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Submitted to the Annals of Statistics

COMPOSITE QUANTILE REGRESSION FOR THE SINGLE-INDEX
MODEL∗

By Yan Fan†,Wolfgang Karl Härdle‡,Weining Wang‡ and Lixing Zhu§

Renmin University of China, Beijing, China†, Humboldt-Universität zu Berlin,
Germany‡ and Hong Kong Baptist University, Hong Kong, China§

Abstract Quantile regression is in the focus of many estimation
techniques and is an important tool in data analysis. When it comes
to nonparametric specifications of the conditional quantile (or more
generally tail) curve one faces, as in mean regression, a dimensionality
problem. We propose a projection based single index model specifi-
cation. For very high dimensional regressors X one faces yet another
dimensionality problem and needs to balance precision vs. dimension.
Such a balance may be achieved by combining semiparametric ideas
with variable selection techniques.

1. Introduction. Regression between response Y and covariates X is a standard ele-
ment of statistical data analysis. When the regression function is supposed to be estimated
in a nonparametric context, the dimensionality of X plays a crucial role. Among the many
dimension reduction techniques the single index approach has a unique feature: the index
that yields interpretability and low dimension simultaneously. In the case of ultra high
dimensional regressors X though it suffers, as any regression method, from singularity
issues. Efficient variable selection is here the strategy to employ. Specifically we consider
a composite regression with general weighted loss and possibly ultra high dimensional
variables. Our setup is general, and includes quantile, expectile (and therefore mean) re-
gression. We offer theoretical properties and demonstrate our method with applications
to firm risk analysis in a CoVaR context.

Quantile regression(QR) is one of the major statistical tools and is “gradually develop-
ing into a comprehensive strategy for completing the regression prediction” [13]. In many
fields of applications like quantitative finance, econometrics, marketing and also in medi-
cal and biological sciences, QR is a fundamental element for data analysis, modeling and
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inference. An application in finance is the analysis of conditional Value-at-Risk (VaR).
[5] proposed the CaViaR framework to model VaR dynamically. [12] used their QR tech-
niques to test heteroscedasticity in the field of labor market discrimination. Like expectile
analysis it models the conditional tail behavior.

The QR estimation implicitly assumes an asymmetric ALD (asymmetric Laplace distri-
bution) likelihood, and may not be efficient in the QMLE case. Therefore, different types of
flexible loss functions are considered in the literature to improve the estimation efficiency,
such as, composite quantile regression, [29], [9] and [10]. Moreover, [3] proposed a general
loss function framework for linear models, with a weighted sum of different kinds of loss
functions, and the weights are selected to be data driven. Another special type of loss
considered in [17] corresponds to expectile regression (ER) that is in spirit similar to QR
but contains mean regression as its special case. Nonparametric expectile smoothing work
with application to demography could be found in [19]. The ER curves are alternatives to
the QR curves and give us an alternative picture of regression of Y on X.

The difficulty of characterizing an entire distribution partly arises from the high di-
mensionality of covariates, which asks for striking a balance between model flexibility and
statistical precision. To crack this tough nut, dimension reduction techniques of semipara-
metric type such as the single index model came into the focus of statistical modeling. [23]
considered quantile regression via a single index model. However, to our knowledge there
are no further literatures on generalized QR for the single-index model.

In addition to the dimension reduction, there is however the problem of choosing the
right variables for projection. This motivates our second goal of this research: variable
selection. [14], [22] and [27] focused on variable selection in mean regression for the single
index model. Considering the uncertainty on the multi-index model structure, we restrict
ourselves to the single-index model at the moment. An application of our research is
presented in the relevant financial risk area: to investigate how the revenue distribution
of companies depends on financial ratios describing risk factors for possible failure. Such
kind of research has important consequences for rating and credit scoring.

When the dimension of X is high, severe nonlinear dependencies between X and the
expectile (quantile) curves are expected. This triggers the nonparametric approach, but
in its full gear, it runs into the “curse of dimensionality” trap, meaning that the conver-
gence rate of the smoothing techniques is so slow that it is actually impractical to use in
such situations. A balanced dimension reduction space for quantile regression is therefore
needed. The MAVE technique, [24] provides us 1) with a dimension reduction and 2) good
numerical properties for semiparametric function estimation. The set of ideas presented
there, however, have never been applied to composite quantile framework or an even more
general composite quasi-likelihood framework. The semiparametric multi-index approach
that we consider herein will provide practitioners with a tool that combines flexibility in
modeling with applicability for even very high dimensional data. Consequently the curse of
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dimensionality is circumvented. The Lasso idea in combination with the minimum average
contrast estimate (MACE) technique will provide a set of relevant practical techniques
for a wide range of disciplines. The algorithms used in this project are published on the
quantlet database www.quantlet.org.

This article is organized as follows: In Section 2, we introduce the basic setup and the
estimation algorithm. In Section 3, we build up asymptotic theorems for our model. In
Section 4, simulations are carried out. In Section 5, we illustrate our estimation with an
application in financial market. All the technical details are delegated to appendix.

2. MACE for Single Index Model. Let X and Y be p dimensional and univariate
random elements respectively, (p can be very large, namely of the rate exp(nδ), where (δ
is a constant). The single index model is defined to be:

(2.1) Y = g(X>β∗) + ε,

where g(·) : R1 7−→ R1 is an unknown smooth link function, β∗ is the vector of index pa-
rameters, ε is a continuous variable with mean zero. The interest here is to simultaneously
estimate β∗ and g(·). Different assumptions on the error structure will give us quantile,
expectile or mean regression scenarios.

2.1. Quasi-Likelihood for The Single Index Model. There exist several estimation tech-
nique for (2.1), among these the ADE method as one of the oldest ones [7]. The semi-
parametric SIM (2.1) also permits a one-step projection pursuit interpretation, therefore
estimation tools from this stream of literature might also be employed [8]. The MAVE
technique aiming at simultaneous estimation of (β∗, g(·)) has been proposed by [24]. Here
we will apply a minimum contrast approach, called MACE. The MACE technique uses
similar to MAVE a double integration but is different since the squared loss function is re-
placed by a convex contrast. Here we generalize MAVE in 3 ways. First, we generalize the
setting to weighted loss functions that allow us to identify and estimate conditional quan-
tiles, expectiles and other tail specific objects. Second, we consider the situation where
p → ∞ might be very large and therefore will add penalty terms that yield automatic
model selection of e.g. Lasso or SCAD type. Third, we implement a composite estimation
technique for estimating β∗ that involves possibly many estimates.

In a quasi maximum likelihood (or equivalently a minimum contrast) framework the
direction β (for known g(·)) is the solution of

(2.2) min
β

E ρw{Y − g(X>β)},
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with the general quasi-likelihood loss function ρw(·) =
K∑
k=1

wkρk(·), where ρ1(·) , . . . , ρK(·)

are convex loss functions and w1, ...,wK are positive weights. This weighted loss func-
tion form includes many situations such as ordinary least square, quantile regression(QR),
expectile regression(ER), composite quantile regression(CQR) and so on. For model iden-
tification, we assume that the L2-norm of β, ‖β‖2 = 1 and the first component of β is
positive.
For example when K = 1, the QR setting means to take the loss function as:

(2.3) ρw(u) = ρ1(u) = τu1(u > 0) + (1− τ)u1(u < 0),

Moreover, for ER with K = 1, we have:

(2.4) ρw(u) = ρ1(u) = τu21(u > 0) + (1− τ)u21(u < 0).

More general, the CQR setting employs K different quantiles τ1, τ2, . . . , τK , with wk =
1/K, k = 1, . . . ,K and

(2.5) ρk(u) = τ(u− bk)1(u− bk > 0) + (1− τ)(u− bk)1(u− bk < 0),

where bk is the τk quantile of the error distribution, see [3]. Let us now turn to the idea of
MACE. First, we approximate g(X>i β) for x near Xi:

(2.6) g(X>i β) ≈ g(x>β) + g′(x>β)(Xi − x)>β,

In the context of local linear smoothing, a first order proxi of β (given x) can therefore be
constructed by minimizing:

Lx(β)
def
= E ρw{Y − g(x>β)− g′(x>β)(Xi − x)>β},(2.7)

The empirical version of (2.7) requires minimizing, with respect to β:

Ln,x(β)
def
= n−1

n∑
i=1

ρw{Yi − g(x>β)− g′(x>β)(Xi − x)>β}Kh{(Xi − x)>β}(2.8)

Employing now the double integration idea of MAVE, i.e. integrating with respect to the
edf of the X variable yields as average contrast:

Ln(β)
def
= n−2

n∑
j=1

n∑
i=1

ρw

{
Yi − g(X>j β)− g′(X>j β)(Xi −Xj)

>β
}

Kh{(Xi −Xj)
>β}(2.9)

where Kh(·) is the kernel function, Kh(u) = h−1K(u/h), h a bandwidth.

For simplicity, from now on we write g(X>j β) and g′(X>j β) as a(Xj) and b(Xj) or aj
and bj respectively. The calculation of the above minimization problem can be decomposed
into two minimization problems, motivated by the proposal in [15],
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• Given β, the estimation of a(·) and b(·) are obtained through local linear minimiza-
tion.
• Given a(·) and b(·), the minimization with respect to β is carried out by the interior

point method.

2.2. Variable Selection for Single Index Model. The dimension p of covariates is large,
even p = O{exp(nδ)}, therefore selecting important covariates is a necessary step. Without
loss of generality assume that the first q components of β∗, the true value of β, are

non-zero. To point this out write β∗ = (β∗>(1) , β
∗>
(0))
> with β∗(1)

def
= (β1, . . . , βq)

> 6= 0 and

β∗(0)
def
= (βq+1, . . . , βp)

> = 0 element-wise. Accordingly we denote X(1) and X(0) as the first
q and the last p− q elements of X, respectively.

