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Abstract

In this paper, I construct a new test of conditional moment inequalities based on

studentized kernel estimates of moment functions. The test automatically adapts to the

unknown smoothness of the moment functions, has uniformly correct asymptotic size, and

is rate optimal against certain classes of alternatives. Some existing tests have nontrivial

power against n−1/2-local alternatives of the certain type whereas my method only allows

for nontrivial testing against (n/ log n)−1/2-local alternatives of this type. There exist,

however, large classes of sequences of well-bahaved alternatives against which the test

developed in this paper is consistent and those tests are not.

Keywords: Conditional Moment Inequalities, Minimax Rate Optimality.

1 Introduction

Conditional moment inequalities (CMI) are often encountered both in economics and econo-

metrics. In economics, they arise naturally in many models that include behavioral choice,

see Pakes (2010) for a survey. In econometrics, they appear in the estimation problems with

interval data and problems with censoring, e.g., see Manski and Tamer (2002). In addition,

CMI offer a convenient way to study treatment effects in randomized experiments as described

in Lee et al. (2011). In the next section, I provide three detailed examples of models with

CMI.

∗MIT, Department of Economics. Email: dchetver@mit.edu. I thank Victor Chernozhukov for his guidance,
numerous discussions and permanent support. I am also grateful to Isaiah Andrews, Jerry Hausman, Kengo
Kato, Anton Kolotilin, and Anna Mikusheva for useful comments and discussions. The first version of the
paper was presented at the Econometric lunch at MIT on November 18, 2010.
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Let m : Rd × Rk × Θ → Rp be a vector-valued known function. Let (X,W ) be a pair of

Rd and Rk-valued random vectors, and θ ∈ Θ a parameter. The CMI can be written as

E[m(X,W, θ)|X] ≤ 0 a.s. (1.1)

I am interested in testing the null hypothesis, H0, that θ = θ0 against the alternative, Ha,

that θ 6= θ0 based on a random sample (Xi,Wi)
n
i=1 from the distribution of (X,W ). Note

that I also allow for conditional moment equalities since they can be written as pairs of the

CMI in model (1.1).

Using CMI for inference is difficult because often these inequalities do not identify the

parameter. Let

ΘI = {θ ∈ Θ : E[m(X,W, θ)|X] ≤ 0 a.s.} (1.2)

denote the identified set. The model is said to be identified if and only if ΘI is a singleton.

Otherwise, CMI do not identify the parameter θ. For example, nonidentification may happen

when the CMI arise from a game-theoretic model with multiple equilibria. Moreover, the

parameter may be weakly identified. My approach leads to a test with the correct asymptotic

size no matter whether the parameter is identified, weakly identified, or not identified.

Two approaches to robust CMI testing have been developed in the literature. One ap-

proach (Andrews and Shi (2010)), is based on converting CMI into an infinite number of

unconditional moment inequalities using nonnegative weighting functions. The other ap-

proach (Chernozhukov et al. (2009)), is based on estimating moment functions nonpara-

metrically. My method is inspired by the work of Andrews and Shi (2010). To motivate

the test developed in this paper, consider two examples of CMI models. These models

are highly stylized but convey the main ideas. In the first model, m is multiplicatively

separable in θ, i.e. m(X,W, θ) = θm̃(X,W ) for some m̃ : Rd × Rk → R and θ ∈ R
with E[m̃(X,W )|X] > 0 a.s. In the second model, m is additively separable in θ, i.e.

m(X,W, θ) = m̃(X,W ) + θ. The identified sets, ΘI , in these models are {θ ∈ R : θ ≤ 0} and

{θ ∈ R : θ ≤ −ess supX E[m̃(X,W )|X]}1 correspondingly. Andrews and Shi (2010) developed

a test that has nontrivial power against alternatives of the form θ0 = θ0,n = C/
√
n for any

C > 0 in the first model, so their test has extremely high power in this model. It follows from

Armstrong (2011a) that their test has low power in the second model, however (e.g., in com-

parison with the test of Chernozhukov et al. (2009))2. In constrast, I construct a test that has

1By definition, ess supX f(X) = inf{M ∈ R : f(X) ≤ M a.s.} (essential supremum). If E[m̃(X,W )|X] is
continuous, then essential supremum equals usual supremum.

2Andrews and Shi (2010) developed tests based on both Cramer-von Mises and Kolmogorov-Smirnov test
statistics. In this paper, I refer to their test with the Kolmogorov-Smirnov test statistic. Most statements are
also applicable for Cramer-von Mises test statistic as well, however.
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high power in a large class of CMI models including models like that in the second example.

At the same time, my test has nearly the same power in models like that described in the first

example. The main difference between two approaches is that my test statistic is based on

the studentized estimates of moments whereas theirs is not. More precisely, Andrews and Shi

(2010) consider studentized statistics but modify the variance term so that asymptotic power

properties of their test are similar to those of the test with no studentization.

The test of Chernozhukov et al. (2009) also has high power in a large class of CMI models

but it requires knowledge of certain smoothness properties of moment functions such as order

of differentiability whereas the test developed in this paper does not. Moreover, my test

automatically adapts to these smoothness properties selecting the most appropriate weighting

function. For this reason, I call the test adaptive. This feature of the test is important because

smoothness properties of moment functions are rarely known in practice.

The test statistic in this paper is based on kernel estimates of moment functions E[mj(X,W, θ0)|X]

with many bandwidth values using positive kernels3. Here mj(X,W, θ) denotes j-th compo-

nent of m(X,W, θ). I assume that the set of bandwidth values expands as the sample size n

increases so that the minimal bandwidth value converges to zero at an appropriate rate while

the maximal one is fixed. Since the variance of the kernel estimators varies greatly with the

bandwidth value, each estimator is studentized, i.e. it is divided by its estimated standard

deviation. The test statistic, T̂ , is formed as the maximum of these studentized estimates,

and large values of T̂ suggest that the null hypothesis is violated.

