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Abstract

We deal with two kinds of Cox regression models with varying coefficients.
The coefficients vary with time in one model. In the other model, there is an
important random variable called an index variable and the coefficients vary
with the variable. In both models, we have p-dimensional covariates and p
increases moderately. However, it is the case that only a small part of the
covariates are relevant in these situations. We carry out variable selection
and estimation of the coefficient functions by using the group SCAD-type es-
timator and the adaptive group Lasso estimator. We examine the theoretical
properties of the estimators, especially the L2 convergence rate, the sparsity,
and the oracle property. Simulation studies and a real data analysis show
the performance of these new techniques.
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1. Introduction

The Cox regression model is one of the most popular and useful models in
survival analysis. In recent years, many nonparametric and semiparametric
variants of the Cox regression model have been proposed. Among them,
there are varying coefficient models (Cai and Sun [9], Tian et al. [24], Fan
et al. [12], Cai et al. [8], Chen et al. [10]), partially linear models and their
extensions (Cai et al. [5], [6]), and additive and functional ANOVA models
(Huang et al. [17]). In this paper we focus on varying coefficient models and
consider two kinds of Cox regression models with varying coefficients. The
coefficients vary with time in one model ([9], [24]) and with index variable
U(t) in another model ([12], [8], [10]).

In recent years, a dimensional and model selection issue occurs in many
applications : only a small part of the variables are relevant. Therefore
statistical methods for variable selection are needed. Penalized likelihood
estimators such as the Lasso or SCAD estimators have been among the stan-
dard tools in carrying out variable selection and estimation simultaneously,
Tibshirani [25] and Fan and Li [13]. Zou [33] proposed the adaptive Lasso
to correct some deficiencies of the Lasso and proved that the adaptive Lasso
estimators choose the relevant variables consistently. Both group SCAD and
group Lasso are also popular techniques, Yuan and Lin [27] and Meier et al.
[21]. For more references, we refer to Bühlmann and van de Geer [4].

Local linear estimators have been used in varying coefficient Cox regres-
sion models. However, we employ basis functions such as B-spline basis func-
tions and look at the models from a different perspective by combining these
models and variable selection. This is the focus of this research. We deal
with the cases where the number of the covariates, p, increase moderately
with the sample size, for example p = O(n3/10), where n is the sample size.
We conduct variable selection and estimation simultaneously by employing
group SCAD-type or adaptive group Lasso estimators.

Variable selection and estimation in Cox regression models are considered
in many papers, for example, in Cai et al. [7], Zhang and Lin [32], Du et
al. [11], Wang et al. [29], and Bradic et al. [2]. In [29], group SCAD and
Lasso estimators are analyzed for linear models. Bradic et al. [2] deals with
ultra high-dimensional data and presents useful theoretical results for linear
models. However, all of the above papers focus on variable selection in the
parametric part of the Cox regression model and the variants. Although
an alleviation has been proposed for functional ANOVA models in Leng and
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Zhang [19], the sparsity or the oracle property of the estimator is not verified.
Recently Yan and Huang [26] proposed the adaptive group Lasso in a

Cox regression model with time-varying coefficients and carried out some
simulation studies and a real data analysis. There is however still a lacuna
of theoretical results that this research aims to fill. We establish the sparsity
for the group SCAD-type and adaptive group Lasso estimator and the oracle
property for the group SCAD-type estimator under simple and interpretable
assumptions. Very recently Bradic and Song [3] considered penalized estima-
tors for additive Cox regression models when the number of the covariates
is larger than the sample size. However, they do not deal with any varying
coefficient Cox regression models.

We concentrate on the time-varying coefficient model since the model is
easier to treat. Besides no identifiability constraint is necessary to the model.
We describe only the results on the model having coefficients varying with an
index variable U(t) in section 6 because we can deal with the model almost in
the same way. The derivation of the theoretical results of this paper crucially
depend on the methodology of Huang [16], Huang and Stone [18], and Huang
et al. [17].

Variable selection in time-varying coefficients models are also considered
in other settings in Wang et al. [28], Noh and Park [22], Wei et al. [30], and
Lian [20], where group SCAD-type or group Lasso estimators are used.

This paper is organized as follows. We state the setup of the time-
varying coefficient model and define the partial likelihood estimator, the
group SCAD-type estimator, and the adaptive group Lasso estimator in sec-
tion 2. We consider the asymptotics and establish the sparsity and the oracle
property of the estimators in section 3. The results of simulation studies and
a real example are presented in section 4. Technical assumptions and the
proofs of the theorems are given in section 5. We present the results on the
model having coefficients varying with an index variable U(t) in section 6.
The proofs of propositions and lemmas are confined to section 7.

In this paper, C is a generic positive constant and the value varies from
place to place. We denote the Euclidean norm and the transpose of a vector
v by |v| and vT, respectively. We omit almost surely or a.s. when it is clear
from the context.
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2. Assumptions and estimators

In this section, we describe the Cox regression model with time-varying
coefficients, state some assumptions, and define the group SCAD-type and
adaptive group Lasso estimator. In deriving the main results, we repeatedly
use insights of [17] and [18], of which we also borrow the notation.

Let T and C be a failure time and a censoring time. The interest is in
the failure time. However, we observe only Y = min{T,C} on [0, τ ] subject
to censoring for some finite τ and δ = I(T ≤ C). Define

N(t) = δ I(Y ≤ t) and Z(t) = I(Y ≥ t).

We also observe a p-dimensional time-dependent covariate X(t). Suppose
that (Yi, δi,Xi(t)), where Xi(t) = (Xi1(t), . . . , Xip(t))

⊤, i = 1, . . . , n, are
i.i.d. observations of (Y, δ,X(t)). Then our purpose is to simultaneously
carry out variable selection of X(t) and estimation of the time-varying coef-
ficients in (1) below . Assumptions A1-3 on the time-varying Cox regression
models reflect a standard setup of Cox regression models. These assumptions
and two technical assumptions on X(t) and Z(t) are deferred to section 5.

The hazard function of Ti w.r.t. an appropriate filtration is

λ(t) = λ0(t) exp
{ p∑

j=1

g0j(t)Xij(t)
}
= λ0(t) exp{g⊤

0 (t)Xi(t)}, (1)

where λ0(t) is an unknown hazard function and g0(t) = (g01(t), . . . , g0p(t))
⊤

is a vector of unknown time-varying coefficients and assumed to be twice
continuously differentiable. Details about the sparsity of g0(t) are given later
in this section. Technical assumptions on g0(t) are postponed to section 5.
Note that we do not have to impose any identifiability constraints on the
time-varying coefficient g0(t) since X(t) has no constant element.

We estimate g0(t) by choosing a basis {B1(t), . . . , BKn(t)} on [0, τ ] and
maximizing the partial likelihood with/without a penalty term. We allow p
to increase moderately (e.g. p = O(n3/10)) and consider variable selection.

More precisely for the basis {B1, . . . , BKn}, we write

B(t) = (B1(t), . . . , BKn(t))
⊤ or B = (B1, . . . , BKn)

⊤.

Then the covariate vector for the partial likelihood is Xi(t) ⊗ B(t). The
approximation error ρn of the basis {B1, . . . , BKn} is defined by

ρn = sup
g0

p∑
j=1

inf
βj∈RKn

sup
0≤t≤τ

|β⊤
j B(t)− g0j(t)|, (2)
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where g0 = (g01, . . . , g0p)
⊤ is over the set of functions satisfying Assumption

G in section 5. Then we have ρn = O(K−2
n ) by the standard theory.

An example of the basis satisfying the following assumption is an equi-
spaced B-spline basis of order m(m ≥ 2), see Schumaker [23] for more about
B-spline functions.

Assumption B:
(i) Bj(t), j = 1, . . . , Kn, are continuous and bounded on [0, τ ]. The upper
and lower bounds are allowed to depend on n.
(ii) ρn → 0.

Here we define two linear function spaces G0 and H0 on [0, τ ] and two
norms ∥·∥∞ and ∥·∥L2 on them. The ratio of ∥·∥∞ to ∥·∥L2 is also considered
in (7) below. We define G0 by

G0 = {(β⊤
1 B(t), . . . , β⊤

p B(t))⊤| βj ∈ RKn , j = 1, . . . , p}. (3)

Let H0 be the linear space spanned by G0 and the true coefficient function
vector g0. A function space similar to G0 is defined and called the estimation
space in [17]. The dimension of our G0 is pKn. Note that the dimension of
G0 in [17] is denoted by Nn and p is fixed there.

For h = (h1, . . . , hp)
⊤ ∈ H0, we define ∥h∥∞ and ∥h∥L2 by

∥h∥∞ =

p∑
j=1

sup
0≤t≤τ

|hj(t)| (4)

and

∥h∥2L2
=

p∑
j=1

∥hj∥2L2
=

p∑
j=1

1

τ

∫ τ

0

h2
j(t)dt, (5)

where we also write for the jth element of h,

∥hj∥2L2
=

1

τ

∫ τ

0

h2
j(t)dt. (6)

The ratio of ∥ · ∥∞ to ∥ · ∥L2 over G0 plays an important role and we denote
the ratio by An.

An = sup
g∈G0

{∥g∥∞/∥g∥L2}. (7)
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When we employ an equi-spaced B-spline basis of order m(m ≥ 2), we have
An ≤ C(pKn)

1/2. The necessary relations between An, ρn, and pKn are given
in :

Assumption RA:

lim
n→∞

Anρn = 0 and lim
n→∞

n−1A2
n max{pKn, log n} = 0.

When we have Kn = CKn
1/5, ρn = O(K−2

n ), and An = O{(pKn)
1/2},

Assumption RA implies that p = O(n3/10).
In [17], two norms (equivalent to the L2 norm) are introduced and the

norms play an crucial role in the proofs of their main results. We also in-
troduce two similar norms and employ the two norms when we evaluate the
eigenvalues of the Hessian matrix of the partial likelihood. Recall that H0 is
spanned by G0 and g0.

