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Abstract

Generalized quantile regressions, including the conditional quantiles and
expectiles as special cases, are useful alternatives to the conditional means for
characterizing a conditional distribution, especially when the interest lies in
the tails. We develop a functional data analysis approach to jointly estimate
a family of generalized quantile regressions. Our approach assumes that the
generalized quantile regressions share some common features that can be sum-
marized by a small number of principal component functions. The principal
component functions are modeled as splines and are estimated by minimiz-
ing a penalized asymmetric loss measure. An iterative least asymmetrically
weighted squares algorithm is developed for computation. While separate
estimation of individual generalized quantile regressions usually suffers from
large variability due to lack of sufficient data, by borrowing strength across
data sets, our joint estimation approach significantly improves the estimation
efficiency, which is demonstrated in a simulation study. The proposed method
is applied to data from 150 weather stations in China to obtain the gener-
alized quantile curves of the volatility of the temperature at these stations.
These curves are needed to adjust temperature risk factors so that gaussian-
ity is achieved. The normal distribution of temperature variations is vital for
pricing weather derivatives with tools from mathematical finance.
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1 Introduction

Conventional regression analysis is concerned about the conditional mean of a re-

sponse given explanatory variables and focuses on the center of the conditional

distribution. When the interest lies in the tails of the conditional distribution, the

quantile regression (Koenker and Bassett, 1978), expectile regression (Newey and

Powell, 1987), andM -quantiles (Breckling and Chambers, 1988) become useful tools.

We refer to these tools broadly as generalized quantile regressions. The generalized

quantile regression has found applications in many areas, such as financial markets,

demographic studies, and weather analysis, especially for the statistical analysis of

extreme events. Taylor (2008) applied generalized quantiles to calculate Value at

Risk (VaR) and expected shortfall (ES) for financial risk management. Generalized

quantiles were used by Schnabel and Eilers (2009a) to study the relationship between

GDP and population, and by Härdle and Song (2010) to study the correlation of

the wage and the level of education.

The specific application that motivates our work is the statistical modeling

of weather risk (Anastasiadou and López-Cabrera, 2012). Extreme fluctuation of

weather often causes great losses to industries that are weather related, such as the

tourism and energy industries, which are temperature-dependent, and the agricul-

ture industry, which are both temperature- and rainfall-dependent. To hedge the

weather risk, an important financial instrument is the weather derivative. Statis-

tical modeling and forecasting of the weather using historical data plays a crucial

role in pricing weather derivatives (Odening et al., 2008). Guo and Härdle (2012)

estimated the generalized quantiles of the volatility of temperatures as a function

of time at a particular weather station and used them to identify temperature risk

drivers. One problem with the generalized quantile regression is the high variability

of the estimate at extreme quantile levels due to insufficiency of data at the tails of

the distribution. The goal of this paper is to improve the estimation efficiency by

borrowing strength across multiple data sets.

We consider the scenario that there is a need to estimate a collection of gener-

alized quantile regressions each coming from a different data set. Our motivating ex-

ample, detailed in Section 5, is concerned about estimating the generalized quantile

of the distribution of the volatility of temperature as a function of time separately

at multiple weather stations. Taking a functional data analysis approach (FDA;

Ramsay and Silverman, 2005), we assume that the generalized quantile regressions

under consideration share some common features that in turn can be summarized
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by a small number of principal component functions. By pooling data sets together

to estimate the principal component functions, we obtain more efficient estimates

of individual generalized quantile regressions. In a related work but for a differ-

ent context from ours, Cardot et al. (2005) considered a quantile regression where

functional covariates are used to explain a scalar response variable.

More precisely, we assume that each generalized quantile regression (function)

in the collection can be written as the summation of an overall mean function and

a linear combination of several principal component functions. We model the mean

and functional principal component functions as spline functions and use a roughness

penalty to regularize the spline fit. Our estimation method makes use of the fact that

the generalized quantile is the minimizer of an expected asymmetric loss function.

By minimizing the corresponding empirical loss over spline coefficients, we obtain

estimates of the mean and the principal component functions and consequently

the generalized quantile regressions. We develop an iterative least asymmetrically

weighted squares algorithm for computation. Our algorithm can be seen as an

extension of previous functional PCA algorithms of James et al. (2000) and Zhou

et al. (2008) for sparse functional data. As a result we obtain, PC funtions that

tell us main sources of variations. The PC scores indicate us intra subject variation

of the random curves and therefore allow us to price derivatives according to the

locations of risk factors.

