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Abstract

This paper investigates to what extent the fundamentals of the real

economy are reflected in the stock prices of Japan. A Markov switching

VAR model with switching variances is used to test the structural iden-

tification scheme. Identification of fundamental and nonfundamental

shocks is shown to be supported by the data. Based on the appropriate

structural restriction, the historical stock prices are decomposed into

fundamental components and nonfundamental components. The de-

composition shows that the linkage between Japanese stock prices and

real activity shocks became strengthened since the bubble collapsed in

the beginning of 1990s.
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1 Introduction

There is an ongoing controversy regarding the extent to which stock prices

reflect fundamental values. Earlier literature such as Shiller (1981) found

that the U.S. stock prices were much more volatile than their subsequent

changes in dividends. More recently, Binswanger (2004) shows evidence that

stock prices are priced substantially above their fundamentals since the early

1980s for the U.S., Japan and Europe. On the contrary, other literature such

as Chung and Lee (1998) found that the stock prices hardly deviate from

their fundamental value in Hong Kong and Singapore.1

Among the developed countries, Japan is worth special investigation.

From 1986 to 1991, the stock prices and the real estate prices were greatly

inflated, a period well known as the Japanese asset price bubble. The bubble

started collapsing since the beginning of the 1990s, contributing to the start

of the so-called ’lost decades’ and the end of the Japanese economic growth.

This paper reinvestigates how the linkage between the Japanese stock prices

and the real activities has changed before, in-between and after the collapse

of the asset price bubble. The recent financial crisis period is also included

in our sample and interesting findings regarding this period are revealed

later.

Mixed results along the time line of Japan have been shown in existing

literature. Chung and Lee (1998) found that Japanese stock prices were

substantially overvalued from 1984 to 1990. When the market started to

collapse from 1991, the stock prices were undervalued for several years and

their deviation from the fundamental became much smaller. In contrast,

Binswanger (2004) claims that the Japanese stock prices have been priced

far above their fundamental values ever since the mid-1980s.

In order to disentangle the fundamental shocks and non-fundamental

shocks, a long-run identification strategy in the spirit of Blanchard and Quah

(1989) is often applied. Specifically, it is assumed that the nonfundamental

1 Chung and Lee (1998) use earnings and dividends as fundamental variables, while

GNP and industrial production are used by Groenewold (2004) and Huang and Guo (2008)

as fundamental variables.
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shocks have no long-run effect on the output. This type of identification

framework has been employed by Chung and Lee (1998), Rapach (2001),

Binswanger (2004), Groenewold (2004), and Huang and Guo (2008). In a

just-identified structural VAR model, these restrictions can only be assumed.

However, as pointed by Uhlig (2005), the appropriateness of the structural

information used for identification could be questionable.

In this paper, we follow Lanne, Lütkepohl, and Maciejowska (2010), and

obtain over-identifying information from Markov switching variance models

to test whether the assumed long run structural restrictions are appropri-

ate or not. Markov switching variance VAR models provide over-identifying

information from decomposition of covariance matrices across states to test

the assumed structural restrictions, which is essential for the correct identi-

fication of fundamental and nonfundamental shocks.

Our results indicate that the assumed structural identification scheme is

compatible with the data. Based on the confirmed identification of funda-

mental and nonfundamental shocks, the historical stock prices are decom-

posed into fundamental components and nonfundamental components. In

contrast to Binswanger (2004), the decomposition shows that the linkage be-

tween Japanese stock prices and real activity shocks became strengthened

since the bubble collapsed in the beginning of 1990s. After the outburst of

the recent financial crisis, the stock price collapsed again, while the devia-

tion from the fundamental value remained small. In line with Chung and

Lee (1998), our results suggest that the deviation of Japanese stock prices

from the fundamentals has not been substantial since the bubble burst in

the beginning of 1990s.

