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Simultaneous test procedures in terms of p-value copulae∗

Thorsten Dickhaus and Jakob Gierl
Department of Mathematics
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Abstract—At least since [1], a broad class of multiple
comparison procedures, so-called simultaneous test procedures
(STPs), is established in the statistical literature. Elements
of an STP are a testing family, consisting of a set of null
hypotheses and corresponding test statistics, and a common
critical constant. The latter threshold with which each of the
test statistics has to be compared is calculated under the (joint)
intersection hypothesis of all nulls. Under certain structural
assumptions, the so-constructed STP provides strong control
of the family-wise error rate. More recently, a general method
to construct STPs in the case of asymptotic (joint) normality
of the family of test statistics has been developed in [2], and
numerical solutions to compute the critical constant in such
cases were provided.

Here, we propose to look at the problem from a different
perspective. We will show that the threshold can equivalently
be expressed by a quantile of the copula of the family of p-
values associated with the test statistics, assuming that each of
these p-values is marginally uniformly distributed on the unit
interval under the corresponding null hypothesis. This offers
the opportunity to exploit the rich and growing literature on
copula-based modeling of multivariate dependency structures
for multiple testing problems and in particular for the
construction of STPs in non-Gaussian situations.

JEL Classification: C12, C44.
MSC 2010 subject classifications: 62J15, 62F03, 60E05.

Keywords-distributional transform; family-wise error rate;
multiple hypotheses testing; multiplicity correction; simultane-
ous statistical inference; single-step test

I. INTRODUCTION

In many modern areas of science, several inferential
problems have to be solved simultaneously on the basis
of only one single dataset. Consider, for instance, gene
expression analyses where many genetic loci are tested in
parallel for differential expression between groups of indi-
viduals. Mathematically, such problems can be formalized as
multiple statistical hypotheses test problems and the data-
analytic tools to solve them are multiple test procedures
(MTPs). The field of multiple hypotheses testing has become
one of the major branches of mathematical and applied
statistics during the past approximately 20 years, especially
driven by the need for new data-analytic tools for problems

∗This research was supported by the Deutsche Forschungsgemeinschaft
through the SFB 649 ”Economic Risk”.

from modern life sciences, such as genetics, proteomics,
functional magnetic resonance imaging, or brain-computer
interfacing. Although the literature on MTPs is exponentially
increasing over time, it is still possible to systematize the
proposed methods according to some general categories: For
instance, one class of methods only models the marginal
distributions of the involved test statistics explicitly and
combines these test statistics or, equivalently, corresponding
p-values following probabilistic calculations. Examples of
this kind of procedures are single-step multiple tests like the
classical Bonferroni and Šidák corrections, step-up multiple
tests like the famous false discovery rate-controlling linear
step-up test by Benjamini and Hochberg (see [3]), step-down
tests like Holm’s procedure (see [4]), or general step-up-
down tests as introduced in [5]. Another class of MTPs
considers the full joint distribution of all test statistics and
relies on calculating or approximating quantiles of this joint
distribution, for instance by resampling (cf. [6], [7]) or
by proving asymptotic normality by means of central limit
theorems (see, for example, [2] and [8]).

In the present work, we contribute to the theory of the
latter class of MTPs. However, we propose only to infer the
dependency structure of the involved test statistics, because
their marginal distributions are often already implied by
the statistical model. Assuming these marginals as fixed,
the problem reduces to considering the copula function of
the test statistics or the p-values. In Section II, we express
simultaneous test procedures (STPs) in terms of the copula
function of p-values. STPs take a quantile of the joint
distribution of test statistics under the global null hypothesis
(all hypotheses are assumed to hold true) as threshold. The
section concludes with a general construction principle for
STPs based on copulae. In Section III, applications of this
general theory are discussed. We will elucidate that our
copula view toward STPs is useful for importance weighting
of the hypotheses and for separating the marginal models
from a model for the dependency structure. To the best of
our knowledge, the modeling approach in the present work
is novel to the field of multiple testing. The possibility to
employ copula-based models for constructing multiple tests
has been mentioned in [9], but we are not aware of concrete
references realizing this suggestion. The usage of copulae
as model diagnosis tools in the context of multiple testing



is exemplified in [10].