The rest of this paper is organized as follows. Section 2 reviews the formulation

of generalized quantile regressions, their connections to asymmetric loss functions,

and their estimation using penalized splines. Section 3 presents our FDA approach

for estimating a collection of generalized quantile regressions; both the FDA model

construction and the computational algorithm are discussed in detail. In Section 4,

we use a simulation study to investigate the performance of our FDA-based joint

estimation approach and compare it with the separate estimation approach. In

Section 5, our method is applied to data from 150 weather stations in China to

understand the risk drivers of the volatility of the temperature at these stations.

Section 6 concludes the paper. The Appendix contains some technical details. The

complete algorithm can be found on www.quantlet.org.
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2 Generalized Quantile Regressions

Any random variable Y can be characterized by its cdf FY (y) = P (Y ≤ y), or

equivalently, by its quantile function (qf)

QY (τ) = F−1Y (τ) = inf{y : F (y) ≥ τ}, 0 < τ < 1.

The τ -th quantile QY (τ) minimizes the expected loss,

Q(τ) = arg min
y

E{ρτ (Y − y)}, (1)

for the asymmetric loss function ρτ (Y − y) with

ρτ (u) = u{τ − I(u < 0)}. (2)

When Y is associated with a vector of covariates X, one is interested in studying

the conditional (or regression) quantile QY |X(τ |x) = F−1Y |X=x(τ) as a function of x.

Assuming linear dependence on covariates, the τ -th theoretical quantile regression

is QY |X(τ |x) = x>β∗, where

β∗ = arg min
β

E{ρτ (Y −X>β)|X = x}. (3)

Koenker and Bassett (1978) used this fact to define a minimum contrast estimator of

regression quantiles. Since the loss function used in (1) and (3) can be interpreted as

asymmetrically weighted absolute errors, it is natural to consider the asymmetrically

weighted squared errors or other asymmetrically weighted loss functions. The ex-

pectile regressions of Newey and Powell (1987) are the solutions of the optimization

problem (3) with the loss function corresponding to

ρτ (u) = u2|τ − I(u < 0)|.

More general asymmetric loss functions have been considered by Breckling and

Chambers (1988) to define their M -quantiles which include quantiles and expec-

tiles as special cases.

We now restrict our attention to a univariate covariate but consider the more

flexible nonparametric estimation. For fixed τ , the τ -th generalized quantile regres-

sion is defined as

lτ (x) = arg min
θ

E{ρτ (Y − θ)|X = x}, (4)
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where ρτ (Y − y) is an asymmetric loss function. Because it is a univariate function,

lτ (x) is also referred to as the τ -th generalized quantile curve. In this paper we focus

on the quantile and expectile regressions, corresponding to

ρτ (u) = |u|α|τ − I(u < 0)| (5)

with α = 1, 2, respectively, although with slight modifications our methodology is

generally applicable for any α > 0. According to Jones (1994), the expectiles can be

interpreted as quantiles, not of the distribution F (y|x) itself, but of a distribution

related to F (y|x). Specifically, write H(y|x) for the conditional partial moment∫ y
−∞ uF (du|x), and denote

G(y|x) =
H(y|x)− yF (y|x)

2{H(y|x)− yF (y|x)}+ {y − µ(x)}
,

where µ(x) = H(∞|x) =
∫∞
−∞ uF (du|x) is the conditional mean function. The τ -th

expectile of the conditional distribution L(Y |X = x) is the quantile of G(y|x), that

is, lτ (x) = G−1(τ |x). When they are well-defined, both the conditional quantile

and expectile characterize the conditional distribution, and there is a one-to-one

mapping between them (Yao and Tong, 1996). Quantiles are intuitive, but expectiles

are easier to compute and more efficient to estimate (Schnabel and Eilers, 2009b).

To estimate the generalized quantile regressions, assume we have paired data

(Xi, Yi), i = 1, . . . , n, an i.i.d. sample from the joint distribution of (X, Y ). It follows

from (4) that the generalized quantile regression lτ (·) minimizes the unconditional

expected loss,

lτ (·) = arg min
f∈F

E[ρτ{Y − f(X)}], (6)

where F is the collection of functions such that the expectation is well-defined. Using

the method of penalized splines (Eilers and Marx, 1996; Ruppert et al., 2003), we

represent f(x) = b(x)>γ, where b(x) = {b1(x), . . . , bq(x)}> is a vector of B-spline

basis functions and γ is a q-vector of coefficients, and minimize the penalized average

empirical loss,

l̂τ (·) = arg min
f(·)=b(·)>γ

n∑
i=1

ρτ{Yi − f(Xi)}+ λγ>Ωγ, (7)

where Ω is a penalty matrix and λ is the penalty parameter. The penalty term

is introduced to penalize the roughness of the fitted generalized quantile function

l̂τ (·). When Xi’s are evenly spaced, the penalty matrix Ω can be chosen such that

