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Simultaneous Statistical Inference in Dynamic Factor Models

Thorsten Dickhaus 1
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Based on the theory of multiple statistical hypothesis testing, we elaborate simultaneous

statistical inference methods in dynamic factor models. In particular, we employ structural

properties of multivariate chi-squared distributions in order to construct critical regions for

vectors of likelihood ratio statistics in such models. In this, we make use of the asymptotic

distribution of the vector of test statistics for large sample sizes, assuming that the model is

identified and model restrictions are testable. Examples of important multiple test problems

in dynamic factor models demonstrate the relevance of the proposed methods for practical

applications.
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Key words: family-wise error rate, false discovery rate, likelihood ratio statistic, multiple
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1. DYNAMIC FACTOR MODELS

Dynamic factor models are multivariate time series models of the form

(1.1) X(t) =
∞
∑

s=−∞

Λ(s) f(t− s) + ε(t), 1 ≤ t ≤ T.

Thereby, X = (X(t) : 1 ≤ t ≤ T ) denotes a p-dimensional, covariance-stationary stochastic

process in discrete time with mean zero, f(t) = (f1(t), . . . , fk(t))
⊤ with k < p denotes a k-

dimensional vector of so-called ”common factors” and ε(t) = (ε1(t), . . . , εp(t))
⊤ denotes a p-

dimensional vector of ”specific factors”, to be regarded as error or remainder terms. Both f(t)

and ε(t) are assumed to be centered and the error terms are modeled as noise in the sense

that they are mutually uncorrelated at every time point and, in addition, uncorrelated with

f(t) at all leads and lags. The error terms ε(t) may, however, exhibit non-trivial (weak) serial

autocorrelations. Processes with the latter property are occasionally referred to as ”approximate”

factor models in contrast to ”strict” factor models where also the serial autocovariance matrix

of the specific factors is assumed to be strictly diagonal. We will refer to T as the sample size.

The underlying interpretation of model (1.1) is that the dynamic behavior of the process X

can already be described well (or completely) by a lower-dimensional ”latent” process. The entry

(i, j) of the matrix Λ(s) quantitatively reflects the influence of the j-th common factor at lead

or lag s, respectively, on the i-th component of X(t), where 1 ≤ i ≤ p and 1 ≤ j ≤ k. Recently,

Park et al. (2009) studied the case where factor loadings may depend on covariates and discussed

applications in economics and neuroimaging.

1 Thorsten Dickhaus is junior professor (E-mail: dickhaus@math.hu-berlin.de) at Humboldt-University Berlin,

Department of Mathematics, Unter den Linden 6, D-10099 Berlin, Germany. The author thanks Reinhard Meister

and Jens Stange for fruitful discussions. This research was supported by the Deutsche Forschungsgemeinschaft

through the SFB 649 ”Economic Risk”.
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A special case of model (1.1), sometimes termed ”conventional” factor model, results if the

influence of the common factors on X is itself without dynamics, i. e., if the model simplifies to

(1.2) X(t) = Λ f(t) + ε(t), 1 ≤ t ≤ T.

Peña and Box (1987) were concerned with methods for the determination of the (number

of) common factors in a factor model of the form (1.2) and derived a canonical transformation

allowing a parsimonious representation ofX(t) in (1.2) in terms of the common factors. Statistical

inference in conventional factor models has been studied, for instance, by Jöreskog (1969). For

further references and developments regarding the theory of conventional and dynamic factor

models we defer the reader to Breitung and Eickmeier (2005).

Statistical inference methods for dynamic factor models typically consider the time series

in the frequency domain, cf., among others, Forni et al. (2000, 2009) and references therein,

and analyze spectral decompositions of the autocovariance matrix of X. Along similar lines,

Geweke and Singleton (1981) developed a framework for statistical inference in dynamic factor

models based on the likelihood principle by making use of central limit theorems for time series

regression in the frequency domain by Hannan (1973). Their inferential considerations rely on

the asymptotic normality of the maximum likelihood estimator ϑ̂ of the (possibly very high-

dimensional) parameter vector ϑ in the resulting representation of the model. We will provide

more details in Section 4. To this end, it is essential that the time series model (1.1) is identified

in the sense of Geweke and Singleton (1981), which we will assume throughout the paper. If the

model is not identified, the individual contributions of the common factors cannot be expressed

unambiguously and, consequently, testing for significance or the construction of confidence sets

for elements of ϑ is obviously not informative.

In the present work, we will extend the methodology by Geweke and Singleton (1981). Specif-

ically, we will be concerned with simultaneous statistical inference in dynamic factor models under

the likelihood framework by considering multiple test procedures for positively dependent test

statistics, in our case likelihood ratio statistics (or, asymptotically equivalently, Wald statistics).

The paper is organized as follows. In Section 2, we provide a brief introduction to multiple

testing, especially under positive dependence. Section 3 is devoted to the analysis of structural

properties of multivariate chi-squared distributions and a numerical assessment of type I error

control for multiple tests with multivariate chi-square distributed test statistics. Finally, Section

4 exemplifies important simultaneous inference problems for dynamic factor models of the form

(1.1). We conclude with a discussion in Section 5.

