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Abstract

A State Price Density (SPD) is the density function of a risk neutral equivalent

martingale measure for option pricing, and is indispensible for exotic option pricing

and portfolio risk management. Many approaches have been proposed in the last

two decades to calibrate a SPD using �nancial options from the bond and equity

markets. Among these, non and semi parametric methods were preferred because

they can avoid model mis-speci�cation of the underlying and thus give insight into

complex portfolio propelling. However, these methods usually require a large data

set to achieve desired convergence properties. Despite recent innovations in �nan-

cial and insurance markets, many markets remain incomplete and there exists an

illiquidity issue. One faces the problem in estimation by e.g. kernel techniques that

there are not enough observations locally available. For this situation, we employ a

Bayesian quadrature method because it allows us to incorporate prior assumptions

on the model parameters and hence avoids problems with data sparsity. It is able

to compute the SPD of both call and put options simultaneously, and is particularly

robust when the market faces the illiquidity issue. By comparing our approach with

other approaches, we show that the traditional way of estimating the SPD by di�er-

entiating an interpolation of option prices does not hold in practice. As illustration,

we calibrate the SPD for weather derivatives, a classical example of incomplete mar-

kets with �nancial contracts payo�s linked to non-tradable assets, namely, weather

indices. Finally, we study the dynamics of the implied SPD's and related to weather

data.
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1 Introduction

A State Price Density (SPD) is the density function of a Risk Neutral (RN) equivalent
martingale measure for option pricing, it is a measure more tied to uncertainty than to
volatility and it is indispensible for (exotic) option pricing and portfolio risk manage-
ment. It does not only re�ect a risk-adaptive behaviour of investors based on historical
assessment of the futures market, but it also gives insights about the preferences and risk
aversion of a representative agent, see for example Ait-Sahalia and Lo (2000), Jackwerth
and Rubinstein (1996), Rosenberg and Engle (2002).

Consider a European call option with maturity date T and strike price K. Under the
non-arbitrage principle, its price at t can be given as:

C(K) = e−rτ
∫

max(x−K, 0)f(x)dx (1)

where r is the risk-free interest rate, τ time to maturity and f(x) is the de�ned SPD. The
advantages of extracting the SPD directly from market prices is that volatility and other
moments can easily be calculated using this SPD independent of any particular pricing
model.

There are any approaches to calibrate the SPD using �nancial options from the bond and
equity markets. Assuming a Black and Scholes (B&S) model implies that the RN measure
is a lognormal distribution which may result in SPD estimation since certain volatility
properties are not correctly re�ected. As observed by Breeden and Litzenberger (1978),
the SPD of any risky asset can be derived as the second derivative with respect to the
strike price of an estimate of the pricing function C. A number of econometric techniques
have been developed to address this calibration issue. The most notable examples include
the stochastic volatility models and the GARCH models. Derman and Kani (1994),
Dupire (1994), Rubinstein (1994) implied SPDs using binomial trees, hence avoiding too
strong stochasticity assumption like e.g. Geometric Brownian motion. Others like Abadir
and Rockinger (2003) use hypergeometric distributions. Although useful in a variety of
contexts, these (parametric) models are still susceptible to model speci�cation.

Various non-parametric models have been employed to overcome this problem. Ait-
Sahalia and Lo (1998) introduce a semiparametric alternative where the volatility of the
B&S formulation is modelled non-parametrically. From a statistical point of view, esti-
mating the SPD becomes estimating the second derivative of a regression function, but
the SPD needs to be a proper density function (non negative and integrates to one). This
dictates that the price is monotone decreasing and convex in terms of the strike price.
How to impose these constraints presents the main di�culties of direct applications of
nonparametric regression. Ait-Sahalia and Duarte (2003), Yatchew and Härdle (2006)
and Härdle and Hlávka (2009) stress the importance of enforcing such shape constraints.
Fan and Mancini (2009) use a non-parametric technique to estimate the state price dis-
tribution but not the density because the former is easier to estimate. Giacomini et al.
(2008) use mixtures of scales and shifted t-distributions, while Yuan (2009) uses a mixture
of lognormals. Curve �tting method have been presented in Rubinstein (1994), Jackw-
erth and Rubinstein (1996). Teng and Liechty (2009) introduce the Bayesian quadrature
model, which is a generalization of the method of Rubinstein (1994) in the sense that both
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the location and weights of the support points are random variables. Most nonparametric
methods require a rich body of data to achieve desired convergence properties.The main
goal of this paper is to infer the SPD from markets, where there is little liquidity of the
assets.

For this purpose, we employ a Bayesian quadrature method as a calibration method for
the SPD from option prices, because it allows us to incorporate prior assumptions on the
model parameters and hence avoids problems with data sparsity. This approach takes a
prior distribution which can be parametric (e.g. lognormal) or a uniform density. The
posterior distribution of the SPD is calibrated to market data. This method is a special
case of a mixture model, where the component densities are point measures.

We show that the proposed method has some advantages over other nonparametric meth-
ods: 1) it considers the locations and weights of the support points in the �nite repre-
sentation of the SPD as random variables, 2) it is parsimonious and allows for statistical
inference, it enables us to construct credible regions for the current value of the SPD 3) it
is computationally e�cient in the sense that a Markov chain Monte Carlo algorithm with
Gibbs sampler can be adopted, so that no additional tuning procedures are required for
exploring the posterior distribution and 4) it is is robust even if the market faces illiquidity
issues. 5) We show that the traditional way to estimate the SPD by di�erentiating an
interpolation of option prices does not hold in practice.

We conduct our empirical analysis based on weather derivative (WD) data traded at the
Chicago Mercantile Exchange (CME). WDs are newly developed �nancial instruments.
Key features of weather derivatives are that the underlying process, i.e., temperature
index, is not tradeable. Consequently, the Black-Scholes formula is unsuitable since an
essential element of it is the tradability of the underlying. In addition, the temperature
index shows apparent seasonality and it is determined by physical phenomena. An in-
teresting feature is that weather futures and options are rarely traded and traded only
at a few strike prices compared with other liquid equity markets. The CME (the o�cial
WD platform) provides closing prices, which are however not the real trading prices ne-
gotiated by the market participants. The SPD enables to price options with complicated
payo� functions simply by numerical integration of the payo� with respect to this density.
However, data sparsity makes the SPD estimation a statistical challenge.