γ>Ωγ =
∑

i(γi+1 − 2γi + γi−1)
2 is the squared second difference penalty. In this

case, Ω = D>D and D is the second-differential matrix such that Dγ creates the
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vector of second differences γi+1 − 2γi + γi−1. In general, the penalty matrix Ω can

be chosen to be
∫
b̈(x)b̈(x)> dx such that γ>Ωγ =

∫
{b̈(x)>γ}2 dx, where b̈(x) =

{b̈1(x), . . . , b̈q(x)}> denotes the vector of second derivatives of the basis functions.

The minimizing objective function in (7) can be viewed as the penalized negative

log likelihood for the signal-plus-noise model

Yi = lτ (Xi) + εi = b(Xi)
>γ + εi, (8)

where εi follows a distribution with a density proportional to exp{−ρr(u)}, which

corresponds respectively to the asymmetric Laplace distribution or the asymmetric

Gaussian distribution for α = 1 and α = 2 (Koenker and Machado, 1999). Since

these distributions are rather implausible for real-world data, their likelihood is

better interpreted as a quasi-likelihood.

For expectiles (α = 2 in the definition of loss function), Schnabel and Eilers

(2009b) developed an iterative least asymmetrically weighted squares (LAWS) al-

gorithm to solve the minimization problem (7), by extending an idea of Newey and

Powell (1987). They rewrote the objective function in (7) as

n∑
i=1

wi(τ){Yi − b(Xi)
>γ}2 + λγ>Ωγ, (9)

where

wi(τ) =

{
τ if Yi > b(Xi)

>γ,

1− τ if Yi ≤ b(Xi)
>γ.

(10)

For fixed weights wi(τ)’s, the minimizing γ̂ has a closed-form expression

γ̂ = (B>WB + λΩ)−1B>WY, (11)

where B is a matrix whose i-th row is b(Xi)
>, W is the diagonal matrix whose ith

diagonal entry is wi(τ), and Y = (Y1, . . . , Yn)>. Note that the weights wi(τ)’s depend

on the spline coefficient vector γ. The LAWS algorithm iterates until convergence

between computing (11) and updating W using (10) with γ being its current value

obtained from (11).

With a slight modification, the LAWS algorithm can also be used to calculate

the penalized spline estimator of conditional quantile functions, which correspond

to α = 1 in the asymmetric loss function. The weights for calculating the expectiles

given in (10) need to be replaced by

wi(τ) =


τ

|Yi − b(Xi)>γ|+ δ
if Yi > b(Xi)

>γ,

1− τ
|Yi − b(Xi)>γ|+ δ

if Yi ≤ b(Xi)
>γ,

(12)
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where δ > 0 is a small constant used to avoid numerical problems when Yi−b(Xi)
>γ

is close to zero. In this case, the LAWS algorithm can be interpreted as a variant

of Majorization-Minimization (MM) algorithm and the convergence of the LAWS

algorithm then follows from the general convergence theory of the MM algorithm;

see Hunter and Lange (2000).

One advantage of expectiles is that they can always be calculated no matter

how low or high of the generalized quantile level τ , while the empirical quantiles

can be undefined at extreme tails of the data distribution. It is also known that

estimation of expectiles is usually more efficient than that of quantiles since it makes

more effective use of data (Schnabel and Eilers, 2009b). However, when τ is close to

0 or 1, both estimation of expectiles and quantiles exhibits high variability, because

of sparsity of data in the tails of the distribution. In the next section, we will

present a method for better quantile and expectile estimation when there is a need

to estimate a collection of generalized quantile regressions and, if these regressions

share some common features. We use functional data analysis techniques to improve

the estimation efficiency by borrowing strength across data sets.

3 Functional data analysis for a collection of re-

gression quantiles

3.1 Approach

When we are interested in a collection of generalized quantile curves, denoted as

li(t), i = 1, . . . , N , we may treat them as functional data. (To emphasize the

one-dimensional nature of the covariate, from now on we change notation for the

covariate from x to t.) Suppose li(t)’s are independent realizations of a stochastic

process l(t) defined on a compact interval T with the mean function E{l(t)} = µ(t)

and the covariance kernel K(s, t) = Cov{l(s), l(t)}, s, t ∈ T . If
∫
T K(t, t)dt < ∞,

then Mercer’s Lemma states that there exists an orthonormal sequence of eigen-

functions (ψj) and a non-increasing and non-negative sequence of eigenvalues (κj)

such that

(Kψj)(s)
def
=

∫
T
K(s, t)ψj(t)dt = κjψj(s),

K(s, t) =
∞∑
j=1

κjψj(s)ψj(t),
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and
∞∑
j=1

κj =

∫
T
K(t, t)dt.