2. MULTIPLE TESTING UNDER POSITIVE DEPENDENCE

The general setup of multiple testing theory assumes a statistical model (Ω,F , (Pϑ)ϑ∈Θ)

parametrized by ϑ ∈ Θ and is concerned with testing a family H = (Hi, i ∈ I) of hypotheses

regarding the parameter ϑ with corresponding alternatives Ki = Θ \ Hi, where I denotes an

arbitrary index set. We identify hypotheses with subsets of the parameter space throughout the

paper. Let ϕ = (ϕi, i ∈ I) a multiple test procedure for H, meaning that each component ϕi,

i ∈ I is a (marginal) test for the test problem Hi versus Ki in the classical sense. Moreover,

let I0 ≡ I0(ϑ) ⊆ I denote the index set of true hypotheses in H and V (ϕ) the number of

false rejections (type I errors) of ϕ, i. e., V (ϕ) =
∑

i∈I0
ϕi. The classical multiple type I error
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measure in multiple hypothesis testing is the family-wise error rate, FWER for short, and can

(for a given ϑ ∈ Θ) be expressed as FWERϑ(ϕ) = Pϑ(V (ϕ) > 0). The multiple test ϕ is

said to control the FWER at a pre-defined significance level α, if supϑ∈Θ FWERϑ(ϕ) ≤ α. A

simple, but often conservative method for FWER control is based on the union bound and is

referred to as Bonferroni correction in the multiple testing literature. Assuming that |I| = m,

the Bonferroni correction carries out each individual test ϕi, i ∈ I, at (local) level α/m. The

“Bonferroni test” ϕ = (ϕi, i ∈ I) then controls the FWER. In case that joint independence of all

m marginal test statistics can be assumed, the Bonferroni-corrected level α/m can be enlarged

to the “Šidák-corrected” level 1− (1−α)1/m > α/m leading to slightly more powerful (marginal)

tests. Both the Bonferroni and the Šidák test are single-step procedures, meaning that the same

local significance level is used for all m marginal tests.

An interesting other class of multiple test procedures are stepwise rejective tests, in particular

step-up-down tests, introduced by Tamhane et al. (1998). They are most conveniently described

in terms of p-values p1, . . . , pm corresponding to test statistics T1, . . . , Tm. It goes beyond the

scope of this paper to discuss the notion of p-values in depth. Therefore, we will restrict attention

to the case that every individual null hypothesis is simple, the distribution of every Ti, 1 ≤ i ≤ m,

under Hi is continuous and each Ti tends to larger values under alternatives. The test statistics

considered in Section 4 fulfill these requirements, at least asymptotically. Then, we can calculate

(observed) p-values by pi = 1−Fi(ti), 1 ≤ i ≤ m, where Fi is the cumulative distribution function

(cdf) of Ti under Hi and ti denotes the observed value of Ti. The transformation with the upper

tail cdf brings all test statistics to a common scale, because each p-value is supported on [0, 1].

Small p-values are in favor of the corresponding alternatives.

Definition 1 (Step-up-down test of order λ in terms of p-values, cf. Finner et al., 2012).

Let p1:m < p2:m < . . . < pm:m denote the ordered p-values for a multiple test problem. For

a tuning parameter λ ∈ {1, . . . ,m} a step-up-down test ϕλ = (ϕ1, . . . , ϕm) (say) of order λ

based on some critical values α1:m ≤ · · · ≤ αm:m is defined as follows. If pλ:m ≤ αλ:m, set

j∗ = max{j ∈ {λ, . . . ,m} : pi:m ≤ αi:m for all i ∈ {λ, . . . , j}}, whereas for pλ:m > αλ:m, put

j∗ = sup{j ∈ {1, . . . , λ − 1} : pj:m ≤ αj:m} (sup ∅ = −∞). Define ϕi = 1 if pi ≤ αj∗:m and

ϕi = 0 otherwise (α−∞:m = −∞).

A step-up-down test of order λ = 1 or λ = n, respectively, is called step-down (SD) or step-up

(SU) test, respectively. If all critical values are identical, we obtain a single-step test.

In connection with control of the FWER, SD tests play a pivotal role, because they can often

be considered a shortcut of a closed test procedure, cf. Marcus et al. (1976). For example, the

famous SD procedure of Holm (1979) employing critical values αi:m = α/(m− i+ 1), 1 ≤ i ≤ m

is, under the assumption of a complete system of hypotheses, a shortcut of the closed Bonferroni

test, see, for instance, Sonnemann (2008), and hence controls the FWER at level α.

In order to compare concurring multiple test procedures, also a type II error measure or,

equivalently, a notion of power is required under the multiple testing framework. To this end,

we define I1 ≡ I1(ϑ) = I \ I0, m1 = |I1|, S(ϕ) =
∑

i∈I1
ϕi and refer to the expected proportion of

correctly detected alternatives, i. e., powerϑ(ϕ) = Eϑ[S(ϕ)/max(m1, 1)], as the multiple power of