The estimated curves are compared with other popular SPD density estimation methods
(lognormal, kernel density, mixture of log-normal). In addition we study the dynamics of
the SPD which provides useful insight into the economic behavior of agents sensitive to
weather conditions and the time inhomogeneity of the market.

This paper is structured as follows. Section 2 describes the quadrature approach and its
comparison to other popular SPD density estimation methods. In Section 3, we address
the illiquidity issue by addressing why other nonparametric methods fail particularly when
options with only a few strike prices are traded. Section 4 conducts the empirical analysis
of SPDs from CME weather option data using di�erent methods and study the dynamics
of the SPD weather type. Section 5 concludes the paper. All quotations of currency in
this paper will be in USD and therefore we will omit the explicit notion of the currency.
All the SPDs computations were carried out in Matlab version 7.6. The option data on
temperature indices were obtained from CME and are also available from the research
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data center of the CRC 649 �Economic Risk".

2 The Bayesian quadrature method

Options are contingent claims on an underlying asset. Plain vanilla option are of either
put or call type with a �xed maturity, i.e., the value of the underlying is compared to a
strike price K at maturity T . Let x denote the underlying asset's price at maturity (in
our application this will be equivalent to futures prices on weather indexes). For a call
option, one has the payo� max(x−K, 0) and for a put max(K−x, 0). If we denote a put
as i = 1 and a call with i = 2, and observed strike prices Kij for i = 1, 2 and j = 1, . . . , Ni

indexing all possible strike prices on any given day t, then the payo� function at maturity,
denoted by ℘ij(x), can be represented by one formula,

℘ij(x) = (−1)i(x−Kij)I
{

(−1)i(x−Kij) > 0
}

(x),

where I{A} is an indicator function for a set A. Let t be the current time. The fair option
price is given as (1) as the discounted value of the expected payo� function:

Cij = exp (−rτ)EQ[℘ij(x)],

where τ = T − t is the time to maturity and EQ[·] is the expectation operator taken under
the risk-neutral measure. The density f(x) under this risk-neutral measure is the de�ned
SPD. When the SPD f(x) exists, this equals:

Cij = exp (−rτ)

∫
℘ij(x)f(x)dx. (2)

The left hand side of (2) is observed on the market for di�erent payo� types depending
on put/call (i = 1, 2), strike price Kij, and time to maturity τ . The interest of statistical
calibration is to infer the SPD f(x) from a set of observed option prices.

2.1 The quadrature method

The word �quadrature" means a numerical method to approximate an integral either
analytically or numerically, see Ueberhuber (1997) for example. In this research, we work
the adverse way, since the interest is to infer the unknown density from the observed
integrals (options prices). De�ne the δ-function δ$(·) as a unit point measure at the
location s by

δs(x) = I{s = x}

The basic idea of the quadrature method is to approximate the SPD f(x) by fN(x|w, θ),
a weighted sum of δ-functions:

fN(x|w, θ) = w1δθ1(x) + · · ·+ wNδθN (x), (3)

with unknown locations θ = (θ1, . . . , θN)> and weights w = (w1, . . . , wN)>. Here, N
is a non-negative integer (smoothing) parameter. To produce a legitimate probability
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density, the locations θ are constrained to be non-negative quantities, and the weights
w are constrained to be nonnegative quantities and sum up to one. From a modeling
perspective, the quadrature method (3) can be seen as a �nite mixture distribution with
the point measure as the component density. Figure 1 illustrates (3) for N = 5.

t5 t4 t3 t2 t1

w5

w4

w3

w2

w1

A Quadrature plot : f
5
(x|θ,w)

Figure 1: The SPD fN(x|w, θ) from (3) for N = 5

The option price (2) under fN(x|w, θ) is:

CN
ij (w, θ) = exp (−rτ)

N∑
n=1

wn℘ij(θn). (4)

Note that (4) is an approximation to (2) and the aim of calibration is to extract (w, θ)
by matching CN

ij (w, θ) to the observed option prices. More speci�cally, a call option price
calculated with (3) is:

CN
2j(w, θ) = exp {−rτ}

N∑
n=1

wn max(θn −Kij, 0), (5)

whereas a put option price under the quadrature method is:

CN
1j(w, θ) = exp {−rτ}

N∑
n=1

wn max(Kij − θn, 0). (6)

2.2 Bayesian modeling and computation

Empirical observations show that options having higher prices usually have higher price
variation, see Ghysels et al. (1995) and Ghysels et al. (1997). Hence for the calibration
task as a variance stabilizing transformation, we consider the logarithm of option prices.
The observations yijk are perturbations of the model option price CN

ij (w, θ):

log yijk = logCN
ij (w, θ) + εijk (7)

for i = 1, 2, j = 1, . . . , Ni, k = 1, . . . , Nij, where the error εijk ∼ N(0, σ2). εijk is attributed
to market friction and the approximation discrepancy, Garcia et al. (2010) and Renault
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(1997). In Section 3, residual analysis of our empirical studies will support this error
assumption. Following (7), the likelihood is

L(y|w, θ, σ2) =
2∏
i=1

Ni∏
j=1

Nij∏
k=1

(2πσ2)−
1
2 exp

[
−
{

log yijk − logCN
ij (w, θ)

}2
2σ2

]
(8)

A natural prior distribution for the weights w is the Dirichlet distribution, which ensures
w being positive and summing up to one. The Dirichlet distribution with parameter
γ = (γ1, . . . , γN)> has the density function,

f(w|γ) =
1

B(γ)

N∏
n=1

wγn−1n (9)

for wn > 0, n = 1, . . . , N , and w1 + · · · + wN = 1. The normalizing constant B(γ) is
de�ned as

B(γ) =

∏N
n=1 Γ(γn)

Γ(
∑N

n=1 γn)

where Γ(·) is the gamma function, Chen and Shao (1997).