Moreover, we have the following Karhunen-Loève expansion

l(t) = µ(t) +
∞∑
j=1

√
κjξjψj(t), (13)

where ξj
def
= 1√

κj

∫
l(t)ψj(s)ds, E(ξj) = 0, E(ξjξk) = δj,k, j, k ∈ N, and δj,k is the

Kronecker delta.

Usually statistical estimation demands a parsimonious model for estimation

efficiency and thus the terms associated with small eigenvalues in (13) can be ne-

glected. As a result for i = 1, · · · , n observations of l and therefore ξj, we obtain

the following reduced-rank model:

li(t) = µ(t) +
K∑
k=1

fk(t)αik = µ(t) + f(t)>αi, (14)

where f(t) = {f1(t), · · · , fK(t)}> and K is a fixed integer. In practice, K can be

chosen by cross validation (CV). As in (13) and (James et al., 2000; Zhou et al.,

2008), µ is the mean function, fk the k-th principal component function (PC) and

αi = (αi1, · · · , αiK)> the vector of PC scores for the i-th curve. αij corresponds to

κijξij in (13). Since the approximations (14) share the same mean function and the

same set of principal components for the collection of generalized quantile curves, it

enables to borrow information across data sets to improve estimation efficiency.

Accepting the parameterizations in (14), estimation of the generalized quantile

curves is reduced to the estimation of the mean and principal components functions.

Using the method of penalized splines again, we represent these functions in the form

of basis expansions

µ(t) = b(t)>θµ,

f(t)> = b(t)>Θf ,
(15)

where b(t) = {b1(t), · · · , bq(t)}> is a q-vector of B-splines, θµ is a q-vector and

Θf = {θf,1, · · · , θf,K}> is a q × K matrix of spline coefficients. The B-splines are

normalized so that ∫
b(t)b(t)>dt = Iq.

8



Thus the estimation problem is further reduced to the estimation of spline coeffi-

cients. For identifiability, we impose the following restriction

Θ>f Θf = IK .

The above two equations imply the usual orthogonality requirements of the principal

component curves: ∫
f(t)f(t)>dt = Θ>f

∫
b(t)b(t)>dtΘf = IK .

Denote the observations as {Yij} with i = 1, · · · , N , j = 1, · · · , Ti. Combining

(14) and (15) yields the following representation

lij
def
= li(tij) = b(tij)

>θµ + b(tij)
>Θfαi. (16)

Here, the scores αi’s are treated as fixed effects instead of random effects for con-

venience in applying the asymmetric loss minimization, see the last paragraph of

this section for more information. For identifiability, we assume that
∑N

i=1 αik = 0,

1 ≤ k ≤ K, and
∑N

i=1 α
2
i1 > · · · >

∑N
i=1 α

2
iK . The empirical loss function for

generalized quantile estimation is

S =
N∑
i=1

Ti∑
j=1

ρτ{Yij − b(tij)>θµ − b(tij)>Θfαi}, (17)

where ρτ (u) is the asymmetric loss function defined in (5). To ensure the smooth-

ness of the estimates of the mean curve and the principal components curves, we

use a moderate number of knots and apply a roughness penalty to regularize the

fitted curves. The squared second derivative penalties for the mean and principal

components curves are given by

Mµ = θ>µ

∫
b̈(t)b̈(t)> dt θµ = θ>µ Ω θµ,

Mf =
K∑
k=1

θ>f,k

∫
b̈(t)b̈(t)> dt θf,k =

K∑
k=1

θ>f,kΩ θf,k.

The penalized empirical loss function is then

S∗ = S + λµMµ + λfMf , (18)

where λµ and λf are nonnegative penalty parameters. Note that we use the same

penalty parameter for all principal components curves for the sake of simplicity,
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similar strategy has been used in Zhou et al. (2008). We propose to minimize the

penalized loss (18) to estimate the parameters θµ, Θf , and αi’s. The choice of the

penalty parameters will be discussed later in the paper.

Define the vector Li = {li1, · · · , liTi}> and the matrixBi = {b(ti1), · · · , b(tiTi)}>.

