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Econometrics of co-jumps in high-frequency data with noise

Markus Bibinger1a, Lars Winkelmann1b

aInstitut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
bInstitut für Statistik und Ökonometrie, Freie Universität Berlin, Boltzmannstraße 20, 14195 Berlin, Germany

Abstract

We establish estimation methods to determine co-jumps in multivariate high-frequency data with non-

synchronous observations and market microstructure noise. The ex-post quadratic covariation of the

signal part, which is modeled by an Itô-semimartingale, is estimated with a locally adaptive spectral

approach. Locally adaptive thresholding allows to disentangle the co-jump and continuous part in

quadratic covariation. Our estimation procedure implicitly renders spot (co-)variance estimators. We

derive a feasible stable limit theorem for a truncated spectral estimator of integrated covariance. A

test for common jumps is obtained with a wild bootstrap strategy. We give an explicit guideline how

to implement the method and test the algorithm in Monte Carlo simulations. An empirical application

to intra-day tick-data demonstrates the practical value of the approach.

Keywords: co-jumps, covolatility estimation, jump detection, microstructure noise,

non-synchronous observations, quadratic covariation, spectral estimation, truncation

JEL classification: C14, G32, E58

1. Introduction

Last years have seen a tremendous increase in intra-day trading activities. High-frequent trading

stimulated a new angle on financial modeling arousing great interest in the field of statistics of ultra

high-frequency data (UHF-data). Asset prices recorded as UHF-data are almost close to continuous-

time observations and thus foster statistical inference for continuous-time price models. Demanding

absence of arbitrage leads to models in which asset prices are described by semimartingales, see

Delbaen and Schachermayer (1994), Imkeller and Perkowski (2013) and references therein. These in-

clude recent price models allowing for stochastic volatility and leverage. Though there is an ongoing

discussion if log-prices can be more accurately modeled by pure jump-type or continuous semimartin-

gales, there is a broad consensus that (large) jumps occur as responses to news flow in the markets.

Our main focus is on relevant news that affect various markets and assets simultaneously and may

come from policy announcements or macroeconomic data releases. We detect such co-jumps from

UHF-data accounting for market microstructure and non-synchronous trading. For portfolio and risk

1Financial support from the Deutsche Forschungsgemeinschaft via CRC 649 ‘Ökonomisches Risiko’, Humboldt-
Universität zu Berlin, is gratefully acknowledged.
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management, it is essential to understand (co-)jumps dynamics in UHF-data to distinguish between

idiosyncratic and systemic risk. The presented approach provides access to study concerted or distinct

reactions of different assets to events by quantifying and locating co-jumps. This is of key interest

in various applications, e. g. to study default contagion. To this end, we present a locally adaptive

spectral approach to draw statistical inference on the quadratic covariation of a multi-dimensional

Itô-semimartingale from discrete UHF-data. Our method allows to separately estimate co-jumps and

integrated covariance (sometimes called integrated covolatility), both disentangled from microstruc-

ture frictions, in an efficient way. It relies on a convenient combination of the spectral estimator by

Bibinger and Reiß (2013) to cope with noise and truncation methods in the vein of Mancini (2009)

and Jacod (2008)

In the one-dimensional case various estimation methods for the integrated volatility from discretely

observed semimartingales with jumps have been developed. In this context, let us mention the impor-

tant contributions by Barndorff-Nielsen and Shephard (2006), Jiang and Oomen (2008), Bollerslev

et al. (2008), Mancini (2009), Jacod (2008), Fan and Wang (2007), Podolskji and Ziggel (2010) and

Curci and Corsi (2012). Aı̈t-Sahalia and Jacod (2009) have established a test for the presence of

jumps. An overview and an empirical comparison is given in Theodosiou and Zikes (2011). In con-

trast to the one-dimensional case, there is scant literature on the multivariate setup yet. An important

step for considering co-jumps in a multi-dimensional framework and extending truncation methods

has been laid by Jacod and Todorov (2009) and Gobbi and Mancini (2012). However, their estimators

are designed for non-perturbed observations.

One main contribution of this article is to develop a tractable estimator for more complex models tak-

ing market microstructure into account. Under noise perturbation the identification and localization

of (co-)jumps is more challenging, since the principle that large returns represent (large) jumps in the

efficient log-price is not valid due to the impact of microstructure. Inference on the volatility of a

continuous semimartingale under noise contamination can be pursued using smoothing techniques.

Several approaches have been invented, prominent ones by Zhang (2006), Barndorff-Nielsen et al.

(2008), Jacod et al. (2009) and Xiu (2010) in the one-dimensional setting and generalizations for

a noisy non-synchronous multi-dimensional setting by Aı̈t-Sahalia et al. (2010), Barndorff-Nielsen

et al. (2011), Park and Linton (2012), Christensen et al. (2011) and Bibinger and Reiß (2013), among

others. A recent advance towards the estimation of the integrated covariance of a semimartingale with

jumps has been given in Jing et al. (2012). In contrast to the majority of previous approaches, our main

focus is on estimating co-jumps instead of concentrating only on the continuous part of quadratic co-

varation.

One building block for our approach is the spectral estimator by Bibinger and Reiß (2013). It relies

on a locally quasi-parametric estimation technique in the Fourier domain. Structural results about the

information content inherent in the statistical experiments by Bibinger et al. (2013) show that it can

even attain the minimum asymptotic variance. Non-synchronicity is proved to be asymptotically neg-

ligible in combination with noise at the slower optimal convergence rate. In the light of these findings,
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and differently to preceding methods as Christensen et al. (2011) and Jing et al. (2012), we construct

our estimators with equispaced blocks equally for all components to average noisy observations. This

reduces the estimator’s variance. Moreover, in the presence of co-jumps this attribute, that no inter-

polations are pursued to deal with non-synchronicity, is at the same time advantageous, since returns

with jumps can not be considered more than once which could crucially complicate a co-jump estima-

tor’s distribution. An approach combining the spectral estimator and block-wise truncation provides

an estimator for integrated covariances in the presence of (co-)jumps. Consequently, we estimate

co-jumps by taking the difference of the non-truncated and truncated estimator. We obtain a feasible

central limit theorem for the truncated estimator allowing for confidence. Finally, a locally adaptive

thresholding strategy involving pre-estimated spot covariances renders an effective finite-sample ap-

proach. Furthermore, a co-jump localization procedure in the spirit of Lee and Mykland (2008) is

feasible. In order to derive a test for the presence of co-jumps, we adopt a strategy related to the wild

bootstrap principle by Wu (1986), compare Podolskji and Ziggel (2010) who have constructed a test

for jumps of one-dimensional semimartingales.

The article is arranged in six sections. In the next section, we introduce the statistical model and fix

the notation. Theoretical results are given in Section 3, where we also carry out the construction of

the estimation approach. In Section 4, we pursue the asymptotic theory for the test for co-jumps based

on the wild bootstrap idea. Section 5 comes up with an implementation of the econometric estimation

procedure for UHF-data – adjusted to finite sample issues and discussing some practical features. In

Section 6 we investigate our approach in a simulation study and show its applicability in an empirical

example. Section 7 concludes. Technical proofs are postponed to the Appendix.

2. Theoretical setup

We consider prices recorded as UHF-data from d individual assets. The evolution of hypothetic

underlying continuous-time log-price processes are driven by a d-dimensional Itô-semimartingale

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0

∫
Rd

κ(δ(s, x))(µ− ν)(ds, dx) +

∫ t

0

∫
Rd

κ̄(δ(s, x))µ(ds, dx)

= Ct + Jt , t ∈ R+, (1)

on a suitable filtered probability space (Ω,F , (Ft),P) with a right-continuous and complete filtration.

The first three addends are composed to the continuous part (Ct)t≥0 with W being a d-dimensional

standard Wiener process and σt is the stochastic instantaneous volatility process. The jump part

(Jt)t≥0 is decomposed in a finite sum of large jumps and compensated small jumps using a truncation

function κ. The Poisson random measure µ on (R+ × Rd) is compensated by its intensity measure

ν(ds, dx) = ds ⊗ λ(dx) with a σ-finite measure λ on Rd endowed with the Borelian σ-algebra. If

λ(Rd) = ∞ the process is said to have infinite activity. The truncation function κ : Rd → Rd,

κ̄(z) = z−κ(z), separates small and large jumps. A predictable function δ is used to shift the cut-off
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in time and alternatively a transition measure λs can be incorporated to write κ(x)dsλs(dx) instead

of κ(δ(s, x))ν(ds, dx). Our notation follows Jacod (2012) and Jacod and Todorov (2009), among

others, and we refer to Jacod (2012) for background information on semimartingales. The structural

assumption is accomplished by the following restrictions on the characteristics of the semimartingale.