ϕ under ϑ. If the structure of ϕ is such that ϕi = 1pi≤t∗ for a common, possibly data-dependent

threshold t∗, then the multiple power of ϕ is isotone in t∗. For step-up-down tests, this entails

that index-wise larger critical values lead to higher multiple power.
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Gain in multiple power under the constraint of FWER control is only possible if certain

structural assumptions for the joint distribution of (p1, . . . , pm) or, equivalently, (T1, . . . , Tm) can

be established, cf. Example 1 below. In particular, positive dependency among the (p1, . . . , pm)

in the sense of multivariate total positivity of order 2 (MTP2, see Karlin and Rinott, 1980) or

positive regression dependency on subsets (PRDS, see Benjamini and Yekutieli, 2001) allows to

enlarge the critical values (αi:m)1≤i≤m. To give a specific example, Sarkar (1998) proved that the

critical values αi:m = iα/m, 1 ≤ i ≤ m can be used as the basis for an FWER-controlling closed

test procedure, provided that the joint distribution of p-values is MTP2. These critical values

have originally been proposed by Simes (1986) in connection with a global test for the intersection

hypothesis H0 =
⋂m

i=1Hi and are therefore often referred to as Simes’ critical values. Hommel

(1988) worked out a shortcut for the aforementioned closed test procedure based on Simes’ critical

values; we will refer to this multiple test as ϕHommel in the remainder of this work.

Simes’ critical values also play an important role in connection with control of the false discov-

ery rate (FDR). The FDR is a relaxed type I error measure suitable for large systems of hypothe-

ses. Formally, it is defined as FDRϑ(ϕ) = Eϑ[FDP(ϕ)], where FDP(ϕ) = V (ϕ)/max(R(ϕ), 1)

with R(ϕ) = V (ϕ) + S(ϕ) denoting the total number of rejections of ϕ under ϑ. The ran-

dom variable FDP(ϕ) is called the false discovery proportion. The meanwhile classical linear

step-up test by Benjamini and Hochberg (1995), ϕLSU (say), is an SU test with Simes’ crit-

ical values. Under joint independence of all p-values, it provides FDR-control at (exact) level

m0α/m, where m0 = m−m1, see, for instance, Finner et al. (2009). Independently of each other,

Benjamini and Yekutieli (2001) and Sarkar (2002) proved that supϑ∈Θ FDRϑ(ϕ
LSU) ≤ m0α/m if

the joint distribution of (p1, . . . , pm) is PRDS on I0 (notice that MTP2 implies PRDS on any

subset).

3. MULTIVARIATE CHI-SQUARED DISTRIBUTIONS

In order to formalize inference for several likelihood ratio statistics simultaneously, we have to

generalize the definition of the multivariate chi-squared distribution as given in Definition 3.5.7

of Timm (2002) to allow for possibly different degrees of freedom in each marginal.

Definition 2 (Generalized multivariate chi-squared distribution).

Let m ≥ 2 and ~ν = (ν1, . . . , νm)⊤ ∈ Nm. Let Z1 = (Z1,1, . . . , Z1,ν1)
⊤, Z2 = (Z2,1, . . . , Z2,ν2)

⊤, . . .,

Zm = (Zm,1, . . . , Zm,νm)
⊤ denote m vectors of standard normal variates with joint correlation

matrix R = (ρ(Zk1,ℓ1 , Zk2,ℓ2) : 1 ≤ k1, k2 ≤ m, 1 ≤ ℓ1 ≤ νk1 , 1 ≤ ℓ2 ≤ νk2) such that for

any 1 ≤ k ≤ m the variates Zk,1, . . . , Zk,νk are jointly stochastically independent. Let Q =

(Q1, . . . , Qm)⊤, where for all 1 ≤ k ≤ m : Qk =
∑νk

ℓ=1 Z
2
k,ℓ. Then we call the distribution of Q a

generalized multivariate (central) chi-squared distribution with parameters m, ~ν and R and write

Q ∼ χ2(m,~ν,R).

The following lemma shows that among the components of a generalized multivariate chi-

squared distribution only non-negative correlations can occur.

Lemma 1. Let Q ∼ χ2(m,~ν,R). Then, for any pair of indices 1 ≤ k1, k2 ≤ m it holds

(3.1) 0 ≤ Cov(Qk1 , Qk2) ≤ 2
√
νk1 νk2 .
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Proof. Without loss of generality, assume k1 = 1 and k2 = 2. Simple probabilistic calculus now

yields

Cov(Q1, Q2) = Cov





ν1
∑

i=1

Z2
1,i,

ν2
∑

j=1

Z2
2,j





=

ν1
∑

i=1

ν2
∑

j=1

Cov(Z2
1,i, Z

2
2,j) = 2

ν1
∑

i=1

ν2
∑

j=1

ρ2(Z1,i, Z2,j) ≥ 0.

The upper bound in (3.1) follows directly from the Cauchy-Schwarz inequality, because the

variance of a chi-squared distributed random variable with ν degrees of freedom equals 2ν.

In view of the applicability of multiple test procedures for positively dependent test statis-

tics that have been discussed in Section 2, Lemma 1 points into the right direction. However,

unfortunately, pairwise positive correlations are not sufficient to prove the MTP2 property (see,

for instance, Example 3.2. in Karlin and Rinott, 1980). In fact, the MTP2 property for multi-

variate chi-squared or, more generally, multivariate gamma distributions could up to now only

be proved for special cases as, for example, exchangeable gamma variates (Example 3.5. in

Karlin and Rinott (1980), see also Sarkar and Chang (1997) for applications of this type of mul-

tivariate gamma distributions in multiple hypothesis testing).