II. GENERAL THEORY

Throughout the work, we let (Ω,F , (Pϑ)ϑ∈Θ) denote
a statistical model. We identify hypotheses with non-
empty subsets of the parameter space Θ. The tuple
(Ω,F , (Pϑ)ϑ∈Θ,Hm) denotes a multiple test problem,
where Hm = (Hi, 1 ≤ i ≤ m) defines a finite family of
m null hypotheses. The resulting alternative hypotheses are
denoted by Ki = Θ \ Hi, 1 ≤ i ≤ m. The intersection
hypothesis H0 =

⋂m
i=1Hi will occasionally be referred to

as global hypothesis. Throughout the work, we assume that
H0 is non-empty. For a given ϑ ∈ Θ, we denote the index
set of true null hypotheses in Hm by I0 ≡ I0(ϑ) = {1 ≤
i ≤ m : ϑ ∈ Hi}. A (non-randomized) multiple test is
a measurable mapping ϕ = (ϕi)1≤i≤m : Ω → {0, 1}m
the components of which have the usual interpretation of a
statistical test for Hi versus Ki. The family-wise error rate,
FWER for short, of a multiple test ϕ is (for a given ϑ ∈ Θ)
defined as the probability under ϑ of at least one type I error,
i. e., FWERϑ(ϕ) = Pϑ

(⋃
i∈I0(ϑ){ϕi = 1}

)
and ϕ is said

to control the FWER at a pre-specified level α ∈ (0, 1) if
supϑ∈Θ FWERϑ(ϕ) ≤ α.

In this work, we restrict our attention to a special class
of multiple tests, namely, simultaneous test procedures as
originally defined in [1].

Definition 1: Consider the extended test problem
(Ω,F , (Pϑ)ϑ∈Θ,Hm+1) with Hm+1 = {Hi, i ∈ I∗ :=
{0, 1, . . . ,m}}. Assume real-valued test statistics Ti, i ∈ I∗,
which tend to larger values under alternatives. Then we call

(a) (Hm+1, T ) with T = {Ti, i ∈ I∗} a testing family.
(b) ϕ = (ϕi, i ∈ I∗) a simultaneous test procedure, if

∀0 ≤ i ≤ m : ϕi =

{
1, if Ti > cα,

0, if Ti ≤ cα,

where the critical value cα is determined such that
∀ϑ ∈ H0 : Pϑ ({ϕ0 = 1}) = Pϑ ({T0 > cα}) ≤ α.

In order to simplify the definition of p-values under our
setup, we now impose three important structural assumptions
on the test problem and the testing family.

(S1) Any ϑ ∈ H0 is a least favorable parameter con-
figuration (LFC) for the FWER of any STP ϕ for
(Ω,F , (Pϑ)ϑ∈Θ,Hm) that is based on (T1, . . . , Tm),
meaning that the FWER of ϕ becomes largest under
parameters in the global hypothesis.

(S2) Every null hypothesis Hi, 1 ≤ i ≤ m, is of the form
Hi : {θi(ϑ) = θ∗i }, where θ : Θ → Θ′ denotes a
derived parameter, i indexes components of θ, and the
θ∗i are fixed given values in Θ′.

(S3) The marginal cumulative distribution function (cdf.) of
Ti under Hi, which we will denote by Fi, is continuous
and strictly increasing.

Heuristically, assumption (S1) seems highly plausible:
The more true null hypotheses in Hm, the larger the
probability of one or more type I errors. If all marginal
tests are stochastically independent and once cα is fixed,
the investigations in [11] and [12] show that this reasoning
is indeed true. For models with dependency, however, the
determination of LFCs becomes much more complicated.
In the special case that θ is the identity mapping, sufficient
conditions for the validity of (S1) for single-step multiple
tests (including STPs) have been derived in [8]. We will
discuss examples under our more general setup in the
subsequent sections.

Under (S2) - (S3), appropriate p-values corresponding to
the Ti are given by ∀1 ≤ i ≤ m : pi = 1 − Fi(Ti). This
transformation with the upper-tail cdf. is useful for multiple
testing, because it standardizes all marginal test statistics.
Every pi is supported on the unit interval [0, 1], even if the
Ti have drastically different scales.

The following obvious lemma summarizes further prop-
erties of the pi, 1 ≤ i ≤ m.