Assumption (H). The drift is a d-dimensional (Ft)-adapted locally bounded process, the volatility

σ is a d× d′-dimensional (Ft)-adapted continuous Itô-semimartingale whose drift and volatility are

locally bounded and supω,s,x ‖δω(s, x)‖/γ(x) is locally bounded for a deterministic non-negative

function γ satisfying ∫
Rd

(γr(x) ∧ 1)λ(dx) <∞ , (2)

for r = 2, or in some case for specified r ∈ (0, 2], as stated below.

The smallest possible r such that (2) holds is sometimes called the generalized Blumenthal-Getoor

index, also referred to as jump activity index of semimartingales.

The quadratic covariation of the semimartingale X is the sum of the integrated covariance matrix

Σs = σsσ
>
s and the co-jumps:

[X,X]T =

∫ T

0
Σt dt+

∑
s≤T

(Xs −Xs−)(Xs −Xs−)> = [C,C]T + [J, J ]T . (3)

The co-jumps [J, J ]T =
∫ T

0

∫
Rd δ(s, x)δ(s, x)>µ(ds, dx) are written in (3) as a sum of all common

jumps, where Xs− = limt→s,t<sXt. Quadratic covariation is of pivotal importance to quantify risk

in financial economics and is the target of inference in this article. We consider a general discrete

observation setup including non-synchronous sampling schemes and market microstructure.

Assumption 1. A d-dimensional semimartingaleX of the type (1) is discretely and non-synchronously

observed on [0, T ] at observation times t(p)i , 0 ≤ i ≤ np, p = 1, . . . , d. The observations are cor-

rupted with additive microstructure noise:

Y
(p)
i = X

(p)

t
(p)
i

+ ε
(p)
i , 0 ≤ i ≤ np .

The microstructure noise is given as a discrete-time process, mutually independent for all components,

for which the observation errors are assumed to be i. i. d. and independent of X . Furthermore, the

errors are centered and fourth moments exist.

We write ∆iY
(p) = Y

(p)
i − Y

(p)
i−1, 1 ≤ i ≤ np, p = 1, . . . , d for the increments of Y (p) and

Var
(
ε
(p)
i

)
= η2

p, 0 ≤ i ≤ np, p = 1, . . . , d, for the variance of the observation errors. Denote the

number of observations of the least frequently traded asset by nmin = minp np. Quantities depending

on nmin or some np are often indexed with n in the sequel.
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Assumption 2. Suppose that there exist differentiable distribution functions Fp : [0, T ]→ [0, T ], p =

1, . . . , d, with Fp(0) = 0, Fp(T ) = 1 and F ′p > 0, such that the sampling times in Assumption 1 are

generated by the quantile transformations t(p)i = F−1
p (iT/np), 0 ≤ i ≤ np, p = 1, . . . , d.

We emphasize that we treat observation schemes which are deterministic or random and indepen-

dent of the process Y . A theory embedding endogenous random sampling calls for further mathemati-

cal concepts, just developed for simpler models, see Fukasawa and Rosenbaum (2012) and references

therein. Assumption 1 comprises standard assertions on the noise as in related literature. An exten-

sion to m-dependence and mixing errors can be attained similar as in Aı̈t-Sahalia et al. (2011). For

notational convenience, we restrict ourselves to an usual i. i. d. assumption. Since we shall concentrate

on the non-synchronous setup, we simply assume the componentwise noise processes to be mutually

independent. An extension to E
[
ε
(p)
i ε

(q)
v

]
= ηpq if t(p)i = t

(q)
v , at synchronous observation times is

direct as for the synchronous framework in Bibinger and Reiß (2013).

We write an � bn to express that an = O(bn) and bn = O(an) for deterministic, and an = Op(bn)

and bn = Op(an) for random sequences. P−→ denotes convergence in probability on (Ω,F ,P);  

and st
 denotes weak and F-stable weak convergence, respectively. See Jacod and Protter (1998) for

the notion of stable weak convergence..

3. Spectral estimation of co-jumps and (integrated) covariance

3.1. Construction and discussion of the estimators

In this section we develop the spectral co-jump estimator. It is based on the spectral covariance

estimator by Bibinger and Reiß (2013) as one building block and truncation to disentangle co-jumps

and the continuous part. We briefly recapitulate the spectral covariance estimation approach. Thereto

consider an orthonormal system of specific sine functions with support on the blocks [khnT, (k +

1)hnT ], k = 0, . . . , h−1
n − 1, with h−1

n ∈ N, and spectral frequencies j ≥ 1:

Φjk(t) =

√
2hn

jπ
√
T

sin
(
jπh−1

n T−1(t− khnT )
)
1[khnT,(k+1)hnT ](t), j ≥ 1 , k = 0, . . . , h−1

n − 1 . (4)

The functions (4) are weight functions providing spectral statistics for each frequency j localized on

h−1
n blocks:

S
(p)
jk =

np∑
i=1

∆iY
(p)Φjk

(
t
(p)
i + t

(p)
i−1

2

)
, j ≥ 1, p = 1, . . . , d, k = 0, . . . , h−1

n − 1. (5)

With weights wp,qjk ≥ 0 satisfying
∑

j≥1w
p,q
jk = 1 for all k, the oracle spectral estimator is defined as

SPECV
(p,q)
n,T (Y ) =

h−1
n −1∑
k=0

hn

Jn∑
j=1

wp,qjk
π2j2

h2
n

(
S

(p)
jk S

(q)
jk −

δp,qη
2
p

npF ′p(khnT )

)
=

h−1
n −1∑
k=0

∆k
̂[

X(p), X(q)
]
, (6)
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with a spectral cut-off frequency Jn ≤ nhn for (p, q) ∈ {1, . . . , d}2 and

∆k
̂[

X(p), X(q)
]

=

Jn∑
j=1

wp,qjk
π2j2

hn

(
S

(p)
jk S

(q)
jk −

δp,qη
2
p

npF ′p(khnT )

)
, (7)

with δp,q being Kronecker’s delta, i. e. 1 if p = q and 0 else. In the presence of co-jumps, we prove

that the spectral estimator consistently estimates the entire quadratic covariation (3).

The spectral approach relies on the idea to design an estimator for a locally parametric model in which

a continuous martingale is observed discretely with noise and the covolatility matrix is constant over

small blocks. The estimator can be understood as a localized generalized method of moments. The

weights wp,qjk are thus specified by block-wise Fisher informations, which depend on ΣkhnT , minimiz-

ing the variance of the oracle estimator (6). Plugging-in the pre-estimated instantaneous Σt, t ∈ [0, T ],

renders the final locally adaptive spectral estimator. Note that the standardization in (6) π2j2h−2
n

slightly differs from the one in Bibinger and Reiß (2013) which is for equidistant synchronous obser-

vations whereas we consider non-synchronous sampling here. Local adaptivity constitutes one of the

main merits compared to previous methods with globally fixed tuning parameters for smoothing, and

makes the estimator more flexible and efficient for time-varying (co-)volatility processes.

We act in the following as if the noise variances η2
p, p = 1, . . . , d, were known what does not harm

the generality, since we can always estimate noise variances with faster convergence rates√np by

(̂η2
p) = (2np)

−1

np∑
i=1

(
∆iY

(p)
)2

or ¯(η2
p) = −n−1

p

np−1∑
i=1

∆iY
(p)∆i+1Y

(p) . (8)

The estimator in (6) has originally been designed to estimate the integrated covariance of continuous

(semi)martingales X = C, J = 0, and estimates the total quadratic covariation in the presence of

co-jumps. One way to separately estimate the integrated covariance matrix is a truncated spectral

estimator:

TSPECV
(p,q)
n,T (Y, un) =

h−1
n −1∑
k=0

∆k
̂[

X(p), X(q)
]
1
{|∆k

̂[X(p),X(q)]|≤un}
(9)

=

h−1
n −1∑
k=0

hn Jn∑
j=1

wp,qjk
π2j2

h2
n

(
S

(p)
jk S

(q)
jk −

δp,qη
2
p

npF ′p(khnT )

)1
{|∆k

̂[X(p),X(q)]|≤un}
,

with a truncation cut-off un = c hτn, τ ∈ (0, 1), c > 0. Consequently, the spectral estimator of

co-jumps is derived as the difference by the non-truncated and the truncated SPECV:

SPECJ
(p,q)
n,T (Y, un) = SPECV

(p,q)
n,T (Y )−TSPECV

(p,q)
n,T (Y, un) (10)

=

h−1
n −1∑
k=0

∆k
̂[X(p), X(q)]1

{|∆k
̂[X(p),X(q)]|>un}

.
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In contrast to co-jumps, the continuous part contributes quadratic covariations of order hn on blocks

with shrinking lengths hn. Therefore, we can truncate with a global threshold hτn for some τ ∈ (0, 1).

For finite-sample applications it will be crucial to find a more sensitive thresholding rule pursued in

Section 5 below.