Suppose {(Xi, Yi)}ni=1 be n i.i.d. copies of (X,Y ). Consider now estimating the SIM
coefficient β by solving the optimization problem

(2.10) min
(aj ,bj)′s,β

n−1
n∑
j=1

n∑
i=1

ρw
(
Yi − aj − bjX>ijβ

)
ωij(β) +

p∑
l=1

γλ(|β̂(0)l |)|βl|,

where Xij
def
= Xi−Xj , ωij(β)

def
= Kh(X>ijβ)/

n∑
i=1

Kh(X>ijβ). And γλ(t) is some non-negative

function, and β̂(0) is an initial estimator of β∗ (eg. linear QR with variable selection). The
penalty term in (2.10) is quite general and it covers the most popular variable selection
criteria as special cases: the Lasso [21] with γλ(x) = λ , the SCAD [6] with

γλ(x) = λ{1(x ≤ λ) +
(aλ− x)+
(a− 1)λ

1(x > λ)}, (a > 2)

and γλ(x) = λ|x|−a for some a > 0 corresponding to the adaptive Lasso [28].

We propose to estimate β in (2.10) with an iterative procedure described below. Denote
β̂w the final estimate of β. Specifically, for t = 1, 2, · · · , iterate the following two steps.
Denote β̂(t) as the estimate at step t.

• Given β̂(t), standardize β̂(t) so that β̂(t) has length one and positive first component.
Then compute

(â
(t)
j , b̂

(t)
j )

def
= arg min

(aj ,bj)′s

n∑
i=1

ρw
(
Yi − aj − bjX>ij β̂(t)

)
ωij(β̂

(t)).(2.11)

• Given (â
(t)
j , b̂

(t)
j ), solve

β̂(t+1) = arg min
β

n∑
j=1

n∑
i=1

ρw
(
Yi − â(t)j − b̂

(t)
j X

>
ijβ
)
ωij(β̂

(t)) +

p∑
l=1

d̂
(t)
l |βl|,(2.12)
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where d̂
(t)
l

def
= γλ(|β̂(t)l |). Please note here that the kernel weight ωij(·) use the β̂(t)

from the step before.

When choosing the penalty parameter λ, we adopt a Cp-type criterion as in [26] instead
of the computationally involved cross validation method. We choose the optimal weights
of the convex loss functions ρw by minimizing the asymptotic variance of the resulting
estimator of β, and the bandwidth by criteria minimizing the integrated mean squared
errors of the estimator of g(·).

3. Main Theorems. Define β̂w
def
= (β̂>w(1), β̂

>
w(2))

> as the estimator for β∗ attained

by the procedure in (2.11) and (2.12). Let β̂w(1) and β̂w(2) be the first q components and

the remaining p− q components of β̂w respectively. If in the iterations, we have the initial

estimator β̂
(0)
(1) as a

√
n/q consistency one for β∗(1) (2.12), we will obtain with a very high

probability, an oracle estimator of the following type, say β̃w = (β̃>w(1),0
>)>, since the

oracle knows the true model M∗
def
= {l : β∗l 6= 0}. The following theorem shows that the

penalized estimator enjoys the oracle property. Define β̂0 (note that it is different from the

initial estimator β̂
(0)
(1)) as the minimizer with the same loss in (2.2) but within subspace

{β ∈ Rp : βMc
∗ = 0}.

Theorem 1. Under conditions 1-5, the estimators β̂0 and β̂w exist and coincide on a
set with probability tending to 1. Moreover,

(3.1) P(β̂0 = β̂w) ≥ 1− (p− q) exp(−C ′nα)

for a positive constant C ′.

Theorem 2. Under conditions 1-5, we have

‖β̂w(1) − β∗(1)‖ = Op{(λDn + n−1/2)
√
q}(3.2)

For any unit vector b in Rq, we have

b>C−10(1)

√
n(β̂w(1) − β∗(1))

L−→ N(0, σ2w)(3.3)

where C0(1)
def
= E{[g′(Zi)]2[E(X(1)|Zi) − Xi(1)][E(X(1)|Zi) − Xi(1)]

>}, Zi
def
= X>i β

∗, ψw(ε)

is a choice of the subgradient of ρw(ε) and σ2w
def
= E[ψw(εi)]

2/[∂2 E ρw(εi)]
2, where

∂2 E ρw(·) =
∂2 E ρw(εi − v)2

∂v2

∣∣∣
v=0

.(3.4)
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Let us now look at the distribution of ĝ(·) and ĝ′(·), the estimator of g′(·).

Theorem 3. Under conditions 1-5,

Let µj
def
=
∫
ujK(u)du and νj

def
=
∫
ujK2(u)du, j = 0, 1, 2. For any interior point

z = x>β∗, fZ(z) is the density of Zi, i = 1, . . . , n, if nh3 →∞ and h→ 0,, we have

√
nh
√
fZ(z)/(ν0σ2w)

{
ĝ(x>β̂)− g(x>β∗)− 1

2
h2g′′(x>β∗)µ2∂ Eψw

(
ε
)} L−→ N (0, 1) ,

Also, we have

√
nh3

√
{fZ(z)µ22}/(ν2σ2w)

{
ĝ′(x>β̂)− g′(x>β∗)

}
L−→ N (0, 1)

4. Simulation. In this section, we evaluate our technique in several settings, involv-
ing different combinations of link functions g(·), distributions of ε, and different choices
of (n, p, q, τ)s, where n is the sample size, p is the dimension of the true parameter β∗,
q is the number of non-zero components in β∗, and τ represents the quantile level. The
evaluation is first done with a simple quantile loss function, and then with the composite
L1 − L2 and the composite quantile cases.

4.1. Link functions. Consider the following nonlinear link functions g(·)s. Model 1:

(4.1) Yi = 5 cos(D · Zi) + exp(−D · Z2
i ) + εi,

where Zi = X>i β
∗, D = 0.01 is a scaling constant and εi is the error term. Model 2:

(4.2) Yi = sin{π(A · Zi −B)}+ εi,

with the parameters A = 0.3, B = 3. Finally Model 3 with D = 0.1:

(4.3) Yi = 10 sin(D · Zi) +
√
| sin(0.5 · Zi) + εi|,

4.2. Criteria. For estimation accuracy for β and g(·), we use following five criteria to
measure:

1) Standardized L2 norm:
Dev

def
=
‖β∗ − β̂‖2
‖β∗‖2

,

2) Sign consistency:

Acc
def
=

p∑
l=1

|sign(β∗l )− sign(β̂l)|,
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3) Least angle:
Angle

def
=

< β∗, β̂ >

‖β∗‖2 · ‖β̂‖2
,

4) Relative error:

Error
def
= n−1

n∑
i=1

∣∣∣∣∣g(Zi)− ĝ(Ẑi)

g(Zi)

∣∣∣∣∣ ,
5) Average squared error:

ASE(h)
def
=

1

n

n∑
i=1

{
g(Zi)− ĝ(Ẑi)

}2
.

4.3. L1-norm quantile regression. In this subsection, consider the L1-norm quantile
regression described by [16]. The initial value of β can be calculated by the L1-norm quan-
tile regression, then the two-step iterations mentioned in theoretical part are performed.
Recall that X is a p× n matrix, and q is the number of non-zero components in β∗. The
jth column of X is an i.i.d. sample from N(j/2, 1). Two error distributions are consid-
ered: εi ∼ N(0, 0.1) and t(5). Note that β∗(1) is the vector of the non-zero components in

β∗. In the simulation, we consider different β∗(1): β
∗>
(1) = (5, 5, 5, 5, 5), β∗>(1) = (5, 4, 3, 2, 1)

and β∗>(1) = (5, 2, 1, 0.8, 0.2). Here the indices Zi’s are re-scaled to [0, 1] for nonparametric

estimation. The bandwidth is selected by as in [25]:

hτ = hmean
[
τ(1− τ)ϕ{Φ−1(τ)}−2

]0.2
.

where hmean can be calculated by using the direct plug-in methodology of a local linear re-
gression described by [18]. To see the performance of the bandwidth selection, we compare
the estimated link functions with different bandwidths. Figure 1 is an example showing the
true link function (black) and the estimated link function (red). The left plot in Figure 1
is with the bandwidth (h = 0.68) selected by applying the aforementioned bandwidth
selection. We can see that the estimated link function curve is relatively smooth. The mid-
dle plot shows the estimated link function with decreased bandwidth (h = 0.068). It can
be seen that the estimated curve is very rough. The right plot shows that the estimated
link function with increased bandwidth (h = 1), the deviation between the estimated link
function curve and the true curve is very large. From this comparison we may consider
the aforementioned bandwidth selection preforms well.

Figure 1 about here

Table 1 shows the criteria evaluated with different models and quantile levels. Here
β∗>(1) = (5, 5, 5, 5, 5), the error ε follows a N (0, 0.1) distribution or follows a t(5) distribution.
In 100 simulations we set n = 100, p = 10, q = 5. Standard deviations are given in brackets.
We find that for quantile levels 0.95 and 0.05 the errors are usually slightly larger than
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the median. Although the estimation for the nonlinear model 2 are not as good as model
1 and model 3, the error is still moderate. Figures 2 to Figure 4 present the plots of the
true link function against the estimated ones for different quantile levels.

Table 1 and Figures 2 to 4 about here

Table 2 reports the criteria evaluated under different β∗(1) cases. In this table two dif-

ferent β∗(1) are considered: (a) β∗>(1) = (5, 4, 3, 2, 1), (b) β∗>(1) = (5, 2, 1, 0.8, 0.2), the error ε

follows a N (0, 0.1) distribution. In 100 simulations we set n = 100, p = 10, q = 5, τ = 0.95.
Standard deviations are given in brackets. We notice that for the case (b), the estimation
results are not better than (a) since the smaller values of β∗(1) in case (b) would be esti-
mated as zeros, and the estimation of the link function would be affected as well. Figure 5
and Figure 6 are the plots of the estimated link functions in these two cases.

Table 2 and Figures 5 to 6 about here

Table 3 shows the criteria evaluated under p > n case. Here β∗>(1) = (5, 5, 5, 5, 5), the

error ε follows a N (0, 0.1) distribution. In 100 simulations we set n = 100, p = 200, q =
5, τ = 0.05. Standard deviations are given in brackets. We find that the errors are still
moderate in p > n situation compared with Table 1. Figure 7 shows the graphs in this
case.