Therefore, we conducted an extensive simulation study of FWER and FDR control of multiple

tests suitable under MTP2 (or PRDS) in the case that the vector of test statistics follows a

generalized multivariate chi-squared distribution. Specifically, we investigated the shortcut test

ϕHommel for control of the FWER and the linear step-up test ϕLSU for control of the FDR and

considered the following correlation structures among the variates (Zk,ℓ∗ : 1 ≤ k ≤ m) for any

given 1 ≤ ℓ∗ ≤ max{νk : 1 ≤ k ≤ m}. (Since only the coefficients of determination enter the

correlation structure of the resulting chi-square variates, we restricted our attention to positive

correlation coefficients among the Zk,ℓ.)

1. Autoregressive, AR(1): ρij = ρ|i−j|, ρ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

2. Compound symmetry (CS): ρij = ρ+ (1− ρ)1{i=j}, ρ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

3. Toeplitz: ρij = ρ|i−j|+1, with ρ1 ≡ 1 and ρ2, ..., ρm∗ randomly drawn from the interval

[0.1, 0.9].

4. Unstructured (UN): The ρij are elements of a normalized realization of a Wishart-distributed

random matrix with m degrees of freedom and diagonal expectation the elements of which

were randomly drawn from [0.1, 0.9]m.

In all four cases, we have ρij = Cov(Zi,ℓ∗ , Zj,ℓ∗), 1 ≤ i, j ≤ m∗, where m∗ = |{1 ≤ k ≤
m : νk ≥ ℓ∗}|. The marginal degrees of freedom (νk : 1 ≤ k ≤ m) have been drawn randomly

from the set {1, 2, . . . , 100} for every simulation setup. In this, we chose decreasing sampling

probabilities of the form γ/(ν+1), 1 ≤ ν ≤ 100, where γ denotes the norming constant, because

we were most interested in the small-scale behavior of ϕHommel and ϕLSU under dependency.

For the number of marginal test statistics, we considered m ∈ {2, 5, 10, 50, 100} and for the

number of true hypotheses the respective values of m0 provided in Tables 1 - 4. For all false
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hypotheses, we set the corresponding p-values to zero, because the resulting so-called ”Dirac-

uniform configurations” are assumed to be least favorable for ϕHommel and ϕLSU, see, for instance,

Finner et al. (2009) and Blanchard et al. (2011). For every simulation setup, we performed

M = 1, 000 Monte Carlo repetitions of the respective multiple test procedures and estimated

the FWER or FDR, respectively, by relative frequencies or means, respectively. We present our

results in Tables 1 - 4 in the appendix.

Remark 1. For carrying out these large-scale simulation studies efficiently, we made use

of the simulation platform provided by the µTOSS software for multiple hypothesis testing, see

Blanchard et al. (2010).

To summarize our findings, ϕHommel behaved remarkably well over the entire range of simu-

lation setups. Only in a few cases, it violated the target FWER level slightly, but one has to

keep in mind that Dirac-uniform configurations correspond to extreme deviations from the null

hypotheses which are not expected to be encountered in practical applications.

In line with the results by Benjamini and Yekutieli (2001) and Sarkar (2002), ϕLSU appeared

to be extremely conservative for small values ofm0 (notice the factorm0/m in the bound reported

at the end of Section 2). One could try to diminish this conservativity either by pre-estimating

m0 and plugging the estimated value m̂0 into the nominal level, i. e., replacing α bymα/m̂0, or by

employing other sets of critical values. For instance, Finner et al. (2009) and Finner et al. (2012)

developed non-linear critical values aiming at full exhaustion of the FDR level for any value of m0

under Dirac-uniform configurations. However, both strategies are up to now only guaranteed to

work well under the assumption of stochastically independent p-values and it would need deeper

investigations of their validity under positive dependence. Here, we can at least report that we

have no indications that ϕLSU may not keep the FDR level under our framework.

Example 1 (Communicated to the author by Klaus Straßburger). Let us emphasize here

that the observed control of FWER and FDR is a specific property of positively dependent test

statistics. To give a counterexample, consider m = 2 and two normally distributed test statistics

T1 and T2, where Ti ∼ N (µi, 1), i = 1, 2, and ρ(T1, T2) = −1. Let Hi : {µi ≤ 0} and, conse-

quently, Ki : {µi > 0}, i = 1, 2, and notice that T2 = −T1 under µ1 = µ2 = 0, with corresponding

probability measure P(0,0). A single-step multiple test at local level αloc. for this problem is given by

ϕ = (ϕ1, ϕ2) with ϕi = 1[Φ−1(1−αloc.),∞)(Ti), i = 1, 2, where Φ denotes the cumulative distribution

function of the standard normal distribution.

Now, in order to control the FWER at level α with ϕ, we have to choose αloc. = α/2, because

FWER(0,0)(ϕ) = P(0,0)

(

T1 ≥ Φ−1(1− αloc.) ∨ T2 ≥ Φ−1(1− αloc.)
)

= P(0,0)

(

T1 ≥ Φ−1(1− αloc.)
)

+ P(0,0)

(

T1 ≤ −Φ−1(1− αloc.)
)

= 2αloc..

4. EXEMPLARY MULTIPLE TEST PROBLEMS IN DYNAMIC FACTOR MODELS

In order to maintain a self-contained presentation, we first briefly summarize the essential

techniques and results from Geweke and Singleton (1981).