Let Kmin and Kmax denote the minimum and maximum of the observed strike prices Kij,
respectively. To avoid label switching problems for θ, we assume that the locations are
ordered, i.e., θ1 ≤ · · · ≤ θN . Moreover, to avoid model option prices in (4) being zeros,
assume a priori that the smallest location, θ1, is less than the minimum of the observed
strike price, and that the largest location, θN , is larger than the maximum of the observed
strike pries. Therefore, we assume that the distribution of the locations θ are uniformly
distributed over the set {θ1 ≤ θ2 ≤ · · · ≤ θN , θ1 < Kmin, θN > Kmax}:

f(θ|Kmin, Kmax) ∝ I{θ1 ≤ · · · ≤ θN , θ1 < Kmin, θN > Kmax}(θ) (10)

For simplicity, we consider an inverse-gamma distribution with shape parameter α and
scale parameter β as a prior distribution for σ2, denoted by σ2 ∼ IG(α, β). The prior
density of σ2 is

f(σ2|α, β) =
βα

Γ(α)
(σ2)−α−1 exp

(
− β

σ2

)
(11)

Putting things together allows a conjugate prior for σ2, as described in Casella and Berger
(2001).

Note that (9-11) can be changed in cases where appropriate information is available.
Bayesian inference for the parameters of interest is based on the posterior distribution of
w, θ, and σ2:

f(w, θ, σ2|y, α, β, γ,Kmin, Kmax) ∝ L(y|w, θ, σ2)f(w|γ)f(θ|Kmin, Kmax)f(σ2|α, β) (12)

Because of the complexity of (12), it is di�cult to derive a closed-form formula for the
posterior distribution, Teng and Liechty (2009). The Markov chain Monte Carlo (MCMC)
simulation is therefore used to sample w, θ, and σ2. Because of the monotonicity of
parameters w and θ in (4), an MCMC algorithm with Gibbs sampler can be used to avoid
manual tuning procedures in the MCMC simulation.
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2.3 Kernel smoothing density estimate of the quadrature method

The density f̂N(x|w, θ) from (3) is a weighted sum of δ functions and hence is not a
continuous density. However, in many cases, it is interesting to visualize the SPD as a
smoothed density. The kernel density for a set of M observed points ϑ = (ϑ1, . . . , ϑM)>

is:

f̂(x|ϑ) =

∫
ĝ(u)Kh(x− u)du =

1

M

M∑
m=1

Kh(x− ϑm) (13)

where Kh(·) = h−1K(·/h) is a kernel function with a bandwidth h and ĝ(u) the sum
δ-functions

ĝ(u) = M−1
M∑
m=1

δϑm(u)

with locations ϑ. Obviously, di�erent values of h will change the appeareance of f̂(x|ϑ).
The Silverman's rule of thumb suggests a bandwidth

hG = 1.06σ̂M−1/5 (14)

where σ̂ is the sample standard deviation of ϑ and a normal kernel K = ϕ the pdf of
N(0, 1), Silverman (1986).

Note that each ϑm for m = 1, . . . ,M appears with equal probability 1/M . However,
in the Bayesian quadrature method, θn appears with probability wn, for n = 1, . . . , N .
Therefore, we need to adjust the sample size and use ĝ(u) =

∑N
n=1wnδθn(u) instead. The

smoothed density version of (3) becomes

f sN(x|w, θ) =
N∑
n=1

wnKh(x− θn) (15)

Ideally, if we can �nd an integer M̂ , so that there exist integers M̂n satisfying M̂n/M = wn
for n = 1, . . . , N . The adjusted sample size M̂ might be used when applying (14). This
procedure however does not work in practice, because wn would be an irrational number
in most cases, and M̂ simply does not exist. An alternative is to round o� each wn to
the q-th decimal, and set the adjusted sample size being 10q. For example, we choose
q = 2 in our study, and the smoothed SPD appears to be reasonable. In the i-th swipe
of the MCMC algorithm, we obtain w(i) and θ(i) and the smoothed SPD f sN(x|w(i), θ(i)).
We then report the posterior mean and 95% credible regions of the smoothed SPD based
on f̂(x|w(i), θ(i)) point-wisely.

As a remark, the bandwidth can be adjusted to other kernels by a canonical bandwidth,
Härdle et al. (2004). For example for the quartic kernel:

K(u) =
15

16
(1− u2)2I{|u| ≤ 1}, (16)

the Silverman's rule of thumb hG transforms into:

hQUA = 2.62 · hG (17)
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The bandwidth may also be selected by cross validation or other methods. However, the
bandwidth selection problem to obtain a smoothed SPD from a quadrature method for
visualization is not the main contribution of this study and further discussion will be
omitted.

3 Empirical analysis

We �rst introduce the weather derivatives (WD) market and present an overview on WD
data. One major feature is the data sparsity, which makes most existing methods for
estimating the SPD di�cult. We then apply the described technique to estimate the SPD
on WD data. Data sparsity really makes the estimation of a SPD a statistical challenge.
Here, we will show the promising power of the Bayesian quadrature approach over other
methods to estimate the SPD (lognormal, kernel density, mixture of log-normal).

3.1 Weather Derivatives

WDs are �nancial contracts designed to hedge weather risk. The most common contracts
traded at CME are based on temperature indices I(Tt), where Tt denotes the temperature
at time t. These are the Heating Degree Days (HDD), the Cooling Degree Days (CDD),
and the cumulative average temperature (CAT):

HDD(τ1, τ2) =

τ2∑
t=τ1

max(c− Tt, 0)

CDD(τ1, τ2) =

τ2∑
t=τ1

max(Tt − c, 0)

CAT (τ1, τ2) =

τ2∑
t=τ1

Tt (18)

where c is a threshold (usually 65◦F or 18◦C) and [τ1, τ2] with τ1 < τ2 is the temperature
measurement period. The standard is that [τ1, τ2] denotes a month of the year or as
seasonal strips. The futures in question are delivering over a period[τ1, τ2], and not at
a �xed delivery time τ . The HDD index measures the demand for heating, while the
CDD index measures the demand for cooling. Consequently, temperature indices are the
underlying and not the temperature by itself.