The partial likelihood lp(h) is defined by

lp(h) =
1

n

n∑
i=1

∫ τ

0

h⊤(t)Xi(t)dNi(t) (8)

−
∫ τ

0

log
[
n−1

n∑
i=1

Zi(t) exp
{
h⊤(t)Xi(t)

}]
dN̄(t),

where N̄(t) = n−1
∑n

i=1Ni(t). First we estimate g0 by maximizing lp(g)
over G0 and use the estimator as an initial value of the optimization for the
penalized partial likelihood. Define the Λp(h) :

Λp(h) = E
{∫ τ

0

h⊤(t)X(t)dN(t)
}

(9)

−
∫ τ

0

log
(
E
[
Z(t) exp

{
h⊤(t)X(t)

}])
dE{N(t)}.

For h1 ∈ H0 and h2 ∈ H0, define :

(h1,h2)Z(t) = E[{h⊤
1 (t)X(t)}{h⊤

2 (t)X(t)}Z(t)]/E{Z(t)} (10)

and

(h1,h2)Zn(t) = En[{h⊤
1 (t)X(t)}{h⊤

2 (t)X(t)}Z(t)]/En{Z(t)}, (11)
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where En(·) is the empirical measure, for example, En{Z(t)} = n−1
∑n

i=1 Zi(t).
As in [17], we define ∥h∥ for h ∈ H0 in terms of the inner product defined
in (12) below.

(h1,h2) =

∫ τ

0

(h1,h2)Z(t)dE{N(t)}. (12)

The empirical version ∥h∥n of ∥h∥ is defined in terms of the inner product
below.

(h1,h2)n =

∫ τ

0

(h1,h2)Zn(t)dEn{N(t)}. (13)

A centered version ∥h∥0 of ∥h∥ is used in [17] for the identifiability con-
straint. However, we define and use ∥h∥0 and the empirical version ∥h∥0n
only for technical reasons. The centered version is defined in terms of the
inner product in (14) below and the empirical version is defined by replacing
E(·) with En(·).

(h1,h2)0 (14)

=

∫ τ

0

[E{Z(t)}]−1 E([h⊤
1 (t)X(t)− E{h⊤

1 (t)X(t)Z(t)}/E{Z(t)}]

×[h⊤
2 (t)X(t)− E{h⊤

2 (t)X(t)Z(t)}/E{Z(t)}]Z(t))dE{N(t)}.

The norms defined by (12) and (14) are equivalent to the L2 norm in
(5) and these norms are also equivalent to the empirical counterparts with
probability tending to 1. The details are given in Lemmas 1-4 in section 5.

Finally in this section, we define three estimators of g0. The first one is
the partial likelihood estimator and defined by

g̃n = argmax
g∈G0

lp(g) (15)

It will be shown in Theorem 1 below that the L2 convergence rate of g̃n is :

rpn = max{(pKn/n)
1/2, ρn}. (16)

When we have a moderately large p, it is often the case that only a small
number of the covariates are relevant or the model is sparse. Therefore we
introduce the sparsity assumption :

Assumption S: For some s, g0j = 0, s+ 1 ≤ j ≤ p.
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To deal with this sparsity, we present two penalized partial likelihoods
Qp(g) and Q̄p(g) for g = (g1, . . . , gp)

⊤ ∈ G0.

Qp(g) = lp(g)−
p∑

j=1

pλn(∥gj∥L2), (17)

where λn is a tuning parameter and pλ(·) is a SCAD-type penalty function to
be specified in Assumption P below. See (6) for the definition of the L2 norm.
An example of pλ(·) satisfying (i) of Assumption P is the SCAD function.
See [13] for the definition of the SCAD function.

Assumption P:
(i) pλ(t) is a monotone increasing and concave function on [0,∞) with pλ(0) =
0. Besides, there are positive constants a0, b0, and c0 such that p′λ(t) = 0, t ≥
a0λ, and p′λ(t) ≥ c0λ, 0 < t ≤ b0λ.
(ii) λn/rpn → ∞ and min1≤j≤s ∥g0j∥L2/λn → ∞.

The second assumption in Assumption P means that λn should be much
larger than the convergence rate and that ∥g0j∥L2 should be large enough
compared to λn.

Another penalized partial likelihood Q̄p(g) is defined by

Q̄p(g) = lp(g)− λ′
n

p∑
j=1

wj∥gj∥L2 , (18)

where λ′
n is another tuning parameter and wj, j = 1, . . . , p, are weights to

be constructed from a preliminary estimator. Notice that Q̄p(g) is a concave
function.

Finally the group SCAD-type estimator ĝn and the adaptive group Lasso
estimator ḡn are given by

ĝn = argmax
g∈G0

Qp(g) and ḡn = argmax
g∈G0

Q̄p(g). (19)

We can also define ls(g), Qs(g), and Q̄s(g) for the s in Assumption S
by ignoring the last (p − s) elements of the covariates or taking Xi(t) =
(Xi1(t), . . . , Xis(t))

⊤ and g = (g1, . . . , gs)
⊤.

The main contribution here is to prove that we can select the relevant
covariates consistently by using ĝn or ḡn. Besides, both of them achieve
the rate of convergence rsn, where rsn = max{(sKn/n)

1/2, ρn} and rsn is the
convergence rate we obtain by maximizing ls(g). Besides, we establish the
oracle property of the SCAD-type estimator. We discuss how to compute g̃n,
ĝn, and ḡn in section 4.
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3. Main theorems

The L2 convergence rate of the partial likelihood estimator g̃n is derived
in Theorem 1. The properties of the group SCAD-type and the adaptive
group Lasso estimator are considered in Theorems 2-3 and Theorems 4-5,
respectively. We also comment on the semi-varying coefficient model in Re-
mark 2. Recall that Assumptions A1-3, X, M, and G are given later in section
5.

Theorem 1. Suppose that Assumptions A1-3, X, M, G, B, and RA hold
and rpn → 0. Then with probability tending to 1, there is a unique maximizer
g̃n = (g̃n1, . . . , g̃np)

⊤ of lp(g) over G0 and we have

∥g̃n − g0∥L2 = Op(rpn).

The existence of the group SCAD-type estimator is verified in Theorem
2 and the sparsity and oracle property is established is Theorem 3.

Theorem 2. Suppose that all the assumptions in Theorem 1 and Assump-
tions P and S hold. Then for any positive ϵ, there is a positive constant M
such that

lim
n→∞

P( There is a local maximizer ĝn

of Qp(g) over G0 such that ∥ĝn − g0∥L2 ≤ Mrpn) > 1− ϵ.

Before we present Theorem 3, we define two properties. If the local
maximizer of ĝn = (ĝn1, . . . , ĝnp)

⊤ satisfies under Assumption S,

ĝnj = 0, j = s+ 1, . . . , p, (20)

with probability tending to 1, we say that ĝn has the sparsity. The maximizer
of ls(g) is called an oracle estimator since we use the knowledge of the true
model under Assumption S. If an estimator is asymptotically equivalent to
such an oracle estimator, we say that the estimator has the oracle property.

It is known that (ii) easily follows from (i) in Theorem 3 below due to
the flatness of pλ(t) on [a0λ,∞). For example, see Fan and Lv [14].

Theorem 3. Suppose that the assumptions in Theorem 2 hold and let {dn}
be a sequence of positive numbers satisfying dn → ∞, λn/(dnrpn) → ∞, and
Andnrpn = O(1).
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(i) With probability tending to 1, any local maximizer ĝn of Qp(g) over G0

such that ∥ĝn − g0∥L2 ≤ dnrpn satisfies (20).
(ii) With probability tending to 1, the local maximizer in (i) is the unique
maximizer of ls(g) and satisfies

s∑
j=1

∥ĝnj − g0j∥2L2
= O(r2sn).

In Theorems 4 and 5 below, we state the properties of the adaptive group
Lasso estimator. We comment on how to choose the weights {wj} in Remark
1 below.

Theorem 4. Suppose that the assumptions in Theorem 1 and Assumption S
hold and that λ′

n

√
smax1≤j≤swj/rpn = Op(1). Then with probability tending

to 1, there is a unique maximizer ḡn = (ḡn1, . . . , ḡnp)
⊤ of Q̄p(g) over G0 and

we have
∥ḡn − g0∥L2 = Op(rpn).

Remark 1. Suppose we take wj = 1/∥g̃nj∥L2 . The assumption on {wj} in
Theorem 4 is satisfied if we have λ′

n

√
s/(rpnmin1≤j≤s ∥g0j∥L2) = O(1) and

min1≤j≤s ∥g0j∥L2/rpn → ∞, If we also have λ′
n/r

2
pn → ∞, the assumptions on

{wj} in Theorem 5 below are also satisfied.

Theorem 5. Suppose that the assumptions in Theorem 4 hold and that
λ′
n mins<j≤p wj/(rpn) → ∞ in probability and Anrpn = O(1). Then with

probability tending to 1, the unique maximizer ḡn has the sparsity and is
equal to the unique maximizer of Q̄s(g). In addition we have

s∑
j=1

∥ḡnj − g0j∥2L2
= Op(r

2
sn).

We have demonstrated that the group SCAD estimator has the sparsity
and oracle property. As for the adaptive group Lasso estimator, we have
established the sparsity and the improved L2 convergence rate. Generally
speaking, it is difficult to prove the oracle property of the adaptive group
Lasso estimator due to the property of the Lasso penalty function. On the
other hand, the uniqueness easily follows from the concavity of Q̄p(g). When
some statistical inference is necessary, we recommend to ignore the influences
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of the penalty term and use the inverse of the observed Fisher information
matrix of the partial likelihood as the estimate of the variance. The validity
of this procedure is a topic of future research.

The condition on p is rather restrictive due to Assumption RA. When we
deal with the case of a larger p we will have to use the methodology of [2] by
imposing much more restrictive assumptions on the model and the properties
of covariates. One of the main purposes of this paper is to establish the
desirable properties of the estimators under simple, mild, and interpretable
assumptions. See assumptions in section 5.

Finally we comment on how to select a semi-varying coefficient model
from the varying coefficient model.

Remark 2. Suppose that the true model is a semi-varying coefficient model.
Then we can detect the semi-varying coefficient model with probability tend-
ing one by modifying the estimators in the following way. We decompose gj
of g = (g1, . . . , gp) ∈ G0, by

gj(t) =
1

τ

∫ τ

0

gj(s)ds+
{
gj(t)−

1

τ

∫ τ

0

gj(s)ds
}
= gaj + gbj(t)

and

∥gj∥2L2
= |gaj|2 + ∥gbj∥2L2

.