This paper is structured as follows: Section 2 describes the data. Section

3 introduces how fundamental shocks are identified, and how the Markov

switching VAR model with switching variances can help to test the assumed

identification. Section 4 discusses the test results regarding the structural

identification scheme, and the empirical findings on the extent to which

fundamental shocks explain stock price fluctuations. Section 5 concludes.
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2 The Data

Figure 1: Japanese Stock Prices and Industrial Production
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Notes: This graph depicts the series of the industrial production and the real stock

prices of Japan in log levels from 1960 to 2010.

The data are obtained from the International Financial Statistics (IFS) of

the International Monetary Fund. The series consist of seasonally adjusted

industrial production yt, a stock price index Nikkeit, and Consumer Price

Index (CPI).2 All three series are normalized to a base year of 2005. The

stock price series is converted to real terms by dividing by the Consumer

Price Index. Figure 1 plots the deflated stock prices and the industrial

production in log levels. The data range is from 1960 Q1 to 2010 Q1,

implying that the period of the late 2000s financial crisis is also included.

To examine the stationarity of the data, ADF unit root tests are con-

ducted. Results strongly suggest that the log-level series for both output and

2 The Nikkei index represents more than half of the total market capitalization in the

Tokyo Stock Exchange.
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real stock prices are of order I(1). When testing for cointegration relation-

ships for the unrestricted levels VAR model, the Saikkonnen and Lütkepohl

test rejects the null hypothesis that there is no cointegration relation between

output and real stock prices.3 As a consequence, the empirical analysis is

based on a VAR in first differences.

3 Identification of Fundamental and Nonfundamen-

tal Shocks

3.1 The Long-run Restriction à la Blanchard and Quah

Following earlier empirical literature, we adopt the following bivariate VAR

model to study the interdependence of stock prices and the real activities:

∆xt = ν +A1∆xt−1 +A2∆xt−2 + · · ·+Ap∆xt−p + ut, (1)

where ∆xt is a 2× 1 vector of the endogenous variables representing logs of

industrial production and logs of real stock prices in first differences. Ai’s

are 2 × 2 parameter matrices, with i = 1, . . . , p. ut is a 2 × 1 vector of

unobservable error terms with E[ut] = 0 and E[utu
′
t] = Σu.

The structural shocks εt hitting the system can not be identified in the

above reduced form VAR model. One popular way to identify the shocks is

to impose restrictions on the long-run impact matrix as in Blanchard and

Quah (1989). The long-run impact matrix can be represented as follows:

Ψ = (I −A1 − ...−Ap)−1B (2)

where I stands for the identity matrix, and ut = Bεt, and Σu = BB′. B

transforms the reduced form residuals into structural innovations.

Following Binswanger (2004) and Groenewold (2004), we set the upper

right element, Ψ1,2, of the long-run impact matrix to zero making it lower

triangular. The other elements of the Ψ matrix, denoted by ∗, can take on

any value.

3Results of the ADF tests and the cointegration test are shown in Table 4 and Table 5

in Appendix B.
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Ψ =

[
∗ 0

∗ ∗

]
(3)

Under this identification scheme, the structural shocks, εt = [εFt , ε
NF
t ]′,

can be interpreted as fundamental and non-fundamental shocks respectively.

By assumption, fundamental shocks can have a permanent effect on the real

economy and on the stock market, while non-fundamental shocks can only

have a transitory effect on the real economy and a permanent effect on the

stock price.

However, the structural identification scheme introduced above can only

be assumed and can not tested in a linear VAR model. Therefore, in the

next subsection we introduce a Markov switching model with time-varying

variances. This type of model is capable of providing over-identifying infor-

mation to test structural restrictions.

3.2 Testing the Identification Scheme of Fundamental Shocks

Many researchers including Uhlig (2005) have criticized that the assumed

structural restrictions could be too restrictive. Following Lanne, Lütkepohl,

and Maciejowska (2010), a Markov Switching model is used to validate the

identification strategy. This model allows for heteroscedasticity of the resid-

uals as follows:

∆xt = ν +A1∆xt−1 +A2∆xt−2 + · · ·+Ap∆xt−p + ut|st. (4)

where the distribution of the residuals is assumed to be governed by a

Markov process, st and it is assumed that the residuals are normally dis-

tributed conditional on the given state, i.e., ut|st ∼ N(0,Σst).