Making use of (1.1), the autocovariance function of the observable process X, ΓX for short,
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and its spectral density matrix SX (say), can be expressed by

ΓX(u) = E[X(t)X(t+ u)⊤] =

∞
∑

s=−∞

Λ(s)

∞
∑

v=−∞

Γf (u+ s− v)Λ(v)⊤ + Γε(u),

SX(ω) = (2π)−1
∞
∑

u=−∞

ΓX(u) exp(−iωu)

= Λ̃(ω)Sf (ω)Λ̃(ω)
′ + Sε(ω), −π ≤ ω ≤ π.(4.1)

In (4.1), Λ̃(ω) =
∑∞

s=−∞ Λ(s) exp(−iωs) and the prime stands for transposition and conjugation.

The identifiability conditions mentioned in Section 1 can be plainly phrased by postulating that

the representation in (4.1) is unique (up to scaling).

A localization technique now allows to apply the likelihood principle to the dynamic factor

model (1.1), assuming that the sample size T is large. All further methods in this section rely

on asymptotic considerations with respect to T . To this end, we consider a scaled version of the

empirical (finite) Fourier transform of X. Evaluated at harmonic frequencies, it is given by

X̃(ωj) = (2πT )−1/2
T
∑

t=1

X(t) exp(itωj), where ωj = 2πj/T, 1 ≤ j ≤ T.

Moreover, we choose B disjoint frequency bands Ω1, . . . ,ΩB, such that SX can be assumed

approximately constant within each of these bands. Under standard regularity assumptions and

with nb denoting the number of harmonic frequencies ωj that fall into the band Ωb, 1 ≤ b ≤ B,

Hannan (1973) showed that the nb random vectors (X̃(ωj) : ωj ∈ Ωb) converge in distribution to

a vector of nb stochastically independent random vectors, each of which follows a complex normal

distribution with mean zero and covariance matrix SX(ω(b)), where ω(b) denotes the center of

the band Ωb. According to Goodman (1963), this entails, for a given realization X = x of the

process, the likelihood function

ℓb(ϑb,x) = π−p×nb |SX(ω(b))|−nb exp



−
∑

j:ωj∈Ωb

x̃(ωj)
′
[

SX(ω(b))
]−1

x̃(ωj)





in frequency band Ωb. Therein, the parameter vector ϑb contains all d = 2pk + k2 + p distinct

parameters in Λ̃(ω(b)), Sf (ω
(b)) and Sε(ω

(b)). Notice here that for computational purposes each

of the (in general) complex elements in Λ̃(ω(b)) and Sf (ω
(b)) is represented by a pair of real

components in ϑb, corresponding to its real part and its imaginary part.

For the optimization of the B local (log-) likelihood functions, an algorithm originally devel-

oped by Jöreskog (1969) for conventional factor models has been adapted. It delivers not only

the numerical value of the maximum likelihood estimator ϑ̂b, but additionally an estimate of the

covariance matrix Vb (say) of ϑ̂b. Standard arguments from likelihood theory (cf., e. g., Section

12.4 in Lehmann and Romano, 2005) yield that

(4.2) ϑ̂b
as.∼ Nd(ϑb, V̂b), 1 ≤ b ≤ B,

where V̂b denotes the estimated covariance matrix of ϑ̂b.

The result in (4.2), in connection with the fact that the vectors ϑ̂b, 1 ≤ b ≤ B, are asymptot-

ically jointly uncorrelated with each other, is very helpful for testing linear (point) hypotheses.
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Such hypotheses are of the form H : Cϑ = ξ with a contrast matrix C ∈ Rr×Bd, ξ ∈ Rr and ϑ

consisting of all elements of all the vectors ϑb. Geweke and Singleton (1981) proposed the usage

of Wald statistics in this context. The Wald statistic for testing H is given by

(4.3) W = (Cϑ̂− ξ)⊤(CV̂ C⊤)−1(Cϑ̂− ξ),

where V̂ is the block matrix built up from the band-specific matrices V̂b, 1 ≤ b ≤ B. It

is well-known that W is asymptotically equivalent to the likelihood ratio statistic for testing

H. In particular, W is asymptotically χ2-distributed with r degrees of freedom under the null

hypothesis H, see Section 12.4.2 in Lehmann and Romano (2005). Wald statistics have the

practical advantage that they can be computed easily, avoiding restricted maximization of the

likelihood function.

In the remainder of this section, we discuss two exemplary simultaneous statistical inference

problems in model (1.1) and demonstrate that they can be formalized by families of linear

hypotheses regarding (components of) ϑ which in turn can be tested employing the statistical

framework we considered in Sections 2 and 3.

Problem 1 (Which of the specific factors have a non-trivial autocorrelation structure?).

Solving this problem is substantially more informative than just testing a single specific factor

for trivial autocorrelations as considered by Geweke and Singleton (1981). Presence of many

coloured noise components may hint at further hidden common factors and therefore, the solution

to Problem 1 can be utilized for the purpose of model diagnosis in the spirit of a residual analysis.

In the notational framework of Section 2, we have m = p, I = {1, . . . , p} and for all i ∈ I we can

consider the linear hypothesis Hi : CDunnett sεi = 0. The contrast matrix CDunnett is the ”multiple

comparisons with a control” contrast matrix with B − 1 rows and B columns, where in each row

j the first entry equals +1, the (j +1)-th entry equals −1 and all other entries are equal to zero.