For an adaptive fully data-driven estimator, we require pilot estimates of the oracle weights

wp,qjk =

(
π4j4h−4

n
npnq

η̃2
p η̃

2
q +
(

(Σ
(pq)
khnT

)2 + Σ
(pp)
khnT

Σ
(qq)
khnT

)
+ π2j2h−2

n

(npnq)1/2

(
Σ

(pp)
khnT

η̃2
q +Σ

(qq)
khnT

η̃2
p

))−1

∑Jn
r=1

(
π4r4h−4

n
npnq

η̃2
p η̃

2
q +
(

(Σ
(pq)
khnT

)2 + Σ
(pp)
khnT

Σ
(qq)
khnT

)
+ π2r2h−2

n

(npnq)1/2

(
Σ

(pp)
khnT

η̃2
q +Σ

(qq)
khnT

η̃2
p

))−1 .

For X = C, J = 0, nonparametric estimates of the spot covariances Σ
(pq)
t , t ∈ [0, T ], can be obtained

by local averages of the estimates ∆k
̂[X(p), X(q)] which are approximately hnΣ

(pq)
khnT

. Bibinger and

Reiß (2013) proposed to use only the first frequency, j = 1, and average over a set Kt of Kpilot

adjacent blocks containing t. For semimartingales σ with hn � n−1/2
min , Kpilot � n

1/4
min, the root mean

squared error is of order O(n
−1/8
min ). Uniform loss in t is bounded by (see Bibinger and Reiß (2013))

E

[
sup
t∈[0,T ]

|Σ̂(pq)
t − Σ

(pq)
t |

]
= O

(
(nmin/ log nmin)−1/8

)
.

Truncation can eliminate jumps in the spot covariance estimator in the same way as for our truncated

integrated covariance estimator. For this purpose we can use again a cut-off un = c hτn with τ ∈ (0, 1),

c > 0, and estimate the spot covariance by

Σ̂
(pq)
t = K−1

pilot

∑
k∈Kt

π2h−2
n

(
S

(p)
1k S

(q)
1k −

δp,qη
2
p

npF ′p(khnT )

)
1
{|∆k

̂[X(p),X(q)]|≤un}
. (11)

The estimators using only one single frequency which are close to usual block-wise pre-averages

can already attain optimal rates, yet in practice spot estimators involving more frequencies, which

we introduce in Section 5 below achieved a higher efficiency. We plug in these piecewise con-

stant estimates in the oracle weights together with the estimated rescaled local noise variances η̃p =

ηp(F
′
p(khnT ))−1/2 with the given observation times distributions and (8). We keep to the same no-

tation for the adaptive estimators as for the oracle ones and from this point only refer to the fully

adaptive estimators.

The weights slightly differ from Bibinger and Reiß (2013) again, since we focus on a more general

non-synchronous setup. Still, blocks are chosen equally along all asset processes which minimizes

the estimator’s variance. This is owed to a fundamental property of underlain statistical experiments

that non-synchronicity is asymptotically immaterial in a combination with microstructure noise estab-

lished in Bibinger et al. (2013).
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3.2. Asymptotic properties of the estimators

In this section, we find consistency results for spectral estimators of integrated covariance, entire

quadratic covariation and co-jumps. We establish a stable central limit theorem for the truncated

estimator and integrated covariance and provide a feasible version allowing for confidence.

Theorem 1. On Assumption (H) on the signal process X , Assumption 1 on the observation model

and Assumption 2 on the observation times design, we derive the following asymptotic results for the

estimators (6), (9) and (10) under high-frequency asymptotics as nmin → ∞, hn → 0. The spectral

estimator (6) is consistent for the quadratic covariation:(
SPECV

(p,q)
n,T (Y )− [X(p), X(q)]T

)
P−→ 0 . (12a)

The truncated spectral estimator consistently estimates the integrated covariance (covolatility):(
TSPECV

(p,q)
n,T (Y, un)− [C(p), C(q)]T

)
P−→ 0 , (12b)

and the spectral co-jumps estimator consistently estimates the jump part of quadratic covariation:(
SPECJ

(p,q)
n,T (Y, un)− [J (p), J (q)]T

)
P−→ 0 . (12c)

Theorem 2. If, additionally to the Assumptions of Theorem 1, (2) holds with r < 1, for Jn →∞ and

hn �
√
np log np, np � nq, τ > (2− r)−1, the following pairwise central limit theorem applies:

n
1/4
p

(
TSPECV

(p,q)
n,T (Y, un)− [C(p), C(q)]T

)
st
 N (0,AVAR) , (13)

with the asymptotic variance (see Bibinger and Reiß (2013) for discussion)

AVAR =

∫ T

0

√
η̃p(s)η̃q(s)

√
2(A2

s −Bs)Bs

×
(√

As +
√
A2
s −Bs − sgn(A2

s −Bs)
√
As −

√
A2
s −Bs

)−1

ds , (14)

As =

(
Σ(pp)
s

η̃q(s)

η̃p(s)
+ Σ(qq)

s

η̃p(s)

η̃q(s)

)
, Bs = 4(Σ(pp)

s Σ(qq)
s + (Σ(pq)

s )2) ,

where η̃p(s) = ηp/(F
′
p(s))

1/2, η̃q(s) = ηq/((F
′
q(s))

1/2(nq/np)).

For the proof of consistency in Appendix A.2, we will establish the convergence(
SPECV

(p,q)
n,T (C)−TSPECV

(p,q)
n,T (C + J, un)

)
P−→ 0 , (15)

stating that the truncation asymptotically eliminates the impact of jumps on the spectral covariation

8



estimation and is thus eligible to estimate the two parts of quadratic covariation separately. If we can

show on the assertion that jumps are of finite variation that the error in (15) is Op(n
−1/4
min ), the central

limit theorem (13) follows from the case without jumps and Bibinger (2013). We conjecture that for

SPECV
(p,q)
n,T (Y ) a central limit theorem holds with a second addend in the asymptotic variance due

to a cross term by jumps and increments from the continuous part, but we do not focus on the exact

asymptotic distribution of SPECV
(p,q)
n,T (Y ) here, which requires a mathematically challenging anal-

ysis on its own.

It is known that the speed of convergence in (13) is optimal for integrated covariance estimation in a

latent observation model. Moreover, the restriction to a jump component where (2) holds with r < 1

to prove a CLT (13) is natural, since the analogous assertion is already needed in Jacod (2008) for

truncated realized variance in the simpler one-dimensional non-noisy observation experiment, where

the rate is of course faster. For a discussion on optimality for this setup we refer to Jacod and Reiß

(2012). Presumably, analogous reasoning with slower rate applies to the sequences of statistical exper-

iments we consider. From our point of view this fact underlines the barriers in disentangling variation

of small jumps and a continuous component. Yet, our focus is rather to separate co-jumps of larger

magnitude and for this purpose truncation appears to be well-suited.

A feasible central limit theorem which affords confidence intervals is obtained implicitly, since the

weights are determined via local Fisher informations wp,qjk ∝ Ip,qjk which are block-wise inverse vari-

ances. A consistent estimator of the overall variance

Var
(
SPECV

(p,q)
n,T (C)

)
=

h−1
n −1∑
k=0

h2
n

 Jn∑
j=1

Ip,qjk

−1

is directly derived from the pre-estimated weights:

min (np, nq)
−1/2ÂVAR =

h−1
n −1∑
k=0

h2
n

 Jn∑
j=1

Îp,qjk

−1

.

Corollary 3.1. On Assumptions (H), 1 and 2, if (2) holds with r < 1, τ > (2 − r)−1, and for

hn &
√
nmin, we have a feasible central limit theorem:

min (np, nq)
1/4
(
ÂVAR

)−1/2 (
TSPECV

(p,q)
n,T (Y, un)− [C(p), C(q)]T

)
 N (0, 1) . (16)

In particular, Corollary 3.1 is valid in a more general setting than Theorem 2, because we can

allow for different speeds np = O(nq), when standardizing with the estimated variance. At the same

time, the feasible limit theorem (16) is most appealing to practitioners to draw confidence for the

estimates from the normal distribution.

9



4. A bootstrap-type test for co-jumps

In Theorem 2 a central limit theorem for the truncated spectral integrated covariance estimator has

been established which directly includes an asymptotic distribution free test for the hypothesis that the

integrated covariance equals zero. A central limit theorem for the SPECJ which could render a test for

the presence of co-jumps is not available which comes from the fact that under high-frequency asymp-

totics as nmin → ∞, we can estimate co-jumps with asymptotically vanishing variance at rate n1/4
min.

One way to derive a test for finite-sample applications can be achieved adopting the wild bootstrap-

type approach used by Podolskji and Ziggel (2010) for a similar testing problem in a one-dimensional

setup. It is founded on the principle that if we disturb the addends of SPECJ by multiplication with

suitable external independent random variables, we can approach an asymptotic distribution of the

manipulated SPECJ which hinges on the distribution of those external random variables and the un-

derlying process. Note that while in the one-dimensional framework the test by Podolskji and Ziggel

(2010) is one possible testing procedure and others are available (e. g. by ratios of power variations,

see Aı̈t-Sahalia and Jacod (2009)), at least for the non-noisy case, alternative tests for our general

multi-dimensional framework are not available to the best of our knowledge. Generalizations of tests

as the one by Aı̈t-Sahalia and Jacod (2009) are not obvious.

