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Modeling Time-Varying Dependencies between
Positive-Valued High-Frequency Time Series

Nikolaus Hautsch, Ostap Okhrin and Alexander Ristig

Abstract Multiplicative error models (MEM) became a standard tool for model-
ing conditional durations of intraday transactions, realized volatilities and trading
volumes. The parametric estimation of the corresponding multivariate model, the
so-called vector MEM (VMEM), requires a specification of the joint error term
distribution, which is due to the lack of multivariate distribution functions on Rd

+

defined via a copula. Maximum likelihood estimation is based on the assumption
of constant copula parameters and therefore, leads to invalid inference, if the de-
pendence exhibits time variations or structural breaks. Hence, we suggest to test
for time-varying dependence by calibrating a time-varying copula model and to re-
estimate the VMEM based on identified intervals of homogenous dependence. This
paper summarizes the important aspects of (V)MEM, its estimation and a sequen-
tial test for changes in the dependence structure. The techniques are applied in an
empirical example.

Keywords: vector multiplicative error model, copula, time-varying copula, high-
frequency data
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1 Multiplicative error models

MEMs are frequently applied to describe autocorrelated positive-valued processes.
The multiplicative structure became popular in the context of (G)ARCH models, see
[8, 2]. [9] adopted this multiplicative approach to analyze the conditional duration
of irregularly spaced financial transaction data under the assumption that the error
term follows an Exponential or Weibull distribution. This extends directly to MEMs,
when other positive-valued random variables such as, e.g., trading volumes, are con-
sidered. As stressed by [9], a joint model including volumes, transaction prices and
time variations in liquidity gives a better understanding of the fundamental mecha-
nisms of stock markets than individual univariate analyses.

1.1 Univariate MEM

Let xi be a non-negative univariate time series, with time index i = 1, . . . ,n. The
univariate MEM is defined as

xi = µi εi (1)

µi
def
= E(xi|Fi−1;ξ ) ,

where ξ denotes an m-dimensional vector of parameters and the scale factor µi is
assumed to be measurable with respect to the information set Fi−1. Furthermore,
assume that εi follows an iid process with E(εi) = 1 and density f (·). The condi-
tional mean can be specified in several ways, e.g.,

µi = ω +
P

∑
j=1

α jxi− j +
Q

∑
j=1

β jµi− j, (2)

with ω ≥ 0, α j ≥ 0 and β j ≥ 0, ∀ j, ξ = (ω,α1, . . . ,αP,β1, . . . ,βQ)
>. Based on the

filters φ (L) = ∑
R
j=1 φ jL j = ∑

R
j=1 (α j +β j)L j, β (L) = ∑

Q
j=1 β jL j and the martingale

difference series ηi = xi−µi, (2) can be transformed to an ARMA(R,Q) model

xi = ω +φ (L)xi +{1−β (L)}ηi, (3)

where R = max(P,Q) and L denotes the lag operator with L jxi = xi− j. Accord-
ing to standard time series arguments, (3) is guaranteed to be weakly stationary, if
∑

P
j=1 α j+∑

Q
j=1 β j < 1. Given the above set of assumptions, we implicitly assume an

exponential decay of the autocorrelation function ρ(·), i.e., liml→∞ ∑
l
j=−l |ρ ( j)| <

∞. However, in case of financial high-frequency data this assumption is often not
fulfilled.

As such data typically reveal long memory, we provide a short review of the
fractionally integrated MEM (FIMEM), which allows the autocorrelation function



Modeling Time-Varying Dependencies between Positive-Valued Time Series 3

of the underlying random variable to decay hyperbolically. Formally, xi exhibits long
memory if liml→∞ ∑

l
j=−l |ρ ( j)|=∞. Following [1], [14] specifies the FIMEM in the

context of conditional durations by introducing the fractional difference operator
(1−L)δ to equation (3), i.e.,

{1−φ (L)}(1−L)δ xi = ω +{1−β (L)}ηi, (4)

with δ ∈ [0,1] the fractional integration parameter. [13] defines the fractional differ-
ence operator by a binomial series:

(1−L)δ =
∞

∑
j=0

(
δ

j

)
(−1) j L j =

∞

∑
j=0

π jL j. (5)

Substituting the martingale difference series defined above in (4) leads to

{1−β (L)}µi = ω +
[
1−β (L)−{1−φ (L)}(1−L)δ

]
xi (6)