The discrete stochastic process st assumes M regimes with transition

probabilities given by

pij = P (st = j|st−1 = i), i, j = 1, . . . ,M

with a M ×M matrix of transitional probabilities. Note that the probabil-

ities add up to one row-wise, hence piM = 1− pi1 − pi2 − · · · − piM−1.

6



In the above framework, if there exist at least two different covariance

states, shocks can be identified without assuming further restrictions. Spe-

cial features of ( 4) provide over-identifying information to test the appropri-

ateness of structural restrictions, if the covariance matrices could be uniquely

decomposed in the following way:

Σ1 = BB′, Σ2 = BΛ2B
′, . . . , ΣM = BΛMB

′, (5)

where B is the contemporaneous impact matrix which is used to trans-

form reduced form shocks into structural shocks. Λi can be interpreted

as the relative-variance matrix of the structural shocks in Regime i versus

Regime 1. In the empirical example, M = 3 is chosen. For State 1, Λ1 is

normalized as a 2 × 2 identity matrix. For the second and the third state,

Λi is a 2× 2 diagonal matrix with the following representation:

Λi =

[
λi1 0

0 λi2

]
(6)

If diagonal elements in either Regime 2 or Regime 3 are distinct, i.e.,

λi1 6= λi2, the transformation matrix B is identified without further struc-

tural assumptions. The decomposition in (5) is unique up to sign changes

in the B matrix. In accordance with Lanne, Lütkepohl, and Maciejowska

(2010), sign changes in the columns of B are no problem for our analysis of

structural identification since it corresponds to whether negative structural

shocks or positive structural shocks are of interest.

Whether the structural restrictions are compatible with the data is ver-

ified through a likelihood ratio test. The maximum log-likelihood from the

just-identified Markov switching VAR model can be compared with the max-

imum log-likelihood from the over-identified Markov switching VAR model

including the structural restrictions. If the likelihood ratio test is rejected,

it is evidence against the presumed structural restrictions.

The Markov switching VAR models are solved by the Expectation Max-

imization algorithm. Details of the algorithm are given in the appendix.

The next section describes the data and the empirical results on the relation

between stock prices and industrial production of Japan.
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4 Empirical Results

Based on the information criteria, a three-state one-lag Markov switching

structural VAR model is selected for Japan. In the following, the test results

regarding the long-run structural restrictions are first illustrated. Then de-

tails are revealed about the extent to which the Japanese stock prices have

been driven by the fundamental shocks.

4.1 Estimates from the Markov Switching VAR models

Table 1: Estimates of the relative variances of shocks across states

estimates standard errors

λ21 2.912 1.186

λ22 2.411 0.802

λ31 55.637 41.765

λ32 3.109 2.046

Notes: This table presents the estimates of diagonal elements of the relative-variance

matrix Λi for i = 2, 3, and their corresponding standard errors from the Markov

switching VAR models without further structural restrictions. λi1 is the first element

along the diagonal of Λi, while λi2 represents the second element along the diagonal

of Λi. λi1 can be interpreted as the relative variance of fundamental shocks in Regime

i versus Regime 1.

Lanne, Lütkepohl, and Maciejowska (2010) have shown that, in a three-

state Markov switching VAR model, the necessary condition in achieving

over-identifying information is that diagonal elements of Λi either in the

second or the third state should be distinct from each other. Table 8 reports

the estimated diagonal elements of Λ2 and Λ3. Since Λ is normalized to be

the identity matrix in State 1, the relative ratios of variances show that the

volatility is increasing in states. Figures 2 plots the smoothed probabilities

for the Markov switching VAR model. The first state is the one with low

volatility. The second one stands for the medium-volatility regime. The

1975 recession in Japan has been captured as the medium-volatility regime.

The third state is the most volatile one, which coincides with the time of

8



the late 2000s financial crisis. As shown in Table 8, the relative variance of

the fundamental shocks in the state of the recent financial crisis relative to

the low-volatility state is around 56.