Then we define Q′
p(g) and Q̄′

p(g) by

Q′
p(g) = lp(g)−

p∑
j=1

{pλn(|gaj|) + pλn(∥gbj∥L2)}

and

Q̄′
p(g) = lp(g)− λ′

n

p∑
j=1

(w1j|gaj|+ w2j∥gbj∥L2),

where w1j and w2j are weights. Note that Q̄
′
p(g) is similar to (6) of [26]. See

also Zhang et al. [31]. We derive almost the same results as in Theorems 2-5
for Q′

p(g) and Q̄′
p(g) in the same way because the decomposition of gj into

gaj and gbj does not depend on data and the decomposition is the orthogonal
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one. This implies that we select only the gaj component consistently for any
j such that ∥gj∥L2 ̸= 0 and gj has no nonlinear component gbj. Therefore we
can detect the true semi-varying coefficient model from the varying coefficient
model consistently. However, the convergence rate is still rsn even for the
linear component. We will have to use a two-step estimator to improve the
convergence rate of the linear component or employ another proof to show
that the proposed estimators have the improved convergence rate for the
linear component. This remark also applies to the model in section 6.

4. Simulation studies and a real example

We carried out some simulations by using R to examine the finite sample
properties of the group SCAD-type and adaptive group Lasso estimators in
(19). We considered two models whose hazard functions are given by

h1(t) = λ0 exp{−X1 +X2w1 log(t+ 1)}

and

h2(t) = λ0 exp(−X1 +X2w2t),

where λ0 = 0.275,

w2
1

τ

∫ τ

0

{log(t+ 1)}2dt = 1, and
w2

2

τ

∫ τ

0

t2dt = 1.

We call them Model 1 and Model 2, respectively. We follow [1] in gener-
ating survival times and took τ = 4, p = 14, Kn = 5, and n = 600 in
the simulations. Only X1 and X2 are relevant. The replication number is
100 because only one iteration takes several minutes and the standard er-
rors of the simulated results are small enough. The covariates X1, . . . , X14

follow U(0, 2) independently of each other and the censoring time C follows
1
2
U(0, τ) + 1

2
I(C = τ) independently of the covariates. The censoring rate is

about 50% in both models.
We employ the coxph function to compute the partial likelihood estimator

g̃n in (15). As for the basis function, we chose an equi-spaced quadratic
B-spline basis B = (B1, . . . , BKn)

⊤ with Kn = 5. We represent gj in g =
(g1, . . . , gp)

⊤ as gj = β⊤
j B and define an pKn vector β by β = (β⊤

1 , . . . , β
⊤
Kn

)⊤

to describe the algorithms.
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We approximate lp(g) in a neighborhood of g0 = (g01, . . . , g
0
p)

⊤ by

lp(g
0) + (β − β0)⊤

∂lp
∂β

(g0) +
1

2
(β − β0)⊤

∂2lp
∂β∂β⊤ (g

0)(β − β0), (21)

where g0j = β0⊤
j B, j = 1, . . . , p, and β0 = (β0⊤

1 , . . . , β0⊤
p )⊤.

We give the details of the computation of the group SCAD-type estimator.
We use the SCAD function with a = 3.7 and approximate pλn(∥gj∥L2) in a
neighborhood of g0j by

pλn(∥g0j∥L2) +
p
′

λn
(∥g0j∥L2)

2∥g0j∥L2

(∥gj∥2L2
− ∥g0j∥2L2

) (22)

as in [13]. The computational algorithm is as follows:

1. Put ĝ(1) = g̃n, where g̃n is defined in (15).
2. Approximate Qp(g) in a neighborhood of ĝ(m) by using (21) and (22) and
minimize the approximation.
3. Denote the solution in step 2 by ĝ(m+1) = (ĝ

(m+1)
1 , . . . , ĝ

(m+1)
p )⊤. Replace

ĝ
(m+1)
j with 0 and remove the j from step 2 in the iteration once ∥ĝ(m+1)

j ∥L2 ≤
0.01.
4. Iterate steps 2 and 3 until ∥ĝ(m)− ĝ(m+1)∥L2 ≤ 0.005. Let q be the number
of the finally selected covariates.
5. Compute the partial likelihood estimator with the finally selected covari-
ates and denote the partial likelihood estimator by g̃qn = (g̃qn1, . . . , g̃qnp)

⊤.
We put g̃qnj = 0 if j is not selected in step 4.

We take λn = b(pKn/n)
1/2 with b = 0.2, 0.3, 0.4 and select the one with

the smallest BIC as the group SCAD estimator, where

BIC = −2 log lp(g̃qn) + qKn log n.

We can define AIC by replacing qKn log n with 2qKn. When the number of
the covariates is large, it is very time-consuming and impractical to compute
the BIC or AIC for all the submodels. It will be very useful to the proce-
dures here and the information criteria simultaneously. We adopt the above
definitions of the information criteria and do not enter into the controversy
although there is a controversy on how to define the information criteria in
the case of the partial likelihood.

We have g̃qn = ĝn in most replications of the simulations and the average
iteration number is 5.8 for selected λn.
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Next we describe the computation of the adaptive group Lasso estimator.
In fact we replaced ∥gj∥L2 with |βj|/

√
Kn in (18) as in [26], where gj = β⊤

j B,
for computational simplicity. Note that Theorems 4 and 5 about the adaptive
group Lasso estimator still hold because ∥gj∥L2 is equivalent to |βj|/

√
Kn.

We also followed the algorithm in [26] except that we used X in the iteration
such that X2 = H and X is symmetric and that we chose the weights as in
Remark 1. They used the Cholesky decomposition of H for X in [26]. They
used the second order approximation in (21) and the KKT condition when
they proposed their algorithm. See [26] for the details of the algorithm. We
apply the same convergence criterion as for the group SCAD estimator. We
take λ′

n = b′pKn/n with b′ = 0.1, 0.3, 0.5 and select the one with the smallest
GCV. In these simulations, we adopt the same GCV as in [26]. The average
iteration number is 6.5 for selected λ′

n.
We present the simulation results in Tables 1-4. We define the mean

integrated squared error, MISE, of ĝj by

E
[1
τ

∫ τ

0

{ĝj(t)− g0j(t)}2dt
]
.

The MISE of the other estimators is similarly defined. We define IMISE,
MISE, and PMISE in Tables 1 and 2 as follows:

IMISE : The MISE of the initial partial likelihood estimator g̃j
MISE : The MISE of the group SCAD estimator ĝj or adaptive group Lasso
estimator ḡj
PMISE : The MISE of the partial likelihood estimator g̃qnj, which is com-
puted with the finally selected covariates

The numbers in parentheses are standard errors in Tables 1 and 2. Note
that MISE’s of the adaptive group Lasso estimators are large. They are much
smaller when we choose and fix a smaller λ′

n, for example, b = 0.15.

Table 1: MISE’s of Model 1

IMISE MISE PMISE
j = 1 SCAD 0.111(0.004) 0.082(0.003) 0.082(0.003)

Lasso 0.111(0.004) 0.187(0.003) 0.079(0.003)
j = 2 SCAD 0.108(0.004) 0.075(0.002) 0.075(0.002)

Lasso 0.108(0.004) 0.267(0.004) 0.074(0.002)
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Table 2: MISE’s of Model 2

IMISE MISE PMISE
j = 1 SCAD 0.095(0.003) 0.075(0.002) 0.075(0.002)

Lasso 0.095(0.003) 0.158(0.003) 0.074(0.002)
j = 2 SCAD 0.103(0.004) 0.068(0.002) 0.068(0.002)

Lasso 0.103(0.004) 0.232(0.004) 0.067(0.002)

Both estimators selected only the relevant covariates X1 and X2. In every
replication of Models 1 and 2, X1 and X2 were selected by the the group
SCAD and adaptive group Lasso estimators. Only fifteen and no irrelevant
covariates were falsely selected among the total 100 replications of Model 1
by the the group SCAD and adaptive group Lasso estimator, respectively.
Only six and two irrelevant covariates were falsely selected respectively in
the case of Model 2. In Tables 3 and 4, we present the mean of the number
of falsely selected covariates to show how the tuning parameters affect these
estimators.

Table 3: Numbers of falsely selected covariates (SCAD)

b 0.2 0.3 0.4
Model 1 6.00 1.10 0.15
Model 2 5.34 0.64 0.06

Table 4: Numbers of falsely selected covariates (Lasso)

b 0.2 0.3 0.4
Model 1 1.98 0.03 0.00
Model 2 1.54 0.02 0.00

We have the following implications from Tables 1-4.

1. Tables 3 and 4 show that selection of tuning parameters λn and λ′
n is

critical to variable selection.
2. The group SCAD estimator is equal to the partial likelihood estimator
with the selected variables in most of the replications.
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3. In Tables 1 and 2, the MISE’s of the adaptive group Lasso estimator
are much larger than those of the initial partial likelihood estimator. This
means that selection of the tuning parameter by GCV may not work well or
we should use the adaptive group Lasso estimator only for variable selection.
The GCV criterion tends to choose a larger λ′

n and cause a larger bias. On
the other hand, the tuning parameter selection by BIC works well for the
group SCAD estimator.

The simulation studies suggest that the group SCAD estimator with BIC
tuning parameter selection works well. We know we should conduct more ex-
tensive simulation studies to obtain a conclusion about the tuning parameter
selection. However, it takes a lot of time to compute these estimators and
the simulation studies of this paper are limited because of the computational
time.