In the sequel we construct a test dedicated to the decision problem

Ωno cj,p,q
T = {ω|t 7→ Xt(ω) has no common jumps (X(p)

s −X
(p)
s− )(X(q)

s −X
(q)
s− ) 6= 0 on [0, T ]}

against the alternative

Ωcj,p,q
T = {ω|t 7→ Xt(ω) has co-jumps on [0, T ]} .

For this purpose we define exogenous random variables ζk, k = 0, . . . , h−1
n − 1, on a canonical

orthogonal extension of (Ω,F , (Ft) ,P) denoted by
(
Ω⊥,F⊥,P⊥

)
. The test statistic, incorporating

the structure of the SPECJ and the exogenous randomization is

Tn(Y ) = min(np, nq)
1/4
h−1
n −1∑
k=0

∆k
̂[X(p), X(q)]

(
1
{|∆k

̂[X(p),X(q)]|>un}
+ ζk1{|∆k

̂[X(p),X(q)]|≤un}

)
. (17)

We employ i. i. d. random variables ζk, k = 0, . . . , h−1
n − 1:

P (ζk = −β) = 0.5 = P (ζk = β) .

A useful rewriting of (17) with ζk = 1− ζ̃k, is:

Tn(Y ) = min (np, nq)
1/4

h−1
n −1∑
k=0

∆k
̂[X(p), X(q)]

(
1− ζ̃k1{|∆k

̂[X(p),X(q)]|≤un}

)
. (18)

10



We refer to Podolskji and Ziggel (2010) who use a related statistic as (18) for a discussion about the

choice of randomization. It is crucial that the distribution is symmetric and the two-atomic nature

makes the analysis simple. We will use β = 0.1 below in Section 6 for our applications.

Theorem 3. For the test statistic (17) the central limit theorem

Tnst(Y ) = Tn(Y )

min (np, nq)
1/2

h−1
n −1∑
k=0

(
∆k

̂[X(p), X(q)]
)2

Var⊥ (ζk)

−1/2

 N(0, 1) (19)

applies on the hypothesis Ωno cj,p,q and Tn(Y )
P⊗P⊥−→ ∞ on Ωcj,p,q. Furthermore, when np � nq, a

stable central limit theorem is valid

Tn(Y )
st
 N

(
0,Var⊥ (ζk)

(
AVAR+[X(p), X(q)]2T

))
(20)

with the asymptotic variance AVAR from (14) above.

From Theorem 3, we can deduce critical values or p-values by(
P⊗ P⊥

)
Ωno cj,p,q

T

(Tnst(Y ) > q1−α)→ α ;
(
P⊗ P⊥

)
Ωcj,p,q

T

(Tnst(Y ) > q1−α)→ 1

for level 0 ≤ α ≤ 1 with the quantiles qα of a standard normal distribution.

5. An econometric co-jump estimation and localization approach

The high-frequency asymptotic theory for the estimator (9) allows to plug in a constant threshold

un = c hτn for any τ ∈ (0, 1) and constant c > 0 to filter out jumps in the path of X . Yet, a major

task towards an applicable implementation is to set up an adequate finite-sample truncation rule. In

the following we make use of the fact that the asymptotic magnitude of quadratic covariation from

the continuous part is known, i. e. maxk |∆k

[
C(p), C(q)

]
| � 2 log(h−1

n ) · hn. The vital point is that

the increase of quadratic covariation locally hinges on the spot covariance. Therefore, we propose a

locally adaptive truncation estimator:

TSPECV
(p,q)
n,T (Y, un) =

h−1
n −1∑
k=0

∆k
̂[

X(p), X(q)
]
1
{|∆k

̂[X(p),X(q)]|≤un(t)}
, (21a)

SPECJ
(p,q)
n,T (Y, un) =

h−1
n −1∑
k=0

∆k
̂[

X(p), X(q)
]
1
{|∆k

̂[X(p),X(q)]|>un(t)}
, (21b)

with a time-varying truncation cut-off function un(t) = ct hn2 log(h−1
n ), and ct will be chosen as

absolute value of a data-driven spot covariance estimator. Motivated by the locally parametric ap-
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• Set a priori threshold un = 2 logKn · K−1
n ,Kn = h−1

n , and choose Kpilot, Jn. Calculate
piecewise constant spot covariance estimator

Σ̂
(pq)
khnT

= K−1
pilot

∑
m∈Kk

Jn∑
j=1

J−1
n π2j2h−2

n

(
S

(p)
jmS

(q)
jm − δp,qB

p
m

)
1
{|∆m

̂[X(p),X(q)]|≤un}

where Bp
m = (1/2hn)

(∑np

v=1(∆vY
(p))2

) (∑
mhn≤t(p)v ≤(m+1)hn

(t
(p)
v − t(p)v−1)2

)
,

m = 0, . . . , h−1
n − 1, Kk = {k − bKpilot/2c ∧ 0, . . . , k + bKpilot/2c ∨ (h−1

n − 1)}.

• Determine block-wise weights

Î
(pq)
jk =

(
Σ̂

(pq)
khnT

)2
+ Σ̂

(pp)
khnT

Σ̂
(qq)
khnT

+ h−4
n π4j4Bp

kB
q
k + h−2

n π2j2
(
Bp
kΣ̂

(qq)
khnT

+Bq
kΣ̂

(pp)
khnT

)
,

ŵ
(pq)
jk = Î

(pq)
jk /

(
Jn∑
l=1

Î
(pq)
lk

)
.

• Plug in estimated weights in estimators (9) and (10) with a block-wise varying threshold

un(k) =
∣∣∣Σ̂(pq)

khnT

∣∣∣K−1
n 2 logKn, 0 ≤ k ≤ Kn .

Algorithm 1: Algorithm for the estimation procedure.

proximation as above, we build the spot estimator and locally adaptive threshold block-wise:

un(k) =
∣∣∣Σ̂(pq)

khnT

∣∣∣hn2 log(h−1
n ), k = 0, . . . , h−1

n − 1 .

For local thresholding from noisy data, it will be crucial to incorporate local spot covariance estimates.

Compared to locating jumps for each asset separately from the quadratic variation estimates, this

also factors in correlations. The procedure now works as follows: We evaluate block-wise spectral

statistics with constant weights and obtain a nonparametric spot estimator by local averaging and

truncation. Then, we calculate the spectral estimators with adaptively chosen weights and locally

adaptive threshold. For an illustration of the thresholding procedure see Figure 1 in the simulation

study in Section 6 below. The method at the same time allows for sequential block-wise testing for

co-jumps in the fashion as Lee and Mykland (2008) suggested for a one-dimensional non-noisy setup.

However, differently as in the absence of noise, we can assign co-jumps only to certain blocks and not

more exactly to observation time instants. Under noise, for particular increments we may not infer that

there is a jump if the increment is large, since most large increments are induced by the microstructure.

However, the noise is smoothed out when taking spectral statistics on blocks. Large products of block-

statistics relate to co-jumps. Instead of using only the first frequency for spot estimators, it will be

convenient to employ pilot estimators summing up spectral statistics with frequencies 1 ≤ j ≤ Jpilot,n
with some spectral cut-off frequency Jpilot,n > 1. Since we do not know local Fisher informations for

12



the weights, we simply use equal weights J−1
pilot,n for the pilot estimator:

Σ̂
(pq)
t = K−1

pilot

∑
k∈Kt

Jpilot,n∑
j=1

J−1
pilot,nπ

2j2h−2
n

(
S

(p)
jk S

(q)
jk −

δp,qη
2
p

npF ′p(khnT )

)
1
{|∆k

̂[X(p),X(q)]|≤un}
. (22)

The truncation cut-off is un = 2 log(h−1
n )hn. Crucial tuning parameters are the bin-widths hn and

Kpilot for smoothing. The spectral cut-off can be chosen of order Jpilot,n = Jn � log n, with

a constant of proportionality which we have chosen in practice between 3 and 10. By the growth

behavior

wjk �


(
hn
√
nmin

)−1 if j . h
√
nmin(

hn
√
nmin

)3
j−4 if j & h

√
nmin

of the weights, we find this to be an accurate choice and also if Jn is not too large that constant

weights J−1
pilot,n for the pilot estimator are suitable. The exact number of blocks h−1

n within a reason-

able range will not affect the estimates much and the estimator is quite robust to different choices.

We emphasize that the bias of the local parametric approximation does not depend at all on hn and

the number of blocks K = h−1
n ∈ N. We recommend to use 30 ≤ K ≤ 100 for daily estimation of

UHF-data. In principle it is also possible to take different block lengths adapted to the volatility paths,

e. g. equispaced in tick-time for d = 1 or refresh times for d > 1, but the differences have been rather

small in our applications.

We summarize the algorithm for the implementation of the estimation procedure concisely in Algo-

rithm 1.