Figure 2: Smoothed probabilities for different volatility regimes in Japan
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0
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0
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Notes: This graph depicts the smoothed probabilities estimated from the Markov

Switching VAR model with three states and one lag with structural restrictions. The

top panel shows the probability of the system being in a low-volatility regime. The

panel in the middle represents the probability of being in a medium-volatility regime,

while the bottom panel represents the probability of being in a high-volatility regime.

The standard errors of Λ3 diagonal elements are noticeably large. It

is very likely a result of the few observations for the recent financial cri-

sis period. Due to concerns regarding robustness, we estimate also on the

subsample that excludes the late 2000s financial crisis. A two-state two-lag

model is selected, and the results regarding the test of the appropriateness

of the structural identifications remain robust(see Appendix C).
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4.2 Are the Structural Restrictions Appropriate?

In order to test whether the relative variance of the fundamental shocks

in Regime 2 versus Regime 1 is indeed different from that of the non-

fundamental shocks, a likelihood ratio test is performed. The likelihood

ratio test statistics is 8.281 and the corresponding p-value obtained from a

χ2 distribution is 0.016. Hence there is evidence that λ21 6= λ22. Conse-

quently, the decomposition in Equation (5) is unique up to sign changes in

the B matrix.

Are the assumed structural restrictions on the long-run impact matrix

Ψ in Equation (3) too restrictive? Let us now apply the likelihood ratio test

to find out whether the imposed long run restriction is supported by the

data or not. The likelihood ratio test compares the maximum log-likelihood

achieved from the Markov switching VAR model without the long run struc-

tural restrictions to the maximum log-likelihood achieved from the Markov

switching VAR model with the long run structural restrictions. As shown

in Table2 , the test statistics is 2.449 with a corresponding p-value 0.118.

Therefore, the identification of the structural innovations as fundamental

shocks and non-fundamental shocks is compatible with the data.

Table 2: Likelihood ratio test for the structural restrictions

data test statistic p-value

1960-2010 2.449 0.118

Pre-crisis period 0.200 0.655

Notes: This table shows results of the likelihood ratio test that compares the maxi-

mum likelihood from the Markov switching VAR model without the structural restric-

tion to the one from the Markov switching VAR model with the structural restriction

imposed. P-values indicate that the long run restriction is compatible with the data.
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4.3 The Role of Fundamental Shocks for Japanese Stock

Prices

The above section demonstrates that the assumed long run restriction to

disentangle fundamental shocks and non-fundamental shocks is validated by

over-identifying information achieved from a three-state Markov switching

variance model. The appropriate structural identification allows us to con-

duct further structural analysis on the extent to which Japanese stock prices

are driven by the fundamental shocks. As the estimates from the structural

model with and without switching variances are close, we present the fol-

lowing findings based on the linear structural VAR model for comparable

analysis with former empirical literature.

Figure 3: Accumulated impulse responses
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Notes: This graph depicts the accumulated impulse responses to one-standard-

deviation structural shocks. Confidence intervals denoted by dashed lines are ac-

cording to fixed design wild bootstrap at the 95% level.
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Figure 3 presents the accumulated impulse responses of each variable to

a one-standard-deviation structural shock. The responses to a fundamental

shock are shown in the first row. Industrial production increases after a

fundamental shock, converging to a permanently higher level after around

five quarters. Real stock prices are also pushed up permanently after a

fundamental shock.

The impulse responses to a nonfundamental shock are found in the sec-

ond row. There is a temporary decline in industrial production after a

nonfundamental shock. After around eight quarters, industrial production

returns to its original level before the shock, as implied by the identifying

long-run restriction. The short-run negative effects on industrial produc-

tion may result from the changing sentiments of investors, who will shift

funds into the stock market instead of financing new investment projects.

The response of real stock prices to a nonfundamental shock is positive and

permanent. In general, the impulse responses pictures seem much in line

with the former empirical literature such as Rapach (2001) and Binswanger

(2004).