Next we present a real example. As in [26], we apply the above two
procedures to the well-known PBC (primary biliary cirrhosis) data. The
data is often used in the literature of time-varying Cox regression models.
PBC is a fatal liver disease and the data is from a trial of comparing the drug
D-penicillamine and a placebo. Times to death or censoring are recorded.
The details are given in Fleming and Harrington [15] and the survival package
of R. We use the first 312 randomized cases and consider only ten covariates
among 17 covariates in the data set for numerical stability of the coxph
function in the survival package. We remove two cases with missing covariates
and our sample size is 310. In this study, we consider the following covariates.
We normalize continuous covariates so that the mean is 0 and the variance
is 1.
1) treatment indicator (0:placebo, 1:D-penicillamine); 2) normalized age; 3)
sex (0:male, 1:female); 4) presence of hepatomegaly (0:no, 1:yes); 5) presence
of edema (0, 0.5, 1 according to the severity); 6) normalized log serum biliru-
bin; 7) normalized serum albumin; 8) normalized urine copper; 9) normalized
log prothrombin time; 10) histologic stage of disease (0, 1/3, 2/3, 1)

In this study, we have n = 310, p = 10, and τ = 12 years. We take
Kn = 4, λn = b(pKn/n)

1/2 with b = 0.4, 0.5, 0.6, 0.7 for the group SCAD
estimator, and λ′

n = b′pKn/n with b′ = 0.2, 0.3, 0.4, 0.5, 0.6 for the adaptive
group Lasso estimator. We finally select the variables by using AIC and BIC
for the group SCAD estimator and AIC, BIC, and GCV for the adaptive
group Lasso estimator.

We present the results of variable selection in Table 5. In the table, we also
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give the squared L2 norms of estimated functions ∥g̃nj∥2L2
for the initial PL

estimators. For the SCAD and Lasso estimators, we reestimate the coefficient
functions for selected variables by employing the coxph function and present
the squared L2 norms. Note that we use the two procedures only for variable
selection.

Table 5: Selected variables and the squared L2 norms

Initial SCAD SCAD Lasso Lasso Lasso
PLE BIC AIC BIC GCV AIC

1) treatment 0.596 0 0.569 0 0 0
2) age 0.502 0 0.509 0.263 0.263 0.259
3) sex 0.616 0 0.509 0 0 0
4) hepato 0.690 0 1.147 0 0 0
5) edema 3.320 1.636 2.876 1.708 1.708 1.542
6) bilirubin 4.676 4.153 3.638 4.134 4.134 4.749
7) albumin 0.841 1.202 0.806 0.650 0.650 0.655
8) copper 0.117 0 0 0 0 0.090
9) prothrombin 0.200 0.314 0.234 0.248 0.248 0.265
10) stage 0.694 0 1.237 0.610 0.610 0.621

Comparing the results here to those in [26], we notice that the urine
copper is selected only in the case of Lasso and AIC and that only the Lasso
and AIC result coincides with those in [26]. BIC tends to choose smaller sets
of covariates due to its penalty term.

We need more extensive simulation studies and real data analysis to ex-
amine the finite sample properties of the procedures. It is a topic of future
research.

5. Proofs of Theorems 1-5

We prove Theorems 1-5 in this section. First we describe some technical
assumptions. Next we state Lemmas 1-4 and Propositions 1-4. Finally we
prove the theorems by using the propositions. The proofs of the lemmas and
propositions are postponed to section 7. We prove the theorems by following
the methodology in [17] and Propositions 1, 2, and 3 correspond to their
Lemma 7, Lemma 10, and Lemma 11, respectively.
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The assumptions A1-3 below are about the Cox regression model with
time-varying coefficients.

Assumption A1: There is a suitable filtration {Ft} such that Yi(t) are
adapted to {Ft} and (Zi(t),Xi(t)) is predictable w.r.t. {Ft}.
Assumption A2: When we have no censoring time, the hazard function of
Ti w.r.t. {Ft} is given by

λi(t) = λ0(t) exp
{ p∑

j=1

g0j(t)Xij(t)
}
= λ0(t) exp{g⊤

0 (t)Xi(t)},

where λ0(t) is an unknown hazard function and g0(t) = (g01(t), . . . , g0p(t))
⊤

is a vector of unknown time-varying coefficients.

Assumption A3: The censoring time Ci satisfies the independent censoring
condition. This means that the compensator of Ni(t) w.r.t. {Ft} is equal to∫ t

0

Zi(s)λi(s)ds =

∫ t

0

Zi(s) exp{g⊤
0 (s)Xi(s)}λ0(s)ds. (23)

Then

Mi(t) = Ni(t)−
∫ t

0

Zi(s)λi(s)ds (24)

is a martingale process w.r.t. {Ft}.
We need following technical assumptions on X(t) and Z(t). We set

Σ(t) = Var(X(t)) and Ω(t) = E{X(t)X⊤(t)}.

Let λmin(A) and λmax(A) denote the minimum and maximum eigenvalue of
a symmetric matrix A.

Assumption X:
(i) There are positive constants Cm and CM such that uniformly in t in [0, τ ],
Cm ≤ λmin(Σ(t)) ≤ λmin(Ω(t)) and λmax(Σ(t)) ≤ λmax(Ω(t)) ≤ CM .
(ii) Xij(t) is uniformly bounded in i, j, and t a.s.

The first assumption in Assumption X is easy to check and does not
depend on the sample property of X(t). Besides, the density function of
X(t) is not necessary. The second one is necessary because we need to
evaluate exp{g⊤

0 (t)Xi(t)}.
Assumption M:
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(i) There is a positive constant CZ such that E{Z(t)|X(t)} ≥ CZ on [0, τ ]
a.s.
(ii) There are positive constants CL1 and CL2 such that CL1 ≤ λ0(t) ≤ CL2

on [0, τ ].

The first assumption in Assumption M is a standard assumption and the
second one is necessary since we deal with time-varying coefficient models on
[0, τ ].

We describe the assumptions on g0(t) = (g01(t), . . . , g0p(t))
⊤ on [0, τ ].

Assumption G:
(i) g0j(t), j = 1, . . . , p, are twice continuously differentiable on [0, τ ] and may
depend on the sample size n.
(ii) There are positive constants Cg0 and Cg2 such that

p∑
j=1

sup
0≤t≤τ

|g0j(t)| ≤ Cg0 and

p∑
j=1

sup
0≤t≤τ

|g′′0j(t)| ≤ Cg2.

We impose the first assumption in Assumption G for simplicity of pre-
sentation and the second one is necessary when we evaluate exp{g⊤

0 (t)Xi(t)}
and define the approximation error ρn.

We state the important properties of the norms introduced in section 2.
The proofs are postponed to section 7. Similar results are given in [17]. We
write an ∼ bn when an ≤ C1bn and an ≥ C2bn for some positive constants C1

and C2. The first two lemmas are about the equivalences between the norms
and the L2 norm. The last two lemmas evaluates the differences between the
norms and the empirical counterparts.

Lemma 1. Suppose that Assumptions A1-3, X, M, B, and G hold. Then
uniformly in h ∈ H0,

∥h∥ ∼ ∥h∥L2 .

Lemma 2. Suppose that Assumptions A1-3, X, M, B, and G hold. Then
uniformly in h ∈ H0,

∥h∥0 ∼ ∥h∥L2 .

Lemma 3. Suppose that Assumptions A1-3, X, M, B, G, and RA hold.
Then

sup
g1,g2∈G0

∣∣∣(g1, g2)n − (g1, g2)

∥g1∥∥g2∥

∣∣∣ = Op(1).
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Lemma 4. Suppose that Assumptions A1-3, X, M, B, G, and RA hold.
Then

sup
g1,g2∈G0

∣∣∣(g1, g2)0n − (g1, g2)0
∥g1∥0∥g2∥0

∣∣∣ = Op(1).

Proposition 1. Suppose that the same assumptions hold as in Theorem 1.
Then there is a unique maximizer g∗

n = (g∗n1, . . . , g
∗
np)

⊤ of Λp(g) over G0

satisfying ∥g∗
n − g0∥ = O(ρn).

By Assumptions G and RA and Lemma 1 we have ∥g∗
n∥∞ ≤ C∞ for some

C∞.
Here we choose an orthonormal basis {ϕ1, . . . ,ϕpKn} of G0 w.r.t. ∥ · ∥

and define an Rp×(pKn)-valued function Φ(t) on [0, τ ] by

Φ(t) = (ϕ1(t), . . . ,ϕpKn(t)) or Φ = (ϕ1, . . . ,ϕpKn). (25)

This orthonormal basis is just a technical tool as in [17] and the results do
not depend on any particular choice.

By using this basis, we can represent g∗
n for some β∗

n ∈ RpKn as

g∗
n = Φβ∗

n. (26)

When g = Φβ, lp(g) = lp(Φβ) is represented as

lp(Φβ) =
1

n

n∑
i=1

∫ τ

0

{Φ(t)β}⊤Xi(t)dNi(t)

−
∫ τ

0

log
(
n−1

n∑
i=1

Zi(t) exp
[
{Φ(t)β}⊤Xi(t)

])
dN̄(t).

and we write

Sp(β) =
∂lp
∂β

(Φβ) and Dp(β) =
∂2lp

∂β∂β⊤ (Φβ). (27)

We evaluate Sp(β
∗
n) in Proposition 2 below and evaluate the eigenvalues

of Dp(β) in Proposition 3 below. Proposition 3 is stated in a more general
form than in [17].

Proposition 2. Suppose that the same assumptions hold as in Theorem 1.
Then we have

|Sp(β
∗
n)| = Op

{(pKn

n

)1/2}
.
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Proposition 3. Suppose that the same assumptions hold as in Theorem 1.
When ∥Φβ∥∞ ≤ M for some positive M , there are positive constants M1

and M2 such that

−M1 ≤ λmin(Dp(β)) ≤ λmax(Dp(β)) ≤ −M2

uniformly in β with probability tending to 1.

Proposition 4 below is necessary to the proof of the sparsity.

Proposition 4. Suppose that the same assumptions hold as in Theorem 1.
When ∥Φβ1∥∞ ≤ M for some positive M , we have

(β2 − β1)
⊤Sp(β1) = (β2 − β1)

⊤Sp(β
∗
n) +Op(|β2 − β1||β1 − β∗

n|)

uniformly in β1 and β2 with probability tending to 1.

Now we start to prove Theorems 1-5.

Proof of Theorem 1. We have only to show that there is a unique max-
imizer β̃n of lp(Φβ) over G0 such that ∥Φβ̃n − Φβ∗

n∥ = Op(rpn) with prob-
ability tending to 1. Then the desired result follows from Lemma 1 and
Proposition 1.