6. Simulation study and an empirical example

In this section, we apply the implemented estimation procedure to several scenarios and suitable

model specifications to reveal its finite-sample properties and accuracy. In each scenario we analyze

spectral estimators, but accentuate different aspects. We highlight the estimators’ applicability in an

empirical data example using UHF-data from stock and bond markets. For the simulation study it

is informative to restrict to the two-dimensional case, d = 2, and T = 1. We begin with a concise

description of the implemented scenarios.

6.1. Description of scenarios

• Scenario 1: A completely parametric setup where

Σ =

(
1 1/2

1/2 1

)
,

is constant and with a constant drift b = 0.1 and a fixed number of jumps permits to track

the estimators’ quality in a simple setting. X(1) and X(2) are observed at times t(p)i , 0 ≤ i ≤
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30000, p = 1, 2, where t(p)i are order statistics of uniformly drawn points on [0, 1]. The signal

is corrupted by i. i. d. noise which is in both components normally centered distributed with

standard deviation η = 0.001. For the jump part we simulate two common jumps and one

separate jump in X(1) and X(2), respectively. Jump times are uniformly distributed on [0, 1],

and jump heights are normally distributed with expectation 1 and standard deviation 0.5.

• Scenario 2: Our main focus is on the time-varying nonparametric case. For an example of

deterministic volatility functions, set

σ
(1)
t = 0.1− 0.08 · sin (πt), t ∈ [0, 1] ,

σ
(2)
t = 0.15− 0.07 · sin ((6/7) · πt), t ∈ [0, 1] ,

ρt = 0.5 + 0.01 · sin (πt), t ∈ [0, 1] ,

where the volatilities are higher at opening and end of the observed interval and the correlation

is rather persistent and only slowly varying, which mimics some basic realistic features. The

noise is in both components i. i. d. normally centered distributed with η = 0.001. We add

deterministic jumps to the continuous part, i. e. at times t = 19/60, 49/60 of X(1) with jump

size L1 and at time t = 19/60 of X(2) of size L2. We implement synchronous equidistant

sampling times i/30000, 0 ≤ i ≤ 30000 and the drift equals zero. Note that fixed jump arrival

times violate the standard structural Assumption (H). Yet, it allows to investigate the localization

accuracy of the method. The results are not affected by the specified chosen jump times above.

• Scenario 3: A realistic complex stochastic volatility model with serial dependence in noise and

Poisson observation schemes. We add a coupled compound Poisson jump measure to simulate

random jumps with normally distributed jump sizes.

The underlying observation times design is generated from a homogenous Poisson model with

E [n1] = E [n2] = 30000, using the times generated on [0, 1]. The Poisson sampling is inde-

pendent from the process Y .

The stochastic volatility model emulates the one by Barndorff-Nielsen et al. (2011). Hence, the

signal part of simulated log-prices follow a bivariate factor model

dX
(p)
t = µ(p) dt+ ρ(p) σ

(p)
t dB

(p)
t +

√
(1− (ρ(p))2)σ

(p)
t dW

(p)
t , p = 1, 2, (23)

where Bt = (B
(1)
t , B

(2)
t )> is a two-dimensional standard Brownian motion and Wt is a two-

dimensional standard Brownian Motion independent of Bt. The spot variance functions follow

Ornstein-Uhlenbeck processes

σ
(p)
t = exp

(
β

(p)
0 + β

(p)
1 ψ

(p)
t

)
where (24)

dψ
(p)
t = α(p) ψ

(p)
t dt+ dB

(p)
t , p = 1, 2.
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Accordingly, the leverage between X(p)
t and ψ(p)

t is ρ(p) and the correlation between X(1)
t and

X
(2)
t is constant

√
(1− (ρ1)2) (1− (ρ2)2). In the following we use equal parameters µ =

µ(1) = µ(2) for both components, analogously for α, β0, β1. We normalize as in Barndorff-

Nielsen et al. (2011), such that β0 = β2
1/ (2α) which implies E

[∫ 1
0 (σ

(p)
s )2 ds

]
= 1. We use

an Euler discretization scheme and for the OU processes ψ(l)
t we exploit the fact that an exact

discretization is available. The starting values of ψ(p)
t , p = 1, 2, are generated from its stationary

distribution, i.e. ψ(p)
0 ∼ N

(
0, (−2α)−1

)
, p = 1, 2.

We disturb the signal processX by non-i. i. d. microstructure noise generated from a martingale

difference model,

Y
(p)
j = X

(p)

t
(p)
j

+ ε
(p)
j , j = 1, . . . , np, p = 1, 2,

where the noise is conditionally on the signal distributed according to

ε
(p)
j

∣∣∣ {X(p)

t
(p)
j

, σ
(p)

t
(p)
j

}
∼ N

(
γε

(p)
j−1, (ω

(p)
j )2

)
with (ω

(p)
j )2 = ξ2

√√√√ 1

np

np∑
i=1

(σ
(p)
i )4,

where ξ gives the so-called signal-to-noise ratio. This implies that the noise variance increases

with the volatility of the signal (see Bandi and Russell (2006), among others). We fix the

parameter configuration µ = 0.03, β0 = −5/16, β1 = 1/8, α = −1/40 as in Barndorff-

Nielsen et al. (2011) and γ = 0.1 and ξ = 0.005. The jumps are generated by a Poisson process

with two expected common jumps and two expected idiosyncratic jumps in each component.

The jumps sizes are normally distributed with expectation and standard deviation parameter

Λ/10.

• Data example: We investigate comovements of UHF-data on German stocks index futures

(FDAX) and futures on 10 year German Government bonds (FGBL, price notation). The data

is provided by the derivatives trading platform EUREX. We analyze 252 trading days from

January 2008 to December 2008, which represents a crucial period of the global financial crisis.

The focus is on trading hours from 9:00 to 17:00 CET resulting in approx. 10000 to 30000

ticks per day. For each future we filter the data with the same most frequently traded maturity

(typically next ahead). Observation times are non-synchronous and the stylized facts of the

data indicate microstructure effects. As commonly known for most financial data there are also

features which are not perfectly accordant to the additive noise model (as zero returns).

In any example we implement the adaptive spectral estimators according to Algorithm 1 and do not

use oracle weights in the simulations. We use piecewise constant spectral pilot estimators for Σ

employing constant weights J−1
pilot. For the simulations, we set Jpilot = J = 35, use 30 blocks,

smooth over K = 7 adjacent blocks for the spot estimators and run 1000 Monte Carlo iterations. For
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Table 1: Simulation results of Scenario 1.

SPECJ(1,2) = 2.04± 1.11 TSPECV(1,2) = 0.50± 0.11

SPECJ(1,1) = 3.83± 1.95 TSPECV(1,1) = 0.98± 0.13

SPECJ(2,2) = 3.85± 1.93 TSPECV(2,2) = 0.98± 0.13

Note. Rounded sample means ± standard deviations from 1000 MC iterations.

the data example we set K = 24, the spectral cut-off J = 35 and utilize the same adaptive truncation

rule as for our simulations.

6.2. Results

6.2.1. Results and interpretation of Scenario 1

In order to approve the eligibility of our spectral co-jumps estimator to estimate the jump part

in quadratic covariation, we compare estimates with the theoretically expected values in this simple

setup with fixed numbers of jumps in each component and a parametric covariance matrix. For the

evaluation of the fluctuation of jump heights by the N(1, 1/4)-distribution, note that for X = 1 + Z

with Z ∼ N(0, 1/4), we have

E
[
X2
]

= E
[
(1 + Z)2

]
= 1 + E

[
Z2
]

= 5/4 ,

Var
(
X2
)

= Var
(
1 + 2 · Z + Z2

)
= 4 · Var(Z) + Var(Z2) = 4 · 1/4 + 2/16 = 9/8 .

Thus, E[J (1), J (2)]T = 2 and E[J (1), J (1)]T = E[J (2), J (2)]T = 3.75. The quadratic covariation

of randomly generated jumps has a theoretical standard deviation of ca. 1.06 and the variations of

ca. 1.84, respectively, and we expect the simulated ones to be slightly larger. Table 1 lists the Monte

Carlo results which are quite close to their theoretical counterparts. For the truncated integrated co-

variance estimator, the finite sample variance under non-synchronous sampling is slightly larger than

suggested from (14).

6.2.2. Results and interpretation of Scenario 2

The known integrated covariance equals 0.00269 here and integrated variances 0.00301 and

0.01048, respectively. We consider four configurations:

M1 L1 = 0.1 and L2 = 0.1, where jumps are very large compared to Brownian increments (more

than 100 times larger on average).

M2 L1 = 0.05 and L2 = 0.1.

M3 L1 = 0.05 and L2 = 0.05.
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Figure 1: Block-wise estimated ∆k
̂[X(1), X(2)] in Scenario 2, setup M1 (left) and M4 (right).

Note. Thresholding for L1 = 0.1 (left) and L1 = 0.01 (right). Marked by a circle are spectral statistics

which exceed the threshold and are ascribed to a co-jump.