I develop a bootstrap method to simulate a critical value for the test. The method is based

on the observation that the distribution of the test statistic is asymptotically independent of

the distribution of the noise {m(Xi,Wi, θ0) − E[m(Xi,Wi, θ0)|Xi]}ni=1 apart from its second

moment. For reasons similar to those discussed in Chernozhukov et al. (2007) and Andrews

and Soares (2010), the distribution of the test statistic in large samples depends heavily on

the extent to which the CMI are binding. Moreover, the parameters that measure to what

extent the CMI are binding cannot be estimated consistently. I develop a new approach to

deal with this problem, which I refer to as the refined moment selection (RMS) procedure.

The approach is based on a pretest which is used to decide what counterparts of the test

statistic should be used in simulating the critical value for the test. Unlike Andrews and Shi

(2010), I use a model-specific, data-driven, critical value for the pretest, which is taken to be

a large quantile of the appropriate distribution, whereas they use a deterministic threshold

with no reference to the model. I also provide a plug-in critical value for the test. My proof of

the bootstrap validity is interesting on its own right because it is unknown whether the test

statistic has a limiting distribution.

3A kernel is said to be positive if the kernel function is positive on its support.
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None of the tests in the literature including mine have power against alternatives in the

set ΘI . Therefore, I consider the alternatives of the form

P{E[mj(X,W, θ0)|X] > 0} > 0 for some j = 1, ..., p (1.3)

To show that my test has good power properties in a large class of CMI models, I derive its

power against alternatives of the form (1.3) assuming that E[m(X,W, θ0)|X] is some vector

of unrestricted nonparametric functions. In other words, I consider nonparametric classes

of alternatives. Once m(X,W, θ) is specified, it is straightforward to translate my results

to the parametric setting. The test developed in this paper is consistent against any fixed

alternative outside of the set ΘI . I also show that my method allows for nontrivial testing

against (n/ log n)−1/2-local one-dimensional alternatives4. Finally, I prove that the test is

minimax rate optimal against certain classes of smooth alternatives consisting of moment

functions E[m(X,W, θ0)|X] that are sufficiently flat at the points of maxima. Minimax rate

optimality means that the test is uniformly consistent against alternatives in the mentioned

class whose distance from the set of models satisfying (1.1) converges to zero at the fastest

possible rate. The requirement that functions should be sufficiently flat cannot be dropped

because the test is based on the positive kernels.

The literature concerned with unconditional and conditional moment inequalities is ex-

panding quickly. Published papers on unconditional moment inequalities include Chernozhukov

et al. (2007), Romano and Shaikh (2008), Rosen (2008), Andrews and Guggenberger (2009),

Andrews and Han (2009), Andrews and Soares (2010), Bugni (2010), Canay (2010), Pakes

(2010), and Romano and Shaikh (2010). There is also a large literature on partial identifica-

tion which is closely related to that on moment inequalities. Methods specific for conditional

moment inequalities were developed in Khan and Tamer (2009), Kim (2008), Chernozhukov

et al. (2009), Andrews and Shi (2010), Lee et al. (2011), Armstrong (2011a), and Armstrong

(2011b). The case of CMI that point identify θ is treated in Khan and Tamer (2009). The

test of Kim (2008) is closely related to that of Andrews and Shi (2010). Lee et al. (2011)

developed a test based on the minimum distance statistic in the one-sided Lp-norm and kernel

estimates of moment functions. The advantage of their approach comes from simplicity of

their critical value for the test, which is an appropriate quantile of the standard Gaussian

distribution. Their test is not adaptive, however, since only one bandwidth value is used.

Armstrong (2011a) developed a new method for computing the critical value for the test

statistic of Andrews and Shi (2010) that leads to a more powerful test than theirs but the

4In this paper, the term ’local one-dimensional alternative’ is used to refer to a sequence of models
m = mn(X,W, θ0) such that E[mn(X,W, θ0)|X] = anf(X) for some sequence of positive numbers {an}∞n=1

converging to zero where f : Rd → Rp satisfies P{fj(X) > 0} > 0 for some j = 1, ..., p.
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resulting test is not robust. In particular, his method cannot be used in CMI models like that

described in the first example above. Armstrong (2011b), which was written independently

and at the same time as this paper, considered a test statistic similar to that used in this paper

and derived a critical value such that the whole identified set is contained in the confidence

region with probability approaching one. In other words, he focused on estimation rather

than inference.

Finally, an important related paper in the statistical literature is Dumbgen and Spokoiny

(2001). They consider testing qualitative hypotheses in the ideal Gaussian white noise model

where a researcher observes a stochastic process that can be represented as a sum of the

mean function and a Brownian motion. In particular, they developed a test of the hypothesis

that the mean function is (weakly) negative almost everywhere. Though their test statistic is

somewhat related to that used in this paper, the technical details of their analysis are quite

different.

The rest of the paper is organized as follows. The next section discusses some examples

of CMI models. Section 3 formally introduces the test. The main results of the paper are

presented in section 4. Extensions to the cases of infinitely many CMI and local CMI are

provided in section 5. A Monte Carlo simulation study is described in section 6. There I

provide an example of an alternative with a well-behaved moment function such that the test

developed in this paper rejects the null hypothesis with probability higher than 80% while the

rejection probability of all competing tests does not exceed 20%. Brief conclusions are drawn

in section 7. Finally, all proofs are contained in the Appendix.