The vector sεi ∈ RB consists of the values of the spectral density matrix Sε corresponding to the

i-th noise component, evaluated at the B centers (ω(b) : 1 ≤ b ≤ B) of the chosen frequency bins.

Denoting the subvector of ϑ̂ that corresponds to sεi by ŝεi , the i-th Wald statistic is given by

Wi = (CDunnett ŝεi)
⊤
[

CDunnettV̂εiC
⊤
Dunnett

]−1
(CDunnett ŝεi),

where V̂εi = diag(σ̂2
εi(ω

(b)) : 1 ≤ b ≤ B).

Under Hi, Wi asymptotically follows a χ2-distribution with B − 1 degrees of freedom. Con-

sidering the vector W = (W1, . . . ,Wp)
⊤ of all p Wald statistics corresponding to the p specific

factors in the model, we finally have W
as.∼ χ2(p, (B − 1, . . . , B − 1)⊤, R) under the p hypotheses

H1, . . . , Hp, with some correlation matrix R. This allows to employ the multiple tests considered

in Sections 2 and 3 for solving this problem.

Problem 2 (Which of the common factors have a lagged influence on X?). In many economic

applications, it is informative if certain factors (such as interventions) have an instantaneous or a

lagged effect. By solving Problem 2, this can be answered for several of the common factors simul-

taneously, accounting for the multiplicity of the test problem. As done by Geweke and Singleton

(1981), we formalize the hypothesis that common factor j has a purely instantaneous effect on

Xi, 1 ≤ j ≤ k, 1 ≤ i ≤ p in the spectral domain by Hij : |Λ̃ij |2 is constant across the B frequency

bands. In an analogous manner to the derivations in Problem 1, the contrast matrix CDunnett can be
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used as the basis to construct a Wald statistic Wij. The vector W = (Wij : 1 ≤ i ≤ p, 1 ≤ j ≤ k)

then asymptotically follows a multivariate chi-squared distribution with B − 1 degrees of freedom

in each marginal under the corresponding null hypotheses and we can proceed as in Problem 1.

Many other problems of practical relevance can be formalized analogously by making use of

linear contrasts and thus, our framework applies to them, too. Furthermore, the hypotheses of

interest may also refer to different subsets of {1, . . . , B}. In such a case, the marginal degrees of

freedom for the test statistics are not balanced, as considered in the general Definition 2 and in

our simulations in Section 3.

5. CONCLUDING REMARKS AND OUTLOOK

First of all, we would like to mention that the multiple testing results with respect to FWER

control achieved in Sections 3 and 4 also imply (approximate) simultaneous confidence regions

for the parameters of model (1.1) because of the extended correspondence theorem, see Finner

(1994). In such cases (in which focus is on FWER control), a promising alternative method for

constructing a multiple test procedure is to deduce the limiting joint distribution of the vector

(Q1, . . . , Qm)⊤ of likelihood ratio statistics. For instance, one may follow the derivations by

Katayama (2008) for the case of likelihood ratio statistics stemming from models with stochasti-

cally independent and identically distributed observations. Once this limiting joint distribution

is obtained, simultaneous test procedures like the ones developed by Hothorn et al. (2008) are

applicable. However, these methods are constructed by considering the global intersection hy-

pothesis H0 and therefore cannot be applied for FDR control. This is the reason why we focused

on generic p-value based methods in Section 3.

Second, it may be interesting to assess the variance of the FDP in dynamic factor models, too.

Among others, Finner et al. (2007) and Blanchard et al. (2011) have shown that this variance

can be large in models with dependent test statistics and have consequently questioned if it is

appropriate only to control the first moment of the FDP, because this does not imply a type I

error control guarantee for the actual experiment at hand. A maybe more convincing concept in

such cases is given by control of the false discovery exceedance, see Farcomeni (2009) for a good

survey.

A topic relevant for economic applications is to what extent the results in the present paper

can be transferred to more complicated models where factor loadings are modeled as a function

of covariates like in Park et al. (2009). To this end, stochastic process techniques way beyond

the scope of our setup are required. A first step may be the consideration of parametric models

in which conditioning on the design matrix will lead to our framework.

Finally, if appropriate resampling schemes for empirically approximating the distribution of

ϑ̂ in cases with small or moderate sample sizes could be worked out, a more accurate exhaustion

of the multiple type I error level could be achieved. This is a topic devoted to future research.
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APPENDIX

Table 1: Simulated FWER control of ϕHommel under AR(1) and compound symmetry structure,

respectively. The target FWER level was set to 5% in all simulations.

m ρ m0 F̂WERAR(1),ρ(ϕ
Hommel) F̂WERCS,ρ(ϕ

Hommel)