Lemma 1: Under (S2) - (S3), it holds:
(a) Ti > cα ⇐⇒ pi < 1−Fi(cα). We may think of α(i)

loc. :=
1−Fi(cα) as a multiplicity-adjusted local significance
level.

(b) 1− pi is equal to the distributional transform of Ti as
defined in [13].

(c) Under Hi, we have pi ∼ UNI[0, 1] and 1 − pi ∼
UNI[0, 1].

The usefulness of p-values for formulating STPs is mainly
based on the following well-known theorem.

Theorem 1 (Sklar, cf. [14], [15]):
Let X = (X1, . . . , Xm)> a random vector with values in
Rm and with joint cdf FX and marginal cdfs FX1

, . . . , FXm
.

Then there exists a function C : [0, 1]m → [0, 1] such that
for all x = (x1, . . . , xm)> ∈ R̄m, it holds

FX(x) = C(FX1(x1), . . . , FXm(xm)).

If all m marginal cdfs are continuous, the copula C is
unique.

From Theorem 1 and Lemma 1.(c) we conclude that,
under any ϑ∗ ∈ H0, the joint cdf. of (1 − pi : 1 ≤ i ≤ m)
coincides with their copula. We are now ready to bound the
FWER of any STP for (Ω,F , (Pϑ)ϑ∈Θ,Hm) in terms of the
copula of the distributional transforms.

Theorem 2: Let ϕ an STP for (Ω,F , (Pϑ)ϑ∈Θ,Hm). For
arbitrary ϑ ∈ Θ and ϑ∗ ∈ H0, we get under (S1) - (S3) that

FWERϑ(ϕ) ≤ 1− Cϑ∗(1− α(1)
loc. , . . . , 1− α(m)

loc. ), (1)

with Cϑ∗ denoting the copula of (1−pi : 1 ≤ i ≤ m) under
ϑ∗.

Proof: Due to Lemma 1.(a), it holds

FWERϑ(ϕ) = Pϑ

 ⋃
i∈I0(ϑ)

{pi < α
(i)
loc. }

 . (2)



Making use of assumption (S1) and the fact that all null
hypotheses are true under ϑ∗, we can bound the right-hand
side of (2) from above and obtain

FWERϑ(ϕ) ≤ Pϑ∗

(
m⋃
i=1

{pi < α
(i)
loc. }

)

= 1− Pϑ∗

(
m⋂
i=1

{1− pi ≤ 1− α(i)
loc. }

)
= 1− Cϑ∗(1− α(1)

loc. , . . . , 1− α(m)
loc. ),

where we used Theorem 1 and Lemma 1.(c) in the last line.

To control the FWER at level α with the STP ϕ, we can
therefore equivalently compare the (marginal) distributional
transforms with a suitable (1 − α)-quantile of their copula
under ϑ∗. In particular, the STP re-formulation in (1) does
not require an explicit test statistic T0 for testing H0.

III. APPLICATIONS

A. Illustrative example: one-factorial analysis of variance
(ANOVA1)

Definition 2 (Dunnett contrasts under ANOVA1): Fix an
integer k (number of treatment groups) and sample sizes
(ni)1≤i≤k, and model the observation x ∈ Ω = R

∑k
i=1 ni

as a realization of X = (Xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ ni). In
this, assume that

(i) all Xi,j are stochastically independent,
(ii) Xi,j ∼ N (µi, 1) (or with unknown, but common

variance).
The parameter of this model is the unknown mean vector
µ = (µ1, . . . , µk)> ∈ Rk. Consider the ”multiple compar-
isons with a control group” problem, i. e., the hypotheses
Hi : µi = µk, 1 ≤ i ≤ k−1, leading to m = k−1. Equiva-
lently, we can express Hi as θi = 0, where θi = µi − µk is
a derived parameter. In a compact matrix notation, we can
express Hk−1 = (H1, . . . ,Hk−1) as CDunnett µ = 0. Line i of
the latter system of equations is equal to Hi, 1 ≤ i ≤ k−1.
The contrast matrix CDunnett is Dunnett’s contrast matrix with
k−1 rows and k columns, where in each row j the j-th entry
equals +1, the k-th entry equals −1 and all other entries are
equal to zero. This is a classical multiple test problem which
has been considered in the pioneering works of Charles W.
Dunnett, cf. [16], [17].