What would the Japanese stock prices have been if they had only been

driven by the fundamental shocks? To answer this question, a historical

decomposition is conducted following the method proposed in Burbidge and

Harrison (1985). Based on estimation on the full sample, the fundamen-

tal series is constructed by setting the value of nonfundamental shocks to

zero and simulating the historical values of the Japanese stock prices in the

presence of only fundamental shocks. The actual series shown in Figure 4

represents the historical stock prices in the presence of both the fundamental

shocks and the nonfundamental shocks. The dashed line depicts the funda-

mentals values that represent the series influenced only by the fundamental

shocks. In accordance with Binswanger (2004), it is important to look at

the degree to which the fundamental series follow stock prices instead of the

absolute value of the simulated series.
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Figure 4: Fundamentals and Japanese stock prices: a historical decomposition

(a) The historical decomposition in Binswanger (2004)

(b) The historical decomposition in our paper
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the fundamentals series
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Notes: The upper panel in this figure shows the historical decomposition for the

Japanese stock prices in Binswanger (2004). His decomposition starts from 1983

and ends in 1999. The lower panel presents the historical decomposition made in

this paper for the Japanese stock prices from 1992 until 2010. For both panels, the

solid lines represent the actual series, while the dashed lines refer to the decomposed

series in which only fundamental shocks can influence stock prices, i.e. with the

non-fundamental shocks set to zero.
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One crucial step of the historical decomposition method is the choice

of the starting value, as it is implicitly assumed that the real stock prices

coincide with the fundamental series at the starting date. Since it is com-

monly believed that the Japanese stock price bubbles collapsed at the end

of 1991, the stock price should be the closest to its fundamental component

after the bubble burst.4 Therefore the stock price at 1991 Q4 is chosen as

the starting value for the simulation of the historical stock prices and also

for the fundamental components.5

The lower panel in Figure 4 displays the graph of the historical decom-

position for the Japanese stock prices from 1991 Q4 to 2010 Q1 based on

estimation in this paper. The stock prices were moving very closely with the

fundamentals in the 1990s. During the 2000s, the stock prices behaved more

volatile. Especially for the several years before the start of the late 2000s

financial crisis, the stock prices deviates the most from the fundamentals.

Following the start of the crisis, both the fundamental and the stock prices

declined sharply. However, the deviation between them remained small. In

general, the linkage between the Japanese stock prices and the fundamentals

has been rather strong after the asset price bubble burst.

Let us now compare the historical decomposition in this paper to the

simulation presented in Binswanger (2004) and Chung and Lee (1998). As

depicted the upper panel in Figure 4, Binswanger (2004) shows that the

stock prices are floating far above the fundamentals from 1983 to 1999. In

contrast, Chung and Lee (1998) demonstrate that though the stock prices

were substantially overvalued from 1986 to 1990, the deviation of the stock

prices from the fundamentals declined below zero and stayed small after the

bubble collapsed in 1991. The the historical decomposition in our paper

shown in the lower panel of Figure 4 seems more in line with those of Chung

4 See details of the Japanese asset bubble period in literature such as Goyal and Yamada

(2004) and Shiller, Kon-Ya, and Tsutsui (1996).
5 The historical decomposition remains generally robust when the starting date varies

from the end of 1991 to 1994, a period known as the recovery period after the collapse

of Japanese asset prices. The historical decomposition based on estimates from the linear

structural VAR is close to the one based on estimates from the Markov switching structural

VAR model.
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Table 3: Variance decomposition of the stock prices over different periods

Percentage of variance attributable to: Percentage of variance attributable to:

Fundamental Non-fundamental Fundamental Non-fundamental

shock shock shock shock

1960-1991 1992-2010

1 quarter 22 78 72 28

5 quarters 21 79 72 28

10quarters 21 79 71 29

15 quarters 21 79 71 29

20 quarters 21 79 71 29

Notes: This table presents percentage of the 20-month forecast error variance ex-

plained respectively by fundamental shocks and nonfundamental shocks to real stock

prices.

and Lee (1998), supporting their view that the dependence of stock prices on

real activities became stronger after the Japanese stock price bubble burst.