Financial mathematical tools given in Benth et al. (2007), Benth et al. (2011) and Här-
dle and López-Cabrera (2012) allow the pricing of the non-tradable underlying by risk
adjusted conditional expectation. Hereby, the futures temperature price is given by:

F (t, τ1, τ2) = E
Q [I(Tt)|Ft] (19)

where EQ [·] be any equivalent martingale measure and Ft a �ltration information set.
Consequently, the European temperature call option price written on the futures price is
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de�ned as:

C(K) = exp {−rτ}
∫

max {F (t, τ1, τ2)−K, 0} f(x)dx (20)

In order to compute (20), it is necessary to know the stochastic properties of the temper-
ature process Tt under the �physical measure" measure and then adjust the risk measure,
see Härdle and López-Cabrera (2012). Here we estimate the SPD, di�erent to the afore
mentioned approach, directly under the risk neutral measure. Note that (20) is exactly
(5) for f = fN .

The options at CME are cash settled i.e. the owner of a future receives 20 times the
Degree Day Index at the end of the measurement period, in return for a �xed price. At
time t, CME trades contracts with di�erent measurement periods t ≤ τ1 < τ2 or di�erent
maturities τ = τ2− t. The measurement period for CAT/HDD futures is typically during
April-November, while CDD futures are measured during November-April.

3.2 Overview on the WD Data

TheWD data was purchased from CME for the study period from 2002/01/02 to 2012/05/11.
The reported price is the settlement price for the future or option contract, and the volume
is the number of contracts traded.

Depending on the measurement period, temperature products in the US market are further
categorized into monthly, seasonal strips, and average products. HDD monthly products
have seven contract months: October, November, December, January, February, March,
April, and CDD monthly products have seven contract months: April, May, June, July,
August, September, and October. For HDD seasonal strips, the contract period covers
from October to April, and for CDD seasonal strips, the contract period covers from April
to October. Contract for weekly average products covers all �ve weeks. Table 1 gives an
overview of the volume of the temperature market.

Figure 2 illustrates the volume for US temperature futures and options in the study pe-
riod. The trading activity increased dramatically since 2002 but declined after the 2008
�nancial crisis. This is surprising since one could expect that these markets are uncor-
related with �nancial markets. However we believe that the decline is due to ignorance
of the temperature market as a intermediary for diversi�cation purposes. Star plots in
Figure 3 divide the volume into HDD-CDD monthly, HDD-CDD seasonal strips, and
weekly average for futures and options for each US city. A star plot represents each city
as a star whose i-th spoke is proportional in length to the volume size of i-th product
(HDD Monthly, CDD Monthly, HDD Strips, CDD strips, Average) of the observed city.
Clearly, monthly products are the most popular traded products, followed by seasonal
strips. Nevertheless, no weekly average products are really traded in the US temperature
market.

The volume of HDD, CDD, Average monthly and seasonal strips futures and options for
all US cities is reported in Table (1. New York is to be the biggest temperature market
and takes about 20% of the market volume, followed by Chicago (10%), Atlanta (9%),
Cincinnati (8%), and Dallas (7%). The market share of these �ve cities exceeds 50% of the
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Figure 2: The volume for US temperature futures (F) and options (O).

US temperature market. Following this, we took these cities as the most representative
cities. Figure 4 gives time series plots for New York, Atlanta, Chicago and Dallas monthly
HDD, CDD monthly and seasonal strip futures prices. The futures market is more liquid
but also more volatile than option prices. In addition, most HDD and CDD futures are
traded only with time to maturities less than a year. These features of future prices make
the pricing mechanism for weather derivatives unique and challenging.

We further divide the volume of HDD and CDD monthly and HDD seasonal strip options
with respect to strike prices and time to maturities, as summarized in Table 2. It is shown
that most options are traded with only a few number of strike prices and of a short time
to maturity (within one month and less than a year). Because of the fact that options are
only traded with a few number of strike prices, this data sparsity problem makes most
existing nonparametric methods (such as mixture of lognormal models or kernel methods)
very di�cult.

3.3 Illustration and �t of the technique

As depicted in Figure 5, we calibrate the SPD for HDD-CDD monthly and Seasonal strip
options. These four plots present a typical pattern of option prices of weather options:
options were traded only with a very few number of strike prices, sometimes only call
options or put options were traded or the both of them. There is a trade-o� in the selection
of N . When N is larger, one produces better �t because there exist more free parameters
in the model, but drawbacks of model complexity and computational demanding come
along with. Because options are traded with only a few number of strike prices, we select
N = 5 based on the overall availability of data.
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Figure 3: Star plots representing the volume for US temperature contracts (HDD-CDD
monthly, HDD-CDD seasonal strips, and weekly average) futures (upper panel) and op-
tions (lower panel) for each city. Each city is represented as a star whose i-th spoke is
proportional in length to the volume size of i-th product (HDD Monthly, CDD Monthly,
HDD Strips, CDD strips, Average) of the observed city.
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Figure 4: Time series plots of New York, Atlanta, Chicago, Dallas HDD/CDD monthly
and seasonal strips futures prices. HDD monthly futures with the measurement period of
January (Black), February (Blue), March (Cyan), September (Red), October (Magenta),
November (Yellow) and December (Green). CDD monthly futures with the measurement
period of May (Black), June (Blue), July (Cyan), August (Red), and September (Ma-
genta). HDD seasonal strip with the measurement period in January (Blue), March(Cyan)
and December (Cyan)
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To calibrate (5) and (6), we implement an MCMC algorithm to explore the posterior
distribution in (12). Trace plots of the log-likelihood in Figure 6 show that the MCMC
algorithm is converging. The traces indicate that the MCMC approaches a stationary
distribution. Figure 5 imposes model prices of the last swipe of the MCMC algorithm
and demonstrates the �t, because model prices are close to market prices. For residual
analysis, we calculate the residual at each swipe of the MCMC algorithm by

rijk = log yijk − logCN
ij (w, θ) (21)

and provide kernel smooth density plots of the posterior distribution of these residuals in
Figure 7. All these four panel plots demonstrate that the residuals have mean zero, and
are symmetric about zero when comparing with the normal KDE. This visual presentation
supports our error assumption as a normal distribution in (8).