2 Examples

In this section, I provide three examples of CMI models.

Incomplete Models of English Auctions. My first example follows Haile and Tamer

(2003) treatment of English auctions under weak conditions. The popular model of English

auctions suggested by Milgrom and Weber (1982) assumes that each bidder is holding down the

button while the price for the object is going up continuously until she wants to drop out. The

price at the moment of dropping out is her bid. It is well-known that the dominant strategy

in this model is to make a bid equal to her valuation of the object. In practice, participants

usually call out bids, however. Hence, the price rises in jumps, and the bid may not be equal

to person’s valuation of the object. In this situation, the relation between bids and valuations

of the object depends crucially on the modeling assumptions. Haile and Tamer (2003) derived

certain bounds on the distribution function of valuations based on minimal assumptions of

rationality.
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Suppose that we have an auction with m bidders whose valuations of the object are drawn

independently from the distrubution F (·, X) where X denotes observable characterics of the

object. Let b1, ..., bm denote highest bids of each bidder. Let b1:m ≤ ... ≤ bm:m denote the

ordered sequence of bids b1, ..., bm. Assuming that bids do not exceed bidders’ valuations,

Haile and Tamer (2003) derived the following upper bound on F (·, X):

E[φ−1(F (v,X))− I{bi:m ≤ v}|X] ≤ 0 a.s. (2.1)

for all v ∈ R and i = 1, ...,m where φ(·) is a certain (known) increasing function, see equation

(3) in Haile and Tamer (2003). A similar lower bound follows from the assumption that

bidders do not allow opponents to win at a price they would like to beat. Parameterizing the

function F (·, ·) and selecting a finite set V = {v1, ..., vp} gives inequalities of the form (1.1).

Interval Data. In some cases, especially when data involve personal information like

individual income or wealth, one has to deal with interval data. Suppose we have a mean

regression model

Y = f(X,V ) + ε (2.2)

where E[ε|X,V ] = 0 a.s. and V is a scalar random variable. Suppose that we observe X and Y

but do not observe V . Instead, we observe V0 and V1, called brackets, such that V ∈ [V0, V1] a.s.

In empirical analysis, brackets may arise because a respondent refuses to provide information

on V but provides an interval to which V belongs. Following Manski and Tamer (2002),

assume that f(X,V ) is weakly increasing in V and E[Y |X,V ] = E[Y |X,V, V0, V1]. Then it is

easy to see that

E[I{V1 ≤ v}(Y − f(X, v))|X,V0, V1] ≤ 0 (2.3)

and

E[I{V0 ≥ v}(Y − f(X, v))|X,V0, V1] ≥ 0 (2.4)

for all v ∈ R. Again, parameterizing the function f(·, ·) and selecting a finite set V =

{v1, ..., vp} gives inequalities of the form (1.1).

Treatment Effects. Suppose that we have a randomized experiment where one group

of people gets a new treatment while the control group gets a placebo. Let D = 1 if the

person gets the treatment and 0 otherwise. Let p denote the probability that D = 1. Let

X denote person’s observable characteristics and Y denote the realized outcome. Finally, let

Y0 and Y1 denote the counterfactual outcomes had the person received a placebo or the new

medicine respectively. Then Y = DY1 + (1 −D)Y0. The question of interest is whether the

new medicine has a positive expected impact uniformly over all possible charactersics X. In

6



other words, the null hypothesis, H0, is that

E[Y1 − Y0|X] ≥ 0 a.s. (2.5)

Since in randomized experiments D is independent of X, Lee et al. (2011) showed that

E[Y1 − Y0|X] = E[DY/p− (1−D)Y/(1− p)|X] (2.6)

Combining (2.5) and (2.6) gives CMI.

3 The Test

In this section, I present the test statistic and give two bootstrap methods to simulate critical

values. The analysis in this paper is conducted conditional on the set of values {Xi}∞i=1, so

all probabilistic statements excluding those in lemmas 3 and 4 in the Appendix should be

understood conditional on {Xi}∞i=1 for almost all sequences {Xi}∞i=1. Lemmas 3 and 4 provide

certain conditions that ensure that the assumptions used in this paper hold for almost all

sequences {Xi}∞i=1.

For fixed θ0, let f(X) = E[m(X,W, θ0)|X]. Then under the null hypothesis,

f(X) ≤ 0 a.s. (3.1)

In addition, let Yi = m(Xi,Wi, θ0) and εi = Yi− f(Xi) so that E[εi|Xi] = 0 a.s. (i = 1, ..., n).

Finally, let f1, ..., fp denote components of f .

Section 3.1 defines the test statistic assuming that Σi = E[εiε
T
i |Xi] is known for each

i = 1, ..., n. Section 3.2 gives two bootstrap methods to simulate critical values. The first

one is based on plug-in asymptotics, while the second one uses the refined moment selection

(RMS) procedure. Section 3.2 also provides some intuition of why these procedures lead to

the correct asymptotic size of the test. When Σi is unknown, it should be estimated from

the data. Section 3.3 shows how to construct an appropriate estimator Σ̂i of Σi. The feasible

version of the test will be based on substituting Σ̂i for Σi both in the test statistic and in the

critical value.

3.1 The Test Statistic

The test statistic in this paper is based on a kernel estimator of the vector-valued function

f . Let K : Rd → R+ be some kernel. For bandwidth value h ∈ R+, let Kh(x) = K(x/h)/hd.