Table 3 and Figures 7 about here

4.4. Composite L1-L2 Regression. In this subsection, a combined L1 and L2 loss is
concerned and thus, the corresponding optimization is formed as:
(4.4)

arg min
β,g(·)

[
w1

n∑
i=1

|Yi − g(X>i β)|ωi(β) + w2

n∑
i=1

{Yi − g(X>i β)}2ωi(β) + n

p∑
l=1

γλ(|βl|)|βl|
]
.

It can be further formulated as
(4.5)

arg min
β,g(·)

[
{w1

n∑
i=1

|Yi − g(X>i β)|−1ωi(β) + w2}|Yi − g(X>i β)|2ωi(β) + n

p∑
l=1

γλ(|βl|)|βl|
]
.

Let Resti
def
= Yi − ĝt(X>i β̂

t) be the residual at t-th step, and the final estimate can be
acquired by the iteration until convergence:

(4.6) arg min
β,g(·)

[
{w1

n∑
i=1

|Resti|−1ωi(βt) + w2}|Yi − g(X>i β)|2ωi(β̂t) + n

p∑
l=1

γλ(|βl|)|βl|
]
.
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Three different settings are conducted. The results are reported in Table 4. Figure 8
(the upper panel) shows the difference between the estimated and true g(·) functions. The
level of estimation error is roughly the same as the previous level. Also the results would
not change too much w.r.t. the error distribution and the increasing dimension of p, since
only the dimension of q matters.

Table 4 and Figure 8 about here.

4.5. Composite L1 Quantile Regression. Use MM algorithm for a large scale regression
problem. Table 5 shows the estimation quality. Compared with the results in Table 1, the
estimation efficiency is improved, even in the case of p > n. Figure 8 presents the plots of
the estimated link functions for different models using both the composite L1 regression
and the L1-L2 regression.

Table 5 and Figure 8 about here

5. Application. In this section, we apply the proposed methodology to analyze risk
conditional on macroprudential and other firm variables for small financial firms. More
specifically, for small financial firms, we aim to detect the contagion effects and the po-
tential risk contributions from larger firms and other market variables. As a result one
identifies a risk index, which is expressed as a linear combination, composed of selected
large firm returns and market prudential variables.

5.1. Data. The firm data are selected according to the ranking of NASDAQ. We take
as example city national corp. CYN as our objective. The remaining 199 financial institu-
tions together with 7 lagged macroprudential variables are chosen as covariates. The list
of these firms comes from the website.1 The daily stock prices of these 200 firms are from
Yahoo Finance for the period from January 6, 2006 to September 6, 2012. The descriptive
statistics of the company, the description of the macroprudential variables and the list of
the firms (Table 7 to Table 9) can be found in the Appendices. We consider a two step
regression procedure. The first one is a quantile regression, where one regresses log returns
of each covariate on all the lagged macroprudential variables:

Xi,t = αi + γ>i Mt−1 + εi,t,(5.1)

where Xi,t represents the asset return of financial institution i at time t. We apply quantile
regression proposed by [11]. Then the VaR of each firm with F−1εi,t(τ |Mt−1) = 0 can be
obtained by:

V̂ aR
τ

i,t = α̂i + γ̂>i Mt−1,(5.2)

1 http://www.nasdaq.com/screening/companies-by-industry.aspx?industry=Finance.
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Then the second regression is performed using our method, where the response variable is
log returns of CYN, and the explanatory variable are the log returns of those covariates
and the lagged macroprudential variables:

Xj,t = g(S>βj|S) + εj,t,(5.3)

where S
def
= [Mt−1, R], R is a vector of log returns for different firms. βj|S is a p×1 vector,

p large. With F−1εj,t(τ |S) = 0 the CoVaR is estimated as:

ĈoV aR
τ

j|Ŝ = ĝ(Ŝ>β̂j|S),(5.4)

where Ŝ
def
= [Mt−1, V̂ ], where V̂ is the estimated VaR in (5.2).

Then we proceed the backtesting. The days on which the log returns are lower than
the VaR or CoVaR can be called violations. The violation sequence is defined as follows:

It =

{
1, Xi,t < V̂ aR

τ

i,t;

0, otherwise.

Generally, It should be a martingale difference sequence. Then we apply CaViaR test, see
by [2]. The CaViaR test model:

It = α+ β1It−1 + β2V aRt + ut.

The test procedure is to estimate β1 and β2 by logistic regression, then Wald’s test is
applied with null hypothesis: β̂1 = β̂2 = 0.

5.2. Results. We use a moving window size of n = 126 to calculate VaR of the log
returns for the 199 firms. We also calculated the VaR of CYN. Figure 10 and Figure 11
show one example of the estimated VaR of one covariate (JPM) and the estimated VaR
of CYN, respectively. It can be seen that the estimated VaR becomes more volatile when
volatility of the returns is large.

Figures 10 and 11 about here.

Then the estimation of the CoVaR for CYN is conducted by applying a moving window
size of n = 126. L1-norm quantile regression is applied with τ = 0.05. Recall there are p =
206 covariates, the CoVaR is estimated with different variables selected in each window.
Figure 12 shows the result.

Figures 12 about here.
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Figures 13 and 14 show the estimated link functions against the indices in different
window. We find some evidence on nonlinearity of the link function, although Figure 14
looks linear.

Figures 13 and 14 about here.

Figure 15 summarized the selection frequency of the firms and macroprudential vari-
ables for all the windows. The variable 187, ”Radian Group Inc. (RDN)” is the most
frequently selected variable with frequency 557.

Figure 15 about here.

Next we apply the backtesting. Figure 16 shows the Ît sequence of V̂ aR of CYN, there
are totally 8 violations. Since T = 1543, we get that τ̂ = 0.005. And the p value of wald
test is 0.87, we can not reject the null hypotheses. From Figure 17 we get the Ît sequence
of ĈoV aR of CYN, there are 53 violations for T = 1543, and τ̂ = 0.034. Since the p value
of wald test is 0.36, the null hypotheses is not rejected. Therefore both VaR and CoVaR
algorithms perform well.

Figures 16 and 17 about here.

6. Appendices.

6.1. Proof of the main theorems. We make the following assumptions for the proofs
of the theorems in this paper.

Condition 1. The kernel K(·) is a continuous symmetric pdf having at least four finite
moments. The link g(·) has a continuous second derivative.

Condition 2. Assume that ρk(x) are all strictly convex, and suppose ψk(x), the deriva-
tive (or a subgradient of ) of ρk(x), satisfies Eψk(εi) = 0 and inf |v|≤c ∂ Eψk(εi − v) = C1

where ∂ Eψk(εi − v) is the partial derivative with respect to v, and C1 is a constant.

Condition 3. In the case of composite quantile, K > 1 assume that the error term εi
is independent of Xi. For K = 1 with a quantile and expectile loss relax to F−1y|x(τ) = 0.

Let X(1)i denote the sub-vector of Xi consisting of its first q elements. Let Zi
def
= X>i β

∗

and Zij = Zi −Zj . Define C0(1)
def
= E{[g′(Zi)]2(E(Xi(1)|Zi)−Xi(1))(E(Xi(1)|Zi −Xi(1))}>,

and the matrix C0(1) satisfies 0 < L1 ≤ λmin(C0(1)) ≤ λmax(C0(1)) ≤ L2 < ∞ for positive
constants L1 and L2. There exists a constant c0 > 0 such that

∑n
i=1{‖Xi(1)‖/

√
n}2+c0 → 0,
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with 0 < c0 < 1. vij
def
= Yi − aj − bjX>ijβ. Also

‖
∑
i

∑
j

X(0)ijωijX
>
(1)ij∂ Eψw(vij)‖2,∞ = O(n1−α1).

Condition 4. The penalty parameter λ is chosen such that λDn = O{n−1/2}, with

Dn
def
= max{dl : l ∈ M∗} = O(nα1−α2/2), dl

def
= γλ(|β∗l |), M∗ = {l : β∗l 6= 0} be the true

model. Furthermore assume qh → 0 as n goes to infinity, q = O(nα2), p = O{exp(nδ)},
nh3 →∞ and h→ 0. Also, 0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1.

Conditions 5. The error term εi satisfies E εi = 0 and Var(εi) <∞. Assume that

(6.1) E
∣∣ψmw (εi)/m!

∣∣ ≤ s0Mm

where s0 and M are constants.

Condition 1 is commonly-used and the standard normal pdf is a kernel satisfying this
condition. Condition 2 is made on the weighted loss function so that it admits a quadratic
approximation. Under condition 3, the matrix in the quadratic approximation is non-
singular, so that the resulting estimate of β has an non-degenerate limiting distribution.
Condition 4 guarantees that the proposed variable and estimation procedure for β is model-
consistent. Condition 5 implies a certain tail behavior that we employ in all statistics
argument.

Recall β̂0 as the minimizer with the same loss in (2.2) but within the subspace {β ∈
Rp : βMc

∗ = 0}. The following lemma assures the consistency of β̂0,

Lemma 1. Under conditions 1-5, recall dj = γλ

(
|β∗j |

)
, we have that

(6.2) ‖β̂0 − β∗‖ = Op
(√

q/n+ λ‖d(1)‖
)

where d(1) is the subvector of d = (d1, · · · , dp)> which contains q elements corresponding
to the nonzero β∗(1).

Proof. Note that the last p− q elements of both β̂0 and β∗ are zero, so it is sufficient
to prove ‖β̂0(1) − β

∗
(1)‖ = Op

(√
q/n+ λ‖d(1)‖

)
.

Write

L̃n(β) =

n∑
j=1

n∑
i=1

ρw
(
Yi − aj − bjX>ijβ

)
ωij(β

∗) + n

p∑
l=1

dl|βl|.
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We first show for γn = O(1):

P

[
inf
‖u‖=1

{
L̃n(β∗(1) + γnu, 0) > L̃n(β∗)

}]
→ 1

Construct γn → 0 so that for a sufficiently large constant B: γn > B ·
(√

q/n+ λ‖d(1)‖
)
.