Lemma 2: Denoting the empirical mean in group i by
X̄i., suitable (standard) test statistics for the two-sided
comparisons as defined in Definition 2 are given by |Ti|,
1 ≤ i ≤ k − 1, where Ti =

√
nink/(ni + nk)(X̄i. − X̄k.).

The joint distribution of T = (T1, . . . , Tk−1)> is multivari-
ate normal (or multivariate t) with a covariance matrix Σ
which only depends on the sample sizes n1, . . . , nk. More
specifically, we have that T ∼ Nk−1(µ̃,Σ) with

µ̃i =

√
nink
ni + nk

(µi − µk) and Σ = DCDunnettMC>DunnettD,

where D = diag
(√

nink

ni+nk
: 1 ≤ i ≤ k − 1

)
∈ Rk−1×k−1

and M = diag(n−1
i : 1 ≤ i ≤ k) ∈ Rk×k.

Proof: The proof is a straightforward application of the
linearity of Gaussian distributions and the assertion follows,
for instance, immediately from Section 3 in [18].

Theorem 3: Under the assumptions of Lemma 2, the
structural properties (S1) - (S3) are fulfilled for the STP
induced by T .

Proof: It remains to show (S1). To this end, notice that
for any µ∗ ∈ H0 the joint distribution of T is identical,
namely, a centered Gaussian distribution with covariance
matrix Σ. Therefore, the FWER for the induced STP is
invariant with respect to µ∗ ∈ H0. Now, consider µ 6∈ H0,
with corresponding index set I0(µ) of true hypotheses in
Hk−1. Without loss of generality, assume that I0(µ) =
{1, . . . ,m0}, with m0 = |I0(µ)| denoting the number of true
hypotheses in Hk−1 under µ. The subvector (T1, . . . , Tm0

)
has the same joint distribution under µ and under any
µ∗ ∈ H0, namely, an m0-dimensional, centered Gaussian
distribution with covariance matrix given by the appropriate
submatrix of Σ. We conclude that

FWERµ(ϕ) = Pµ

(
m0⋃
i=1

{ϕi = 1}

)

= Pµ∗

(
m0⋃
i=1

{ϕi = 1}

)

≤ Pµ∗

(
m⋃
i=1

{ϕi = 1}

)
= FWERµ∗(ϕ),

completing the proof.
We may remark here that the latter calculation is an

instance where the much more general concept of ”subset
pivotality” (introduced and extensively been made use of for
resampling in [6]) applies.

For ease of graphical illustration, let us now consider the
case of k = 3 and, consequently, m = 2.

Corollary 1: If, under the assumptions of Lemma 2,
k = 3, we obtain T ∼ N2(µ̃,Σ), where µ̃ is as in Lemma
2 and

Σ =

 1
√

n1n2

(n1+n3)(n2+n3)√
n1n2

(n1+n3)(n2+n3) 1

 .

Since the joint distribution of T under the global hypoth-
esis is exactly known here, the copula Cµ∗ of the distri-
butional transforms under H0 can simply be calculated by
transformation of measures. For (u1, u2) ∈ [0, 1]2, we obtain
Cµ∗(u1, u2) = F|T |(Φ

−1((u1 + 1)/2),Φ−1((u2 + 1)/2)),
where Φ denotes the cdf. of the standard normal distribution
and F|T | the joint cdf. of the absolute values of T under
µ∗, which is easily evaluable by numerical routines for



Figure 1. Contour lines of Cµ∗ in the case of (n1, n2, n3) = (5, 100, 5)
for the STP defined by Definition 2 and Lemma 2.
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Figure 2. Graphical representation of the construction of an STP according
to Theorem 2.

multivariate normal distributions like the mvtnorm package
in R, cf. [19].

Figure 1 depicts contour lines of Cµ∗ in the case of
(n1, n2, n3) = (5, 100, 5) for contour levels 0.3, 0.5, 0.7,
and 0.9. The maybe unrealistic sample sizes were chosen
for ease of graphical representation. For control of the
FWER at level α = 0.3 (say) with the STP defined by
Definition 2 and Lemma 2, Figure 2 represents our findings
from Theorem 2 graphically: An STP is constructed by
determining the point of intersection of the diagonal on
[0, 1]2 with the contour line of Cµ∗ at contour level 1− α.
Projection onto the coordinate axes yields the multiplicity-
adjusted marginal copula arguments 1−α(i)

loc. , i = 1, 2. In the
example, one could consequently choose local significance
levels α(1)

loc. = α
(2)
loc. = 0.1943.