Define ΓM for a positive constant M by

ΓM = {g = Φβ | |β − β∗
n| = M(pKn/n)

1/2}

and consider the Taylor expansion of lp(Φβ) at β = β∗
n.

lp(Φβ) = lp(Φβ
∗
n) + (β − β∗

n)
⊤Sp(β

∗
n) + (β − β∗

n)
⊤Dp(β̄)(β − β∗

n)(28)

= lp(Φβ
∗
n) + J1(β) + J2(β),

where β̄ is between β and β∗
n. By Proposition 2, we have uniformly on ΓM ,

J1(β) =
M(pKn)

n
Op(1). (29)

By Proposition 1 and Assumption RA, we have

∥Φβ∥∞ ≤ ∥Φβ∗
n∥∞ + AnCM(pKn/n)

1/2 ≤ C. (30)
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We have by Proposition 3 and (30) that for some positive constant M2,

J2(β) ≤ −M2M2pKn/n (31)

uniformly on ΓM with probability tending to 1. Combining (28), (29), and
(31), we obtain

lim
M→∞

lim
n→∞

P
(

sup
Φβ∈ΓM

lp(Φβ) < lp(Φβ
∗
n)
)
= 1. (32)

The concavity of lp(Φβ), Proposition 3, and (32) imply that there is a unique
maximizer β̃n of lp(Φβ) over G0 such that ∥Φβ̃n − Φβ∗

n∥ = Op(rpn). Hence
the proof of Theorem 1 is complete.

Before the proof of Theorem 2, we define ḡ∗
n by

ḡ∗
n = (g∗n1, . . . , g

∗
ns, 0, . . . , 0)

⊤. (33)

Recall that g∗
n is given in Proposition 1. Proposition 1 implies that ∥ḡ∗

n −
g0∥ = O(ρn) under Assumption S.

Proof of Theorem 2. We have only to demonstrate that for any positive
ϵ, there is a positive constant M such that

lim
n→∞

P
(

sup
g∈Γ̄M

Qp(g) < Qp(ḡ
∗
n)
)
> 1− ϵ, (34)

where Γ̄M = {g = Φβ | |β − β̄∗
n| = Mrpn} and ḡ∗

n = Φβ̄∗
n.

Write

Qp(g)−Qp(ḡ
∗
n) = {lp(Φβ)− lp(Φβ̄

∗
n)} (35)

+
{
−

p∑
j=1

pλn(∥(Φβ)j∥L2) +

p∑
j=1

pλn(∥(Φβ̄∗
n)j∥L2)

}
= J3(β) + J4(β),

where (Φβ)j and (Φβ̄∗
n)j are the jth element of Φβ and Φβ̄∗

n.
We evaluate J3(β) on Γ̄M as in the proof of Theorem 1.

J3(β) = (β − β̄∗
n)

⊤Sp(β̄
∗
n) + (β − β̄∗

n)
⊤Dp(β̄)(β − β̄∗

n) (36)

= J31(β) + J32(β),
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where β̄ is between β and β̄∗
n. By applying Proposition 2 and Proposition 4

with β1 = β̄∗
n, we obtain on Γ̄M ,

J31(β) = MrpnOp(rpn) +Op(Mrpnρn) = Op(Mr2pn). (37)

Proposition 3 implies that there is a positive constant M2 such that

J32(β) ≤ −M2M
2r2pn (38)

uniformly on Γ̄M with probability tending to 1. Thus (37) and (38) yield
that there is a positive constant M such that

lim
M→∞

lim
n→∞

P
(

sup
Φβ∈Γ̄M

J3(β) ≤ −M2M
2r2pn/2

)
= 1 (39)

Next we deal with J4(β). Here recall that ḡ∗nj = (Φβ̄∗
n)j = 0, j = s +

1, . . . , p, min1≤j≤s ∥g0j∥L2/λn → ∞, and ∥ḡ∗nj − g0j∥L2 = O(ρn) = O(λn), j =
1, . . . , p.

By Lemma 1 and the above facts, we have on Γ̄M ,

∥(Φβ)j∥L2 > a0λn and ∥(Φβ̄∗
n)j∥L2 > a0λn, j = 1, . . . , s, (40)

and
∥(Φβ)j∥L2 ≤ Crpn = O(λn), j = s+ 1, . . . , p. (41)

We obtain by Assumption P, (40), and (41) that

J4(β) = −
p∑

j=s+1

pλn(∥(Φβ)j∥L2) ≤ 0 on Γ̄M . (42)

(34) follows from (35), (39), and (42). Hence the proof of Theorem 2 is
complete.

Proof of Theorem 3. Let ĝn = (ĝn1, . . . , ĝnp)
⊤ be a local maximizer of

Qp(g) satisfying the condition of Theorem 3. First we establish the sparsity
(i).

We choose l from {s + 1, . . . , p}. If ĝnl ̸= 0, we replace ĝnl of ĝn with 0
and denote it by ĝnl. We also define ĝt, 0 ≤ t ≤ 1, by

ĝt = ĝn + t(ĝnl − ĝn) = (1− t)ĝn + tĝln (43)
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and compare Qp(ĝt) and Qp(ĝn). Conditions on ĝn imply that ∥ĝn∥∞ ≤
∥g0∥∞ + Andnrpn = O(1) and 0 < ∥ĝnl∥ ≤ dnrpn = O(λn). Note that
∥ĝnl − ĝn∥L2 = ∥ĝnl∥L2 .

We represent Qp(ĝt)−Qp(ĝn) as

Qp(ĝt)−Qp(ĝn) (44)

= {lp(ĝt)− lp(ĝn)}+ {−pλn((1− t)∥ĝnl∥L2) + pλn(∥ĝnl∥L2)}
= J5 + J6.

It is easy to see that for some t̄ ∈ [0, t],

J6 = t∥ĝnl∥L2p
′
λn
((1− t̄)∥ĝnl∥L2). (45)

We evaluate J5 by employing Propositions 2-4. By using the orthonormal
basis, we can represent ĝn and ĝt as ĝn = Φβ̂n and ĝt = Φβ̂t for some
β̂n ∈ RpKn and β̂t ∈ RpKn , respectively. Then we have

J5 = lp(Φβ̂t)− lp(Φβ̂n) (46)

= (β̂t − β̂n)
⊤Sp(β̂n) + (β̂t − β̂n)

⊤Dp(β̄t)(β̂t − β̂n)

= J51 + J52,

where β̄t is between β̂t and β̂n.
By Propositions 2 and 4, we have uniformly in t,

J51 = t∥ĝnl − ĝn∥{Op(rpn) +Op(dnrpn)} = t∥ĝnl∥L2Op(dnrpn). (47)

By Proposition 3, we have uniformly in t,

J52 = t2∥ĝnl − ĝn∥2Op(1) = t∥ĝnl∥L2Op(dnrpn). (48)

(47) and (48) imply that uniformly in t,

J5 = t∥ĝnl∥L2Op(dnrpn). (49)

Note that Op(dnrpn) in (47) and (48) are independent of any particular choice
of ĝn.

By combining (45), (49), and Assumption P, we have uniformly in t ∈
(0, 1/2),

Qp(ĝt)−Qp(ĝn) = t∥ĝnl∥L2{Op(dnrpn) + p′λn
((1− t̄)∥ĝnl∥L2)} > 0 (50)
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with probability tending to 1. This contradicts the local optimality of ĝn.
Hence we have ĝnl = 0, l = s + 1, . . . , p, for any local maximizer ĝn in
Theorem 3 with probability tending to 1. Hence the proof of the latter half
is complete.

Next we prove that the local maximizer in Theorem 3 has the oracle
property. Let ĝn be the local maximizer in Theorem 3 such that ĝnj = 0, j =
s + 1, . . . , p. Then we consider ĝn + η, where η = (η1, . . . , ηp)

⊤ ∈ G0 and
ηj = 0, j = s + 1, . . . , p. By Assumption P and the local optimality of ĝn,
there is a small positive constant ϵ such that

s∑
j=1

pλn(∥ĝnj + ηj∥L2) =
s∑

j=1

pλn(∥ĝnj∥L2) and Qp(ĝn + η) ≤ Qp(ĝn) (51)

when ∥η∥L2 ≤ ϵ. Since ls(g) = lp(g) with gj = 0, j = s + 1, . . . , p, we have
by (51) that

ls(ĝn + η) = lp(ĝn + η) ≤ lp(ĝn) = ls(ĝn). (52)

(52) means that ĝn is a local maximizer of ls(g). Since the assumptions in
Theorem 1 are satisfied with p replaced with s, ĝn is the unique maximizer
of ls(g) with probability tending to 1 and has the desired convergence rate.
Hence the latter half of Theorem 3 is established.

Proof of Theorem 4. First as in the proof of Theorem 2, we demonstrate
that for any positive ϵ, there is a positive constant M such that

lim
n→∞

P
(

sup
g∈Γ̄M

Q̄p(g) < Q̄p(ḡ
∗
n)
)
> 1− ϵ. (53)

Write

Q̄p(g)− Q̄p(ḡ
∗
n) = {lp(Φβ)− lp(Φβ̄

∗
n)} (54)

+
{
−

p∑
j=1

λ′
nwj∥(Φβ)j∥L2 +

p∑
j=1

λ′
nwj∥(Φβ̄∗

n)j∥L2

}
= J3(β) + J7(β).

We evaluated J3(β) on Γ̄M as in the proof of Theorem 2. See (39).
We evaluate J7(β) on Γ̄M and obtain

J7(β) ≤
s∑

j=1

λ′
nwj∥(Φ(β − β̄∗

n))j∥L2 ≤
λ′
nM

√
sr2pn max1≤j≤s wj

rpn
. (55)
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(53) follows from (39) and (55). (53) implies that a local maximizer ḡn

of Q̄p(g) exists inside Γ̄M with probability tending to 1. Besides, Q̄p(Φβ) is
strictly concave inside Γ̄M with probability tending to 1 by Proposition 3.
Therefore the local maximizer must be a unique maximizer with probability
tending to 1. Hence the proof of Theorem 4 is complete.