We will show that by the local convexity of L̃n(β(1),0) near β∗(1), there exists a unique

minimizer inside the ball {β(1) : ‖β(1) − β∗(1)‖ ≤ γn} with probability tending to 1.

Let X(1)ij denote the subvector of Xij consisting of its first q components. By Taylor
expansion at γn = 0:

L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0)

= L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0)− E{L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0)}︸ ︷︷ ︸
(T1n)

+ E{L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0)}︸ ︷︷ ︸
(T2n)

Taking Taylor expansion for the term T1n, T2n respectively, where T1n up to 1 order, T2n
up to 2 order:

L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0)

=− γn
n∑
i=1

n∑
j=1

bjψw

(
Yi − aj − bjX>(1)ijβ

∗
(1)

)
ωij(β

∗)X>(1)iju

+ γn

n∑
i=1

n∑
j=1

bj∂ E ρw
(
Yi − aj − bjX>(1)ijβ

∗
(1)

)
ωij(β

∗)X>(1)iju

− γn
n∑
i=1

n∑
j=1

bj∂ E ρw
(
Yi − aj − bjX>(1)ijβ

∗
(1)

)
ωij(β

∗)X>(1)iju

+
1

2
γ2n

n∑
i=1

n∑
j=1

b2j∂
2 E ρw

(
Yi − aj − bjX>(1)ijβ

∗
(1) − bj γ̄nX

>
(1)iju

)
ωij(β

∗)(X>(1)iju)2

+ nλ

q∑
l=1

dl
(
|β∗(1)l + γnul| − |β∗(1)l|

)
+ Op(γn)
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=− γn
n∑
i=1

n∑
j=1

bjψw

(
Yi − aj − bjX>(1)ijβ

∗
(1)

)
ωij(β

∗)X>(1)iju

+
1

2
γ2n

n∑
i=1

n∑
j=1

b2j∂
2 E ρw

(
Yi − aj − bjX>(1)ijβ

∗
(1) − bj γ̄nX

>
(1)iju

)
ωij(β

∗)(X>(1)iju)2

+ nλ

q∑
l=1

dl
(
|β∗(1)l + γnul| − |β∗(1)l|

)
+ Op(γn)

def
=P1 + P2 + P3 + +Op(γn)

where γ̄n ∈ [0, γn].

Define ωij
def
= ωij(β

∗), it is not difficult to derive that ωij =
Kh(Zij)
nfZ(Zj)

{1 + Op(1)} where

Zi = X>i β
∗, Zij = Zi − Zj and fZ(·) is the density of Z = X>β∗.

For P1, because ‖u‖ = 1 and Yi = ai + εi, we get

|P1| ≤ γn‖
n∑
i=1

n∑
j=1

bjψw

(
Yi − aj − bjX>(1)ijβ

∗
(1)

)
ωijX(1)ij‖{1 + Op(1)}

= γn‖
n∑
j=1

bj

{ 1

n

n∑
i=1

ψw

(
εi + ai − aj − bjZij

)Kh(Zij)

fZ(Zj)
X(1)ij

}
‖{1 + Op(1)}

= γn‖
n∑
j=1

bj E εi,Xi

{
ψw

(
εi + ai − aj − bjZij

)Kh(Zij)

fZ(Zj)
X(1)ij

}
‖{1 + Op(1)}

= γn‖
n∑
j=1

bj E Zi

{
E εi [ψw

(
εi + ai − aj − bjZij

)
]
Kh(Zij)

fZ(Zj)
E(X(1)ij |Zi)

}
‖{1 + Op(1)}

= γn‖
n∑
j=1

bj E[ψw

(
εj + aj − aj

)
]{E(X(1)j |Zj)−X(1)j}‖{1 + Op(1)}

where E εi,Xi means taking expectation with respect to (εi, Xi). Furthermore we have

E ‖
n∑
j=1

bj E[ψw

(
εj + aj − aj

)
]{E(X(1)j |Zj)−X(1)j}‖

≤
{
Eψ2

w

(
εj + aj − aj

)
E

n∑
j=1

b2j [E(X(1)j |Zj)−X(1)j ]
>[E(X(1)j |Zj)−X(1)j ]

}1/2

=
√
n{Eψ2

w

(
εj + aj − aj

)
tr(C0(1))}1/2,
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recall C0(1)
def
= E{[g′(Zj)]2(E(X(1)j |Zj)−X(1)j)[E(X(1)j |Zj)−X(1)j ]}>. We thus arrive at

(6.3) P1 = Op(γn
√
nq)

because tr(C0(1)) = O(q) and Eψ2
w

(
εj + aj − aj

)
<∞ by Condition 3.

For P2, according to the property of kernel estimation, it can be seen that

P2 =
1

2
γ2n

n∑
i=1

n∑
j=1

b2j∂ Eψw

(
Yi − aj − bjZij − bj γ̄nX>(1)iju

)Kh(Zij)

nfZ(Zj)
(X>(1)iju)2{1 + Op(1)}

=
1

2
γ2n

n∑
j=1

b2j∂E{ψw

(
Yi − aj − bj γ̄nX>(1)iju

)
(X>(1)iju)2}{1 + Op(1)}

Let Hi(c) = inf |v|≤c ∂ Eψ(εi − v). By lemma 3.1 of Portnoy (1984), we have

(6.4) P2 ≥
1

2
γ2n

n∑
i=1

n∑
j=1

b2jH(γn|X>(1)iju|
)
(X>(1)iju)2 ≥ cγ2nn

for some positive c.

For P3, it is clear that

(6.5) |P3| ≤ nλγn
q∑
l=1

dl|ul| ≤ nλγn‖d(1)‖

Combining (6.3), (6.4)and (6.5), the following inequality holds with probability tending
to 1 that

(6.6) L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0) ≥ nγn
(
cγn −

√
q/n− λ‖d(1)‖

)
γn = B

(√
q/n+λ‖d(1)‖

)
and B is a sufficiently large constant, so that the RHS of (6.6) is

larger than 0. Owing to the local convexity of the objective function, there exists a unique
minimizer β̂0(1) such that

‖β̂0 − β∗‖ = ‖β̂0(1) − β
∗
(1)‖ = Op

(√
q/n+ λ‖d(1)‖

)
Therefore, (6.2) is proved.

Recall that X = (X(1), X(2)) and M∗ = {1, . . . , q} is the set of indices at which β are
nonzero.
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Lemma 2. Under conditions 1-5, the loss function (2.2) has a unique global minimizer
β̂ = (β̂>1 ,0

>)>, if and only if

n∑
j=1

n∑
i=1

ψw

(
Yi − âj − b̂jX>ij β̂w

)
b̂jX(1)ijωij(β

∗) + nd(1) ◦ sign(β̂w) = 0(6.7)

‖z(β̂w)‖∞ ≤ nλ,(6.8)

where

(6.9) z(β̂w)
def
= d−1(0) ◦

{ n∑
j=1

n∑
i=1

bjψw

(
Yi − aj − bjX>ij β̂w

)
X(0)ijωij(β̂w)

}
where ◦ stands for multiplication element-wise.

Proof. According to the definition of β̂w, it is clear that β̂(1) already satisfies condition
(6.7). Therefore we only need to verify condition (6.8).

To prove (6.8), a bound for

(6.10)
n∑
i=1

n∑
j=1

bjψw

(
Yi − aj − bjX>ijβ∗

)
ωijX(0)ij

is needed. Define the following kernel function

hd(Xi, aj , bj , Yi, Xj , ai, bi, Yj)

=
n

2

{
bjψw

(
Yi − aj − bjX>ijβ∗

)
ωijX(0)ij + biψw

(
Yj − ai − biX>jiβ∗

)
ωjiX(0)ji

}
d

,

where {.}d denotes the dth element of a vector, d = 1, . . . , p− q.

According to [20], the proof of theorem B in page 201, and following the Conditions 5:

(6.11) EF [exp{s · hd(Xi, aj , bj , Yi, Xj , ai, bi, Yj)}] <∞, 0 < s < s0,

where s0 is a constant.

Define Un,d
def
= 1

n(n−1)
∑

1≤i<j≤n hd(Xi, aj , bj , Yi, Xj , ai, bi, Yj) as the U− statistics for

(6.10).

Then, for ε > 0,

exp
{
− s · EUn,d

}
E exp{s · hd(.)} = 1 +O(s2), s→ 0.
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By taking s = ε/{n2+α}, ε = n1/2+α, we have

P(|Un,d − EUn,d| > ε) ≤ 2

[
exp (−s · ε) exp (−s · EUn,d)E exp{shd(.)}

][n/2]
≤ 2

[{
1 +O(s2)

}
exp

(
−ε2/n2+α

) ][n/2]
≤ 2 exp

(
−Cnnα

)
,

where Cn is a constant depending on n.

Define

Fn,d
def
= n−1

n∑
i=1

n∑
j=1

bjψw

(
Yi − aj − bjX>ijβ∗

)
ωijX(0)ij ,

also it is not hard to derive that Un,d = Fn,d.
It then follows that

P(|Fn,d − EFn,d| > ε) = P(|Un,d − EUn,d| > ε)

≤ 2 exp
(
−C ′nnα

)
Define An = {‖Fn − EFn‖∞ ≤ ε}, thus

P(An) ≥ 1−
p−q∑
d=1

P(|Fn,d − EFn,d| > ε) ≥ 1− 2(p− q) exp
(
−C ′nnα

)
.

Finally we get that on the set An,

‖z(β̂0)‖∞ ≤ ‖d−1Mc
∗
◦ Fn‖∞ + ‖

n∑
i=1

n∑
j=1

bj
[
ψw

(
Yi − aj − bjX>ij β̂0

)
−ψw

(
Yi − aj − bjX>ijβ∗

)]
ωijX(0)ij‖∞

≤ O(n1/2+α + ‖
n∑
i=1

n∑
j=1

∂ Eψw(vij)bjX
>
(1)ij(β̂(1) − β

∗
(1))ωijX(0)ij‖∞),

where vij is between Yi − aj − bjX>ijβ∗ and Yi − aj − bjX>ij β̂0. From Lemma 5.1,

‖β̂0 − β∗(1)‖2 = Op
(
λ‖d(1)‖+

√
q/
√
n
)
.