The representation (16) can be written in matrix form

Li = Biθµ +BiΘfαi (19)

Writing Yi = (Yi1, . . . , YiTi)
>, the data have the following signal-plus-noise represen-

tation

Yi = Li + εi = Biθµ +BiΘfαi + εi (20)

where εi is the random error vector whose components follow some asymmetric

distribution as in (8), corresponding to the asymmetric loss minimization for the

generalized quantile regression. Equation (20) has also been used in Zhou et al.

(2008) for a random effects model of functional principal components, where both

αi and εi are multivariate normally distributed. Since the signal-plus-noise model

(20) for generalized quantile regression is not a plausible data generating model but

rather an equivalent representation of the asymmetric loss minimization, the EM-

algorithm used in Zhou et al. (2008) can not be simply extended and justified in the

current context.

3.2 Algorithm

This subsection develops an iterative penalized least asymmetrically weighted squares

(PLAWS) algorithm for minimizing the penalized loss function defined in (18), by

defining weights in a similar manner as in (10) and (12).

We fix the quantile level τ ∈ (0, 1). To estimate the expectile curves, for

i = 1, · · · , N and j = 1, · · · , Ti, define the weights

wij =

{
τ if Yij > lij,

1− τ if Yij ≤ lij.
(21)

where lij = b(tij)
>θµ − b(tij)>Θfαi is a function of the parameters. To estimate the

quantile curves, define the weights

wij =


τ

|Yij − lij|+ δ
if Yij > lij,

1− τ
|Yij − lij|+ δ

if Yij ≤ lij,
(22)
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where lij is defined as in (21) and δ is a small positive constant. Using these weights,

the asymmetric loss function in (17) can be written as the following asymmetrically

weighted sum of squares

S =
N∑
i=1

Ti∑
j=1

wij{Yij − b(tij)>θµ − b(tij)>Θfαi}2, (23)

and the penalized loss function (18) becomes the following penalized weighted sum

of squares criterion

S∗ =
N∑
i=1

(Yi −Biθµ −BiΘfαi)
>Wi (Yi −Biθµ −BiΘfαi)

+ λµθ
>
µ Ω θµ + λf

K∑
k=1

θf,kΩ θf,k,

(24)

where Wi = diag{wi1, . . . , wiTi}. Since the weights depend on the parameters, the

PLAWS algorithm iterates until convergence between minimizing (24) and updating

the weights using (21) and (22).

To minimize (24) for fixed weights, we alternate minimization with respect to

θµ, Θf , and αi. Such minimizations have closed-form solutions

θ̂µ =

{ N∑
i=1

B>i WiBi + λµΩ

}−1{ N∑
i=1

B>i Wi(Yi −BiΘ̂f α̂i)

}
, (25)

θ̂f,l =

{ N∑
i=1

α̂2
ilB
>
i WiBi + λfΩ

}−1{ N∑
i=1

α̂ilB
>
i Wi(Yi −Biθ̂µ −BiQil)

}
,

α̂i = (Θ̂>f B
>
i WiBiΘ̂f )

−1
{

Θ̂>f B
>
i Wi(Yi −Biθ̂µ)

}
,

where

Qil =
∑
k 6=l

θ̂f,kα̂ik,

and i = 1, · · · , N , k, l = 1, · · · , K, θ̂f,k is the k-th column of Θ̂f .

A summary of the complete algorithm is presented in Appendix A.1. A proce-

dure for obtaining initial values is given in Appendix A.2. After we get the param-

eter estimates from the PLAWS algorithm, we can estimate the individual quantile

curves by plugging the parameter estimates into (14) and (15).
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3.3 Choice of Auxiliary Parameters

In this paper, for simplicity, we use equally spaced knots for the B-splines. The

choice of the number of knots to be used is not critical, as long as it is moderately

large, since the smoothness of the fitted curves is mainly controlled by the rough-

ness penalty term. For typical sparse functional datasets, 10-20 knots are often

sufficient, see Zhou et al. (2008). The optimal choice of the penalty parameter for

the single curve estimation used in initialization follows the method in Schnabel and

Eilers (2009b). There are several well developed methods for choosing the auxiliary

parameters in the FDA framework, such as, AIC, BIC and cross-validation (CV),

Ramsay and Silverman (2005). In this paper, all the auxiliary parameters, such as

the number of principal components/factors to be included, and the penalty param-

eters λµ and λf , will be chosen via the 5-fold cross-validation by minimizing the

cross-validated asymmetric loss function. Explicitly, the 5-fold cross-validation can

be written as:

CV (K,λµ, λf ) =
1

5

N−m×5∑
i=N−(m−1)×5

Ti∑
j=1

ŵij|Yij − l̂ij|2

where m = 1, 2, · · · , [N/5], ŵij = wij(Yij − l̂ij) defined in (10) and (12)

l̂ij = b(tij)
>θ̂µ + b(tij)

>Θ̂f α̂i

.