Remark 1: Since every bivariate (1−α)-quantile of Cϑ∗

is a solution to the problem of STP construction according to
Theorem 2, Figure 2 furthermore shows how an importance
weighting of the individual hypotheses can be incorporated
straightforwardly into our method: the only thing that has to
be changed is the slope of the line through the origin.

B. Parametric copula estimation

The example in the previous section was mainly intended
to provide a proof of principle for the applicability of
Theorem 2 and thus, we chose an easy-to-follow setup.
However, from a practical point of view this example is
not convincing, because the full joint distribution of T
under ϑ∗ was exactly derivable and therefore, the detour
via the distributional transforms is not needed in practice
for such type of examples. Much more interesting are cases
where prior information about Cϑ∗ is incomplete or even
lacking. In such cases, two inferential problems have to be
solved in parallel, namely (i) estimation of the dependency
structure, (ii) multiple testing. From methods based on
empirical covariance matrices, it is well-known that the
”curse of dimensionality” (m(m − 1)/2 parameters have
to be estimated) requires some kind of regularization, i. e.,
structural assumptions regarding the data-generating process.
Two respective techniques are shrinking of the empirical
covariance matrix Σ̂ (say) toward some pre-specified target
(cf., for instance, [20]) or low-rank approximations of Σ̂ by,
for example, assuming equi-correlation in blocks or AR(1)
or Toeplitz structures, cf. [21] for applications in the context
of multiple testing.

Here, we propose a different approach based on paramet-
ric families of copulae and the ”realized copula” concept
from [22]. Parametric copula families are intensively studied
in the textbook [23] and in recent literature from the fields
of quantitative finance and econometrics, see, among many
others, [24] and [25] for overviews. To illustrate the pro-
posed method, let us consider a real-life dataset from cancer
research which can be downloaded freely from the Gene
Expression Omnibus data repository, see http://www.ncbi.
nlm.nih.gov/sites/GDSbrowser, dataset GDS2771. More de-
tailed information about the underlying studies is given in
[26] and [27]. We focus on a specific aspect of the dataset,
namely, the determination of genes that are (on average)
differentially expressed in airway epithelial cells of cancer
patients in comparison with healthy controls. To this end,
we restrict attention to m = 11 genes on chromosome 1. In
dataset GDS2771, expression profiles of n1 = 97 patients
and n2 = 90 controls for these m genes are tabulated.
In this, the raw expression counts were transformed to
marginally fit normal distributions well. Indeed, diagnostic
plots (not shown here) confirm that, marginally, Gaussian
distributions are valid models. Consequently, our parameter
of interest ϑ = (ϑ1, . . . , ϑm)> consists of the differences in
mean expression levels of the m = 11 genes between the
patient group and the control group on the corresponding
transformed scales, and ϑ∗ = 0 ∈ Rm. However, how
the aforementioned (gene-specific) marginal transformations
affect the dependency structure of p-values originating from
marginal two-sample t-tests is not at all clear. Therefore,
we chose to separate the dependency structure assessment



completely from the marginal models (which is possible
by our copula-based STP approach) and considered the
flexible class of m-variate Clayton copulae (see, for instance,
Example 4.23 in [23]) for the dependency modeling. Each
member of the family of Clayton copulae is uniquely defined
by a one-dimensional parameter η > 0 and has the form

Cη(u1, . . . , um) =
(
u−η1 + u−η2 + . . .+ u−ηm −m+ 1

)−1/η
.

(3)
Before discussing the results for dataset GDS2771, we de-

scribe the procedure for empirical calibration of η according
to the realized copula method. To this end, the following
”inversion formulas” are helpful.

Lemma 3: Let X and Y two real-valued random variables
with marginal cdfs FX and FY and bivariate copula Cη ,
depending on a copula parameter η. Let σX,Y , ρX,Y and
τX,Y denote (the population versions of) the covariance,
Spearman’s rank correlation coefficient and Kendall’s tau,
respectively, of X and Y . Then it holds:

σX,Y = f1(η) =

∫
R2

[Cη{FX(x), FY (y)}

−FX(x)FY (y)] dx dy, (4)

ρX,Y = f2(η) = 12

∫
[0,1]2

Cη(u, v) du dv − 3, (5)

τX,Y = f3(η) = 4

∫
[0,1]2

Cη(u, v) dCη(u, v)− 1. (6)

Proof: Equation (4) is due to Hoeffding, see [28],
equation (5) is Theorem 5.1.6. in [23] and (6) is Theorem
5.1.3 in [23].