Choosing ‖
∑

i

∑
j X(0)ijωijX

>
(1)ij∂ Eψw(vij)‖2,∞ = O(n1−α1), q = O(nα2), λ = O(

√
n/q) =

n−1/2+α2/2, 0 < α2 < 1, ‖d(1)‖ = O(
√
qDn) = O(nα2/2Dn)

(nλ)−1‖z(β̂0)‖∞ = O{n−1λ−1(n1/2+α + n1−α1
√
q/
√
n+ λ‖d(1)‖n1−α1)}

= O(n−α2/2+α + n−α1 + n−α1+α2/2Dn),
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assume Dn = O(nα1−α2/2), and let 0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1, with rate
p = O{exp(nδ)}, then (nλ)−1‖z(β̂0)‖∞ = O(1).

Proof of Theorem 2. By Theorem 3.1, β̂w(1) = β(1) almost surely. It then follows
from Lemma 5.2 that

‖β̂w(1) − β∗(1)‖ = Op{(λDn + n−1/2)
√
q}.

This completes the first part of the theorem.

Given aj , bj , consistent estimates of aj and bj , the estimate β̂w is:

β̂w = arg min
β

n∑
j=1

n∑
i=1

ρw
(
Yi − aj − bjX>ijβ

)
ωij + n

p∑
l=1

γλ(|β̃l|)|βl|

where ωij = ωij(β̃) and Xij = Xi −Xj .

Define ξ̂
def
=
√
n(β̂w − β∗) and Yij = Yi − aj − bjX>ijβ∗. As ωij(β̃) =

Kh(Zij)
nfZ(Zj)

{1 + Op(1)},
it follows that ξ̂ is the minimizer of

Hn(ξ) =
n∑
i=1

n∑
j=1

{
ρw
(
Yij − n−

1
2 bjX

>
ij ξ
)
− ρw

(
Yij
)}Kh(Zij)

nfZ(Zj)
{1 + Op(1)}

+n

p∑
l=1

γλ(|β∗l |)(|β∗l + n−1/2ξl| − |β∗l |)

def
= Q1(ξ){1 + Op(1)}+Q2(ξ),

recall fZ(z) is the density function of Z = X>i β
∗, i = 1, . . . , n. We study Q1(ξ) and Q2(ξ)

respectively.

Let ∆ij(ξ)
def
= ρw

(
Yij − n−

1
2 g′(Zj)X

>
ij ξ
)
− ρw

(
Yij
)
− n−

1
2ψw(Yij)g

′(Zj)X
>
ij ξ. It can be

seen that

Q1(ξ) =
{ n∑
i=1

n∑
j=1

n−1/2ψw(Yij)g
′(Zj)

Kh(Zij)

nfZ(Zj)
X>ij ξ

+
n∑
i=1

n∑
j=1

∆ij(ξ)
Kh(Zij)

nfZ(Zj)

}
{1 + Op(1)}

def
= [A>ξ + I(ξ)]{1 + Op(1)}
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Recall that Yij = εi + ai − aj − bjZij + op(1).
Therefore we have

A =

n∑
i=1

n∑
j=1

1√
n
ψw(εi + ai − aj − bjZij)g′(Zj)

Kh(Zij)

nfZ(Zj)
Xij{1 + Op(1)}

=
n∑
i=1

1√
n
ψw(εi)g

′(Zi){E(X|Zi)−Xi}{1 + Op(1)}.

Similarly we have

I(ξ) =
n∑
i=1

n∑
j=1

∆ij(ξ)
Kh(Zij)

nfZ(Zj)

=
n∑
i=1

n∑
j=1

{
ρw
(
Yij − n−

1
2 g′(Zj)X

>
ij ξ
)
− ρw

(
Yij
)

−n−
1
2ψw(Yij)g

′(Zj)X
>
ij ξ
}Kh(Zij)

nfZ(Zj)

=

n∑
j=1

E εi,Xi

[{
ρw
(
Yij − n−

1
2 g′(Zj)X

>
ij ξ
)
− ρw

(
Yij
)

−n−
1
2ψw(εi)g

′(Zi)X
>
ij ξ
}Kh(Zij)

fZ(Zj)

]
=

n∑
j=1

E Zi E εi,Xi|Zi

[{
ρw
(
Yij − n−

1
2 g′(Zj)X

>
ij ξ
)
− ρw

(
Yij
)

−n−
1
2ψw(εi)g

′(Zi)X
>
ij ξ
}Kh(Zij)

fZ(Zj)

]
=

n∑
j=1

{
E ερw

(
ε− n−

1
2 g′(Zj)(Xj − E(Xj |Zj))>ξ

)
− E ερw

(
ε
)

−n−
1
2E ε[ψw(ε)]g′(Zj)(Xj − E(Xj |Zj))>ξ

}
= (2n)−1

n∑
j=1

{∂2 E ρw(εj)}E[g′(Zj)]
2ξ>{Xj − E(Xj |Zj)}{Xj − E(Xj |Zj)}>ξ

=
1

2
{∂2 E ρw(εj)}ξ> E{[g′(Zj)]2{Xj − E(Xj |Zj)}{Xj − E(Xj |Zj)}>}ξ

def
=

1

2
{∂2 E ρw(εj)}ξ>C0ξ[1 + O(1)]

About Q2(ξ), we find that if β∗l = 0, that is q < l ≤ p,
√
n(|β∗l + n−1/2ξ| − |β∗l |) = |ξ|,
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otherwise when 1 ≤ l ≤ q,
√
n(|β∗l + n−1/2ξ| − |β∗l |) → ξsign(β∗l ). In the case of adaptive

Lasso, we have
√
nγλ(|βl|) → 0 for β∗l 6= 0 and

√
nγλ(|β∗l |) → ∞ for β∗l = 0. Thus

n
∑p

l=1 γλ(|β∗l |)(|β∗l + n−1/2ξl| − |β∗l |) will converge to 0 only if ξl = 0 for all q < l ≤ p,
otherwise it will converge to infinity. The loss function Hn(ξ) gives nontrivial solutions
only when ξl = 0 for all q < l ≤ p. This implies that β̂w(2) will converge to zero with
probability one.

When ξ(2) = 0 the loss function

Dn(ξ) = [−ξ>(1)A(1) +
1

2
{∂2 E ρw(εi)}ξ>(1)C0(1)ξ(1)]{1 + O(1)}

where A(1) is the sub-vector of A consisting of its first q components, and C0(1) is the

up-left q × q sub-matrix of C0. Following quadratic approximate lemma, we obtain ξ̂(1) =
√
n(β̂(1) − β∗(1)) = [∂2 E ρw(εi)]

−1C−10(1)A(1) + Op(1).

Recall that A(1) =
n∑
i=1

1√
n
ψw(εi)g

′(Zi){E(X(1)|Zi)−Xi(1)}{1 + Op(1)}. Thus we have

√
nb>C

1/2
0(1)(β̂(1) − β

∗
(1)) = b>[∂2 E ρw(εi)]

−1C
−1/2
0(1)

× 1√
n

n∑
i=1

ψw(εi)g
′(Zi){E(X(1)|Zi)−Xi(1)}{1 + Op(1)}

L−→ N(0, σ2w)

where

σ2w = b>[∂2 E ρw(εi)]
−2 E{[ψw(εi)]

2}C−1/20(1)

×E{[g′(Zi)]2[E(X(1)|Zi)−Xi(1)][E(X(1)|Zi)−Xi(1)]
>}C−1/20(1) b

= E{[ψw(εi)]
2}/[∂2 E ρw(εi)]

2.

Here we have used the fact C0(1) = E{[g′(Zi)]2[E(X(1)|Zi) − Xi(1)][E(X(1)|Zi) − Xi(1)]
>}.

The asymptotic normality can be proved.

Proof of Theorem 3. We note that

√
nh

{
ĝ(x>β̂)− g(x>β∗)

}
=
√
nh

{
ĝ(x>β̂)− ĝ(x>β∗)

}
+
√
nh

{
ĝ(x>β∗)− g(x>β∗)

}
As ρw is strictly convex, then ĝ(·) is continuous almost surely. As qh→ 0, the consistency

of β̂ in Theorem 2 implies
√
nh

{
ĝ(x>β̂)− g(x>β∗)

}
= Op(1). Consequently it is sufficient

to prove

√
nh3

√
{fZ(z)µ22}/(ν2σ2w)

{
ĝ(x>β∗)− g(x>β∗)

}
L−→ N (0, 1)
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We now prove equation (6.12). Let Zi = X>i β
∗ and z = x>β∗. Recall that ĝ(z) = â

and ĝ′(z) = b̂ where

(â, b̂)
def
= arg min

(a,b)
(nh)

n∑
i=1

ρw
{
Yi − a− b(Zi − u)

}
ωi(β

∗)(6.12)

where ωi(β
∗) = Kh(Zi − z)/

∑n
k=1Kh(Zk − z) = {1 + Op(1)}Kh(Zi − zi)/{nfZ(z)}

Denote θ = [
√
nh{a− g(z)},

√
nh3{b− g′(z)}]τ ]> and θ̂ = [

√
nh{ĝ(z)− g(z)},√

nh3{ĝ′(z)− g′(z)}]>. Also let Zi = (1, (Zi− z)/h)> and δi = g(Zi)− g(z)− g(z)(Zi− z).
Then θ̂ is the minimizer of

L(θ) =
n∑
i=1

[ρw
(
εi + δi − (nh)−1/2Z>i θ

)
− ρw

(
εi + δi

)
]
K(Zi − z)
fZ(z)

[1 + Op(1)].(6.13)

By similar Taylor expansion to Q1(ξ) in the previous proof, we have

L(θ) =
1√
nh

n∑
i=1

ψw

(
εi + δi

)
Z>i θ

Kh(Zi − z)
fZ(z)

[1 + Op(1)]

+
1

2nh

n∑
i=1

{∂2 E ρw
(
εi + δi

)
}(Z>i θ)2

K(Zi − z)
fZ(z)

[1 + Op(1)]

= A>n θ +
1

2
θτSnθ(1 + op(1))

where

An =
1√
nh

n∑
i=1

ψw

(
εi + δi

)
Zi
K(Zi − z)
fZ(z)

Sn =
1

nh

n∑
i=1

{∂2 E ρw
(
εi + δi

)
}ZiZ>i

K(Zi − z)
fZ(z)

.