Proof of Theorem 5. We proceed as in the proof of Theorem 3. We
define ĝn, ĝnl, ĝt, β̂n, and β̂t as in the proof of Theorem 3. Then choosing l
as in the proof of Theorem 3, we have

Q̄p(ĝt)− Q̄p(ĝn)

= {lp(ĝt)− lp(ĝn)}+ λ′
nwlt∥ĝnl∥L2

= t∥ĝnl∥L2Op(rpn) + λ′
nwlt∥ĝnl∥L2

= t∥ĝnl∥L2rpn

{
Op(1) +

λ′
nwl

rpn

}
> 0

uniformly in t ∈ (0, 1/2) with probability tending to 1. The above inequality
contradicts the optimality of ĝn. Hence ∥ĝnl∥L2 = 0, l = s + 1, . . . , p with
probability tending to 1. The sparsity and the optimality of ĝn implies
that ĝn is equal to the unique maximizer of Q̄s(g). Since the assumptions
in Theorem 4 are satisfied with p replaced with s, we have the desired L2

convergence rate. Hence the proof of Theorem 5 is complete.

6. Coefficients varying with U(t)

In this section, we consider another Cox regression model with varying
coefficients. We can establish almost the same theoretical results as in section
3 by using the results in [17]. The proofs are similar to those of Theorems
1-5 and we present only the assumptions, the theorems, and a remark on the
proofs.

We observe two kinds of covariates, X(t) and U(t), and U(t) is an index
variable. It is reasonable to assume that the coefficients of the p-dimensional
covariate X(t) are functions of U(t). Specifically, we observe another im-
portant influential covariate U(t) in addition to (Y, δ,X(t)) and the hazard
function of the failure time T is given by

λi(t) = λ0(t) exp{g⊤
0 (Ui(t))Xi(t)} (56)
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instead of (1). We assume that U(t) is one-dimensional for simplicity of
presentation. In this setup, suppose that we have n i.i.d. observations
(Yi, δi,Xi(t), Ui(t)) on [0, τ ], where Xi(t) = (Xi1(t), . . . , Xip(t))

⊤, and carry
out variable selection and estimation of g0 simultaneously. In this section,
we take Xi1(t) = 1 on [0, τ ] and always include Xi1(t) in the model.

We describe the assumptions and the norms before we present the the-
oretical results. We assumed Assumptions A1-3 for the time-varying coeffi-
cient model. We should just replace Xi(t) and g0(t) with (Xi(t), Ui(t)) and
g0(Ui(t)) or g0(u), respectively in those assumptions. We call them Assump-
tions A1’-3’ in this section. This model and related ones are considered in
several papers, for example, [12], [8], and [10]. They employed local polyno-
mial regression to estimate the nonparametric components with p fixed and
examined the asymptotics.

We use almost the same notation and assumptions as in the time-varying
coefficient case. However, some conformable changes below are in order. We
set Ω(U(t), t) = E{X(t)X⊤(t) |U(t)} and denote the density function of U(t)
by ft(u).

Assumption X’:
(i) There are positive constants C ′

m and C ′
M such that C ′

m ≤ λmin(Ω(U(t), t)) ≤
λmax(Ω(U(t), t)) ≤ C ′

M uniformly in t a.s.
(ii) Xij(t) is uniformly bounded in i, j, and t a.s.
(iii) The support of U(t) is [0, 1] and there are positive constants CL and CU

such that Cl < ft(u) < CU uniformly in t.

Assumption M’:
(i) There is a positive constant C ′

Z such that E{Z(t)|X(t), U(t)} ≥ C ′
Z uni-

formly in t a.s.
(ii) There are positive constants CL1 and CL2 such that CL1 ≤ λ0(t) ≤ CL2

on [0, τ ].

In Assumptions G and B, t and τ should be replaced with u and 1,
respectively and we call them Assumptions G’ and B’, respectively. We add
an identifiability constraint to Assumption G’ later in this section.

We define H0, G0, ∥ · ∥∞, and ∥ · ∥L2 almost in the same way as in section
2. For example, for g(u) = (g1(u), . . . , gp(u))

⊤ on [0, 1],

∥g∥2L2
=

p∑
j=1

∥gj∥2L2
=

p∑
j=1

∫ 1

0

g2j (u)du. (57)
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We can define ρn, rpn, rsn, and Assumption RA in the same way as in section
2.

It is crucial to introduce suitable norms and an suitable identifiability
constraint on H0 and G0 when we employ the results of [17]. One reason is
that we have lp(h) = lp(h+ce1) in this model, where e1 = (1, 0, . . . , 0)⊤ ∈ Rp

and lp(h) is the partial likelihood defined in (64) below. Therefore we adapt
∥ ·∥ and ∥ ·∥0 to this setup and impose an identifiability constraint as in [17].

For this model, we define ∥h∥ on H0 in terms of the inner product defined
in (58) below.

(h1,h2) =

∫ τ

0

(h1,h2)Z(t)dE{N(t)}, (58)

where

(h1,h2)Z(t) = E[{h⊤
1 (U(t))X(t)}{h⊤

2 (U(t))X(t)}Z(t)]/E{Z(t)}.

The identifiability constraint is imposed through the equation∫ τ

0

E{h⊤(U(t))X(t)Z(t)}
E{Z(t)}

dE{N(t)} = 0. (59)

As in [17], we define H by

H = {h ∈ H0|h satisfies (59).}.

For any h ∈ H0, we have

h− (m, 0, . . . , 0)⊤ ∈ H, (60)

where

m = [E{Z(τ)}]−1

∫ τ

0

E{h⊤(U(t))X(t)Z(t)}
E{Z(t)}

dE{N(t)},

and any element of H can be written as in (60). This means the constraint
(59) affects only the first element of h. Hereafter we assume that g0 ∈ H
and include this into Assumption G’. We define ∥h∥0 on H in terms of the
inner product in (61) below.

(h1,h2)0 (61)

=

∫ τ

0

[E{Z(t)}]−1 E([h⊤
1 (U(t))X(t)− E{h⊤

1 (U(t))X(t)}/E{Z(t)}]

×[h⊤
2 (U(t))X(t)− E{h⊤

2 (U(t))X(t)}/E{Z(t)}]Z(t))dE{N(t)}.
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We also define the empirical versions of ∥h∥ and ∥h∥0 by replacing E(·)
with the empirical measure En(·) in the definitions. We denote the empirical
versions by ∥h∥n and ∥h∥0n as in [17] and the time-varying case. The em-
pirical version of the constraint (59) is also given by replacing E(·) with the
empirical measure En(·) in (59). Then we define G by

G = {g ∈ G0| g satisfies the empirical version of (59).}.

For any g ∈ G0, we have

g − (mn, 0, . . . , 0)
⊤ ∈ G, (62)

where

mn = [En{Z(τ)}]−1

∫ τ

0

En{g⊤(U(t))X(t)Z(t)}
En{Z(t)}

dEn{N(t)}.

On the other hand, any element ofG can be written as in (62). This empirical
identifiability constraint also affects only the first element of g. Note that
the dimension of G0 is pKn and that of G is pKn − 1.

The equivalence between ∥h∥ and ∥h∥L2 on H0 and that between ∥h∥0
and ∥h∥L2 on H are crucial to the derivation of the main results as in [17]
and we state them in Lemmas 5-6. If only those equivalences are established,
we can proceed as in the time-varying case and [17] with just conformable
changes. The proofs of Lemmas 5-8 are postponed to section 7.

Lemma 5. Suppose that Assumptions A1’-3’, X’, M’, B’, and G’ hold. Then
uniformly in h ∈ H0,

∥h∥ ∼ ∥h∥L2 .

Lemma 6. Suppose that Assumptions A1’-3’, X’, M’, B’, and G’ hold. Then
uniformly in h ∈ H,

∥h∥0 ∼ ∥h∥L2 .

Next we consider the empirical versions.

Lemma 7. Suppose that Assumptions A1’-3’, X’, M’, B’, G’, and RA hold.
Then

sup
g1,g2∈G0

∣∣∣(g1, g2)n − (g1, g2)

∥g1∥∥g2∥

∣∣∣ = Op(1).
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In [17], another function space G̃ is introduced for technical reasons and
we follow them. As we comment in Remark 3 below, the difference between
G and G̃ defined in (63) below does not affect the proofs of Theorems 6-10.

We define the theoretical version G̃ of G by

G̃ = {g ∈ G0| g satisfies (59).} (63)

Lemma 8. Suppose that Assumptions A1’-3’, X’, M’, B’, G’, and RA hold.
Then

sup
g1,g2∈G̃

∣∣∣(g1, g2)0n − (g1, g2)0
∥g1∥0∥g2∥0

∣∣∣ = Op(1).

Now we define the partial likelihood lp(h) and the expected value version
Λp(h) for h ∈ G or H as in the time-varying case and [17].

lp(h) =
1

n

n∑
i=1

∫ τ

0

h⊤(Ui(t))Xi(t)dNi(t) (64)

−
∫ τ

0

log
[
n−1

n∑
i=1

Zi(t) exp
{
h⊤(Ui(t))Xi(t)

}]
dN̄(t)

and

Λp(h) = E
{∫ τ

0

h⊤(U(t))X(t)dN(t)
}

(65)

−
∫ τ

0

log
(
E
[
Z(t) exp

{
h⊤(U(t))X(t)

}])
dE{N(t)}.

To carry out variable selection and estimation of g0 simultaneously, we
define Qp(g) and Q̄p(g) for g ∈ G as in section 2. The former gives the
group SCAD-type estimator and the latter gives the adaptive group Lasso
estimator.

Qp(g) = lp(g)−
p∑

j=2

pλn(∥gj∥L2) (66)

Q̄p(g) = lp(g)− λ′
n

p∑
j=2

wj∥gj∥L2 (67)
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We state the properties of the maximum partial likelihood estimator g̃n,
the group SCAD-type estimator ĝn, and the adaptive group Lasso estimator
ḡn. We define them as in (14) and (19) by replacing G0 with G. Especially
we are interested in the sparsity and oracle property of ĝn and ḡn under
Assumption S. We can also define ls(g), Qs(g), and Q̄s(g) by taking Xi(t) =
(Xi1(t), . . . , Xis(t))

⊤ and g = (g1, . . . , gs)
⊤ as in section 2.

Now we state the main theoretical results of this section. Recall that g0 ∈
H in this paper. The L2 convergence rate of the maximum partial likelihood
estimator is given in Theorem 6. The SCAD-type estimator and the adaptive
group Lasso estimator are considered in Theorems 7-8 and Theorems 9-10,
respectively.