Figure 8 presents trace plots, autocorrelation plots, and KDE plots for σ2 in the MCMC
algorithm. These trace plots show that the MCMC simulation appears to be convergent.
Autocorrelation plots show that the MCMC samples are e�cient. The KDE plots give a
visualization of the posterior distribution of σ2 and suggest that the inverse gamma is a
good candidate for a posterior.

The density (3) approximates the SPD by weighted sum of δ functions and is discontinuous
by its nature. As described earlier, to produce a smoothed SPD for visualization, we round
o� each wn to the second decimal, and set the adjusted sample size as 100. Then we employ
the kernel density estimation with a Gaussian kernelK(·) = ϕ(·) and a bandwidth selected
using the rule of thumb in (14) to calculate a smoothed SPD at each swipe in the MCMC
algorithm.

Thus, it is clear that the smoothed density version (15) becomes:

f sN(x|w, θ) =
N∑
n=1

wnKh(x− θn)

=
N∑
n=1

wn
1

h
ϕ(
x− θn
h

)

=
N∑
n=1

wnϕ(x; θn, h)

where ϕ(x; θn, h) is the pdf of N(θn, h
2) distribution.

Collecting these smoothed SPD, Figure 9 gives the posterior mean (red line) and 95%
credible regions (blue dotted lines) of the implied SPD. The right-upper and left-lower
pictures show that the 95% credible regions are tight to the posterior mean of the smoothed
SPD, whereas the other pictures depict that the 95% credible regions are wide. The cluster
of star points in the horizontal axis denote the future prices.

In Bayesian analysis, the 95% credible region for the smoothed SPD provides a region
where 95% of the posterior distribution of the smoothed SPD will fall into. In the case
of HDD New York options with maturity in 2 months traded at 20050121 and the case
of CDD Dallas Option one month to maturity traded at 20100604, the left tail of 95%

15



870 875 880 885 890
30

32

34

36

38

40

42

44

46

48

O
pt

io
n 

pr
ic

es

Strike price

HDDNEW YORK−2006/02/02

800 820 840 860 880
1

2

3

4

5

6

7

8

O
pt

io
n 

pr
ic

es

Strike price

HDDNEW YORK−2007/12/18

800 850 900 950 1000
0

5

10

15

20

25

30

35

40

45

O
pt

io
n 

pr
ic

es

Strike price

HDDNEW YORK−2005/01/21

850 900 950 1000
32

34

36

38

40

42

44

46

O
pt

io
n 

pr
ic

es

Strike price

HDDNEW YORK−2007/12/18

270 271 272 273 274 275
15

20

25

30

35

40

O
pt

io
n 

pr
ic

es

Strike price

CDDNEW YORK−2005/06/13

315 316 317 318 319 320
9.5

10

10.5

11

11.5

12

12.5

13

13.5

O
pt

io
n 

pr
ic

es

Strike price

HDDATLANTA−2006/03/15

1250 1260 1270 1280 1290 1300
10

15

20

25

30

35

O
pt

io
n 

pr
ic

es

Strike price

HDDCHICAGO−2008/12/16

600 605 610 615 620 625
8

10

12

14

16

18

O
pt

io
n 

pr
ic

es

Strike price

CDDDALLAS−2010/06/04

Figure 5: Plots of market prices of New York/Atlanta/Chicago/Dallas HDD-CDD
monthly options and model prices of the last swipe in the MCMC algorithm using a
quadrature method with N = 5. For market prices, a call option is indicated with a blue
plus and a put is indicated with a red cross. For model prices, a call option is indicated
with a blue diamond, and a put option is indicated with a red square.
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Figure 6: Trace plots for the log-likelihood (blue line) and mean (red line) of the MCMC
algorithm for di�erent trading dates.
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Figure 7: Kernel density estimate (KDE) plots for the posterior distribution of residuals
for HDDs and CDDs products (in blue) vs the normal KDE (red).
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Figure 8: Kernel density estimate, trace plots and autocorrelation plots of σ2 of the
MCMC simulation.
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credible region appears to be extremely wide. This feature is not surprising though,
because the data set for calibration consists of call options with only two strike prices,
namely, 800 and 1000 and 600 and 625 respectively. Indeed, a call option price is simply
the expected future price distracting the strike price under the SPD for the future price
larger than the strike price, and multiplied by a discounted factor. Therefore, an option
price only provides information for the right tail of the SPD. Once a few quadrature points
in the right tail have achieved a high likelihood, points of the quadrature in the left tail
(in this case, smaller than 800) do not a�ect the likelihood. As a result, these points
are in�uenced only by its prior distributions. The prior assumptions in (9) and (10) put
simply vague information for the weights and locations in the quadrature method. Such
an assumption allows points in the left tail of the quadrature method moving freely, and
causes a wider credible region in the left tail, as demonstrated in the left-upper panel in
Figure 9.

Similarly, for the right-lower panel, the 95% credible region is wider around strike 1000
but is tight in two side tails. This is because the data set consists of one call with strike
970 and one put with strike 870. As a result, the call option price gives information of
the right tail of the SPD, whereas the put option price gives information of the left tail
of the SPD. When some points of both right and left tails in the quadrature method
have achieved a high likelihood, points of the quadrature around 920 would not a�ect the
likelihood. These points are determined by their prior assumptions again, and provide a
wider credible region around 920.