7



For each pair of observations i, j = 1, ..., n, denote the weight function

wh(Xi, Xj) =
Kh(Xi −Xj)∑n
k=1Kh(Xi −Xk)

(3.2)

Then the kernel estimator of fm(Xi) is

f̂(i,m,h) =

n∑
j=1

wh(Xi, Xj)Yj,m (3.3)

where Yj,m denotes m-th component of Yj
5. Conditional on {Xi}ni=1, the variance of the kernel

estimator f̂(i,m,h) is

V 2
(i,m,h) =

n∑
j=1

w2
h(Xi, Xj)Σj,mm (3.4)

where Σj,m1m2 denotes (m1,m2) component of Σj .

Next, consider a finite set of bandwidth values H = {h = hmaxa
k : h ≥ hmin, k = 0, 1, 2, ...}

for some hmax > hmin and a ∈ (0, 1). For simplicity, I assume that hmin = hmaxa
k for

some k ∈ N so that hmin is included in H. I assume that as the sample size n increases,

hmin converges to zero while hmax is fixed. For practical purposes, I recommend setting

hmax = maxi,j=1,...,n ‖Xi −Xj‖/2, hmin = hmax(0.04/n0.95)1/(3d), and a = 0.8. This choice of

parameters is consistent with the theory presented in the paper and also worked well in my

simulations. Note that hmin is chosen so that the kernel estimator uses on average roughtly

15 data points when n = 250.

For each bandwidth value h ∈ H, choose a subset Ih of observations such that ‖Xj−Xk‖ >
2h for all j, k ∈ Ih with j 6= k and for each i = 1, ..., n, there exists an element j(i) ∈ Ih such

that ‖Xi−Xj(i)‖ ≤ 2h where ‖ · ‖ denotes the Eucledian norm on Rd. I refer to Ih as a set of

test points. The choice of Ih may be random, but it is important to select Ih independently

of {Yi}ni=1. Conditional on {Xi}ni=1, I assume that Ih is nonstochastic. It will be assumed in

the next section that K(x) = 0 for any x ∈ Rd such that ‖x‖ > 1. Thus, random variables

{f̂(i,m,h)}i∈Ih are jointly independent for any fixed m = 1, ..., p and h ∈ H conditional on

{Xi}ni=1. Finally, denote S = {(i,m, h) : i ∈ Ih, m = 1, ..., p, h ∈ H}.
Based on this notation, the test statistic is

T = max
s∈S

f̂s
Vs

(3.5)

Let me now explain why the optimal bandwidth value depends on the smoothness proper-

5The estimator of fm(Xi) is usually denoted by f̂m(Xi). I use nonstandard notation f̂(i,m,h) because it will
be more convenient later in the paper.
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ties of the components f1, ..., fp of f . Without loss of generality, consider j = 1. Suppose that

f1(X) is flat. Then f1(X) is positive on the large subset of its domain whenever its maximal

value is positive. Hence, the maximum of T̂ will correspond to a large bandwidth value be-

cause the variance of the kernel estimator, which enters the denominator of the test statistic,

decreases with the bandwidth value. On the other hand, if f1(X) is allowed to have peaks,

then there may not exist a large subset where it is positive. Hence, large bandwidth values

may not yield large values of T̂ , and small bandwidth values should be used. I circumvent the

problem of bandwidth selection by considering the set of bandwidth values jointly, and let the

data determine the best bandwidth value. In this sense, my test adapts to the smoothness

properties of f(X). This allows me to construct a test with good uniform power properties

over possible degrees of smoothness for f(X).

When Σi is unknown, which is usually the case in practice, one can define V̂ 2
(i,m,h) =∑n

j=1w
2
h(Xi, Xj)Σ̂j,mm and use

T̂ = max
s∈S

f̂s

V̂s
(3.6)

instead of T , where Σ̂j is some estimator of Σj . Some possible estimators are discussed in

section 3.3.

3.2 Critical Values

Suppose we want to construct a test of size α. This subsection explains how to simulate a

critical value c1−α for the test statistic T̂ based on two bootstrap methods. One method is

based on plug-in asymptotics while the other one uses the refined moment selection (RMS)

procedure. The resulting test will reject the null hypothesis if and only if T̂ > c1−α.

The first method relies on two observations. First, it is easy to see that, for a fixed

distribution of disturbances {εi}ni=1, the maximum of 1 − α quantile of the test statistic T̂

over all possible functions f satisfying f ≤ 0 a.s. corresponds to f = 0p. Second, lemmas

9 and 11 in the Appendix show that the distribution of the statistic T̂ is asymptotically

independent of the distrubution of disturbances {εi : i = 1, ..., n} apart from their second

moments {Σi : i = 1, ..., n}. These observations suggest that one can simulate c1−α (denoted

by cPIA1−α ) by the following procedure:

1. For each i = 1, ..., n, simulate Ỹi ∼ N(0p, Σ̂i) independently across i.

2. Calculate TPIA = max(i,m,h)∈S
∑n

j=1wh(Xi, Xj)Ỹj,m/V̂(i,m,h).

3. Repeat steps 1 and 2 independently B times for some large B to obtain {TPIAb : b =

1, ..., B}.
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4. Let cPIA1−α be 1− αth empirical quantile of {TPIAb }Bb=1.

The second method is based on the refined moment selection (RMS) procedure. It gives a more

powerful test while maintaining the required size. The method relies on the observation that

|T̂ | = Op(
√

log n) if f = 0p (see lemmas 8, 9, and 11 in the Appendix) while f̂i,m,h/V̂(i,m,h) →
−∞ at a polynomial rate if fm(X) < 0 for X satisfying ‖X −Xi‖ < h. Such terms will have

asymptotically negligible effect on the distribution of T̂ , so we can ignore corresponding terms

in the simulated statistic. Therefore, one can simulate c1−α (denoted by cRMS
1−α ) as follows.