µi = ω {1−β (1)}−1 +λ (L)xi,

where λ (L) = ∑
∞
j=1 λ jL j. The linear filter λ (L) implies an infinite number of pa-

rameter restrictions to guarantee the non-negativity of µi, i.e., λ j ≥ 0, ∀ j. As a
consequence, in practice the filter λ (L) is truncated to a finite number of lags or
one needs to apply Theorem 3 of [6] to verify that the combination of parameters
of the FIMEM(P;δ ;Q) are within the feasible parameter space. To emphasize this
point, consider the following two extreme examples for which we assume that δ lies
within the unit interval, such that π j < 0, for j > 0. Then, (i) µi can become nega-
tive although all parameters are greater than zero and (ii) µi can be positive almost
surely for all i, even though all parameters except δ are negative. Note, that these
restrictions play a fundamental role for the validity of forecasts.

The first unconditional moment of xi is not defined, since the fractional difference
operator evaluated at L = 1 equals zero. As a result, the FIMEM is not covariance
stationary. If the parameters are non-negative and ∑

P
j=1 α j +∑

Q
j=1 β j < 1, then the

strict stationarity and ergodicity of the FIMEM can be deduced from the stationarity
and ergodicity of the integrated MEM, since the infinite-order representation of (6)
is dominated in an absolute value sense by the coefficients of the corresponding
integrated MEM, cf. [3, 1]. Alternative covariance stationary long memory MEMs
are discussed in [12].

In general, parametric ML estimation of univariate MEMs leads to asymptot-
ically efficient and unbiased estimates, if the distribution of the innovations εi is
specified correctly. Typical candidates to describe εi are the standard Exponential
or Weibull distribution, but flexible distributions as the generalized Gamma or F
distribution can also be considered. In a standard ML framework for time series
models, where `i(ξ ), i = 1, . . . ,n, denotes the i-th contribution to the log likeli-
hood `(ξ ) = ∑

n
i=1 `i(ξ ), Hn(ξ ) = ∑

n
i=1{ ∂ 2

∂ξ ∂ξ>
`i(ξ )} denotes the Hessian matrix

and Sn(ξ ) = ∑
n
i=1{ ∂

∂ξ
`i(ξ )

∂

∂ξ>
`i(ξ )} the outer product of scores, the limiting dis-
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tribution of the estimator ξ̂ is given by{
Hn(ξ )

−1Sn(ξ )Hn(ξ )
−1}−1/2√

n(ξ̂ −ξ )
L→ N (0m, Im} , (7)

with identity matrix Im. Statistical inference is based on the finite sample approxi-
mation of (7), i.e., the Hessian matrix and the outer score product are replaced by
the consistent estimates Hn(ξ̂ ) and Sn(ξ̂ ).

Furthermore, [9] adopts the asymptotic theory of [16] and proposes a quasi-ML
setup which leads to consistent estimates for the linear and integrated MEM even if
the true error term distribution does not correspond to the assumed standard Expo-
nential distribution. In this case, ξ̂ converges under some regularity conditions to the
asymptotic distribution of (7) as long as the conditional mean is correctly specified.

1.2 Vector MEM

[5] formalizes the VMEM as
xi = µi� εi, (8)

where � denotes the Hadamard product and xi = (xi1, . . . ,xid)
>, i = 1, . . . ,n, is the

vector of positive valued processes. The multivariate scale factor µi
def
= E(xi|Fi−1;ξ )

and the vector of error terms εi are (d×1) vectors. The natural multivariate exten-
sion of (6) is given by

[Id−B(L)]µi = ω +[Id−B(L)−{Id−Φ (L)}D]xi, (9)

with Φ (L) = A(L)+B(L) and A,B being (d× d) matrices. Short-run effects en-
ter equation (9) through the linear filters A(L) and B(L) and ω denotes the vector
of constants. The univariate fractional difference operator from (6) extends to the
diagonal matrix diag(D) = {(1−L)δ1 , · · · ,(1−L)δd}, which contains the individ-
ual fractional difference operators, with δ j ∈ [0,1], j = 1, . . . ,d. By this restriction,
we exclude deterministic low frequency patterns between the marginal time series.
Note that the individual mean equations of (9) collapse to the univariate FIMEM (6),
if A and B are diagonal and to the linearly parameterized MEM (2), if additionally
δ j = 0, j = 1, . . . ,d. Based on the diagonality assumption for A and B the model can
be estimated equation by equation and is stationary.