A forecast error variance decomposition analysis confirms the results

indicated by the historical decomposition. As shown in Table 3, based on

the sub-sample from 1992 to 2010, the fundamental shocks explain around 70

percent of the stock prices fluctuations, while Binswanger (2004) shows that

only 3 percent of stock price fluctuations are explained by the fundamentals

from the mid-1980s to 1999. This is very likely due to a decade longer after-

bubble period that we include in our data sample. Furthermore, choosing

1991 instead of the mid-1980s as the break point could also have led to the

divergent results.

To sum up, both the historical decomposition and the forecast error

variance decomposition analysis suggest that since the Japanese asset price

bubble collapsed in 1991, the linkage between the stock price and funda-

mentals has been restored.

5 Conclusion

This paper has investigated the extent to which stock prices in Japan are

explained by their fundamental values. A bivariate Markov switching VAR
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model with Markov switching variances is employed to test the appropriate-

ness of the long run structural restrictions, which assumes that the nonfun-

damental shocks have no long-run effect on output.

We found that the identification of fundamental shocks and nonfunda-

mental shocks using long run structural restrictions is supported by the data.

Based on the proper identification scheme, stock prices are decomposed into

fundamental components and nonfundamental components for period from

1991 Q4 to 2010 Q1. In contrast to Binswanger (2004), but in line with

Chung and Lee (1998), our results suggest that the linkage between stock

prices and fundamental components has been strengthened since the col-

lapse of the Japanese Asset Price Bubble in the beginning of 1990s. During

the recent financial crisis, though the stock price dropped down sharply, the

deviation between the stock prices and the fundamentals is not substantial.
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Appendices

A The EM Algorithm

This is a technical appendix explaining the EM algorithm used in this paper

based on Krolzig (1997). The same approach has been also applied by Lanne,

Lütkepohl, and Maciejowska (2010) and Herwartz and Lütkepohl (2010).

Starting with the regression equation

∆x = (Z̄ ⊗ IK)β + u,

where ∆x is a (TK×1) vector or the vectorization of ∆X = [∆x1, . . . ,∆xT ],

and where T is the sample size and K the number of variables. Here Z̄ =

[1T ,∆X−1, . . . ,∆X−p], where 1T is a (T × 1) vector of ones and ∆X−i =

[∆x1−i, . . . ,∆xT−i]
′ is a (T ×K) matrix of lagged regressors, for i = 1, . . . , p

and p being the number of lags of the MS-VAR model. The (K(Kp +

1)× 1) vector β contains the vectorized intercept and slope parameters, i.e.

vec[ν,A1, . . . , Ap] as defined in (1). Finally u is the (TK × 1) vectorization

of the matrix of residuals, U = [u1, . . . , uT ]′, where the distribution of each

residual, ui, i = 1, . . . , T is given according to (4).

The EM algorithm is initiated by defining the starting values of the

intercept, slope and contemporaneous impact matrix, B parameters as well

as the transition probabilities and initial states. For the intercept and slope

parameters the starting values are given by β0 = [Z̄ ′Z̄ ⊗ IK ]−1(Z̄ ′⊗ IK)∆x.

The initial value of the contemporaneous impact matrix is B0 = (UU ′/T )1/2,

where U is obtained from u = ∆x−(Z̄⊗IK)β0. The transition probabilities

are set at P0 = 1M1′M/M , where 1M is an (M × 1) vector of ones and M

are the number of states in the model. The initial states (defined below)

are defined as ξ0|0 = 1M/M . Finally, the starting values of the covariance

matrices need to be determined as defined in the decomposition in (5). This

is done by setting the values of the Λi matrices, i = 2, . . . ,M . I use a

loop of different starting values for these matrices by starting with Λ2 =

2 ∗ IK , . . . ,ΛM = 2M−1 ∗ IK and replacing the 2 with higher values and in

the end seeing which starting value gives the highest log-likelihood.
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The vector of conditional probabilities for the unobserved states is de-

noted as ξ̂t|t and it indicates the probability of a given state in a given time

period conditional on all observations up to time period t, ∆Xt and all in-

tercept, slope, covariance parameters and transition probabilities stored in,

θ. Hence

ξ̂t|t =


P (st = 1|∆Xt, θ)

P (st = 2|∆Xt, θ)
...