M4 L1 = 0.01 and L2 = 0.1, where the jumps of X(1) are not of much larger magnitude as

increments from the continuous part, but still for X(2).

It is particularly interesting how the pilot estimates can mimic the paths of the spot variances and

the covariance. The pilot estimators for M1 are illustrated in Figure 2. The performance of the spot

estimators is quite remarkable and can mimic the functions satisfactorily, not only for the MC-averages

but in any iteration. Figure 1 visualizes the estimation procedure of the spectral estimators (9) and

(10). For each block the estimated increase of quadratic covariation (in a local parametric model

simply hnΣkhnT ) is componentwise compared to the local threshold |Σ̂khnT |hn 2 log(h−1
n ). We give

an overview on the estimation results of the spectral estimators in Table 2. We also investigate the wild

Figure 2: Estimated and true spot (co-)variances in Scenario 2.

Note. Block-wise MC-averages. Spot variances of X(1) and X(2) (left, middle) and covariance (right).
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Table 2: Simulation results for Scenario 2.

M1 M2 M3 M4
SPECJ(1,2) 107± 4.5 53± 3.6 26± 6.5 8± 7.0

SPECJ(1,1) 206± 4.5 51± 3.9 51± 4.0 10± 5.2

SPECJ(2,2) 106± 6.4 106± 6.1 26.1± 5.9 106± 6.2

TSPECV(1,2) 26± 5.4 26± 4.5 27± 6.6 30± 6.2

TSPECV(1,1) 28.7± 2.7 31± 1.3 30± 3.2 32± 3.1

TSPECV(2,2) 101± 5.9 102± 5.9 105± 6.6 102± 5.7
Tn
st 29.5± 1.3 22.9± 1.3 14.8± 3.6 5.1± 4.6

1%-power 1.00 1.00 0.96 0.77
5%-power 1.00 1.00 0.96 0.77
10%-power 1.00 1.00 0.97 0.78
sensitivity 1.00 1.00 0.96 0.76

Note. Spectral estimators of quadratic (co)variation and (co)jumps (mean and standard deviation) times 104;
test characteristics.

bootstrap test and list the results for the test statistics with empirical powers to certain test levels. The

portion of detected co-jumps is given in the last row of Table 2. Concerning specificity we have 328,

80, 95 and 18 mistakenly detected co-jumps in the 1000 iterations in configuration M1, M2, M3 and

M4, respectively. Most of them (319, 67, 69, 16) are located on block 25 (when one of both processes

exhibits a jump).

6.2.3. Results and interpretation of Scenario 3

We implement the stochastic volatility model with expected jumps sizes Λ = i/10, i = 0, . . . , 10.

The estimators perform well in this realistic model which harms some of our technical assumptions on

which theoretical asymptotic results are proved. In Figure 3 the power of the α = 0.01/0.05/0.1-level

co-jump test from Section 4 is depicted for fixed expected number of observations for different values

of Λ. As the jumps sizes increase the power increases so long as jumps are very large compared to

continuous part increments. Table 3 gives the root mean square errors (RMSE) of the SPECJ and the

TSPECV. For increasing Λ (mean and standard deviation of jumps), the variance of SPECJ increases

naturally. The RMSE of TSPECV(1,2) slightly increases with Λ, whereas the RMSE for the one-

dimensional estimators are slightly larger for moderate jump sizes. All truncated estimators exhibit

the smallest RMSE in absence of jumps.

Altogether, simulation results are promising and we conclude that the spectral approach provides an

efficient method to draw inference on co-jumps and quadratic covariation, even in complex models

accounting for various dependencies.

6.2.4. Results and interpretation of data example

Figure 4 depicts SPECJ (black) and TSPECV (gray) estimates for each trading day. As economic

intuition suggests, on most days the integrated covariance (gray) of bond and stock prices is negative.

Interestingly, such a prevailing negative relation of common jumps (black) is not evident from Figure

4. The direction of co-jumps appears unsystematic. However, after applying the co-jump test, the
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Table 3: Simulation RMSEs in Scenario 3.

Λ TSPECV(1,2) TSPECV(1,1) TSPECV(2,2) SPECJ(1,2) SPECJ(1,1) SPECJ(2,2)

10 0.052 0.032 0.033 1.42 1.35 1.41
9 0.049 0.030 0.031 1.16 1.11 1.14
8 0.048 0.033 0.033 0.93 0.79 0.91
7 0.044 0.037 0.035 0.66 0.73 0.53
6 0.041 0.036 0.033 0.51 0.45 0.54
5 0.040 0.040 0.032 0.33 0.32 0.33
4 0.039 0.049 0.052 0.21 0.18 0.21
3 0.039 0.060 0.063 0.12 0.12 0.13
2 0.036 0.060 0.063 0.07 0.10 0.11
1 0.033 0.062 0.064 0.06 0.06 0.03
0 0.023 0.024 0.025 0 0 0

Note. Root mean square errors of truncated spectral estimators (TSPECV) of quadratic (co)variation and
(co-)jump estimators (SPECJ)

picture becomes clearer. On a 5% significance level, co-jumps occur on 19 days (7.5%), where only

3 days display positive co-jumps.

7. Conclusion

In this article we present a novel ex-post approach to test for and estimate co-jumps in multi-

variate high-frequency data which can cope with market microstructure and non-synchronous trading.

Our estimation method brings together the efficient spectral covariance estimator by Reiß (2011) and

Bibinger and Reiß (2013) and the concept of truncation. The spectral estimator attains substantial

efficiency gains for time-varying volatility matrices compared to previous methods by its local adap-

tivity. We derive new estimators for the spot covariances and variances which we employ for choosing

weights and the threshold locally on blocks. Block-wise estimates of quadratic covariation exceeding

this threshold are ascribed to co-jumps. A feasible limit theorem for integrated covariance estimation

is established.

We investigate the performance of the invented estimation techniques in various simulation scenarios

and an empirical example. The performance of our spot (co)variance estimators is remarkable and

from our perspective they are worth further consideration in empirical work. Our approach paves the

way for an efficient and rigorous analysis of the covariance structure and co-jump risks for applica-

tions in empirical finance. One important application we have in mind where inference on co-jumps

takes a vital role is analyzing the impact of news announcements, see e. g. Lahaye et al. (2011). Our

approach provides a capable and insightful tool which permits to expose co-jumps that appear near-

term to events and quantifying their significance, magnitude and pairwise directions (concerted or

contrast reaction).
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Figure 3: Power of the test for the presence of co-jumps in Scenario 3.

Note. For fixed expected number of observation times power increases for larger jump heights.

Figure 4: Spectral estimates of co-jumps and covolatility for FDAX and FGBL.

Note. TSPECV (gray) and SPECJ (black) estimates for integrated covariance and co-jumps between FDAX

and FGBL for trading days in 2008, ∗ and × mark significance on 5% and 10% level, respectively.
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Appendix A. Proofs

Appendix A.1. Some estimates and preliminaries

Throughout the proofsK denotes a generic constant andKp denotes a generic constant dependent

on some p. Considering a finite time span [0, T ], we can reinforce our structural Assumption (H)

replacing local boundedness by uniform boundedness. This is standard in the strand of literature on

statistics for semimartingales and based on a localization procedure provided in Jacod (2012), Lemma

6. 6 in Section 6. 3.

Assumption (SH). We have Assumption (H) and, moreover, with some constant Λ for all (ω, s, x) ∈
(Ω,R+,R

d):

max {‖bs(ω)‖, ‖σs(ω)‖, ‖Xs(ω)‖, ‖δω(s, x)‖/γ(x)} ≤ Λ .

We decompose the semimartingale X which shall satisfy this structural Assumption in the contin-

uous part C and jump part J and separate (co-)jumps with norm bounded from above by ε and larger

jumps:

Jt = J(ε)t +

∫ t

0

∫
Rd\Aε

κ(δ(s, x))(µ− ν)(ds, dx) +

∫ t

0

∫
Rd

κ̄(δ(s, x))µ(ds, dx) ,

with Aε = {z ∈ Rd|γ(z) ≤ ε} and later let ε → 0. The strengthened boundedness assertion from

Assumption (SH) is crucial for the following essential standard estimates which are used frequently

in the sequel:

∀p ≥ 1, s, t ≥ 0 : E
[
‖Cs+t − Cs‖p

∣∣Fs] ≤ Kpt
p/2 , (A.1a)

∀p ≥ 1,∀s, t ≥ 0 : E
[
‖J(ε)s+t − J(ε)s‖p

∣∣Fs] ≤ Kp E
[( ∫ (s+t)

s

∫
Aε

(γ2(z) ∧ 1)µ(dτ, dx)
) p

2
]

≤ Kpt
( p
2
∧1)γ

( p
2
∧1)

ε , (A.1b)
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∀p ≥ 1, s, t ≥ 0 : E
[
‖Cs+t−Cs−(σs(Ws+t−Ws))‖p

∣∣Fs] ≤ Kp E
[( ∫ s+t

s
‖στ − σs‖2 dτ

) p
2
∣∣Fs]

≤ Kp t
p
2 E
[

sup
τ∈[s,s+t]

(‖στ − σs‖p)
∣∣Fs]

≤ Kpt
p , (A.1c)

∀s, t ≥ 0 : E
[
‖Js+t − Js − (J(ε)s+t − J(ε)s) ‖

∣∣Fs] ≤ Ktε−r , (A.1d)

with r ∈ (0, 2] from Assumption (H) in (A.1d) and γε =
∫
Aε

(
γ2(x) ∧ 1

)
λ(dx). If we suppose (2),

we have the bound

γε ≤ Kε(2−r) . (A.1e)

The estimates above are concluded by Burkholder-Davis-Gundy inequalities, Hölder inequality and

Doob inequality and we refer to Jacod (2012), among others, for a detailed proof.