For the full parametric specification of the VMEM we need to define an inno-
vation process εi, i = 1, . . . ,n, which must follow a distribution with only positive
probabilities on Rd

+ = [0,∞)d and E(εi j) = 1, j = 1, . . . ,d. However, the distribu-
tion function of a univariate error term process does not have a natural multivariate
equivalent. Therefore, the d marginal distributions are coupled together with a cop-
ula splitting a multivariate distribution function into its margins and a pure depen-
dence component – the copula. Copulae are introduced in [23] stating that if F is
an arbitrary d-dimensional continuous distribution function of the random variables
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X1, . . . ,Xd , then the associated copula is unique and defined as a continuous function
C : [0,1]d → [0,1] which satisfies the equality

C(u1, . . . ,ud) = F{F−1
1 (u1), . . . ,F−1

d (ud)}, u1, . . . ,ud ∈ [0,1], (10)

where F−1
1 (·), . . . ,F−1

d (·) are the quantile functions of the continuous marginal dis-
tribution functions F1(x1), . . . ,Fd(xd). Based on the copula density c(·, . . . , ·;θ), the
log likelihood of the VMEM can be written as

`(θ ,ξ ,α|Fi−1) =
n

∑
i=1

d

∑
j=1

[
log
[
εi j (ξ j) f j

{
εi j (ξ j) ;α j

}]
− logxi j

]
(11)

+
n

∑
i=1

logc [F1 {εi1 (ξ1) ,α1} , . . . ,F1 {εid (ξd) ,αd} ;θ ] ,

with xi/µi (ξ ) |Fi−1 = εi (ξ ) |Fi−1 ∼ C [F1 {εi1 (ξ1) ,α1} , . . . ,F1 {εid (ξd) ,αd} ;θ ]
having expectation one, where θ denotes the copula-, α the marginal- and ξ

the mean-parameters, cf. [5]. Conversely to the Hadamard product, xi/µi denotes
element-wise division. The efficient approach to obtain parameter estimates is given
by full ML estimation, as the multivariate density function is assumed to be known,
i.e., the product of the marginal densities multiplied with the copula density. On
the other hand, full ML estimation is difficult to implement even if the induced de-
pendence is non-elliptical. E.g., if we assume a Vine- or hierarchical Archimedean
copula (HAC), (see Section 2), the copula density varies with the structure of the
underlying copula. Thus, the log likelihood must be optimized for each possible
structure and the parameter vector generating the largest log likelihood value is se-
lected as ML estimate. To avoid this computationally intensive method, a two-step
procedure similar to [4] can be straightforwardly applied, since (11) can be decom-
posed into a marginal and a copula part as follows: First, the parameters of the mean
equation are estimated to filter the residuals, for which only the information about
the marginal distributions is used. Then, the copula is calibrated to the fitted values
of the residuals’ empirical distribution functions.

Similar to classical risk management applications, where several time-varying
models for correlations and copulae are proposed, e.g., [7, 22], time-varying depen-
dence cannot be excluded in our context and consequently, the copula estimated at
the second step may contain time variations. Yet, the final target of VMEMs is not
to predict, e.g., tail dependencies or risk measures, but to produce forecasts of µi,
which crucially depend on precise parameter estimates and thus on the complete log
likelihood and the most recent data for which the dependence between the variables
is constant. Thus, we suggest to re-estimate the parameters of µi by maximizing (11)
with fixed θ for time intervals at which the copula model calibrated at the second
step supports constant dependence.
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2 Hierarchical Archimedean Copulae

Among other important families, there exists the class of Archimedean copulae
(AC), which (i) permits modeling non-elliptical dependencies, (ii) can describe
different types of tail dependencies and (iii) has a closed form expression. For-
mally, AC are defined through the generator function φθ ∈ L = {φθ : [0;∞) →
[0,1] |φθ (0) = 1, φθ (∞) = 0; (−1)iφ

(i)
θ
≥ 0; i ∈ N} and (−1)iφ

(i)
θ
(x) being non-

decreasing and convex on [0,∞), for x > 0, which commonly depends on a single
parameter θ , i.e.,

C(u1, . . . ,ud ;θ) = φθ

{
φ
−1
θ

(u1)+ · · ·+φ
−1
θ

(ud)
}
, u1, . . . ,ud ∈ [0,1]. (12)

Properties of Archimedean copulae are reviewed and investigated in [18, 15]. [19]
discusses generator families depending on two parameters. The restricted depen-
dence structure induced by Archimedean generators is the major disadvantage of
d-dimensional ACs, since this assumption is mostly violated in practice.