P (st = M |∆Xt, θ)

 . (7)

It is also necessary to define the conditional densities of an observation

given a particular state, all past observations and θ as

ηt =


P∆xt|st = 1,∆Xt−1, θ)

P∆xt|st = 2,∆Xt−1, θ)
...

P (∆xt|st = M,∆Xt−1, θ)

 =



1
2π|Σ1|1/2

exp
{
− u′tΣ

−1
1 ut
2

}
1

2π|Σ2|1/2
exp
{
− u′tΣ

−1
2 ut
2

}
...

1
2π|ΣM |1/2

exp
{
− u′tΣ

−1
M ut
2

}

 .
(8)

Expectation Step

Now follows the expectation step where the filtered probabilities from (7)

are calculated as

ξ̂t|t =
ηt � ξ̂t|t−1

1’(ηt � ξ̂t|t−1)
, (9)

and

ξ̂t|t−1 = P ′ξ̂t−1|t−1, (10)

for t = 1, . . . , T . This generates an (M×1) vector of conditional probabilities

for each time period. Here � denotes element-by-element multiplication and

P is defined as in (6). Next using the values of the filtered probabilities, the

smoothed probabilities, P (st = i|∆XT ,θ), i = 1, . . . ,M are estimated as

ξ̂t|T = [P (ξ̂t+1|T � ξ̂t+1|t)]� ξ̂t|t, (11)

for t = T − 1, . . . , 0. The symbol � denotes element-by-element division.

Note that the filtered probabilities from the current iteration are used to

estimate the smoothed probabilities.
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Maximization Step

After the expectation step in the maximization step first the vector of tran-

sition probabilities ρ̂ is estimated as

ρ̂ = ξ̂(2) � (1M ⊗ ξ̂(1)), (12)

where ξ̂(2) =
∑T−1

t=0 ξ̂
(2)
t|T and

ξ̂
(2)
t|T = vec(P )�

[(
ξ̂

(1)
t+1|T � ξ̂

(1)
t+1|t

)
⊗ ξ̂(1)

t|t

]
,

for t = 0, . . . , T − 1. Here ⊗ denotes the Kronecker product. Finally, ξ̂
(1)
t|T is

the vector of smoothed probabilities from (9) and ξ̂
(1)
t|t is the vector of filtered

probabilities from (7). Also note that ξ̂(1) = (1′M ⊗ IM )ξ̂(2), where 1M is an

(M × 1) vector of ones and IM is the (M ×M) identity matrix.

The B and Λ matrices are then estimated by optimizing

l(B,Λ2, . . . ,ΛM ) = T log|det(B)|+ 1

2
tr

(
(BB′)−1Û Ξ̂1Û

′
)

+
M∑
m=2

[
T̂m
2

log(det(Λm)) +
1

2
tr

(
(BΛmB

′)−1Û Ξ̂mÛ
′
)]
,(13)

where Û is obtained from û = ∆x−(Z̄⊗IK)β̂, Ξ̂m =diag(ξ̂m1|T , . . . , ξ̂mT |T ),the

smoothed probabilities of regime m and T̂m =
∑T

t=1 ξ̂mt|T is a summation of

the smoothed probabilities. To avoid singularity a lower bound of 0.001 is

imposed on the diagonal elements of the Λm,m = 2, . . . ,M matrices. The

updated covariance matrices are given from the decomposition

Σ̂1 = B̂B̂′, Σ̂2 = B̂Λ̂2B̂
′, . . . Σ̂M = B̂Λ̂M B̂

′.

Next the intercept and slope parameters are obtained as

β̂ =

[ M∑
m=1

(Z̄ ′Ξ̂mZ̄)⊗ Σ̂−1
m

]−1[ M∑
m=1

(Z̄ ′Ξ̂m)⊗ Σ̂−1
m

]
∆x. (14)

Note, that to estimate β̂ the covariances of the previous iteration were used.