First, let γ < α/2 be some small positive number (truncation parameter). Second, use the

plug-in bootstrap to find cPIA1−γ . Denote

SRMS = {s ∈ S : f̂s/V̂s > −2cPIA1−γ } (3.7)

Third, run the following procedure:

1. For each i = 1, ..., n, simulate Ỹi ∼ N(0p, Σ̂i) independently across i.

2. Calculate TRMS = max(i,m,h)∈SRMS

∑n
j=1wh(Xi, Xj)Ỹj,m/V̂(i,m,h).

3. Repeat steps 1 and 2 independently B times for some large B to obtain {TRMS
b : b =

1, ..., B}.

4. Let cRMS
1−α be 1− αth empirical quantile of {TRMS

b }Bb=1.

In the next section, it will be assumed that γ = γn → 0 as n → 0. So, I recommend setting

γ as a small fraction of α, for example γ = 0.01 for α = 0.05. Alternatively, one can set

γ = 0.1/ log(n), similar to Chernozhukov et al. (2009)6.

3.3 Estimating Σi

Let me now explain how one can estimate Σi. The literature on estimating Σi is huge. Among

other papers, it includes Rice (1984), Muller and Stadtmuller (1987), Hardle and Tsybakov

(1997), and Fan and Yao (1998). For scalar-valued Yi, available estimators are described

in Horowitz and Spokoiny (2001). All those estimators can be immediately generalized to

vector-valued Yi. For concreteness, I describe one estimator here. Choose a bandwidth value

bn > 0. For i = 1, ..., n, let J(i) = {j = 1, ..., n : ‖Xj −Xi‖ ≤ bn}. If J(i) has an odd number

of elements, drop one arbitrarily selected observation. Partition J(i) into pairs using a map

k : J(i) → J(i) satisfying k(j) 6= j and k(k(j)) = j for all j ∈ J(i). Let |J(i)| denote the

6Note also that if γ is comparable with α, one can do a finite sample adjustment of the critical value by
taking 1− α+ 2γth quantile of {TRMS

b }Bb=1 at step 4 of the procedure above.
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number of elements in J(i). Then Σi can be estimated by

Σ̂i =
∑
j∈J(i)

(Yk(j) − Yj)(Yk(j) − Yj)T /(2|J(i)|) (3.8)

Lemma 1 in the Appendix gives certain conditions that ensure that this estimator will be

uniformly consistent for Σi over i = 1, ..., n with a polynomial rate, i.e.

max
i=1,...,n

‖Σ̂i − Σi‖o = op(n
−κ) (3.9)

for some κ > 0 where ‖ · ‖o denotes the spectral norm on the space of p × p-dimensional

symmetric matrices corresponding to the Eucledian norm on Rp. To choose the bandwidth

value bn in practice, one can use appropriately modified cross validation. An advantage of

this estimator is that it is fully adaptive with respect to the smoothness properties of f .

The intuition behind this estimator is based on the following argument. Note that k(j) is

chosen so that Xk(j) is close to Xj . If the function f is continuous,

Yk(j) − Yj = f(Xk(j))− f(Xj) + εk(j) − εj ≈ εk(j) − εj (3.10)

so that

E[(Yk(j) − Yj)(Yk(j) − Yj)T |{Xi}ni=1] ≈ Σk(j) + Σj (3.11)

since εk(j) is independent of εj . If bn is small enough and Σ(X) is continuous, Σk(j)+Σj ≈ 2Σi

since ‖Xk(j) −Xi‖ ≤ bn and ‖Xj −Xi‖ ≤ bn.

4 The Main Results

This section presents my main results. Section 4.1 gives regularity conditions. Section 4.2

describes size properties of the test. Section 4.3 explains the behavior of the test under a

fixed alternative. Section 4.4 derives the rate of consistency of the test against local one-

dimensional alternatives mentioned in the introduction. Section 4.5 shows the rate of uniform

consistency against certain classes of smooth alternatives. Section 4.6 presents the minimax

rate-optimality result.

4.1 Assumptions

Let Cj (j = 1, ..., 6) be a set of strictly positive and finite constants independent of the sample

size n. Let Mh(Xi) be the number of elements in the set {Xj : ‖Xj −Xi‖ ≤ h, j = 1, ..., n}.
Results in this paper will be proven under the following assumptions.

11



Assumption 1. (i) Design points {Xi}∞i=1 are nonstochastic. (ii) C1nh
d ≤Mh(Xi) ≤ C2nh

d

for all i ∈ N and h ∈ H = Hn.

The design points are nonstochastic because the analysis is conducted conditional on

{Xi}∞i=1. In addition, assumption 1 states that the number of design points in certain neigh-

borhoods of each design point is proportional to the volume of the neighborhood with the

coefficient of proportionality bounded from above and away from zero. It is stated in Horowitz

and Spokoiny (2001) that assumption 1 holds in an iid setting with probability approaching

one as the sample size increases if the distribution of Xi is absolutely continuous with respect

to Lebegue measure, has bounded support, and has density bounded away from zero on the

support. This statement is actually wrong unless one makes some extra assumptions. Lemma

3 in the Appendix gives a counter-example. Instead, lemma 4 shows that assumption 1 holds

for large n a.s. if, in addition, I assume that the density of Xi is bounded from above, and

that the support of Xi is a convex set. Necessity of the density boundedness is obvious. Con-

vexity of the support is not necessary for assumption 1 but it strikes a good balance between

generality and simplicity. In general, one must deal with some smoothness properties of the

boundary of the support. Note that the statement “for large n a.s.” is stronger than “with

probability approaching one”. Note also that assumption 1(ii) requires inequalities to hold for

all i ∈ N, not just for i = 1, ..., n.