Selecting prior distributions for the quadrature method is critical. In this research, we
choose vague prior assumptions for the parameters and the analysis successfully reveals
the fact that the width of the 95% credible region depends highly on the information
provided by option prices and the prior assumptions on the parameters in the quadrature
method. One may adopt more sophisticated prior distributions based on experience and
knowledge. This �exibility may be considered as a technical advantage of the Bayesian
quadrature method.

3.4 The equivalence/infeasibility to other nonparametric meth-
ods

To illustrate the feasibility of the proposed methodology, we compare with other very
known approaches. Recall that nonparametric methods are popular tools avoiding risk of
misspeci�cation. Some of these methods estimate the SPD by di�erentiating an interpo-
lation of smoothing of option prices. In this context, data sparsity makes the estimation
of the SPD a statistical challenge. Let us now explain why the kernel regression method
and also mixtures of lognormals do not work well in the context of WD implied SPDs.

The cross-section of the call and put prices are given in Figure 11. Di�erent grids corre-
spond to di�erent contracts with di�erent times to measurement periods and consequently
one can argue that option prices can be extrapolated as a smoothed function of the strike.
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Figure 9: The posterior mean (in a red solid line) and the 95% credible region (in blue
dashed lines) of the smoothed SPD implied from New York HDD monthly options with
respect to trading dates and time to maturity. The cluster of star points in the horizontal
axis denote the future prices.
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3.4.1 Kernel Regression

The kernel regression method (KRM) takes advantage of di�erentiating twice (1) :

f(K) = erτ
∂2

∂K2
C(K) (22)

In order to employ (22) one needs more observations and therefore relies on the put-call
parity to transfer put option prices to call option prices. When the market is illiquid, it is
not promising to employ the put-call parity though. In our empirical data analysis most
options are traded with only a few strike prices. Very often, an option was traded only
with one or two strike prices. When the kernel method is applied to a dataset of such a
case, it is even di�cult to �nd an option function C(K), not to mention to �nd its second
derivatives.

For illustration, we consider SPD estimation using the kernel regression method for New
York HDD monthly options. As we observe, the traditional idea of estimating the SPD by
di�erentiating an interpolation of option prices does not hold in practice. Furthermore,
there is no guarantee that the estimated SPD is positive as required by any density.
Consequently, KRM is sensitive to data sparsity.

3.4.2 Mixture of lognormals

When applying the mixture of lognormal methods, it is necessary to specify the range
of the variances of the log-normal density. The selection is objective and in�uences the
estimated SPD dramatically. When the dataset consists of a few data point, it is possible
to produce two totally di�erent densities (particularly in terms of variances) which produce
the same quality of model �t.

We estimate the SPD using a mixture of lognormal for New York HDD monthly options,
given in Figure 5. For mixture of lognormals, we will show that two di�erent SPD using
mixture of lognormal produce the same model �t, but they have quite di�erent higher
moments.

Yuan (2009) proposed a function class:

F =

{
f(·) : f(x) =

∫
f(x|µ, σ2)dG(µ, σ), supp(g) ⊂ [−M,M ]× [σ, σ̄]

}
where M < ∞ and 0 < σ ≤ σ̄ < ∞, f(x|µ, σ2) is the pdf of the lognormal distribution
with location µ and scale σ and G determines the mixing distribution. The corresponding
pricing function in this case is similar to (2):

C(X;µ, σ2) = exp (−rτ)

∫ ∞
0

℘ij(x)f(x)dx

C(X;G) =

∫
C(X;µ, σ2)dG(µ, σ) (23)
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as the SPD f(x) is de�ned in the previous family F . The least squares estimate of the
pricing function can be written as:

Ĝ(·) = arg min
G∈G

n−1
n∑
i=1

{yijk − C(X;G)}2 (24)

where G is the collection of all probabilities measures on µ and σ2. Note that the min-
imization is taken over a function space of in�nite dimensions, however the solution can
be represented in a �nite dimensional space. In particular, all solutions can be expressed
as a convex combination of at most n+ 1 Black Scholes type of pricing functions.

This model has several nice theoretical properties. For example, as the sample size n
increases, the pricing functions can be recovered with squared error converging to zero
at the rate of log2 n/n, which is close to the parametric rate of convergence 1/n. How-
ever, practical di�culties arise when �tting mixtures of lognormal distributions (or other
mixtures models) to real data. The feature that weather options are traded with a few
number of strike prices make mixture models inapplicable, because mixture models need
to select corresponding scale parameters and the number of components. For example,
when options are traded with n di�erent strike prices, maximum likelihood suggests to
use n/2 support points. When n is large, this leads a very complicated model and possible
over �tting problem. When n is small, the resulting model may be inappropriate. In ad-
dition, numerical procedure for searching the maximum likelihood estimate is particularly
di�cult for large n.

We apply mixture of lognormals by Yuan (2009) to the New York monthly HDD call
options traded on 2006/02/02, with two di�erent manually selected variances. Figure 10
shows that these two estimated SPD are quite di�erent in shapes, although they produce
similar quality of model �t. Therefore, this illustration shows that the estimated SPD is
very sensitive to the selection of σ. In practical implementation, Yuan (2009) suggests to
determine σ by cross-validation. This however is very computationally demanding.

3.5 Dynamics of SPD

Table 3 records the number of trading days with respect to the number of strike prices
and trading months for the New York HDD/CDD monthly options with time to maturity
τ less than one month and Atlanta HDD Seasonal Strips with τ = 6. Again, the data
sparsity remains an issue in the biggest weather market, the New York market. For
illustration, we implement (4) for every trading day in March 2006. For other months,
most of the number of strike in each trading day is simply one, and such case makes the
SPD estimation very di�cult in the sense that option price only provides information for
one side of the SPD.