The ”realized copula” method for empirical calibration
of a one-dimensional parameter η of an m-variate copula
essentially considers every of the m(m− 1)/2 pairs of the
m underlying random variables, inverts (4) each time with
respect to η, replaces the population covariance by its em-
pirical counterpart and aggregates the resulting m(m−1)/2
estimates in an appropriate way. More specifically, the au-
thors of [22] define for 1 ≤ i < j ≤ m: gij(η) = σ̂ij−f1(η),
set g(η) = (gij(η))1≤i<j≤m, and propose to estimate

η̂ = arg min
η

g>(η)Wg(η)

for an appropriate weight matrix W ∈ R(m
2 )×(m

2 ). In this,
σ̂ij denotes the empirical covariance of Xi and Xj .

Remark 2: In the realized copula method, any of the
functions f`, ` = 1, 2, 3 corresponding to relationships (4) -
(6) may be employed. Moreover, they may be combined to
estimate two- or three-dimensional copula parameters η.

Returning to our real-data example, the Xi have to be
replaced by the distributional transforms 1 − pi of the t-
statistics in each marginal. In order to assess their correlation
structure under ϑ∗, we employed a resampling strategy. For
a fixed number B = 1,000, we permuted the entire data
vectors of the n = n1 + n2 = 187 study participants, i. e.,

we randomly assigned each study participant’s data vector to
the ”cancer positive” or the ”cancer negative” group in each
permutation run. This resampling mechanism destroys in-
formation about the differential expression between the two
groups in every marginal (thus reflecting the situation under
ϑ∗), but preserves the dependency structure between genes.
Similar resampling schemes are made use of extensively for
estimating joint distributions of test statistics for multiple test
problems from the field of genetics in [7]. After completion
of all B permutations and re-calculation of the t-statistics
in each permutation run, we utilized the empirical covari-
ances of the resulting resampled distributional transforms as
estimates σ̂ij in the realized copula optimization step.

Based on this, application of the realized copula method
to dataset GDS2771 with η taken as the Clayton copula
parameter given in (3) resulted in η̂ = 0.1636, where we
treated each gene equally, meaning that we set W = I(11

2 ).
Having estimated Cϑ∗ in this way, the reasoning of The-
orem 2 led, for a target FWER level of α = 0.05, to
α

(i)
loc. ≡ αloc. = 0.00467, 1 ≤ i ≤ m = 11. In summary, the

empirical calibration of αloc. based on the intrinsic correlation
structure in the data allowed us to enlarge the multiplicity-
adjusted local significance level in comparison with the
Bonferroni correction (valid under any kind of dependence)
and in comparison with the Šidák correction (valid under
joint independence of all m marginal tests).

IV. DISCUSSION

We have presented a flexible method to construct simul-
taneous test procedures based on copulae of distributional
transforms, assuming uniformly distributed p-values for ev-
ery marginal test problem. Useful features of the proposed
construction method for STPs are that marginal models and
dependency structure can be treated separately both in the
modeling step and in the data analysis step of the multiple
test problem and that an importance weighting with respect
to the individual test problems is straightforwardly possible
by choosing an appropriate point on the contour line of
the copula of distributional transforms under the global
hypothesis. Applicability of the method in practice has been
shown in a stylized example case in Section III-A and for a
real-life data set from cancer research in Section III-B.

The main limitation of our procedure is that strict FWER
control can not be guaranteed for finite sample sizes if the
copula parameter is unknown. For large n, consistency of
moment estimators, together with Lemma 3, yields approx-
imate FWER control of an STP constructed according to
Theorem 2. Future research shall be concerned with the
obvious question how the random fluctuations in the data,
that lead to noisy estimation of η, translate into fluctuations
of the realized FWER of ϕ around its target level α, and with
conservative modifications of our procedure guaranteeing
that the FWER of ϕ can not exceed α, even for noisy η̂.
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