Assumption 2. (i) Disturbances {εi}∞i=1 are independent Rp-valued random variables with

E[εi] = 0 for all i = 1, ...,∞. (ii) E[‖εi‖3] ≤ C3 for all i = 1, ...,∞. (iii) Σi,mm ≥ C4 for all

i = 1, ...,∞ and m = 1, ..., p.

Finite third moment of disturbances is used in the derivation of a certain invariance princi-

ple with the rate of convergence. As in the classical central limit theorem, two finite moments

are sufficient to prove weak convergence but more finite moments are necessary if we are

interested in the rate of convergence. I assume that the variance of each component of distur-

bances is bounded away from zero for simplicity of the presentation. Since I use studentized

kernel estimates, without this assumption, it would be necessary to truncate the variance of

the kernel estimators from below with truncation level slowly converging to zero. That would

complicate the derivation of the main results without changing the main ideas.

Before stating assumption 3, let me give formal definitions of Holder smoothness class

F(τ, L) and its subsets Fς(τ, L). For d-tuple of nonnegative integers α = (α1, ..., αd) with

|α| = α1 + ...+ αd, function g : Rd → R, and x = (x1, ..., xd) ∈ Rd, denote

Dαg(x) =
∂|α|g

∂xα1
1 ...∂xαdd

(x) (4.1)
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whenever it exists. For τ > 0 and L > 0, it is said that the function g : Rd → R belongs

to the class F(τ, L) if (i) g has continuous partial derivatives up to order [τ ], (ii) for any

α = (α1, ..., αd) such that |α| = [τ ] and x, y ∈ Rd,

|Dαg(x)−Dαg(y)| ≤ L‖x− y‖τ−[τ ] (4.2)

and (iii) for any α = (α1, ..., αd) such that |α| ≤ [τ ] and any x ∈ Rd,

|Dαg(x)| ≤ L (4.3)

Here [τ ] denotes the largest integer strictly smaller than τ . Let Sd−1 = {l ∈ Rd : ‖l‖ = 1}
denote the space of directions in Rd. For any g ∈ F(τ, L), x = (x1, ..., xd) ∈ Rd, and l ∈ Sd−1,
let g(k,l)(x) denote k-th derivative of function g in direction l at point x whenever it exists7.

For ς = 1, ..., [τ ], let Fς(τ, L) denote the class of all elements of F(τ, L) such that for any

g ∈ Fς(τ, L) and l ∈ Sd−1, g(k,l)(x) = 0 for all k = 1, ..., ς whenever g(1,l)(x) = 0, and there

exist x = (x1, ..., xd) ∈ Rd and l ∈ Sd−1 such that g(ς+1,l)(x) 6= 0 and g(1,l)(x) = 0. If τ ≤ 1, I

set ς = 0 and Fς(τ, L) = F(τ, L).

Assumption 3. fm ∈ Fς(τ, L) for all m = 1, ..., p for some τ > 0, L > 0, and ς = 1, ..., [τ ].

For simplicity of notation, I assume that all components of f have the same smoothness

properties. This assumption is used in the derivation of the power properties of the test.

Assumption 4. (i) The set of bandwidth values has the following form: H = Hn = {h =

hmaxa
k : h ≥ hmin, k = 0, 1, 2, ...} where a ∈ (0, 1), hmax = maxi,j=1,...,n ‖Xi − Xj‖/2 and

hmin = hmin,n → 0 as n→∞. (ii) For some ε > 0, n1−εh3dmin > C5 for all n.

According to this assumption, the maximal bandwidth value, hmax, is independent of n.

Its value is chosen to match the radius of the support of design points. It is intented to detect

deviations from the null hypothesis in the form of flat alternatives. The minimal bandwidth

value, hmin, converges to zero as the sample size increases in such a way that the number

of bandwidth values in the set Hn is growing at a logarithmic rate or slower. The minimal

bandwidth value is intended to detect alternatives with narrow peaks. Assumption 4(ii) is a

key condition used to establish an invariance principle that shows that the distribution of T̂

asymptotically depends on the distribution of disturbances {εi} only through their covariances

{Σi}.

Assumption 5. The truncation parameter, γ, satisfies γ = γn → 0 as n→∞.

7Let w : R→ R be given by w(t) = g(x+ tl). By definition, g(k,l)(x) = w(k)(0).
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This assumption is used in the proof that the test is asymptotically not conservative.

Assumption 6. Estimators Σ̂i of Σi satisfy maxi=1,...,n ‖Σ̂i − Σi‖o = op(n
−κ) with some

κ > 0 where ‖ · ‖o denotes the spectral norm on the space of p × p-dimensional symmetric

matrices corresponding to the Euclidean norm on Rp.

Assumption 6 is satisfied for Σ̂i described in section 3.3. In practice, due to the curse of

dimensionality, it might be useful to use some parametric or semi-parametric estimators of

Σi instead of the estimator described in section 3.3. For example, if we assume that Σi = Σj

for all i, j = 1, ..., n, then the estimator of Rice (1984) (or its multivariate generalization) is

1/
√
n-consistent. In this case, assumption 6 will be satisfied with κ = 1/2− φ for arbitrarily

small φ > 0.

Assumption 7. (i) The kernel K is positive and supported on {x ∈ Rd : ‖x‖ ≤ 1}. (ii)

K(x) ≤ 1 for all x ∈ Rd and K(x) ≥ C6 for all ‖x‖ ≤ 1/2.

I assume that the kernel function is positive on its support. Many kernels satisfy this

assumption. For example, one can use rectangular, triangular, parabolic, or biweight kernels.