Figure 11 plots give the evolution of New York-HDD, Atlanta HDD-Seasonal and option
prices with time to maturities in one and six months respectively, against strike prices
and trading days in March 2006 and October 2007. It is clear that options were traded
with very few strike prices (from one to four strike prices) during this month. We used
�ve support points (N=5) in the quadrature method, and calculate R2 in a logarithmic
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Figure 10: Estimated SPD using mixtures of lognormal. The left-upper and right-upper
panels give estimated SPD using σ equal to 0.01 and 0.001, respectively. The left-lower
and right-lower panels give market prices indicated by a blue cross and model prices
indicated by a blue square.
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Table 3: Number of trading days with respect to the trading month and the number of
strike prices for HDD/CDD monthly options with time to maturity less τ than one month
and Atlanta HDD Seasonal Strips with τ = 6 (time of measurement period of 5 months).

Nr. of strike prices Nr. of strike prices

Year Type City Month τ 1 2 3 4 5 Total Year Type City Month τ 1 2 3 4 5 6 Total

2002 HDD NY 11 1 1 - - - - 1 2006 HDD-Strip Atlanta 10 6 - - 1 1

2004 HDD NY 1 1 2 - - - - 2 2007 HDD-Strip Atlanta 10 6 - - 3 1 2 1 1 8

2004 HDD NY 2 1 1 - - - - 1 2008 HDD-Strip Atlanta 10 6 - - 4 1 1 1 5

2004 HDD NY 3 1 1 - - - - 1 2009 HDD-Strip Atlanta 10 6 - - 1 1 1 3

2005 HDD NY 1 1 1 - - - - 1 2010 HDD-Strip Atlanta 10 6 - - 2 2

2005 HDD NY 2 1 2 - - - - 2 2002 HDD Chicago 11 1 1 - 1

2005 HDD NY 3 1 1 - - - - 1 2002 HDD Chicago 12 1 2 - 2

2005 HDD NY 12 1 1 1 - - - 2 2004 HDD Chicago 2 1 1 - 1

2006 HDD NY 1 1 2 - - - 2 2005 HDD Chicago 2 1 2 - 2

2006 HDD NY 2 1 5 3 1 - - 9 2005 HDD Chicago 12 1 4 - - 4

2006 HDD NY 3 1 3 5 4 1 - 13 2006 HDD Chicago 3 1 5 2 7

2006 HDD NY 10 1 1 1 - - - 2 2006 HDD Chicago 10 1 2 1 3

2006 HDD NY 11 1 1 2 - - - 3 2006 HDD Chicago 11 1 2 2

2006 HDD NY 12 1 1 - - - 1 2007 HDD Chicago 1 1 3 3

2007 HDD NY 1 1 2 - - - - 2 2007 HDD Chicago 2 1 1 1

2007 HDD NY 2 1 4 - - - - 4 2007 HDD Chicago 3 1 1 1

2007 HDD NY 3 1 1 - - - - 1 2007 HDD Chicago 12 1 1 1

2007 HDD NY 11 1 1 - - - - 1 2008 HDD Chicago 1 1 1 1

2007 HDD NY 12 1 1 2 - - - 3 2008 HDD Chicago 2 1 3 3

2008 HDD NY 1 1 6 1 2 - - 9 2008 HDD Chicago 3 1 2 1 3

2008 HDD NY 2 1 3 - - - - 3 2008 HDD Chicago 12 1 2 2 4

2008 HDD NY 12 1 2 1 - - - 3 2009 HDD Chicago 1 1 2 2

2009 HDD NY 1 1 4 - - - - 4 2009 HDD Chicago 12 1 1 1

2009 HDD NY 2 1 2 - - - 2 2010 HDD Chicago 3 1 1 1

2009 HDD NY 3 1 1 - - - 1 2010 HDD Chicago 11 1 1 1

2009 HDD NY 11 1 3 - - - - 3 2010 HDD Chicago 12 1 2 2

2009 HDD NY 12 1 1 - - - 1 2011 HDD Chicago 1 1 3 3

2010 HDD NY 3 1 1 - - - - 1 2011 HDD Chicago 2 1 2 2

2010 HDD NY 11 1 5 - - - - 5 2011 HDD Chicago 11 1 2 2

2010 HDD NY 12 1 2 - - - - 2 2011 HDD Chicago 12 1 2 2

2011 HDD NY 1 1 4 1 - - - 5 2004 CDD Dallas 9 1 1 1

2011 HDD NY 2 1 5 - - - - 5 2005 CDD Dallas 8 1 1 1

2011 HDD NY 3 1 1 1 - - - 2 2006 CDD Dallas 6 1 1 1

2011 HDD NY 11 1 1 - - - - 1 2006 CDD Dallas 9 1 1 1

2011 HDD NY 12 1 2 - - - - 2 2007 CDD Dallas 7 1 1 1

2012 HDD NY 2 1 1 - - - - 1 2008 CDD Dallas 5 1 6 6

2004 CDD NY 9 1 - 1 - - 1 2008 CDD Dallas 6 1 1 1

2005 CDD NY 5 1 1 - - - 1 2008 CDD Dallas 7 1 2 2

2005 CDD NY 6 1 8 1 - - 9 2008 CDD Dallas 8 1 1 1

2005 CDD NY 7 1 - - - 1 1 2009 CDD Dallas 5 1 4 1 5

2005 CDD NY 8 1 4 - - - 4 2009 CDD Dallas 6 1 1 1 2

2006 CDD NY 6 1 4 - - - 4 2009 CDD Dallas 8 1 1 1

2006 CDD NY 7 1 1 - - - 1 2009 CDD Dallas 9 1 1 1

2006 CDD NY 8 1 3 - - - 3 2010 CDD Dallas 5 1 1 1

2006 CDD NY 9 1 3 - - - 2 2010 CDD Dallas 6 1 2 3 5

2007 CDD NY 7 1 1 - - - 1 2010 CDD Dallas 7 1 2 2

2007 CDD NY 8 1 1 - - - 1 2010 CDD Dallas 8 1 2 2

2007 CDD NY 9 1 1 - - - 1 2010 CDD Dallas 9 1 3 1 4

2008 CDD NY 6 1 5 - - - 5 2011 CDD Dallas 5 1 1 1

2008 CDD NY 7 1 1 - - - 1 2011 CDD Dallas 6 1 3 1 4

2008 CDD NY 8 1 1 - - - 1 2011 CDD Dallas 7 1 3 3

2009 CDD NY 8 1 2 - - - 2 2011 CDD Dallas 8 1 2 2

2010 CDD NY 5 1 2 - - - 2 2012 CDD Dallas 2 1 2 2

2010 CDD NY 5 1 2 - - - 2

2010 CDD NY 6 1 1 - - - 1

2010 CDD NY 7 1 1 - - - 1

2010 CDD NY 9 1 1 - - - 1

2011 CDD NY 9 1 1 - - - 1

2011 CDD NY 6 1 3 - - - 3
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Figure 11: New York monthly HDD option prices with time to maturity in one month
against strike prices and trading days in March 2006, HDD Atlanta Seasonal option prices
with time to maturity in 6 months and trading dates in October 2007, Dallas monthly
CDD options with time to maturity in one month traded in June 2010.
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scale:

R2 = 1−
∑Ni

i=1

∑Ni

j=1

∑Nij

k=1

{