2 0.1 1 0.052 0.045

2 0.1 2 0.052 0.057

2 0.25 1 0.06 0.064

2 0.25 2 0.049 0.049

2 0.5 1 0.035 0.056

2 0.5 2 0.055 0.043

2 0.75 1 0.056 0.043

2 0.75 2 0.052 0.049

2 0.9 1 0.051 0.048

2 0.9 2 0.054 0.042

5 0.1 1 0.05 0.053

5 0.1 3 0.047 0.046

5 0.1 5 0.042 0.043

5 0.25 1 0.047 0.031

5 0.25 3 0.057 0.055

5 0.25 5 0.057 0.047

5 0.5 1 0.051 0.043

5 0.5 3 0.052 0.038

5 0.5 5 0.05 0.048

5 0.75 1 0.049 0.054

5 0.75 3 0.055 0.04

5 0.75 5 0.049 0.041

5 0.9 1 0.053 0.045

5 0.9 3 0.043 0.045

5 0.9 5 0.044 0.035

10 0.1 1 0.044 0.054

10 0.1 4 0.06 0.049

10 0.1 7 0.047 0.059

10 0.1 10 0.06 0.057

10 0.25 1 0.048 0.046

10 0.25 4 0.061 0.035

10 0.25 7 0.056 0.045

10 0.25 10 0.057 0.041

10 0.5 1 0.042 0.053

10 0.5 4 0.047 0.059
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m ρ m0 F̂WERAR(1),ρ(ϕ
Hommel) F̂WERCS,ρ(ϕ

Hommel)

10 0.5 7 0.049 0.04

10 0.5 10 0.055 0.062

10 0.75 1 0.048 0.056

10 0.75 4 0.051 0.038

10 0.75 7 0.036 0.049

10 0.75 10 0.031 0.044

10 0.9 1 0.049 0.053

10 0.9 4 0.04 0.038

10 0.9 7 0.041 0.036

10 0.9 10 0.036 0.026

50 0.1 1 0.044 0.061

50 0.1 10 0.036 0.055

50 0.1 25 0.051 0.055

50 0.1 40 0.055 0.043

50 0.1 50 0.042 0.041

50 0.25 1 0.048 0.047

50 0.25 10 0.05 0.062

50 0.25 25 0.03 0.052

50 0.25 40 0.04 0.052

50 0.25 50 0.041 0.052

50 0.5 1 0.047 0.05

50 0.5 10 0.046 0.045

50 0.5 25 0.047 0.058

50 0.5 40 0.047 0.046

50 0.5 50 0.052 0.039

50 0.75 1 0.055 0.055

50 0.75 10 0.055 0.028

50 0.75 25 0.041 0.029

50 0.75 40 0.04 0.044

50 0.75 50 0.039 0.029

50 0.9 1 0.05 0.059

50 0.9 10 0.038 0.03

50 0.9 25 0.037 0.017

50 0.9 40 0.044 0.022

50 0.9 50 0.028 0.024

100 0.1 1 0.056 0.05

100 0.1 10 0.038 0.055

100 0.1 25 0.046 0.056

100 0.1 50 0.06 0.053
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m ρ m0 F̂WERAR(1),ρ(ϕ
Hommel) F̂WERCS,ρ(ϕ

Hommel)

100 0.1 75 0.049 0.047

100 0.1 90 0.06 0.051

100 0.1 100 0.057 0.05

100 0.25 1 0.047 0.057

100 0.25 10 0.055 0.047

100 0.25 25 0.054 0.044

100 0.25 50 0.048 0.045

100 0.25 75 0.041 0.051

100 0.25 90 0.044 0.052

100 0.25 100 0.054 0.044

100 0.5 1 0.047 0.046

100 0.5 10 0.053 0.04

100 0.5 25 0.048 0.04

100 0.5 50 0.056 0.052

100 0.5 75 0.043 0.045

100 0.5 90 0.047 0.033

100 0.5 100 0.042 0.049

100 0.75 1 0.046 0.052

100 0.75 10 0.039 0.039

100 0.75 25 0.044 0.034

100 0.75 50 0.046 0.03

100 0.75 75 0.047 0.024

100 0.75 90 0.048 0.026

100 0.75 100 0.043 0.028

100 0.9 1 0.051 0.05

100 0.9 10 0.045 0.038

100 0.9 25 0.033 0.02

100 0.9 50 0.042 0.008

100 0.9 75 0.046 0.017

100 0.9 90 0.04 0.012

100 0.9 100 0.045 0.016
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Table 2: Simulated FWER control of ϕHommel under Toeplitz structure and for unstructured

correlation matrices, respectively. The target FWER level was set to 5% in all simulations.

m m0 F̂WERToeplitz(ϕ
Hommel) F̂WERUN (ϕHommel)

2 1 0.043 0.052

2 2 0.049 0.052

5 1 0.052 0.057

5 3 0.048 0.041

5 5 0.044 0.037

10 1 0.048 0.05

10 4 0.057 0.04

10 7 0.048 0.046

10 10 0.045 0.043

50 1 0.046 0.043

50 10 0.069 0.043

50 25 0.048 0.044

50 40 0.047 0.036

50 50 0.045 0.054

100 1 0.044 0.047

100 10 0.044 0.054

100 25 0.05 0.048

100 50 0.055 0.054

100 75 0.044 0.055

100 90 0.055 0.038

100 100 0.047 0.055
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Table 3: Simulated FDR control of ϕLSU under AR(1) and compound symmetry structure, re-

spectively. The target FDR level was set to 5% in all simulations.

m ρ m0 F̂DRAR(1),ρ(ϕ
LSU) F̂DRCS,ρ(ϕ

LSU)