Theorem 6. Suppose that Assumptions A1’-3’, X’, M’, G’, B’, and RA hold
and rpn → 0. Then with probability tending to 1, there is a unique maximizer
g̃n = (g̃n1, . . . , g̃np)

⊤ of lp(g) over G and we have

∥g̃n − g0∥L2 = Op(rpn).

Theorem 7. Suppose that all the assumptions in Theorem 6 and Assump-
tions P and S hold. Then for any positive ϵ, there is a positive constant M
such that

lim
n→∞

P( There is a local maximizer ĝn

of Qp(g) over G such that ∥ĝn − g0∥L2 ≤ Mrpn) > 1− ϵ.

Theorem 8. Suppose that the assumptions in Theorem 7 hold and let {dn}
be a sequence of positive numbers satisfying dn → ∞, λn/(dnrpn) → ∞, and
Andnrpn = O(1).
(i) With probability tending to 1, any local maximizer ĝn = (ĝn1, . . . , ĝnp)

⊤ of
Qp(g) over G satisfying ∥ĝn − g0∥L2 ≤ dnrpn has the sparsity.
(ii) With probability tending to 1, the local maximizer in (i) is the unique
maximizer of ls(g) and satisfies

s∑
j=1

∥ĝnj − g0j∥2L2
= O(r2sn).

Theorem 9. Suppose that the assumptions in Theorem 6 and Assumption S
hold and that λ′

n

√
smax2≤j≤swj/rpn = Op(1). Then with probability tending
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to 1, there is a unique maximizer ḡn = (ḡn1, . . . , ḡnp)
⊤ of Q̄p(g) over G and

we have
∥ḡn − g0∥L2 = Op(rpn).

Remark 3. We consider the weights {wj} in this remark. Suppose we
take wj = 1/∥g̃nj∥L2 . If we have λ′

n

√
s/(rpnmin2≤j≤s ∥g0j∥L2) = O(1) and

min2≤j≤s ∥g0j∥L2/rpn → ∞, the assumption on {wj} in Theorem 9 is satis-
fied. If we also have λ′

n/r
2
pn → ∞, the assumptions on {wj} in Theorem 10

below are also satisfied.

Theorem 10. Suppose that the assumptions in Theorem 9 hold and that
λ′
n mins<j≤p wj/(rpn) → ∞ in probability and Anrpn = O(1). Then with

probability tending to 1, the unique maximizer ḡn has the sparsity and is
equal to the unique maximizer of Q̄s(g). In addition we have

s∑
j=1

∥ḡnj − g0j∥2L2
= Op(r

2
sn).

We give two remarks here. One is about the proofs of Theorems 6-10 and
the other is about computation of the estimators.

Remark 4. In [17], the authors maximize lp(g) over G̃, not G, in the proofs
and they examined the asymptotics of the maximizer over G̃ closely. And
then they proved that the difference between the maximizer over G̃ and that
over G is Op(rpn). This method also works well in the setup of this paper
because the identifiability constraint affects only the first element of g, g1,
and the penalty term does not include the first element. Besides, when we
obtain the maximizer over G from that over G̃ as in (62), the difference mn

does not have any influences on the L2 convergence rate as in the proof of
Lemma 9 of [17].

Remark 5. We can use any basis and identifiability constraint on the first
element of g, g1, when we compute g̃n, ĝn, and ḡn. An orthonormal basis is
chosen in the proofs only for technical reasons and the partial likelihood or
∥gj∥L2 does not depend on any particular choice of basis. Besides, identifia-
bility constraints on g1 does not affect gj, j = 2, . . . , p. Therefore we can use
a B-spline basis and an identifiability constraint g1(0) = 0 when we compute
g̃n, ĝn, and ḡn.
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7. Technical proofs

Lemmas 1-8 and Propositions 1-4 are proved in this section.

Proof of Lemma 1. It is easy to see that

E[{X⊤(t)h(t)}2Z(t)] = E[{X⊤(t)h(t)}2 E{Z(t) |X(t)}] ∼ h⊤(t)Ω(t)h(t)

uniformly in t and h due to Assumptions X and M.
Thus we have uniformly in h,

∥h∥2 =

∫ τ

0

E[{X⊤(t)h(t)}2Z(t)]
E{Z(t)}

dE{N(t)}

∼
∫ τ

0

|h(t)|2 E[exp{g⊤
0 (t)X(t)}]λ0(t)dt

∼ ∥h∥2L2
.

Note that |g⊤
0 (t)X(t)| is uniformly bounded in t by Assumptions M and G.

Hence the proof of Lemma 1 is complete.

Proof of Lemma 2. We have uniformly in h,

∥h∥20 =

∫ τ

0

[E{Z(t)}]−1 E([h⊤(t)X(t)− E{h⊤(t)X(t)Z(t)}/E{Z(t)}]2

×Z(t))dE{N(t)}

=

∫ τ

0

inf
c
([E{Z(t)}]−1 E[{h⊤(t)X(t)− c}2Z(t)])dE{N(t)}

∼
∫ τ

0

inf
c
E[{h⊤(t)X(t)− c}2Z(t)]dE{N(t)}.

We evaluate the integrand and obtain

inf
c
E[{h⊤(t)X(t)− c}2Z(t)]

= inf
c
E[{h⊤(t)X(t)− c}2 E{Z(t)|X(t)}]

∼ inf
c
E[{h⊤(t)X(t)− c}2]

= h⊤(t)Σ(t)h(t) ∼ |h(t)|2.

uniformly in h due to Assumptions M and X. Thus we have uniformly in h,

∥h∥20 ∼
∫ τ

0

|h(t)|2 E[exp{g0(t)
⊤X(t)}]λ0(t)dt ∼ ∥h∥2L2

.

Hence the proof of Lemma 2 is complete.
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Proof of Lemma 3. We omit the details since we can prove Lemma 3
almost in the same way as Lemma 3 of [17] by just replacing f1(X(t)) and
f2(X(t)) there with g⊤

1 (t)X(t) and g⊤
2 (t)X(t), respectively. We assume that

p can increase moderately. However, this does not affect the application of
Lemma 10 of [16] since Nn in [17] increases , too. Notice the typo in the
definition of I3 there.

Proof of Lemma 4. We omit the details since we can also prove Lemma
4 almost in the same way as Lemma 4 of [17] by just replacing f1(X(t)),
f2(X(t)), and ϕi(X(t)) with g⊤

1 (t)X(t), g⊤
2 (t)X(t), and ϕ⊤

i (t)X(t), respec-
tively. Note that G̃ is replaced with G0 in the time varying coefficient case.
The authors of [17] used their Lemma 5 in the proof of their Lemma 4. We can
verify their Lemma 5 by replacing ϕi(X(t)) and hn(X(t)) with ϕ⊤

i (t)X(t)
and 1, respectively.

Before we prove Proposition 1, we state Lemma 9, which corresponds to
Lemma 8 of [17]. Recall that g0 is the true coefficient function and g0 ∈ H0.

Lemma 9. Suppose that the same assumptions hold as in Theorem 1. Then
for any positive M , there are positive constants M1 and M2 such that

−M1∥h− g0∥2 ≤ Λp(h)− Λp(g0) ≤ −M2∥h− g0∥2

for any h ∈ H0 satisfying ∥h∥∞ ≤ M .

Proof. This lemma can be proved almost in the same way as Lemma 8 of
[17]. We should replace α∗ with g0 and set hu = g0 + u(h− g0).

Then we have

d

du
Λp(hu)

∣∣∣
u=0

= E
{∫ τ

0

(h− g0)
⊤(t)X(t)dN(t)

}
−
∫ τ

0

E[(h− g0)
⊤(t)X(t)Z(t) exp{g⊤

0 (t)X(t)}]
E[Z(t) exp{g⊤

0 (t)X(t)}]
×E[Z(t) exp{g⊤

0 (t)X(t)}]λ0(t)dt

= E
[ ∫ τ

0

(h− g0)
⊤(t)X(t)Z(t) exp{g⊤

0 (t)X(t)}λ0(t)dt
]

−
∫ τ

0

E[(h− g0)
⊤(t)X(t)Z(t) exp{g⊤

0 (t)X(t)}]λ0(t)dt

= 0.
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We used (24) in the above equations. Thus we can proceed as in [17] with
conformable changes. The details are omitted.

Proof of Proposition 1. As in [17], we can easily prove that Λp(h) is
strictly concave by calculating the second derivative of Λp(th1 + (1− t)h2).
The definition of ρn implies that there is gan ∈ G0 such that ∥gan − g0∥∞ ≤
2ρn. Hence ∥gan − g0∥ ≤ 2ρn for any sufficiently large n and we have by
Lemma 9,

−4M1ρ
2
n + Λp(g0) ≤ Λp(gan).

On the other hand, we have

Λp(g) ≤ Λp(g0)−M2
3M2ρ

2
n

on {g ∈ G0 | ∥g − g0∥ = M3ρn} for M3 > 2. Here we used the fact that we
have eventually

{g ∈ G0 | ∥g − g0∥ = M3ρn} ⊂ {g ∈ G0 | ∥g∥∞ ≤ C}

for some fixed C by Assumption RA. If we choose M3 such that M3 >√
4M1/M2, we have on {g ∈ G0 | ∥g − g0∥ = M3ρn},

Λp(g) < Λp(gan). (68)

The existence of a unique maximizer g∗
n satisfying ∥g∗

n − g0∥ = O(ρn)
follows from (68) and the concavity of Λp(h). Hence the proof of Proposition
1 is complete.

Proof of Proposition 2. We prove this proposition by following the proof
of Lemma 10 of [17].

Write the jth element of Sp(β
∗
n) as

Spj(β
∗
n) =

1

n

n∑
i=1

∫ τ

0

ϕ⊤
j (t)Xi(t)dNi(t)

−
∫ τ

0

∑n
i=1ϕ

⊤
j (t)Xi(t)Zi(t) exp{g∗⊤

n (t)Xi(t)}∑n
i=1 Zi(t) exp{g∗⊤

n (t)Xi(t)}
dN̄(t).

