In two application settings, we demonstrate that, in particular in high-frequency finance, the

suggested methodology yields superior results of practical impact.
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A MEM Specifications

For trading volumes, we specify the conditional mean µ(v)
t in (29) using the logarithmic MEM

proposed by Bauwens and Giot (2000). The latter does not require parameter constraints to

ensure the positivity of µ(v)
t and implies

lnµ
(v)
t = ω +

p∑
i=1

αi lnx
(v)
t−i +

q∑
i=1

βi lnµ
(v)
t−i, (33)

where the lag structure is chosen according to the Schwartz information criterion (SIC).

In case of volatilities, we consider (33) with p = 1 but augmented by the lags of (logarithmic)

weekly and monthly realized kernel estimates, which are defined as the averages

x
(rk)
t,w =:

1

5

4∑
j=0

x
(rk)
t−j and x

(rk)
t,m =:

1

20

19∑
j=0

x
(rk)
t−j . (34)

This extension is motivated by the widely-used heterogenous autoregressive (HAR) model for

realized volatilities proposed by Corsi (2009) and yields

lnµ
(rk)
t = ω + αd lnx

(rk)
t−1 + αw lnx

(rk)
t−1,w + αm lnx

(rk)
t−1,m +

q∑
i=1

βi lnµ
(rk)
t−i , (35)

where q is determined using the SIC.
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