Appendix A.2. Proof of Theorems 1 and 2

The proof falls into three major parts, namely an approximation with a synchronous observa-

tion scheme, consistency of the SPECV for quadratic covariation and a bound for the difference of

TSPECV(X) and SPECV(C). An essential ingredient of the analysis below is the result that we can

work under a synchronous sampling design. For a continuous martingale observed in noise this funda-

mental result has been established in Bibinger et al. (2013) by virtue of an asymptotic equivalence in

Le Cam’s sense of the experiment with discrete non-synchronous observations and a continuous-time

white noise experiment. Here, we show explicitly that on Assumptions 1 and 2, the approximation

error for the signal part is asymptotically negligible. Note that the functions F ′p, F
′
q are considered in

the noise part.

Lemma 1. On Assumptions (H), 1 and 2, we can work under synchronous sampling, i. e. it holds that

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n

np∑
v=1

∆vX
(p)Φjk(t̄

(p)
v )

nq∑
i=1

∆iX
(q)Φjk(t̄

(q)
i )

=

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n

np∑
v=1

(
X

(p)

t
(p)
v

−X(p)

t
(p)
v−1

)
Φjk(t̄

(p)
v )

np∑
v=1

(
X

(q)

t
(p)
v

−X(q)

t
(p)
v−1

)
Φjk(t̄

(p)
v ) + Op(1) .

Proof. Consider for (p, q) ∈ {1, . . . , d}2, ∆vt
(p) = t

(p)
v − t(p)v−1, with the previous-tick and next-tick

functions

t
(p)
+ (s) = min

(
t(p)v , 0 ≤ v ≤ np|t(p)v ≥ s

)
, p = 1, . . . , d, (A.2a)
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t
(p)
− (s) = max

(
t(p)v , 0 ≤ v ≤ np|t(p)v ≤ s

)
, p = 1, . . . , d, (A.2b)

and the mid-times

t̄(p)v =
t
(p)
v−1 + t

(p)
v

2
, 1 ≤ v ≤ np, p = 1, . . . , d, (A.2c)

the approximation

(
X

(p)

t
(p)
v

−X(p)

t
(p)
v−1

)
Φjk(t̄

(p)
v ) =

((
X

(p)

t
(p)
v

−X(p)

t
(q)
− (t

(p)
v )

)
+

∑
∆it(q)⊂∆vt(p)

(
X

(p)

t
(q)
i

−X(p)

t
(q)
i−1

)
+
(
X

(p)

t
(q)
+ (t

(p)
v−1)
−X(p)

t
(p)
v−1

))
Φjk(t̄

(p)
v )

�
∑

∆it(q)⊂∆vt(p)

(
X

(p)

t
(q)
i

−X(p)

t
(q)
i−1

)
Φjk(t̄

(q)
i ) +

(
X

(p)

t
(p)
v

−X(p)

t
(q)
− (t

(p)
v )

)
Φjk(u

(q)
v )

+
(
X

(p)

t
(q)
+ (t

(p)
v−1)
−X(p)

t
(p)
v−1

)
Φjk(ũ

(q)
v ) ,

where u(q)
v = (1/2)(t

(q)
+ (t

(p)
v )− t(q)− (t

(p)
v )) and ũ(q)

v = (1/2)(t
(q)
+ (t

(p)
v−1)− t(q)− (t

(p)
v−1)). Since

Φjk(t)− Φjk(s) � Φ′jk((t+ s)/2)(t− s)

for small (t − s), in particular the term is asymptotically at most of order n−
1/2

min for (t − s) . n−1
min.

By the estimate with Φ′jk above and (A.1a), (A.1b) and (A.1d), we can bound the approximation error

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n

np∑
v=1

∆vX
(p)Φjk(t̄

(p)
v )

nq∑
i=1

∆iX
(q)Φjk(t̄

(q)
i )

=

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n

np∑
v=1

(
X

(p)

t
(p)
v

−X(p)

t
(p)
v−1

)
Φjk(t̄

(p)
v )

np∑
v=1

(
X

(q)

t
(p)
v

−X(q)

t
(p)
v−1

)
Φjk(t̄

(p)
v )

+

h−1
n −1∑
k=0

π2j2

hn

Jn∑
j=1

np∑
v=1

((
X

(p)

t
(p)
v

−X(p)

t
(p)
v−1

)( ∑
∆it(q)⊂∆vt(p)

(
X

(q)

t
(q)
i

−X(q)

t
(q)
i−1

)(
Φjk(t̄

(q)
i )− Φjk(t̄

(p)
v )
))

+
(
X

(q)

t
(q)
+ (t

(p)
v−1)
−X(q)

t
(p)
v−1

)
(Φjk(ũ

(q)
v )− Φjk(t̄

(p)
v )) +

(
X

(q)

t
(p)
v

−X(q)

t
(q)
− (t

(p)
v )

)(
Φjk(u

(q)
v )− Φjk(t̄

(p)
v )
))

in the last addend which is asymptotically negligible.

Next, we establish the asymptotic properties of our estimators. We can restrict to a subset of Ω on

23



which there is at most one large co-jump between two adjacent observation times, i. e. for

U i,(p,q)n,ε =

ω∣∣∃ t such that

∥∥∥∥∥∥
(∫ t

t
(p)
i−1

∫
A{

ε

δ(s, x) (δ(s, x))> µ(ds, dx)

)(p,q)
∥∥∥∥∥∥ > 0,

∥∥∥∥∥∥
(∫ t

(p)
i

t

∫
A{

ε

δ(s, x) (δ(s, x))> µ(ds, dx)

)(p,q)
∥∥∥∥∥∥ > 0

 , 1 ≤ i ≤ np,

we can work on the complement of (
⋃np

i=1 U
i,(p,q)
n,ε )∪(

⋃nq

i=1 U
i,(q,p)
n,ε )→ ∅ as nmin →∞. The same rea-

soning can be further extended to blocks [khnT, (k+1)hnT ), k = 0, . . . , h−1
n −1, as hn → 0. Denote

{S(p,q)
1 , . . . , S

(p,q)
N(T )} the finite set of arrival times of large co-jumps1, each one located on a different

block. We augment this set for given nmin and fixed number of blocks h−1
n to {S(p,q)

1 , . . . , S
(p,q)

h−1
n
} by

adding mid-times for blocks without large co-jump. With Lemma 1, we deduce

E
[
SPECV

(p,q)
n,T (Y )

]
=

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n wp,qjk

(
E
[
S

(p)
jk S

(q)
jk

]
−

δp,qη
2
p

npF ′p(khnT )

)

=

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n wp,qjk E

[ np∑
i=1

(
X

(p)

t
(p)
i

−X(p)

t
(p)
i−1

)
Φjk(t̄

(p)
i )

np∑
i=1

(
X

(q)

t
(p)
i

−X(q)

t
(p)
i−1

)
Φjk(t̄

(p)
i )

]
+ O(1)

=

h−1
n −1∑
k=0

hn

Jn∑
j=1

π2j2h−2
n wp,qjk

np∑
i=1

(t
(p)
i − t

(p)
i−1)Φ2

jk(t̄
(p)
i )

×

Σ
(pq)
khnT

+

(∫
Rd\Aε

δ(S
(p,q)
k , x)

(
δ(S

(p,q)
k , x)

)>
µ(S

(p,q)
k , dx)

)(p,q)
+ O(1)

=

h−1
n −1∑
k=0

hn

(
Σ

(pq)
khnT

+

(∫
Rd

δ(S
(p,q)
k , x))

(
δ(S

(p,q)
k , x)

)>
µ(S

(p,q)
k , dx)

)(p,q)
)

+ O(1)

−→ [X(p), X(q)]T as ε→ 0 .