log yijk − logCN

ij (w, θ)
}2∑Ni

i=1

∑Ni

j=1

∑Nij

k=1 log y2ijk

When R2 is close to one, model prices are close to market prices and the model produces
nice model �t. In the Bayesian quadrature method, we calculate R2 at each swipe of the
Markov chain Monte Carlo algorithm, and summarize its posterior mean and quantiles
for inference. Because all the mean, median, and the 2.5% and 97.5% quantiles of the
R2 calculated in the MCMC algorithm are close to one, we conclude that the Bayesian
quadrature method produces an almost perfect �t for all these trading days. Figure 12
presents dynamics of the implied SPD, all of them deviating from log-normality. However,
skewness an kurtosis of weather options can be either positively or negatively skewed
depending on futures maturity. This is di�erent with what documented in index options
market, Bakshi et al. (2010), interest rate derivatives market Li and Zhao (2009) and
in temperature markets Benth et al. (2007). SPDs are depending on the conditional
volatility, the SPD is wider when the conditional volatility is high than when it is low.
This is also explained by the economic behavior of agents sensitive to weather conditions.
Investors expect that temperature variations, that a�ect their cash �ows, will occur with
high probability in winter times than in summer times (except for WD for Australia). WD-
SPD's tend to be positively skewed for short maturity contracts and slightly negatively
skewed for long maturity contracts as the option prices only provides information for
the right tail of the SPD. The evolution of the parameters of the quadrature method is
displayed in Figure 13.

A simple way to investigate the dynamics of the implied SPD at each trading day is
to calculate moments based on the quadrature method. In each swipe of the Markov
chain Monte Carlo algorithm, we calculate the mean (µ), volatility (v), skewness (s), and
kurtosis (κ) of the quadrature method, by the following formulas,

µ =
N∑
n=1

wnθn

ν =

√√√√ N∑
n=1

wn(θn − µ)2

s =
N∑
n=1

wn(θn − µ)3/ν3

κ =
N∑
n=1

wn(θn − µ)4/ν4

Table 4 shows the posterior means of these four quantities of the quadrature method.

4 Conclusions

We estimate SPDs for WDs using the Bayesian quadrature method. The WD market is
characterized by its incompleteness and illiquid options. This makes the estimation of
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Figure 12: Quadrature method and smoothed SPDs implied from New York monthly
HDD option prices with time to maturity in one month against strike prices and trading
days in March 2006, HDD Atlanta Seasonal option prices with time to maturity in 6
months and trading dates in October 2007, Dallas monthly CDD options with time to
maturity in one month traded in June 2010.
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Figure 13: Dynamics of the parameter of the quadrature method implied from New York
monthly HDD option prices with time to maturity in one month against strike prices and
trading days in March 2006, HDD Atlanta Seasonal option prices with time to maturity
in 6 months and trading dates in October 2007, Dallas monthly CDD options with time
to maturity in one month traded in June 2010.
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Table 4: Posterior mean of the mean (µ), volatility (v), skewness (s), and kurtosis (κ) of
the quadrature method at each trading day (TD) calibrated from New York HDD monthly
options in March 2006, Atlanta HDD seasonal strip options in October 2007 and Dallas
CDD monthly options in June 2010.

TD 2 3 6 7 8 9 10 14 15 16 17 20

HDD µ 511.16 676.00 618.80 676.31 660.00 645.00 660.00 422.78 554.10 708.58 698.31 380.26

NY v 248.98 81.57 57.02 73.88 61.38 59.89 45.07 240.72 217.04 41.54 42.11 205.93

s 0.09 -0.92 0.25 4.30 0.48 0.21 0.38 0.43 -0.42 1.47 1.65 0.60

κ 1.54 2.70 2.79 56.28 2.26 3.28 2.98 2.16 1.70 5.66 7.59 2.90

TD 2 3 4 9 12 24 31

HDD µ 2225.54 1741.96 1865.99 1630.19 1470.13 2335.12 2340.70

Strips v 324.45 818.35 757.39 751.52 835.64 287.44 258.52

Atlanta s 0.58 -0.05 -0.33 0.21 0.59 0.64 0.07

κ 3.44 1.42 1.73 2.15 2.44 7.59 3.00

TD 4 10 14

CDD µ 489.96 390.42 596.63

Dallas v 175.79 195.06 155.40

s -0.83 0.18 -0.57

κ 2.72 1.98 2.76

the SPD a statistical challenge. However, the quadrature method, in advantage to the
parametric and other non-semiparametric techniques, avoids model miss-speci�cation and
allows the SPD estimation by a parsimonious model. The techniques is computationally
fast and robust. We present empirical results on real CME temperature derivative data,
which help us to understand the dynamics of SPD. The results suggest that the SPD of
weather derivatives exhibits a non-normal behavior type.
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