2 0.1 1 0.026 0.0225

2 0.1 2 0.052 0.057

2 0.25 1 0.03 0.032

2 0.25 2 0.049 0.049

2 0.5 1 0.0175 0.028

2 0.5 2 0.055 0.043

2 0.75 1 0.028 0.0215

2 0.75 2 0.052 0.049

2 0.9 1 0.026 0.024

2 0.9 2 0.054 0.042

5 0.1 1 0.01 0.0106

5 0.1 3 0.028 0.0275

5 0.1 5 0.043 0.043

5 0.25 1 0.0094 0.0062

5 0.25 3 0.033 0.030

5 0.25 5 0.058 0.05

5 0.5 1 0.0102 0.0086

5 0.5 3 0.0308 0.025

5 0.5 5 0.051 0.049

5 0.75 1 0.0098 0.0108

5 0.75 3 0.034 0.030

5 0.75 5 0.052 0.041

5 0.9 1 0.0106 0.009

5 0.9 3 0.0302 0.026

5 0.9 5 0.048 0.038

10 0.1 1 0.0044 0.0054

10 0.1 4 0.0201 0.023

10 0.1 7 0.032 0.037

10 0.1 10 0.061 0.058

10 0.25 1 0.0048 0.0046

10 0.25 4 0.0201 0.020

10 0.25 7 0.0375 0.0336

10 0.25 10 0.057 0.043

10 0.5 1 0.0042 0.0053

10 0.5 4 0.022 0.022

10 0.5 7 0.033 0.029

10 0.5 10 0.055 0.068
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m ρ m0 F̂DRAR(1),ρ(ϕ
LSU) F̂DRCS,ρ(ϕ

LSU)

10 0.75 1 0.0048 0.0056

10 0.75 4 0.021 0.019

10 0.75 7 0.032 0.038

10 0.75 10 0.034 0.045

10 0.9 1 0.0049 0.0053

10 0.9 4 0.017 0.017

10 0.9 7 0.035 0.033

10 0.9 10 0.037 0.03

50 0.1 1 0.00088 0.00122

50 0.1 10 0.0093 0.010

50 0.1 25 0.025 0.025

50 0.1 40 0.043 0.041

50 0.1 50 0.042 0.042

50 0.25 1 0.00096 0.00094

50 0.25 10 0.0094 0.0099

50 0.25 25 0.023 0.025

50 0.25 40 0.037 0.040

50 0.25 50 0.042 0.053

50 0.5 1 0.00094 0.001

50 0.5 10 0.0101 0.010

50 0.5 25 0.024 0.024

50 0.5 40 0.042 0.037

50 0.5 50 0.054 0.04

50 0.75 1 0.0011 0.0011

50 0.75 10 0.011 0.0096

50 0.75 25 0.026 0.021

50 0.75 40 0.040 0.040

50 0.75 50 0.04 0.034

50 0.9 1 0.001 0.0012

50 0.9 10 0.0097 0.0086

50 0.9 25 0.024 0.020

50 0.9 40 0.040 0.039

50 0.9 50 0.034 0.032

100 0.1 1 0.00056 0.00050

100 0.1 10 0.0045 0.0049

100 0.1 25 0.012 0.012

100 0.1 50 0.026 0.025

100 0.1 75 0.037 0.035

100 0.1 90 0.044 0.046
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m ρ m0 F̂DRAR(1),ρ(ϕ
LSU) F̂DRCS,ρ(ϕ

LSU)

100 0.1 100 0.058 0.05

100 0.25 1 0.00047 0.00057

100 0.25 10 0.0049 0.0051

100 0.25 25 0.013 0.013

100 0.25 50 0.025 0.026

100 0.25 75 0.036 0.038

100 0.25 90 0.044 0.044

100 0.25 100 0.055 0.047

100 0.5 1 0.00047 0.00046

100 0.5 10 0.0051 0.0044

100 0.5 25 0.013 0.013

100 0.5 50 0.025 0.027

100 0.5 75 0.036 0.038

100 0.5 90 0.045 0.038

100 0.5 100 0.045 0.054

100 0.75 1 0.00046 0.00052

100 0.75 10 0.0047 0.0046

100 0.75 25 0.012 0.012

100 0.75 50 0.024 0.023

100 0.75 75 0.039 0.034

100 0.75 90 0.044 0.035

100 0.75 100 0.044 0.035

100 0.9 1 0.00051 0.00050

100 0.9 10 0.0050 0.0050

100 0.9 25 0.012 0.012

100 0.9 50 0.026 0.020

100 0.9 75 0.039 0.033

100 0.9 90 0.042 0.032

100 0.9 100 0.048 0.022
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Table 4: Simulated FDR control of ϕLSU under Toeplitz structure and for unstructured correlation

matrices, respectively. The target FDR level was set to 5% in all simulations.

m m0 F̂DRToeplitz(ϕ
LSU) F̂DRUN (ϕLSU)

2 1 0.0215 0.026

2 2 0.049 0.052

5 1 0.0104 0.011

5 3 0.034 0.033

5 5 0.045 0.037

10 1 0.0048 0.005

10 4 0.022 0.019

10 7 0.035 0.033

10 10 0.046 0.045

50 1 0.00092 0.00086

50 10 0.011 0.0096

50 25 0.025 0.023

50 40 0.037 0.038

50 50 0.047 0.057

100 1 0.00044 0.00047

100 10 0.0047 0.0053

100 25 0.012 0.012

100 50 0.025 0.026

100 75 0.034 0.037

100 90 0.044 0.044

100 100 0.049 0.057
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