By the bound (A.1b) and since γε → 0 for ε → 0, the term by small jumps becomes asymptotically

negligible. We have used that
∑

i ∆tiΦ
2
jk →

∫ T
0 Φ2

jk(t) dt = h2
nπ
−2j−2. By standard bounds, the

variance of SPECV is of order n−
1/2

min . Thus, we conclude that the SPECV is a consistent estimator for

the quadratic covariation. Eventually, the proof that(
SPECV

(p,q)
n,T (C)−TSPECV

(p,q)
n,T (C + J, un)

)
= OP (1) ,

and the stronger claim that the difference is OP (n
−1/4
min ) on a reinforced assertion on the jump activity is

1Technically, this means we first consider co-jumps ∈ A{
ε and then letting ε → 0, one may think of finitely many large

co-jumps triggering the quadratic covariation here.
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related to the strategy of proof pursued for truncated power variations in Aı̈t-Sahalia and Jacod (2010).

It relies on bounds for the increments from the continuous part, the small jumps and the probability to

have co-jumps which exceed a certain threshold. Thereto, consider

(
SPECV

(p,q)
n,T (C)−TSPECV

(p,q)
n,T (C + J, un)

)
=

h−1
n −1∑
k=0

ζ
(p,q)
k , (A.3)

with ζ(p,q)
k = ∆k

̂[C(p), C(q)] in case of truncation, when ∆k
̂[C(p), C(q)] are the statistics (7) with

latent observations of the continuous part C, and −∆k
̂[J (p), J (q)] −∆k

̂[C(p), J (q)] −∆k
̂[J (p), C(q)]

using analogous notation, else. We make a case differentiation:

•
∣∣∣∆k

̂[X(p), X(q)]
∣∣∣ > un, truncation: ζ(p,q)

k = ∆k
̂[C(p), C(q)] and either |∆k

̂[C(p), C(q)]| >

un/2 or |∆k[J
(p), J (q)]| > un/2, since the variance of ∆k

̂[X(p), X(q)] is of order h2
n.

–
∣∣∣∆k

̂[C(p), C(q)]
∣∣∣ > un/2: For the truncation exponent τ ∈ (0, 1), there exists an integer

N0 with N0(1− τ) > 1/2 and

∣∣∣ζ(p,q)
k

∣∣∣ ≤ 2N0

∣∣∣∆k
̂[C(p), C(q)]

∣∣∣

∣∣∣∆k

̂[C(p), C(q)]
∣∣∣

un

N0

≤ 2N0

∣∣∆k[C
(p), C(q)]

∣∣N0+1

uN0
n

= Op

(
hnn

−1/4
min

)
by (A.1a).

–
∣∣∣∆k

̂[C(p), C(q)]
∣∣∣ ≤ un/2: Then

∣∣∆k[J
(p), J (q)]

∣∣ > un/2 and hence

∣∣∣ζ(p,q)
k

∣∣∣ ≤ 2N0

∣∣∣∆k
̂[C(p), C(q)]

∣∣∣(∣∣∆k[J
(p), J (q)]

∣∣
un

)N0

= Op

(
hnn

−1/4
min

)
what readily follows by (A.1b) and (A.1d).

•
∣∣∣∆k

̂[X(p), X(q)]
∣∣∣ ≤ un, no truncation:

–
∣∣∣∆k

̂[C(p), C(q)]
∣∣∣ > un/2: With N0 as above, we obtain that

∣∣∣ζ(p,q)
k

∣∣∣ =
∣∣∣∆k

̂[J (p), J (q)] + ∆k
̂[C(p), J (q)] + ∆k

̂[J (p), C(q)]
∣∣∣

× 2N0


∣∣∣∆k

̂[C(p), C(q)]
∣∣∣

un

N0

= Op

(
hnn

−1/4
min

)
.

–
∣∣∣∆k

̂[C(p), C(q)]
∣∣∣ ≤ un/2: Finally, we employ the estimates (A.1b), (A.1d) and (A.1e) to

bound the absolute difference in the remaining case when there is no truncation and the
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continuous part is not of exceptionally large magnitude.∣∣∣∆k[
̂J (p), J (q)] + ∆k

̂[C(p), J (q)] + ∆k
̂[J (p), C(q)]

∣∣∣
≤
(∣∣∣∆k[J

(p), J (q)]
∣∣∣ ∧ un)+ Op

(
hnn

−1/4
min

)
� hnu

1− r2
n

with the index r from Assumption (H). That the cross terms of continuous and jump part

are asymptotically negligible is immediate by Cauchy-Schwarz and our usual estimates.

The claim follows by applying (A.1b) and (A.1d) with ε = u
1/2
n . We need to ensure that

τ(1− r
2) > 1/2 (A.4)

and thus that 1 > τ > (2− r)−1 and r < 1 to imply that u1−r/2
n = Op(n

−1/4
min ).

From the preceding analysis we obtain under the last restriction on the jump activity that

(
SPECV

(p,q)
n,T (C)−TSPECV

(p,q)
n,T (C + J, un)

)
=

h−1
n −1∑
k=0

ζ
(p,q)
k = Op

(
n
−1/4
min

)
. (A.5)

Appendix A.3. Proof of Theorem 3

Suppose the hypothesis Ωno cj,p,q
T holds true (no co-jumps on [0, T ]). Naturally, we have

Aun = {ω ∈ Ωno cj,p,q
T | |∆k

̂[X(p), X(q)]| ≤ un ∀k} → Ωno cj,p,q
T

as nmin → ∞ and A{un → ∅. By the typical standard argument we may in the sequel work on Aun .

Thus consider the conditional test statistic given Y :

T̃n(Y ) = min (np, nq)
1/4

h−1−1∑
k=0

∆k
̂[X(p), X(q)]ζk .

Conditional on the path of Y satisfying our assumptions (bounded moments), on
(
Ω⊥,F⊥,P⊥

)
by

the i. i. d. property of the ζk, 0 ≤ k ≤ h−1
n − 1, and

E⊥
[
T̃n(Y )|F

]
= 0 ,

Var⊥
(
T̃n(Y )|F

)
= min (np, nq)

1/2
h−1−1∑
k=0

(
∆k

̂[X(p), X(q)]
)2

Var⊥ (ζk) ,
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a central limit theorem is quickly derived by virtue of the fulfilled Lyapunov condition with higher

moments. We now have conditionally on F that

T̃n(Y )

min (np, nq)
1/2

h−1
n −1∑
k=0

(
∆k

̂[X(p), X(q)]
)2

Var⊥ (ζk)

−1/2

 N(0, 1) .

On our original probability space (Ω,F ,P) (here restricted to Aun), we have convergence in proba-

bility of min (np, nq)
1/2∑h−1−1

k=0

(
∆k

̂[X(p), X(q)]
)2

. In particular, if np ∼ nq,

min (np, nq)
1/2

h−1
n −1∑
k=0

(
∆k

̂[X(p), X(q)]
)2 P−→ AVAR+[X(p), X(q)]2T ,

since the asymptotic variance of the truncated spectral estimator equals the one of SPECV
(p,q)
n,T (C)

on Ωno cj,p,q
T which has been deduced in Bibinger and Reiß (2013) and relies on the independence

between blocks of the Brownian parts. The external nature of the ζk, 0 ≤ k ≤ h−1
n − 1, defined on an

orthogonal extension
(
Ω⊥,F⊥,P⊥

)
of (Ω,F , (Ft),P), ensures that by Slutsky’s lemma we obtain

Tn(Y )

min (np, nq)
1/2

h−1
n −1∑
k=0

(
∆k

̂[X(p), X(q)]
)2

Var⊥ (ζk)

−1/2

 N(0, 1) . (A.6)

We have exploited the stable central limit theorem for the spectral estimator on Ωno cj,p,q
T here. We

remark that the latter weak convergence is even stable with respect to F which implies the stable

central limit theorem

Tn(Y )
st
 N

(
0,Var⊥ (ζk)

(
AVAR+[X(p), X(q)]2T

))
.

For the proof of the latter we refer to (65) and (66) on page 18 of Podolskji and Ziggel (2010), since

it is along the same lines and the same argument applies as for their wild bootstrap-type statistics.

Again, the external nature of the ζk plays a key role and implies stability.

Now suppose Ωcj,p,q
T . By virtue of Theorem 2, (12a), we have

SPECJ
(p,q)
n,T

P−→
∑
s≤T

(X(p)
s −X

(p)
s− )(X(q)

s −X
(q)
s− ) = [J (p), J (q)]T .

Therefore,

min (np, nq)
1/4

h−1
n −1∑
k=0

∆k
̂[

X(p), X(q)
]
1
{|∆k

̂[X(p),X(q)]|>un}
= Op

(
min (np, nq)

1/4
)
, (A.7)
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and the same order applies to the first addend of the left-hand side of Tnst(Y ) in (19). For the second

addend of the left-hand side in (19), we infer for

Γ =

h−1
n −1∑
k=0

(
∆k

̂[
X(p), X(q)

])2

Var⊥(ζk)

−1/2
h−1
n −1∑
k=0

∆k
̂[

X(p), X(q)
]
1
{|∆k

̂[X(p),X(q)]|≤un}
ζk

that E⊥ [Γ] = 0, Var⊥ (Γ) < 1. Thereby the assertion of Theorem 3 follows from (A.6) and (A.7).
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