4 Simulation

We conducted a simulation study to illustrate the proposed FDA approach in esti-

mating a collection of generalized quantile curves. For each case, we considered N

data sets. For the i-th data set, the data were generated from the model

Yij = µ(tj) + f1(tj)α1i + f2(tj)α2i + εij, j = 1, . . . , T, (26)

where tj’s are sampling points equidistant in [0, 1] with tj = j/T , the mean curve

µ(t) = 1 + t + exp{−(t − 0.6)2/0.05}, the principal component curves are f1(t) =√
2 sin(2πt) and f2(t) =

√
2 cos(2πt), and εij = εi(t) are independent errors. The

scores α1i and α2i were generated independently from N(0, 36) and N(0, 9) distri-

bution, respectively. The errors εij were generated from either (1) N(0, 0.5), (2)

12



N(0, µ(t) × 0.5) or (3) t(5) distributions. The τ -th quantile or expectile curve for

the i-th data set is

li(t) = µ(t) + f1(t)α1i + f2(t)α2i + cτ ,

where cτ represents the corresponding τ -th theoretical quantile or expectile of εi(t).

We considered two setups of sample sizes: (1) N = 20 data sets with T = 100

observation points for each set and (2) N = 40 data sets with T = 150 observation

points for each set. The code for simulation may be found in www.quantlet.de.

We ran the simulation 200 times for each setup. We applied both the proposed

FDA method and the separate estimation method to each simulation to estimate the

95% expectile and quantile curves. For simplicity, we assume there are two principal

components, i.e. K = 2, and the penalty parameters are chosen by 5-fold cross

validation. We calculated the integrated squared error for estimating individual

generalized quantile curves. These errors were then averaged over data sets to

obtain the mean integrated squared errors (MSEs). The summary statistics (mean

and SD) of the MSEs are reported in Table 1, where the same quantities for the

separate estimation approach are also reported. We observe that the proposed FDA

method outperforms the separate estimation approach in all scenarios by producing

smaller MSEs. We also observe that, for each setup, the MSEs for estimating the

expectiles are smaller than those for estimating the quantiles; this is consistent to our

earlier discussion that expectile estimates are less variable than quantile estimates.

Moreover, comparing results for Scenario 1 and Scenario 3, we see that the MSEs

are bigger when the distribution has fatter tails.

Figure 1 shows the estimated results of the 95% expectile curves by the pro-

posed FDA approach with the error terms normally distributed. One observes that

the mean of the estimated mean curves fit the respective true ones well, and the

confidence intervals cover the real ones. We also notice that the results from the

large data set fit slightly better to that from the small sample size, especially for the

two functional principal component curves, since their confidence intervals become

smaller as the sample size increases. However, the estimated mean curve, due to

bias, is slightly underestimated at some points. Further, we observe that the large

dataset gives us narrower confidence interval that the small one. Figure 2 shows the

estimated mean curves and principal component curves of 95% quantile curves when

the error terms are still normally distributed. The quantile curves perform similarly

to that of the expectile curves. While, the results from the mean curves are slightly

better than that of expectile curves, to say, the confidence intervals actually cover

13



Expectile curves Quantile curves
Scenario Sample Size FDA Separate FDA Separate

1 N = 20, T = 100 0.0815 0.1407 0.1733 0.2539
(0.0296) (0.0149) (0.0283) (0.0227)

N = 40, T = 150 0.0189 0.0709 0.0723 0.1875
(0.0025) (0.0052) (0.1205) (0.0127)

2 N = 20, T = 100 0.1436 0.3188 0.2769 0.8039
(0.0248) (0.0339) (0.1061) (0.0860)

N = 40, T = 150 0.0931 0.2751 0.1785 0.0.6029
(0.0106) (0.0188) (0.0813) (0.0503)

3 N = 20, T = 100 0.2859 0.5194 0.4490 1.2227
(0.0525) (0.1284) (0.2867) (0.2290)

N = 40, T = 150 0.1531 0.4087 0.2340 0.8683
(0.0212) (0.0707) (0.1259) (0.1085)

Table 1: The summary statistics (mean and SD) of the MSEs for estimating 95%
generalized quantile curves by the FDA approach and the separate estimation ap-
proach. Scenario 1 with εij ∼ N(0, 0.5), Scenario 2 with εij ∼ N(0, µ(t)× 0.5) and
Scenario 3 with εij ∼ t(5).

the real mean curves well. In general, one can say that though the performance

of the proposed FDA method for quantile regression is comparable to the result of

expectile curves.