To permit more flexibility, arguments of an AC can be replaced by further ACs
leading to the concept of HAC, which can adopt arbitrary complicated structures
denoted by s in the following. The generators of a single HAC, φ j, can come from
different generator families. However, if the φθ j ’s come from the same family, the
required complete monotonicity of φ

−1
θ j+1
◦ φθ j imposes constraints on the parame-

ters θ1, . . . ,θd−1. The flexibility induced by the structure is accompanied by larger
amounts of parameters, as each generator composition corresponds to one additional
parameter. Sufficient conditions on the generator functions guaranteeing that C is a
copula are stated in [17]. It holds that if φθ j ∈ L, for j = 1, . . . ,d−1, and φ

−1
θ j+1
◦φθ j

have completely monotone derivatives, then C is a copula for d ≥ 2. The major
advantage of HACs compared to ACs is the non-exchangeability of the arguments
beyond a single node, which is imposed by the structure of a HAC. Similar to the
dependence parameters, s is generally unknown and can be regarded as an additional
parameter to estimate.

A sequential estimation procedure for HACs is discussed by [20] providing sta-
tistical inference for parametric and nonparametric estimated margins. The proce-
dure uses Proposition 1 of [21] stating that HACs can be uniquely reconstructed
from marginal distributions and bivariate copula functions. The estimation proce-
dure can be summarized in the following way: at the first step, estimate all bi-
nary copula parameters of a specified Archimedean family under the assumption
of known marginal distribution functions. Select the largest parameter and fix the
binary copula as pseudo-variable. At next steps, assume the estimated margins and
sub-copulae from lower levels are known and estimate all binary copula parameters
by considering pairs of margins, pairs of pseudo variables and pairs of margins and
pseudo variables. Then, choose the largest parameter and fix the corresponding cop-
ula as a pseudo variable. This procedure leads a binary approximation of an arbitrary
HAC. Let εi = {εi1, . . . ,εid}> be the sample, i = 1, . . . ,n, and θ = (θ1, . . . ,θd−1)

>

be the copula parameters ordered from the lowest to the highest hierarchical level.
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The multi-stage ML-estimator, θ̂ , provides a solution for the following system of
equations (

∂`1

∂θ1
, . . . ,

∂`d−1

∂θd−1

)>
= 0, (13)

where ` j =
n

∑
i=1

l j(εi), for j = 1, . . . ,d−1,

l j(εi) = log

{
c
[
{F̂m(εim)}m∈s j ; s j,θ j

]
∏

m∈s j

f̂m(εim)

}
for i = 1, . . . ,n,

where ` denotes the copula part of (11) and s j contains the indices, which are struc-
tured according to the fixed subcopulae (and margins) at lower hierarchical levels.

3 Change point detection

The time intervals for which the parameters of µi should be re-estimated are identi-
fied by calibrating a time-varying copula. In this context, [11] proposes a framework,
which incorporates time-varying HAC parameters θi and si, and is closely related to
the local change point (LCP) procedure applied in [24]. As a detailed discussion of
this sophisticated method is beyond the scope of this paper, this section describes
only the main ideas of the data driven LCP.

Let θi,si be the unknown time-varying parameters and structure of the HAC
C. Let I = [i0 −m, i0] denote an interval with reference point i0, m > 0 and let
∆I (θ ,s) = ∑i∈I K {c(·,θi,si) ,c(·;θ ,s)} be a random quantity, where K (·, ·) de-
notes the Kullback-Leibler divergence. Furthermore, let ∆I (θ ,s) ≤ ∆ be the small
modeling bias (SMB) condition with ∆ ≥ 0 and constant parameters θ ,s. As K (·, ·)
measures the discrepancy between two densities, the data generating process can be
well approximated by the local constant copula C (·;θ ,s) on I in the sense of the
SMB condition. Based on this condition [11] proposes testing whether a HAC with
time-varying parameters and structure can be locally approximated by a HAC with
constant parameters and structure.