It is easy to see that both An and Sn are sums of independent and identically distributed
random elements. Thus the leading term of Sn is

Sn =
1

h
E

{
∂2 E ρw

(
εi + δi

)
ZiZ

>
i

K(Zi − z)
fZ(z)

|Zi]
}

=
1

h
E

{
∂2 E ρw

(
εi + δi

)
|Zi]ZiZ>i

K(Zi − z)
fZ(z)

}
= ∂2 E ρw

(
εi
) ∫ ( 1 (ξ − u)/h

(ξ − u)/h (ξ − z)2/h2
)
K

(
ξ − z
h

)
dξ

h

= [∂2 E ρw
(
εi
)
]

(
1 0
0 µ2

)
{1 + O(1)} = S{1 + O(1)}
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where µ2 =
∫
t2K (t) dt. As ρw is strictly convex, its second derivative E ∂ψ(·) is nonneg-

ative, which implies Sn is non-negative definite with probability tending to one. And it
follows that θ̂ = −S−1An{1 + Op(1)}.

It is clear that An is asymptotically distributed as a bivariate normal distribution
N(mA,Σ) with mean

mA =
1√
h
E

{
ψw

(
εi + δi

)
Zi
K(Zi − z)
fZ(z)

}
=

1√
h
E

{
E
[
ψw

(
εi + δi

)
|Zi
]
Zi
K(Zi − z)
fZ(z)

}
=

1√
h

∫∫
ψw

{
ε+ g(ξ)− g(z)− g′(z)(ξ − z)

}
fE(ε)dε

×
(

1
(ξ − z)/h

)
K((ξ − z)/h)dξ

=
1

2
h5/2g′′(z)µ2[∂ Eψw(ε)]

(
1
0

)
{1 + O(1)}.

As mA = O(1), it can be seen that the asymptotic covariance matrix Σ is

Σ =
1

h
E

{
ψ2
w

(
εi + δi

)
ZiZ

>
i

[K(Zi − z)
fZ(z)

]2}
{1 + o(1)}

=
1

h

∫ ∫
ψ2
w

{
ε+ g(ξ)− g(z)− g′(z)(ξ − z)

}
fE(ε)dε

×
(

1 (ξ − z)/h
(ξ − z)/h (ξ − z)2/h2

)
K2(Zi − z)
fZ(z)

dξ{1 + o(1)}

=
1

fZ(z)
E[ψ2

w(ε)]

(
ν0 0
0 ν2

)
{1 + O(1)}.

where νk =
∫
tkK2(t)dt.

Thus we finally obtain that as n tends to infinity, θ̂−S−1mA converges in distribution
to N(0, S−1ΣS−1). Slight algebra gives

S−1mA =
1

2
h5/2g′′(z)µ2[∂ Eψw

(
ε
)
]

(
1
0

)
S−1ΣS−1 =

E[ψ2
w(ε)]

{[∂2 E ρw
(
ε
)
]}2

1

fZ(z)

(
1 0

0 µ−12

)(
ν0 0
0 ν2

)(
1 0

0 µ−12

)
= σ2w

1

fZ(z)

(
ν0 0
0 ν2/µ

2
2

)
.

This completes the proof.
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Considering the algorithm in (2.11 ) and (2.12), for both step involves a plug-in estima-
tor, therefore it would be important for us to check the closeness between L̃n(β)− Ln(β)
and L̃n,x(β)− Ln,x(β). We have the following Lemma.

Lemma 3. Assuming Condition 1-5, for a ball with Bβ∗
def
= {β : ‖β − β∗‖ ≤

√
q/n},

(similar argument see Mammen (2012) Lemma 2)

sup
β∈Bβ∗

|n−1
n∑
i=1

ρw
(
Yi − aj − bjX>ijβ

)
ωij(β)− n−1

n∑
i=1

ρw
(
Yi − aj − bjX>ijβ∗

)
ωij(β

∗)|

= Op(h−1
√
q/nΓn),

with Γn a slowly varying function. So we need to make sure h−1
√
q/n = O(1).

Also, Baj
def
= {ãj : ‖aj − ãj‖ ≤

√
nh
−1/2}, Bbj

def
= {b̃j : ‖bj − b̃j‖ ≤

√
nh
−1/2}

sup
Baj ,Bbj

|n−1
n∑
j=1

n∑
i=1

ρw
(
Yi − ãj − b̃jX>ijβ

)
ωij(β)

−n−1
n∑
j=1

n∑
i=1

ρw
(
Yi − aj − bjX>ijβ

)
ωij(β)|

= Op(n−1/2Γn +
√
q/nΓn).

6.2. Application. The macroprudential variables are the same as suggested by [1] and
applied and extended by [4]. The macro variables and the corresponding source are as
follows:

1) VIX, which measures the implied volatility in the market.
2) The short term liquidity spread, which is calculated by the difference between the

3-month Treasury repo rate and 3-month Treasury constant maturities.
3) The daily change in the 3-month Treasury constant maturities, which can be defined

as the difference between the current day and the previous day of 3-month Treasury
constant maturities.

4) The change in the slope of the yield curve, which is defined by the difference be-
tween the 10 year Treasury constant maturities and the 3-month Treasury constant
maturities.

5) The change in the credit spread between 10 years BAA corporate bonds and the 10
years Treasury constant maturities.

6) The daily S&P500 index returns.
7) The daily Dow Jones U.S. Real Estate index returns.
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The repo data can be obtained from the Bloomberg database. The Treasury constant
maturities data, 10 year Treasury constant maturities and BAA corporate bonds data can
be found in the website of the Federal Reserve Board H.15:
http://www.federalreserve.gov/releases/h15/data.htm. Other data are available in Yahoo
Finance. The data period of these macro variables is from January 5, 2006 to September
5, 2012, the data frequency is daily.

Table 6 and Figure 9 about here

Table 6 shows the descriptive statistics of this series. While the mean of CYN before
crisis (i.e. before September 15, 2008) is −0.000365, the mean of it in crisis (i.e. from
September 15, 2008 to September 5, 2012) is a little higher, i.e. −0.000092. The standard
deviation reverses, in crisis group is higher than before crisis group. The values of skewness
in both groups are larger than 0. And the kurtosis of both groups are all higher than 3,
which are steeper than normal distribution.

Robust Jarque Bera Test is performed. Since the p values of this test in both groups are
smaller than 0.05. H0 is rejected. It indicates that log returns of CYN are not normally
distributed. Stationarity is an important point in time series. Unit root test is performed.
The result is that log returns of CYN are stationary. We also performed the mentioned
two tests for the 20 larger firms, and found the same result, i.e. these series are all not
normally distributed, but they follow stationary process.

Figure 9 is the line and symbol graph for the log returns of CYN. It can be found
that the volatility between 2008 and 2010 is very high, and there are some clusters in this
series.

6.3. Tables and Figures.
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g(·) ε τ Dev Acc Angle Error ASE

Model 1

N

0.95 1.22(0.36) 0.85(3.53) 9.874(0.079) 0.029(0.004) 0.044(0.014)
0.50 0.74(0.25) 0.63(1.45) 9.969(0.023) 0.007(0.002) 0.003(0.002)
0.05 1.75(0.59) 1.81(3.55) 9.829(0.123) 0.038(0.006) 0.064(0.021)

t

0.95 1.79(0.76) 0.95(4.23) 9.720(0.191) 0.050(0.008) 0.111(0.037)
0.50 0.91(0.39) 1.17(2.56) 9.951(0.039) 0.009(0.002) 0.004(0.003)
0.05 1.92(0.79) 2.45(4.48) 9.746(0.128) 0.053(0.009) 0.122(0.049)

Model 2

N

0.95 1.68(1.88) 6.57(9.32) 9.691(0.666) 7.564(7.159) 4.769(8.771)
0.50 1.49(1.46) 1.01(2.82) 9.780(0.401) 5.916(4.874) 1.363(2.305)
0.05 1.50(1.73) 9.87(9.71) 9.556(0.985) 8.627(8.526) 6.145(9.168)

t

0.95 2.31(1.88) 9.22(9.48) 9.610(0.668) 9.158(9.561) 5.643(6.561)
0.50 1.77(1.59) 5.00(3.58) 9.712(0.487) 8.152(7.278) 1.785(2.814)
0.05 3.07(1.06) 7.60(9.28) 9.695(0.551) 9.750(7.464) 4.643(4.462)

Model 3

N

0.95 0.37(0.27) 0.40(2.19) 9.989(0.016) 0.141(0.069) 0.574(0.624)
0.50 0.11(0.08) 0.25(0.79) 9.997(0.002) 0.051(0.029) 0.076(0.049)
0.05 0.56(0.32) 0.39(2.28) 9.978(0.025) 0.229(0.063) 0.724(0.711)

t

0.95 0.32(0.24) 0.50(2.11) 9.987(0.016) 0.235(0.117) 0.759(0.798)
0.50 0.29(0.11) 0.31(0.90) 9.994(0.008) 0.077(0.052) 0.081(0.085)
0.05 0.42(0.26) 0.58(2.26) 9.982(0.019) 0.326(0.201) 0.861(0.863)

Table 1
Criteria evaluated with different models and quantiles. β∗>(1) = (5, 5, 5, 5, 5), N means the error ε follows a