5 Application

Temperature derivatives are financial instruments that provide protection and in-

vestment opportunities contributed on weather events. Understanding of the risk

factors of temperature is crucial to the pricing of temperature derivatives. In this

section, we apply the proposed FDA method to study the variation of temperature

at 150 weather stations in China using daily average temperature data of year 2010

obtained from the Chinese Meteorological Administration, which was obtained from

Research Data Center (RDC) in Humboldt University at Berlin. The locations of

the weather stations are shown in Figure 3.

The temperature record has a clear seasonable pattern — low in winter and

high in summer — and also displays strong autocorrelation. We studied the volatility

of the temperature using the residuals after de-trending and removing the autore-

gressive effect as well as the seasonal effect. The standard procedure (for pricing) is

14
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Figure 1: The estimated µ (blue dotted), the real µ (black solid) and the 5% −
95% pointwise confidence intervals ( red dashed), Upper Panel; the estimated first
principal component f1, Middle Panel; the estimated second principal component f2,
Bottom Panel; for 95% expectile curves when the error term is normally distributed
with mean 0 and variance 0.5. The sample size are respectively N = 20,M = 100
(Left) and N = 40,M = 150 (Right).
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Figure 2: The estimated µ ( dotted blue), the real µ (solid black) and the 5% −
95% pointwise confidence intervals ( red dashed), Upper Panel; the estimated first
principal component f1, Middle Panel; the estimated second principal component
f2, Bottom Panel; for 95% quantile curves with error term normally distributed
with mean 0 and variance 0.5. The sample size is N = 20,M = 100 (Left) and
N = 40,M = 150 (Right).
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Figure 3: 150 Weather Stations in China

well-documented in the literature (Campbell and Diebold, 2005; Härdle and López-

Cabrera, 2011). Let Tit denote the average temperature on day t for city (station)

i. The standard model described e.g. in Benth et al. (2007) is:

Tit = Xit + Λit,

Λit = ai + bit+
M∑
m=1

cim cos

{
2π(t− dim)

m · 365

}
,

Xit =

pi∑
j=1

βijXi,t−j + εit.

(27)

The seasonal effect Λit is captured by a small number of Fourier terms, and autocor-

relation by an autoregressive AR structure. Our interest is the collection of expectile

curves of different percentages at each station i which characterize the distribution

of εit as a function of t. We fit model (27) to the temperature data and obtained

estimated residuals εit. In principle, the distribution function of the volatility can be

deduced from the generalized quantile curves. Further, the distribution function is

crucial to pricing the weather derivatives, more description can be found in Härdle

and López-Cabrera (2011). We applied our FDA method to these residuals to esti-

mate the 5%, 25%, 75%, and 95% expectile curves for each weather station. In each

application of our method, penalty parameters were selected using cross-validation.

Evaluating the empirical variance of the estimated PC scores suggest that,
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Expectile levels
PC index 5% 25% 75% 95%

1 0.3833 0.0596 0.0659 0.4421
2 0.0665 0.0131 0.0194 0.1102
3 0.0471 0.0077 0.0158 0.0746
4 0.0415 0.0074 0.0123 0.0657
5 0.0306 0.0072 0.0056 0.0455
6 0.0262 0.0051 0.0050 0.0226

Table 2: The empirical variances of PC scores for the Chinese temperature data.

for all four expectile levels, the first principal component is a dominating factor in

explaining the variability among the weather stations; see Table 2. Figure 4 shows

the estimated first principal component functions f1(t) for four expectile levels.

These PC functions have the following interpretation: A positive score on the first

PC of the 5% and 25% expectiles implies that the corresponding distribution has

a lighter than average left tail, while a positive score on the first PC of the 75%

and 95% expectiles implies that the corresponding distribution has a heavier than

average right tail. The U shape of the PC functions suggest that the effect is stronger

in winter than in summer.