Because of the optimality of g∗
n = Φβ∗

n, we have

∂

∂βj

Λp(Φβ
∗
n) = E

{∫ τ

0

ϕ⊤
j (t)X(t)dN(t)

}
(69)

−
∫ τ

0

E[ϕ⊤
j (t)X(t)Z(t) exp{g∗⊤

n (t)X(t)}]
E[Z(t) exp{g∗⊤

n (t)X(t)}]
dE{N(t)}

= 0.
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We use (69) to evaluate Spj(β
∗
n). Write

Spj(β
∗
n) = J8j − J9j − J10j, (70)

where

J8j =
1

n

n∑
i=1

∫ τ

0

ϕ⊤
j (t)Xi(t)dNi(t)− E

{∫ τ

0

ϕ⊤
j (t)X(t)dN(t)

}
(71)

=
1

n

n∑
i=1

∫ τ

0

ϕ⊤
j (t)Xi(t)dMi(t)

+
1

n

n∑
i=1

∫ τ

0

ϕ⊤
j (t)Xi(t)Zi(t) exp{g⊤

0 (t)Xi(t)}λ0(t)dt

−E
[ ∫ τ

0

ϕ⊤
j (t)X(t)Z(t) exp{g⊤

0 (t)X(t)}λ0(t)dt
]
,

J9j =

∫ τ

0

(∑n
i=1ϕ

⊤
j (t)Xi(t)Zi(t) exp{g∗⊤

n (t)Xi(t)}∑n
i=1 Zi(t) exp{g∗⊤

n (t)Xi(t)}

−
E[ϕ⊤

j (t)X(t)Z(t) exp{g∗⊤
n (t)X(t)}]

E[Z(t) exp{g∗⊤
n (t)X(t)}]

)
dN̄(t),

and

J10j =

∫ τ

0

E[ϕ⊤
j (t)X(t)Z(t) exp{g∗⊤

n (t)X(t)}]
E[Z(t) exp{g∗⊤

n (t)X(t)}]
d[N̄(t)− E{N(t)}].

We consider J8j, J9j, and J10j.
By (23), (24), and (71), we obtain

E{J2
8j} ≤ 2

n
E
[ ∫ τ

0

{ϕ⊤
j (t)X(t)}2Z(t) exp{g⊤

0 (t)X(t)}λ0(t)dt
]

+
2

n
E
([ ∫ τ

0

ϕ⊤
j (t)X(t)Z(t) exp{g⊤

0 (t)X(t)}λ0(t)dt
]2)

∼ 1

n
E
{∫ τ

0

ϕ⊤
j (t)Ω(t)ϕj(t)dt

}
∼ 1

n
∥ϕj∥L2 ∼ 1

n
∥ϕj∥2.

The above inequality yields

E
( pKn∑

j=1

J2
8j

)
≤ C

n

pKn∑
j=1

∥ϕj∥2 =
CpKn

n
. (72)
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As in [17], we have

pKn∑
j=1

J2
9j ≤

pKn∑
j=1

∫ τ

0

(∑n
i=1ϕ

⊤
j (t)Xi(t)Zi(t) exp{g∗⊤

n (t)Xi(t)}∑n
i=1 Zi(t) exp{g∗⊤

n (t)Xi(t)}
(73)

−
E[ϕ⊤

j (t)X(t)Z(t) exp{g∗⊤
n (t)X(t)}]

E[Z(t) exp{g∗⊤
n (t)X(t)}]

)2

dN̄(t).

We can evaluate the expectation of (73) by following the proof of Lemma
5 of [17] with hn(X(t)) and ϕj(X(t)) replaced with 1 and ϕ⊤

j (t)X(t), re-
spectively. Thus we have

pKn∑
j=1

E{J2
9j} ≤ CpKn

n
. (74)

Finally we deal with J10j. Since J10j is just a sample mean, we have

pKn∑
j=1

E(J2
10j) (75)

≤ 1

n

pKn∑
j=1

E
{(∫ τ

0

E[ϕ⊤
j (t)X(t)Z(t) exp{g∗⊤

n (t)X(t)}]
E[Z(t) exp{g∗⊤

n (t)X(t)}]
dN(t)

)2}

≤ C

n

pKn∑
j=1

∫ τ

0

[E{ϕ⊤
j (t)X(t)Z(t)}]2dE{N(t)}

≤ C

n

pKn∑
j=1

∫ τ

0

|ϕj(t)|2dt ≤ C

n

pKn∑
j=1

∥ϕj∥2L2
≤ CpKn

n
.

The desired result follows from (70), (72), (74), and (75). Hence the proof
of Proposition 2 is complete.

Proof of Proposition 3. Note that ∥Φβ∥∞ ≤ M in this proposition and
take β1 ∈ RpKn . With probability tending to 1, we have uniformly in β and
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β1,

β⊤
1 Dp(β)β1

= −
∫ τ

0

{∑n
i=1 Zi(t)β

⊤
1 Φ

⊤(t)Xi(t)X
⊤
i (t)Φ(t)β1 exp[{Φ(t)β}⊤Xi(t)]∑n

i=1 Zi(t) exp[{Φ(t)β}⊤Xi(t)]

−
(∑n

i=1 Zi(t)β
⊤
1 Φ

⊤(t)Xi(t) exp[{Φ(t)β}⊤Xi(t)]∑n
i=1 Zi(t) exp[{Φ(t)β}⊤Xi(t)]

)2}
dN̄(t)

= −
∫ τ

0

inf
c

∑n
i=1 Zi(t)[{Φ(t)β1}⊤Xi(t)− c]2 exp[{Φ(t)β}⊤Xi(t)]∑n

i=1 Zi(t) exp[{Φ(t)β}⊤Xi(t)]
dN̄(t)

∼ −
∫ τ

0

inf
c

∑n
i=1 Zi(t)[{Φ(t)β1}⊤Xi(t)− c]2∑n

i=1 Zi(t)
dN̄(t)

∼ −∥Φβ1∥20n ∼ −∥Φβ1∥20 ∼ −∥Φβ1∥2L2
∼ −∥Φβ1∥2 ∼ |β1|2

Hence the desired result is established.

Proof of Proposition 4. We have

(β2 − β1)
⊤Sp(β1) = (β2 − β1)

⊤Sp(β
∗
n) + (β2 − β1)

⊤Dp(β̄)(β1 − β∗
n),

where β̄ is between β1 and β∗
n.

Since ∥Φβ1∥∞ ≤ M and ∥Φβ∗
n∥∞ = ∥g∗

n∥∞ ≤ ∥g0∥∞ + CAnρn for some
positive constant C, Proposition 3 implies there are positive constants M1

and M2 such that with probability tending to 1,

−M1 ≤ λmin(Dp(β̄)) ≤ λmax(Dp(β̄)) ≤ −M2

uniformly in β1. Hence we obtain

(β2 − β1)
⊤Dp(β̄)(β1 − β∗

n) = Op(|β2 − β1||β1 − β∗
n|)

uniformly in β1 and β2 and the proof of Proposition 4 is complete.

Proof of Lemma 5. We have uniformly in t and h = (h1, . . . , hp)
⊤ ∈ H0,

E[{h⊤(U(t))X(t)}2Z(t)]/E{Z(t)}
= E[{h⊤(U(t))X(t)}2 E{Z(t)|X(t), U(t)}]/E{Z(t)}
∼ E[{h⊤(U(t))X(t)}2]
= E{h⊤(U(t))Ω(U(t), t)h(U(t))}

∼ E
{ p∑

j=1

h2
j(U(t))

}
∼ ∥h∥2L2

.
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We used Assumptions X’ and M’ here. Hence

∥h∥2 =

∫ τ

0

E[{h⊤(U(t))X(t)}2Z(t)]
E{Z(t)}

dE{N(t)}

∼ ∥h∥L2 E{N(τ)} ∼ ∥h∥2L2

uniformly in h ∈ H0 and the desired result is established.

Proof of Lemma 6. First recall that the first element of X(t) is 1. We
obtain as in the proof of Lemma 5,

E[{h⊤(U(t))X(t)− c}2Z(t)]
E{Z(t)}

∼ ∥h1 − c∥2L2
+

p∑
j=2

∥hj∥2L2

uniformly in c, t, and h = (h1, . . . , hp)
⊤ ∈ H. Thus we obtain

∥h∥20

=

∫ τ

0

1

E{Z(t)}
E
([

h⊤(U(t))X(t)− E{h⊤(U(t))X(t)Z(t)}
E{Z(t)}

]2
Z(t)

)
×dE{N(t)}

=

∫ τ

0

inf
c

(E[{h⊤(U(t))X(t)− c}2Z(t)]
E{Z(t)}

)
dE{N(t)}

∼
∫ τ

0

inf
c

(
∥h1 − c∥2L2

+

p∑
j=2

∥hj∥2L2

)
dE{N(t)}

∼ inf
c

∫ τ

0

(
∥h1 − c∥2L2

+

p∑
j=2

∥hj∥2L2

)
dE{N(t)}

∼ inf
c

∫ τ

0

(E[{h⊤(U(t))X(t)− c}2Z(t)]
E{Z(t)}

)
dE{N(t)}

=

∫ τ

0

E[{h⊤(U(t))X(t)}2Z(t)]
E{Z(t)}

dE{N(t)} ∼ ∥h∥2L2
.

We used the identifiability constraint (59) in the last line. Hence the proof
of Lemma 6 is complete.

Proof of Lemma 7. We omit the details since we can prove Lemma 7
almost in the same way as Lemma 3 of [17] by just replacing f1(X(t)) and
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f2(X(t)) there with g⊤
1 (U(t))X(t) and g⊤

1 (U(t))X(t), respectively. However,
this does not affect the application of Lemma 10 of [16] since Nn, which is
the counterpart of pKn, also increases in [17].

Proof of Lemma 8. We omit the details since we can also prove Lemma
8 almost in the same way as Lemma 4 of [17] by just replacing f1(X(t)),
f2(X(t)), and ϕi(X(t)) with g⊤

1 (U(t))X(t), g⊤
2 (U(t))X(t), and ϕ⊤

i (U(t))X(t),
respectively. The authors of [17] used their Lemma 5 in the proof of their
Lemma 4. We can also verify their Lemma 5 by replacing ϕi(X(t)) and
hn(X(t)) with ϕ⊤

i (U(t))X(t) and 1, respectively.
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