N (0, 0.1) distribution, t means the error ε follows a t(5) distribution. In 100 simulations we set
n = 100, p = 10, q = 5. Standard deviations are given in brackets. Dev, Acc, Angle, Error and their

standard deviations are reported in 10−1. ASE and its standard deviations are reported in 10−2.

g(·) β∗(1) Dev Acc Angle Error ASE

Model 1
(a) 1.51(0.36) 1.02(3.62) 9.861(0.092) 0.135(0.105) 0.152(0.124)
(b) 1.72(0.38) 1.35(3.94) 9.892(0.099) 0.166(0.119) 0.359(0.223)

Model 2
(a) 1.85(1.95) 7.37(9.45) 9.541(0.752) 8.135(8.352) 5.731(8.928)
(b) 2.34(2.21) 9.54(9.88) 9.432(0.856) 8.374(8.973) 7.212(9.134)

Model 3
(a) 0.41(0.26) 0.53(2.46) 9.981(0.019) 0.259(0.122) 0.786(0.812)
(b) 0.53(0.28) 0.62(2.87) 9.973(0.021) 0.352(0.229) 0.814(0.921)

Table 2
Criteria evaluated with different models. Two different β∗(1): (a) β∗>(1) = (5, 4, 3, 2, 1), (b)

β∗>(1) = (5, 2, 1, 0.8, 0.2) the error ε follows a N (0, 0.1) distribution. In 100 simulations we set
n = 100, p = 10, q = 5, τ = 0.95. Standard deviations are given in brackets. Dev, Acc, Angle, Error and

their standard deviations are reported in 10−1, ASE and its standard deviations are reported in 10−2.
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g(·) Dev Acc Angle Error ASE

Model 1 1.86(0.84) 5.61(6.92) 9.891(0.225) 0.046(0.009) 0.103(0.040)

Model 2 1.85(1.65) 9.72(8.51) 9.873(0.651) 9.731(9.516) 4.971(3.121)

Model 3 0.92(0.39) 6.20(5.72) 9.952(0.041) 3.851(0.108) 9.432(1.042)

Table 3
Criteria evaluated with different models under p > n case. β∗>(1) = (5, 5, 5, 5, 5), the error ε follows a

N (0, 0.1) distribution. In 100 simulations we set n = 100, p = 200, q = 5, τ = 0.05. Standard deviations
are given in brackets. Dev, Acc, Angle, Error and their standard deviations are reported in 10−1, ASE

and its standard deviations are reported in 10−2.

model settings ε Dev Acc Angle Error

Model 1

p = 10, q = 2
N 1.51%(0.003) 0.12(0.067) 0.999 0.50%(0.001)
t 3.62%(0.062) 0.43(0.421) 0.989 0.49%(0.001)

p = 10, q = 7
N 8.27%(0.145) 0.31(0.118) 0.989 0.81%(0.002)
t 6.44%(0.163) 0.68(0.081) 0.996 0.72%(0.002)

p = 100, q = 5
N 8.50%(0.394) 1.19(0.886) 0.905 0.73%(0.001)
t 6.50%(0.237) 1.82(1.023) 0.920 0.84%(0.002)

Model 2

p = 10, q = 2
N 0.25%(0.003) 0.03(0.015) 0.999 0.50%(0.001)
t 2.22%(0.200) 0.02(0.201) 0.979 0.50%(0.001)

p = 10, q = 7
N 6.13%(0.034) 0.07(0.271) 0.998 0.69%(0.001)
t 5.69%(0.033) 0.18(0.393) 0.998 0.70%(0.001)

p = 100, q = 5
N 8.10%(0.227) 2.42(0.214) 0.910 0.73%(0.003)
t 7.50%(0.225) 2.55(1.893) 0.912 0.70%(0.001)

Model 3

p = 10, q = 2
N 1.04%(0.003) 0.02(0.003) 0.999 0.50%(0.001)
t 1.67%(0.079) 0.02(0.611) 0.994 0.49%(0.001)

p = 10, q = 7
N 5.28%(0.062) 0.08(0.246) 0.997 0.68%(0.003)
t 5.49%(0.136) 0.08(0.482) 0.997 0.72%(0.002)

p = 100, q = 5
N 4.12%(0.323) 1.67(0.724) 0.944 0.84%(0.004)
t 8.20%(0.814) 2.38(0.706) 0.910 0.80%(0.005)

Table 4
Simulation results under sparsity, non-sparsity and large p cases. N means errors follow i.i.d. N(0, 0.1), t

means t distribution with degree of 5.
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model settings ε Dev Acc Angle Error

Model 1

p = 10, q = 2
N 2.68%(0.003) 0.07(0.003) 0.999 0.44%(0.001)
t 1.74%(0.004) 0.08(0.003) 0.999 0.51%(0.001)

p = 30, q = 3
N 2.14%(0.025) 0.87(0.378) 0.982 0.69%(0.001)
t 2.02%(0.034) 0.14(0.018) 0.997 0.77%(0.001)

p = 120, q = 5
N 4.35%(0.009) 1.14(0.099) 0.984 0.74%(0.001)
t 5.40%(0.016) 1.33(0.054) 0.977 0.60%(0.001)

Model 2

p = 10, q = 2
N 2.79%(0.005) 0.00(0.000) 0.999 0.50%(0.001)
t 1.88%(0.004) 0.00(0.000) 0.999 0.50%(0.001)

p = 30, q = 3
N 2.76%(0.028) 0.04(0.204) 0.995 0.72%(0.001)
t 2.46%(0.023) 0.03(0.007) 0.997 0.73%(0.001)

p = 120, q = 5
N 2.80%(0.017) 0.67(0.707) 0.991 0.46%(0.001)
t 1.20%(0.014) 1.45(1.213) 0.978 0.88%(0.001)

Model 3

p = 10, q = 2
N 3.64%(0.003) 0.00(0.000) 0.999 0.47%(0.001)
t 0.91%(0.004) 0.02(0.003) 0.999 0.49%(0.001)

p = 30, q = 3
N 5.84%(0.012) 0.16(0.081) 0.996 0.62%(0.001)
t 2.26%(0.013) 0.64(0.003) 0.997 0.72%(0.001)

p = 120, q = 5
N 9.89%(0.013) 0.44(0.387) 0.993 0.75%(0.001)
t 3.20%(0.034) 0.95(0.993) 0.986 0.81%(0.001)

Table 5
Simulation results for Composite L1 Quantile Regression. N means errors follow i.i.d. N(0, 0.1), t means

t distribution with degree of 5.

Mean SD Skewness Kurtosis

Before crisis −0.0004 0.0209 0.2408 12.1977
In crisis −9.247× 10−5 0.0312 0.1326 8.9544

Table 6
Descriptive statistics of CYN
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The financial frims

1. Wells Fargo & Co (WFC) 15. Franklin Resources Inc. (BEN)
2. JP Morgan Chase & Co (JPM) 16. The Travelers Companies, Inc. (TRV)
3. Bank of America Corp (BAC) 17. AFLAC Inc. (AFL)
4. Citigroup Inc (C) 18. Prudential Financial, Inc. (PRU)
5. American Express Company (AXP) 19. State Street Corporation (STT)
6. U.S. Bancorp (USB) 20. The Chubb Corporation (CB)
7. The Goldman Sachs Group, Inc. (GS) 21. BB&T Corporation (BBT)
8. American International Group, Inc. (AIG) 22. Marsh & McLennan Companies, Inc. (MMC)
9. MetLife, Inc. (MET) 23. The Allstate Corporation (ALL)

10. Capital One Financial Corp. (COF) 24. Aon plc (AON)
11. BlackRock, Inc. (BLK) 25. CME Group Inc. (CME)
12. Morgan Stanley (MS) 26. The Charles Schwab Corporation (SCHW)
13. PNC Financial Services Group Inc. (PNC) 27. T. Rowe Price Group, Inc. (TROW)
14. The Bank of New York Mellon Corporation (BK) 28. Loews Corporation (L)

29. SunTrust Banks, Inc. (STI) 44. Lincoln National Corporation (LNC)
30. Fifth Third Bancorp (FITB) 45. Affiliated Managers Group Inc. (AMG)
31. Progressive Corp. (PGR) 46. Cincinnati Financial Corp. (CINF)
32. M&T Bank Corporation (MTB) 47. Equifax Inc. (EFX)
33. Ameriprise Financial Inc. (AMP) 48. Alleghany Corp. (Y)
34. Northern Trust Corporation (NTRS) 49. Unum Group (UNM)
35. Invesco Ltd. (IVZ) 50. Comerica Incorporated (CMA)
36. Moody’s Corp. (MCO) 51. W.R. Berkley Corporation (WRB)
37. Regions Financial Corp. (RF) 52. Fidelity National Financial, Inc. (FNF)
38. The Hartford Financial Services Group, Inc. (HIG) 53. Huntington Bancshares Incorporated (HBAN)
39. TD Ameritrade Holding Corporation (AMTD) 54. Raymond James Financial Inc. (RJF)
40. Principal Financial Group Inc. (PFG) 55. Torchmark Corp. (TMK)
41. SLM Corporation (SLM) 56. Markel Corp. (MKL)
42. KeyCorp (KEY) 57. Ocwen Financial Corp. (OCN)
43. CNA Financial Corporation (CNA) 58. Arthur J Gallagher & Co. (AJG)

Table 7
The financial firms
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The financial frims

59. Hudson City Bancorp, Inc. (HCBK) 74. Commerce Bancshares, Inc. (CBSH)
60. People’s United Financial Inc. (PBCT) 75. Signature Bank (SBNY)
61. SEI Investments Co. (SEIC) 76. Jefferies Group, Inc. (JEF)
62. Nasdaq OMX Group Inc. (NDAQ) 77. Rollins Inc. (ROL)
63. Brown & Brown Inc. (BRO) 78. Morningstar Inc. (MORN)
64. BOK Financial Corporation (BOKF) 79. East West Bancorp, Inc. (EWBC)
65. Zions Bancorp. (ZION) 80. Waddell & Reed Financial Inc. (WDR)
66. HCC Insurance Holdings Inc. (HCC) 81. Old Republic International Corporation (ORI)
67. Eaton Vance Corp. (EV) 82. ProAssurance Corporation (PRA)
68. Erie Indemnity Company (ERIE) 83. Assurant Inc. (AIZ)
69. American Financial Group Inc. (AFG) 84. Hancock Holding Company (HBHC)
70. Dun & Bradstreet Corp. (DNB) 85. First Niagara Financial Group Inc. (FNFG)
71. White Mountains Insurance Group, Ltd. (WTM) 86. SVB Financial Group (SIVB)
72. Cullen-Frost Bankers, Inc. (CFR) 87. First Horizon National Corporation (FHN)
73. Legg Mason Inc. (LM) 88. E-TRADE Financial Corporation (ETFC)