Under the null hypothesis assume that the SMB condition holds for interval I
and parameters {θ ,s} and define the set of possible change points TI for interval I,
which is tested for a single but unknown change point τ ∈ TI . The test hypotheses
are formalized as

H0 : ∀ τ ∈TI ,θi = θ ,si = s,∀ i ∈ I = J∪ JC = [τ, i0]∪ [i0−m,τ) (14)
H1 : ∃ τ ∈TI ,θi = θ1,si = s1,∀ i ∈ J = [τ, i0] ,

and θi = θ2 6= θ1 or si = s2 6= s1,∀ i ∈ JC = [i0−m,τ).
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The null hypothesis is rejected, if the likelihood ratio (LR) test statistic

TI = max
τ∈TI

[
max
θ1,s1
{`J (θ1,s1)}+max

θ2,s2
{`JC (θ2,s2)}−max

θ ,s
{`I (θ ,s)}

]
, (15)

exceeds the critical value zI . In practice, the length of the homogenous interval and
the parameters of interest {θ ,s} are estimated simultaneously due to their relation
through the test statistic. For a well performing choice of the critical value, which is
found via a Monte-Carlo simulation from the local parametric model and implicitly
defines the significance level of the test statistic TI , we refer to [24].

4 Empirical analysis

The considered time span of NASDAQ trade data for Apple (AAPL) starts at the
January 2nd and ends at December 31th, 2009. Similar to the cleaning of TAQ data
sets as, e.g., applied in [12], all non-executed trades, trades with a price smaller or
equal to zero and outliers are removed from our tick-by-tick high-frequency data
set. To overcome the phenomenon of simultaneous observations, trades with the
same time stamp are merged and the corresponding values are aggregated by their
median. A cleaned tick-by-tick data set provides information about (i) the price
series p j, (ii) the amount of traded shares s j and (iii) the time stamp of the trades
t j, j = 1, . . . ,n∗, where n∗ is the number of daily observations. To investigate the
relationships between these series, we construct the series of high-low ranges (HL),
average volumes (Vol) and the number of trades (NT) on a sampling frequency of
10 min, i.e.,

HLi = max
{

p j|t j ∈ (ti−1, ti]
}
−min

{
p j|t j ∈ (ti−1, ti]

}
, (16)

NTi = #
{

t j|t j ∈ (ti−1, ti]
}
,

Voli = NT−1
i ∑

t j∈(ti−1,ti]
s j,

for i = 1, . . . ,n, where # counts the elements of the set {·}. Note, that other proxies
for price variations as, e.g., the 10 min realized volatility or the squared returns, can
replace the high-low range.

To remove the U-shaped daily seasonal pattern provided by the variables defined
above, the individual seasonal components are approximated by fitting cubic splines
and each series is divided by the respective estimated seasonal factor. Then, model
(8) with mean (9) is calibrated to the process, where A(L) and B(L) are restricted
to be diagonal and to the first lag. The infinite sums of the mean equations of the
FIMEMs are truncated to 400 lagged coefficients, i.e., ∑

400
l j=0 πl j L

l j , since the param-
eters ξ j are almost unaffected by including additional πl j ’s, j = 1, . . . ,d. Despite
these restrictions, the estimated models produce uncorrelated residuals. Figure 1
presents scatterplots of the filtered residuals. The lower diagonal elements of Figure
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1 do not reveal elliptical dependencies, thus the Gaussian copula is inappropriate
in this case. In the following, we prefer an approximation of the dependence struc-
ture by the hierarchical or simple Archimedean Gumbel copula, since the bivariate
contour plots indicate almost the same dependencies as the underlying scatterplots.

HL

 0.02 

 0.04 

 0.06 

 0.08 
 0

.1
  0

.1
2 Vol

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0
.1

2 

 0.02 

 0.04 

 0.06 

 0.08 

 0.1
  0

.1
2 NT

Fig. 1 The upper diagonal elements show the pairwise dependence between the filtered residuals.
The lower diagonal elements present the values of the standard normal quantile applied to the
values of the empirical distribution functions. Scales of the axes are not presented as they differ
slightly. The origins of the coordinate planes of the upper diagonal elements correspond to zero.