Figure 5 shows the estimated PC scores α1i for the first principal components

at four expectile levels. To help the interpretation, the values of the scores are shown

as colored dots at the locations of the stations on the map of China. For expectiles

at lower levels, i.e., 5% and 25% levels, the weather stations in northern China tend

to have positive PC scores, while those in the south are opposite; for expectiles at

higher levels, i.e., 75% and 95% levels, the weather stations in northern China tend

to have negative PC scores, while those in the south are opposite. According to the

interpretation of the first principal components given earlier, these results suggest

that the temperature distribution has heavier left and right tails (and is so more

spread out) in southern China than that in the north, and this phenomenon is more

pronounced in winter than in summer. Therefore, one can say that it has more

potential to buy weather derivatives to hedge the corresponding risk in the south

of China, especially to hedge the temperature risk in winter. We may understand

the result as that in winter, the north part of China already has the perfect heating

system, therefore even the big changes in temperature cannot influence the residents,

the energy companies or other related industries. While, in the south, the weather

related sectors, such as the crops and energy companies are more sensitive to the
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Figure 4: The estimated first principal component for the 5% (black solid), 25%
(red dashed), 75% (green dotted), 95% (blue dash-dotted) expectiles curves of the
volatility of the temperature of China in 2010 with the data from 150 weather
stations.

variation of temperature. Extreme cold weather in southern China even may kill

people. Thus, weather derivatives are necessary tools to hedge temperature risk and

avoid the corresponding loss, especially in the Southern China.

6 Conclusion

This paper develops an approach for jointly estimating a family of generalized quan-

tile curves. By applying ideas from functional data analysis, we can borrow strength

across populations. The simulation study demonstrates the proposed FDA approach

is more efficient than separate estimation. Our method also provides principal com-

ponent functions for the generalized quantile curves, which is useful for describing

the major source of variation among these curves. The application to tempera-

ture data yielded scores that gave message into the distribution of tail events of
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Figure 5: The estimated first principal component scores α1 for the 5%, 25%, 75%
and 95% expectile curves of the temperature distribution.
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temperature in China.

A Appendix

A.1 The complete PLAWS algorithm

We give the complete algorithm in this appendix. The parameters that appear on

the right hand side of the equations are all fixed at the values from the last iteration.

a. Initialization the algorithm using the procedure described in Appendix A.2.

b. Update θ̂µ using

θ̂µ =

{ N∑
i=1

B>i ŴiBi + λµΩ

}−1{ N∑
i=1

B>i Ŵi(Yi −BiΘ̂f α̂i)

}
.

c. For l = 1, · · · , K, update the l-th column of Θ̂f using

θ̂f,l =

{ N∑
i=1

α̂2
ilB
>
i ŴiBi + λfΩ

}−1{ N∑
i=1

α̂ilB
>
i Ŵi(Yi −Biθ̂µ −BiQil)

}
,

where θ̂f,k is the k-th column of Θ̂f , and

Qil =
∑
k 6=l

θ̂f,kα̂ik, i = 1, · · · , N.

d. Use the QR decomposition to orthonormalize the columns of Θ̂f .

e. Update (α̂1, . . . , α̂N) using

α̂i = (Θ̂>f B
>
i WiBiΘ̂f )

−1
{

Θ̂>f B
>
i Wi(Yi −Biθ̂µ)

}
,

and then center α̂i such that
∑N

i α̂i = 0.

f. Update the weights, defined in (21) for expectiles and (22) for quantiles.

g. Iterate Steps b-f until convergence is reached.
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A.2 Initial values for the PLAWS algorithm

The initialization of the PLAWS algorithm is:

a. Estimate N expectile/quantile curves l̂i(t) separately by applying the single

curve estimation algorithm described in Section 2.

b. Set L̂i = {l̂(ti1), . . . , l̂(tiTi)}>. Run the linear regression

L̂i = Biθµ + εi, i = 1, . . . , N, (28)

to get the initials of θ̂µ as follows

θ̂(0)µ =

( N∑
i=1

B>i Bi

)−1( N∑
i=1

B>i L̂i

)
.

c. Calculate the residuals of the regression (28), denoted as L̃i = L̂i−Biθ̂
(0)
µ . For

each i, run the following linear regression

L̃i = BiΓi + εi.

The solution, denoted as Γ̂
(0)
i , is used in later steps for finding initials of Θf

and αi. Set Γ̂0 = (Γ̂
(0)
1 , · · · , Γ̂(0)

N ).

d. Calculate the singular value decomposition of Γ̂(0)>:

Γ̂(0)> = UDV >.

The initial of Θf is chosen as Θ̂
(0)
f = VkDk where Vk consists of the first K

columns of V and Dk is the corresponding K ×K block of D.

e. Run the following regression

Γ̂
(0)
i = Θ̂f α̂i + εi (29)

to get the initials of α̂i; use a ridge penalty if the regression is singular. Center

α̂i’s such that
∑N

i=1 α̂i = 0.
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