These parameters are then plugged back into (13) and new estimates of the

covariance matrices are obtained which are then used in (14). All this is
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iterated until convergence. The convergence criteria used is the absolute

change in the log-likelihood given in (13), i.e.

∆ = |l(θj+1|∆XT )− l(θj |∆XT )|, (15)

where l(•) is the log-likelihood and θj denotes the parameters of the j-

th iteration. Convergence is satisfied when ∆ ≤ 10−6 or after a specified

maximum number of iterations.

The EM algorithm terminates as well after a similar convergence criteria

as in (15). As shown in Hamilton (1994) the log-likelihood is given by

log(1’(ηt � ξ̂t|t−1)).

The restricted MS-SVAR model is estimated in a similar way, recall that

the long-run impact matrix, Ψ is related to the B matrix by Ψ = A(1)−1B.

Standard Errors

Once the EM algorithm has converged and the point estimates of the param-

eters are obtained it is necessary to calculate their standard errors in order to

carry out statistical tests. The optimal values of P, β,B,Λm,m = 2, . . . ,M

and ξ0|0 are used in log(1’(ηt � ξ̂t|t−1)). Standard errors are then obtained

by the inverse of the negative of the Hessian matrix.
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B Tables for the Full Sample

Table 4: Augmented Dickey-Fuller test

variable test statistic 1% critical value 5% critical value 10% critical value

output -2.47 -3.96 -3.41 -3.13

stock price -1.56 -3.43 -2.86 -2.57

Notes: This table shows results of the ADF test for the series of output and real stock

prices. In both cases, the null hypothesis that there is a unit root is not rejected at

10% significance level since the test statistic is larger than the critical value.

Table 5: Test for cointegration

test statistic p-value

10.28 0.11

Notes: This table shows results of the Saikkonen-Lütkepohl test. The null hypothesis

that there is no cointegration relationship between output and real stock prices can

not be rejected at 10% significance level.

Table 6: Estimates of the transition probabilities

estimates standard errors

p11 0.963 0.031

p12 0.037 0.027

p21 0.155 0.106

p22 0.812 0.092

p32 0.134 0.347

p33 0.866 0.479

Notes: This table presents the estimates of transition probabilities and their corre-

sponding standard errors from the three-state Markov switching VAR models without

further structural restrictions based on data from 1960 to 2010. pij represents the

probability that the regime in the next period switches into j given that the current

regime is i.
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C Results for the Pre-crisis Period

Table 7: Estimates of the transition probabilities

estimates standard errors

p11 0.971 0.025

p22 0.865 0.081

Notes: This table presents the estimates of transition probabilities and their corre-

sponding standard errors from the two-state Markov switching VAR models without

further structural restrictions for the period from 1960 to 2007. pij represents the

probability that the regime in the next period switches into j given that the current

regime is i.

Table 8: Estimates of the relative variances of shocks across states

estimates standard errors

λ21 3.596 1.170

λ22 2.184 0.808

Notes: This table presents the estimates of diagonal elements of the relative-variance

matrix Λ2 and their corresponding standard errors from the Markov switching VAR

models without further structural restrictions based on data from the pre-crisis pe-

riod. λ21 can be interpreted as the relative variance of fundamental shocks in Regime

2 versus Regime 1, while λ22 can be interpreted as the relative variance of nonfunda-

mental shocks in Regime 2 versus Regime 1.
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Figure 5: Smoothed probabilities for different volatility regimes for the Pre-

crisis Period
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Notes: This graph depicts the smoothed probabilities estimated from the Markov

Switching VAR model with two states and two lags based on data from 1960 to

2007. The top panel shows the probability of the system being in a low-volatility

regime, while the bottom panel represents the probability of being in a high-volatility

regime. It is noticeable that this graphs resemble closely with the first two subplots

in Figure 2, which is based on estimation on the full sample.
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