See Tsybakov (2009) for the definitions. On the other hand, the requirement that the kernel

is positive on its support excludes higher-order kernels, which are necessary to achieve mini-

max optimal testing rate over large classes of smooth alternatives. I require positive kernels

because of their negativity-invariance property, which means that any kernel smoother with

a positive kernel maps the space of negative functions into itself. This property is essential

for obtaining a test with the correct asymptotic size when smoothness properties of moment

functions are unknown. With higher-order kernels, one has to assume undersmoothing so that

the bias of the estimator is asymptotically negligible in comparison with its standard devia-

tion. Otherwise, large values of T̂ might be caused by large values of the bias term relative

to the standard deviation of the estimator even though all components of f(X) are negative.

However, for undersmoothing, one has to know the smoothness properties of f(X). In con-

strast, with positive kernels, the set of bandwidth values can be chosen without reference to

these smoothness properties. In particular, the largest bandwidth value can be chosen to be

independent of the sample size n. Nevertheless, the test developed in this paper will be rate

optimal in the minimax sense against class F[τ ](τ, L) when τ > d.

Assumption 8. (i) For every h ∈ Hn, the set of test points Ih = Ih,n is such that ‖Xi−Xj‖ >
2h for all i, j ∈ Ih,n with i 6= j and for each i = 1, ..., n, there exists an element j(i) ∈ Ih,n
such that ‖Xi −Xj(i)‖ ≤ 2h. (ii) S = Sn = {(i,m, h) : i ∈ Ih,n, m = 1, ..., p, h ∈ Hn}.

Assumptions 1-3 concern with the data-generating process (model) while assumptions 4-8

deal with the test. The asymptotic results in this paper will be shown to hold uniformly
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over all data-generating processes satisfying assumptions 1-3. For that purpose, the following

notation will be useful. Let w = (f, {εi}∞i=1, {Xi}∞i=1) denote the data-generating process.

Here, {εi}∞i=1 is a sequence of random vectors, and {Xi}∞i=1 is a sequence of nonstochastic

points. Let G denote the set of all triples w satisfying assumptions 1-3. For every model

w ∈ G, let Ew[·] denote the expectation calculated assuming the data-generating process w.

4.2 Size Properties of the Test

Analysis of size properties of the test is complicated because it is unknown whether the test

statistic has a limiting distribution. Instead, I use a finite sample approach based on the

Lindeberg method. For each sample size n, this method gives an upper error bound on

approximating the expectation of smooth functionals of the test statistic by the expectation

calculated assuming Gaussian noise {εi}ni=1. I also derive a simple lower bound on the growth

rate of the pdf of the test statistic to show that the expectation of smooth functionals can

be used to approximate the expectation of indicator functions. Combining these results leads

to the approximation of the cdf of the test statistic by its cdf calculated assuming Gaussian

disturbances with an explicit error bound. This allows me to derive certain conditions which

ensure that the error converges to zero as the sample size n increases, which is a key step in

establishing the bootstrap validity.

Let G0 and G00 denote the set of all elements (f, {εi}∞i=1, {Xi}∞i=1) of G satisfying f ≤ 0 a.s.

and f = 0 a.s. correspondingly. The first theorem states that the test has correct asymptotic

size uniformly over the class of models G0 both for plug-in and RMS critical values. In addition,

the test is nonconservative as the size of the test converges to the required level α uniformly

over the class of models G00.

Theorem 1. Let assumptions 4-8 hold. Then for P = PIA or RMS,

inf
w∈G0

Pw{T̂ ≤ cP1−α} ≥ 1− α+ o(1) (4.4)

In addition,

sup
w∈G00

Pw{T̂ ≤ cP1−α} = 1− α+ o(1) (4.5)

Remark 1. (i) Note that assumptions 1-3 are implicitly imposed in the theorem since w ∈ G0.
(ii) Proofs of all results are presented in the Appendix.
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4.3 Consistency Against a Fixed Alternative

Let me introduce a distance between the model w = (f, {εi}∞i=1, {Xi}∞i=1) ∈ G and the null

hypothesis:

ρ(w,H0) = sup
i=1,...,∞;m=1,...,p

[fm(Xi)]+ (4.6)

For any alternative outside of the set ΘI , ρ(w,H0) > 0. In this section, I argue that the test

is consistent against any fixed alternative w ∈ G with ρ(w,H0) > 0. Moreover, I show that

the test is consistent uniformly against alternatives whose distance from the null hypothesis

is bounded away from zero. For ρ > 0, let Gρ denote the subset of all elements w of G such

that ρ(w,H0) ≥ ρ. Then

Theorem 2. Let assumptions 4-8 hold. Then for P = PIA or RMS,

sup
w∈Gρ

Pw{T̂ ≤ cP1−α} → 0 (4.7)

as n→∞.

4.4 Consistency Against Local One-Dimensional Alternatives

Let w(0) = (f0, {εi}∞i=1, {Xi}∞i=1) ∈ G be such that ρ(w(0), H0) > 0. For some sequence

{an}∞n=1 of positive numbers converging to zero, denote fn = anf
0, and let wn = (fn, {εi}∞i=1, {Xi}∞i=1)

be a sequence of local alternatives. I refer to such sequences as local one-dimensional alterna-

tives. This section establishes the consistency of the test against such alternatives whenever√
n/ log nan →∞.

Theorem 3. Let assumptions 4-8 hold. Then for P = PIA or RMS,

Pwn{T̂ ≤ cP1−α} → 0 (4.8)

as n→∞ if
√
n/ log nan →∞.