89. SunTrust Banks, Inc. (STI) 104. Valley National Bancorp (VLY)
90. Mercury General Corporation (MCY) 105. KKR Financial Holdings LLC (KFN)
91. Associated Banc-Corp (ASBC) 106. Synovus Financial Corporation (SNV)
92. Credit Acceptance Corp. (CACC) 107. Texas Capital BancShares Inc. (TCBI)
93. Protective Life Corporation (PL) 108. American National Insurance Co. (ANAT)
94. Federated Investors, Inc. (FII) 109. Washington Federal Inc. (WAFD)
95. CNO Financial Group, Inc. (CNO) 110. First Citizens Bancshares Inc. (FCNCA)
96. Popular, Inc. (BPOP) 111. Kemper Corporation (KMPR)
97. Bank of Hawaii Corporation (BOH) 112. UMB Financial Corporation (UMBF)
98. Fulton Financial Corporation (FULT) 113. Stifel Financial Corp. (SF)
99. AllianceBernstein Holding L.P. (AB) 114. CapitalSource Inc. (CSE)
100. TCF Financial Corporation (TCB) 115. Portfolio Recovery Associates Inc. (PRAA)
101. Susquehanna Bancshares, Inc. (SUSQ) 116. Janus Capital Group, Inc. (JNS)
102. Capitol Federal Financial, Inc. (CFFN) 117. MBIA Inc. (MBI)
103. Webster Financial Corp. (WBS) 118. Healthcare Services Group Inc. (HCSG)

Table 8
The financial firms
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119. The Hanover Insurance Group Inc. (THG) 134. BancorpSouth, Inc. (BXS)
120. F.N.B. Corporation (FNB) 135. Privatebancorp Inc. (PVTB)
121. FirstMerit Corporation (FMER) 136. United Bankshares Inc. (UBSI)
122. FirstMerit Corporation (FMER) 137. Old National Bancorp. (ONB)
123. RLI Corp. (RLI) 138. International Bancshares Corporation (IBOC)
124. StanCorp Financial Group Inc. (SFG) 139. First Financial Bankshares Inc. (FFIN)
125. Trustmark Corporation (TRMK) 140. Westamerica Bancorp. (WABC)
126. IberiaBank Corp. (IBKC) 141. Northwest Bancshares, Inc. (NWBI)
127. Cathay General Bancorp (CATY) 142. Bank of the Ozarks, Inc. (OZRK)
128. National Penn Bancshares Inc. (NPBC) 143. Huntington Bancshares Incorporated (HBAN)
129. Nelnet, Inc. (NNI) 144. Euronet Worldwide Inc. (EEFT)
130. Wintrust Financial Corporation (WTFC) 145. Community Bank System Inc. (CBU)
131. Umpqua Holdings Corporation (UMPQ) 146. CVB Financial Corp. (CVBF)
132. GAMCO Investors, Inc. (GBL) 147. MB Financial Inc. (MBFI)
133. Sterling Financial Corp. (STSA) 148. ABM Industries Incorporated (ABM)

149. Glacier Bancorp Inc. (GBCI) 164. Citizens Republic Bancorp, Inc (CRBC)
150. Selective Insurance Group Inc. (SIGI) 165. Horace Mann Educators Corp. (HMN)
151. Park National Corp. (PRK) 166. DFC Global Corp. (DLLR)
152. Flagstar Bancorp Inc. (FBC) 167. Navigators Group Inc. (NAVG)
153. FBL Financial Group Inc. (FFG) 168. Boston Private Financial Holdings, Inc. (BPFH)
154. Astoria Financial Corporation (AF) 169. American Equity Investment Life Holding Co. (AEL)
155. World Acceptance Corp. (WRLD) 170. BlackRock Limited Duration Income Trust (BLW)
156. First Midwest Bancorp Inc. (FMBI) 171. Columbia Banking System Inc. (COLB)
157. PacWest Bancorp (PACW)) 172. Safety Insurance Group Inc. (SAFT)
158. First Financial Bancorp. (FFBC) 173. National Financial Partners Corp. (NFP)
159. BBCN Bancorp, Inc. (BBCN) 174. NBT Bancorp, Inc. (NBTB)
160. Provident Financial Services, Inc. (PFS) 175. Tower Group Inc. (TWGP)
161. FBL Financial Group Inc. (FFG) 176. Encore Capital Group, Inc. (ECPG)
162. WisdomTree Investments, Inc. (WETF) 177. Pinnacle Financial Partners Inc. (PNFP)
163. Hilltop Holdings Inc. (HTH) 178. First Commonwealth Financial Corp. (FCF)

179. BancFirst Corporation (BANF) 190. Berkshire Hills Bancorp Inc. (BHLB)
180. Independent Bank Corp. (INDB) 191. Brookline Bancorp, Inc. (BRKL)
181. Infinity Property and Casualty Corp. (IPCC) 192. National Western Life Insurance Company (NWLI)
182. Central Pacific Financial Corp. (CPF) 193. Tompkins Financial Corporation (TMP)
183. Kearny Financial Corp. (KRNY) 194. BGC Partners, Inc. (BGCP)
184. Chemical Financial Corporation (CHFC) 195. Epoch Investment Partners, Inc. (EPHC)
185. Banner Corporation (BANR) 196. United Fire Group, Inc (UFCS)
186. State Auto Financial Corp. (STFC) 197. 1st Source Corporation (SRCE)
187. Radian Group Inc. (RDN) 198. Citizens Inc. (CIA)
188. SCBT Financial Corporation (SCBT) 199. S&T Bancorp Inc. (STBA)
189. WesBanco Inc. (WSBC)

Table 9
The financial firms
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Figure 1. The true link functions (black) and the estimated link functions (red) in model 2 with β∗>(1) =
(5, 5, 5, 5, 5), and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.05, where h = 0.68 (left), h = 0.068 (middle)
and h = 1 (right).
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Figure 2. The true link functions (black) and the estimated link functions (red) with β∗>(1) = (5, 5, 5, 5, 5),
and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.95, model 1 (left) with h = 1.02, model 2 (middle) with
h = 0.15 and model 3 (right) with h = 0.76.
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Figure 3. The true link functions (black) and the estimated link functions (red) with β∗>(1) = (5, 5, 5, 5, 5),
and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.5, model 1 (left) with h = 1.76, model 2 (middle) with
h = 0.04 and model 3 (right) with h = 0.65.
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Figure 4. The true link functions (black) and the estimated link functions (red) with β∗>(1) = (5, 5, 5, 5, 5),
and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.05, model 1 (left) with h = 0.78, model 2 (middle) with
h = 0.12 and model 3 (right) with h = 1.0.
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Figure 5. The true link functions (black) and the estimated link functions (red) with β∗>(1) = (5, 4, 3, 2, 1),
and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.95, model 1 (left) with h = 0.65, model 2 (middle) with
h = 0.02 and model 3 (right) with h = 0.33.
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Figure 6. The true link functions (black) and the estimated link functions (red) with β∗>(1) = (5, 2, 1, 0.8, 0.2),
and ε ∼ N(0, 0.1), n = 100, p = 10, q = 5, τ = 0.95, model 1 (left) with h = 0.21, model 2 (middle) with
h = 0.18 and model 3 (right) with h = 0.25.
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Figure 7. The true link functions (black) and the estimated link functions (red) with β∗>(1) = (5, 5, 5, 5, 5),
and ε ∼ N(0, 0.1), n = 100, p = 200, q = 5, τ = 0.05, model 1 (left) with h = 0.81, model 2 (middle) with
h = 0.22 and model 3 (right) with h = 0.57.
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Figure 8. Plot of the true function g(·) (black) and the estimation (red) with n = 100, p = 10, q = 5 and
ε ∼ N(0, 0.1) in different g(·) functions. L1-L2 regression (upper pannel), composite quantile (lower panel)
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Figure 9. Log returns of CYN
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Figure 10. Log returns of JPM (blue) and VaR of log returns of JPM (red), τ = 0.05, T = 1569, window
size n = 100, refer to (5.2).
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Figure 11. Log returns of CYN (blue) and VaR of log returns of CYN (red), τ = 0.05, T = 1569, window
size n = 100, refer to (5.2).
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Figure 12. Log returns of CYN (blue) and the estimated CoVaR (black), τ = 0.05, T = 1543, window size
n = 126, refer to (5.4).
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Figure 13. The estimated link function, window size n = 126, starting date: 20080707, τ = 0.05, h = 0.027,
p = 206, q̂ = 3 (where q̂ is the number of selected variables in this window): FHN, MBI, RDN.
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Figure 14. The estimated link function, window size n = 126, starting date: 20100308, τ = 0.05, h = 0.056,
p = 206, q̂ = 5: ZION, EWBC, CNO, SNV, RDN.
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Figure 15. The frequency of the firms and macroprudential variables. The X-axis: 1− 206 variables, and
the Y-axis: the frequency of the variables selected in the moving window estimation. The variable 187, i.e.
”Radian Group Inc. (RDN)” is the most frequently selected variable with frequency 557.
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Figure 16. The top dots are the violations (i.e. {t : It = 1}) of V̂ aR of CYN, totally 8 violations,
T = 1543, τ̂ = 0.005.
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Figure 17. The top dots are the violations (i.e. {t : It = 1}) of ĈoV aR of CYN, totally 53 violations,
T = 1543, τ̂ = 0.034.
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