The approach proposed in Section 3 considers only one single interval I, whose
subintervals, defined through the set of possible change points TI , are tested for ho-
mogeneity. This method turns out to be time-varying, when it is applied as a sequen-
tial testing procedure. For this purpose, define the set I , which contains the geomet-
rically growing sequence of nested interval-candidates I0 ⊂ I1 ⊂ . . .⊂ Ik ⊂ . . .⊂ IK ,
with Ik = [i0−mk, i0], reference point i0, geometric grid mk = [1.25km0], and the
sets of possible change points TIk = [t0−mk−1, t0−mk−2] for all Ik ∈I . [x] means
the integer part of x and m0 = 40. If the null hypothesis of constant dependence is
not rejected for interval Ik, the interval length is extended and interval Ik+1 is tested
for homogeneity. This procedure is continued until a change point is identified or
the largest interval IK is accepted as interval of homogeneity. If a change point is
detected at k+ 1, the local adaptive estimates are given by θ̂ = θ̃k, ŝ = s̃k, where
θ̃k, s̃k denote the ML-estimates from Section 2. While other time-varying methods
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permit only the parameter(s) to vary over time, the structure of this time-varying
HAC may change as well.

Based on the Gumbel family, we apply the LCP procedure to the filtered resid-
uals, because an application of the LCP procedure to the full VMEM is cumber-
some due to the large number of parameters. The first panel of Figure 2 shows the
changing HAC-structure estimated for an accepted interval of homogeneity, whose
length is shown in the fourth panel. The two thick solid lines (grey and black) in the
second panel present the time-varying parameters in terms of Kendall’s τ̂ . For the
relationship between bivariate Archimedean generators and Kendall’s τ see [10].
Based on these results, we propose to re-estimate the parameters of the VMEM’s
scale function µi for at least three intervals separated by the dashed vertical lines,
using full ML with fixed copula parameters. The first interval ending in the mid-
dle of March can be clearly identified, as the structure is constant and the estimates
of Kendall’s τ exhibit a certain distance. The HAC for this interval is given by
s1

HAC = ((NT Vol)1.69HL)1.55 and the simple AC by s1
AC = (NT Vol HL)1.58, where

the subscript is related to θ̂ . The second interval is characterized by an alternat-
ing structure, while the values of Kendall’s τ̂ can almost be distinguished. This
makes it, however, difficult, to decide, whether a HAC or a simple AC should be
used for re-estimating the VMEM. In general, the corresponding HAC, s2

HAC =
((NT Vol)1.63HL)1.40, and AC, s2

AC = (NT Vol HL)1.45, indicate a weaker depen-
dence than the fitted copulas of the first interval. In the third interval beginning in
June, the underlying copula corresponds with high probability to a simple AC, since
the structure changes frequently and both parameters are very close to each other.
The HAC of this interval, s3

HAC = ((NT HL)1.52Vol)1.40, shows a different structure
and the AC, s3

AC = (NT Vol HL)1.42, a weaker dependence than the calibrated cop-
ulas of the first and second interval. We admit, at this point, that shorter interval
specifications are possible, as the method provides a sensitive picture of the time-
varying dependence. Note, that shorter time intervals are accompanied with less
data and therefore, imply a loss in efficiency. The estimated HAC based on the en-
tire sample is given by sHAC = ((Vol NT)1.56HL)1.41 and the respective simple AC
by sAC = (NT HL Vol)1.45. We investigated the time-varying dependence for a few
of other stocks and found similar results.

The third and fourth panels illustrate the performance of the LCP procedure. As
proposed in Section 3, the LR test statistic measures the stability of the fitted model.
Therefore, the length of the accepted intervals increase continuously in periods of a
stable fit, whereas the interval length is typically short if the ML process is volatile.
The dynamic of the ML process is presented in the third picture and allows to re-
produce this relationship. The ML process exhibits a higher volatility in the last
two months of the observed sample. This implies shorter intervals, for which the
hypotheses of homogeneity are accepted, since the LR test statistics are smaller.
[11] illustrates in a simulation study, that the procedure detects dependence changes
with a short delay and [24] investigates the quality of the local adaptive estimators.
A simple alternative approach is the rolling window method, which also allows for
time-varying parameters but detects changes in the dependence with a larger delay.
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Fig. 2 Results of the LCP-procedure of AAPL. The first panel shows changes in the structure, the
second the estimates of Kendall’s τ and the third variations of the ML process for the intervals of
homogeneity, whose varying length is presented in the lower panel.
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