Remark 2. Recall the CMI model from the first example mentioned in the introduction where

m(X,W, θ) = θm̃(X,W ) and E[m̃(X,W )|X] > 0 a.s. The theorem above shows that the

test developed in this paper is consistent against sequences of alternatives θ0 = θ0,n whenever√
n/ log nθ0,n → ∞ in this model whereas the test of Andrews and Shi (2010) is consistent

whenever
√
nθ0,n → ∞. Hence, my test is consistent against nearly the same sequence of

alternatives in this model as the test of Andrews and Shi (2010). The additional
√

log n

factor is the cost for having higher power in other classes of models.
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4.5 Uniform Consistency Against Holder Smoothness Classes

In this section, I present the rate of uniform consistency of the test against the class Fς(τ, L)

under certain additional constraints. These additional constraints are needed to deal with

some boundary effects. Let S = cl{Xi : i ∈ N} denote the closure of the infinite set of design

points. For any ϑ > 0, let Sϑ be the subset of S such that for any x ∈ Sϑ, the ball with

center at x and radius ϑ, Bϑ(x), is contained in S, i.e. Bϑ(x) ⊂ S. Denote ζ = min(ς + 1, τ).

When ζ ≤ d, set ϑ = ϑn = 4
√
dhmin. When ζ > d, set ϑ = ϑn = 4

√
d(log n/n)1/(2ζ+d). Let

Nϑ = {i ∈ N : Xi ∈ Sϑ}. For any w = (f, {εi}∞i=1, {Xi}∞i=1) ∈ G, let

ρϑ(w,H0) = sup
i∈Nϑ,m=1,...,p

[fm(Xi)]+ (4.9)

denote the distance between w and H0 over the set Sϑ. For the next theorem, I will use

ρϑ-metric (instead of ρ-metric) to measure the distance between alternatives and the null

hypothesis. Such restrictions are quite common in the literature. See, for example, Dum-

bgen and Spokoiny (2001) and Lee et al. (2011). Let Gϑ be the subset of all elements of

G such that infw∈Gϑ ρϑ(w,H0) ≥ Chζmin for some sufficiently large constant C if ζ ≤ d and

infw∈Gϑ ρϑ(w,H0)(n/ log n)ζ/(2ζ+d) →∞ if ζ > d. Then

Theorem 4. Let assumptions 4-8 hold. For P = PIA or RMS, if (i) ζ ≤ d or (ii) ζ > d

and hmin < (log n/n)1/(2ζ+d) for sufficiently large n, then

sup
w∈Gϑ

Pw{T̂ ≤ cP1−α} → 0 (4.10)

as n→∞.

Remark 3. Recall the CMI model from the second example mentioned in the introduction

where m(X,W, θ) = m̃(X,W ) + θ. Assume that X ∈ R and E[m̃(X,W )|X] = −|X|ν with

ν > 1. In this model, the identified set is ΘI = {θ ∈ R : θ ≤ 0}. The theorem above shows

that the test developed in this paper is consistent against sequences of alternatives θ0 = θ0,n

whenever (n/ log n)ν/(2ν+1)θ0,n → ∞. At the same time, it follows from Armstrong (2011a)

that the test of Andrews and Shi (2010) is consistent only if nν/(2(ν+1))θn,0 →∞, so their test

has a slower rate of consistency than that developed in this paper by a polynomial order.

4.6 Lower Bound on the Minimax Rate of Testing

In this section, I give a lower bound on the minimax rate of testing. For any X = {Xi}∞i=1

satisfying assumption 1, let GX denote the set of all models w = (f, {εi}∞i=1, X} in G. For

given X and Sϑ defined in the previous section, let N(h, Sϑ) be the largest m such that there
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exists {x1, ..., xm} ⊂ Sϑ with ‖xi − xj‖ ≥ h for all i, j = 1, ...,m if i 6= j. I will assume that

N(h, Sϑ) ≥ Ch−d for all h ∈ (0, 1) and sufficiently large n for some constant C > 0. In an iid

setting, this condition holds a.s. under the conditions of lemma 4. Let φn(Y1, ..., Yn) denote a

sequence of tests, where φn(Y1, ..., Yn) denotes the probability of rejecting the null hypothesis

upon observing sample Y = (Y1, ..., Yn).

Theorem 5. Let assumptions 4-8 hold. Assume that (i) N(h, Sϑ) ≥ Ch−d for all h ∈ (0, 1)

and sufficiently large n for some constant C > 0, (ii) ς = [τ ], and (iii) rn(n/ log n)τ/(2τ+d) →
0 as n → ∞ for some sequence of positive numbers rn. Then for any sequence of tests

φn(Y1, ..., Yn) with supw∈G0∩GX Ew[φn(Y1, ..., Yn)] ≤ α,

lim sup
n→∞

inf
w∈GX ,ρϑ(w,H0)≥Crn

Ew[φn(Y1, ..., Yn)] ≤ α (4.11)

Remark 4. Since F[τ ](τ, L) ⊂ F(τ, L), the same lower bound applies for the class F(τ, L) as

well. The same lower bound also applies with G instead of GX . Comparing this result with

theorem 4 shows that the test presented in this paper is minimax rate optimal (for almost

all sequences {Xi}∞i=1) if ζ = τ > d and hmin is chosen to converge to zero fast enough.

When ζ = τ = d and βn is set to be constant, the test is minimax rate optimal up to some

logarithmic factors if hmin is chosen to converge to zero as fast as possible satisfying assumption

4(ii). When τ < d, the test is not minimax rate optimal since the rate of consistency does not

match the lower bound8.

5 Extentions

In this section, I briefly outline two extentions of the test developed in this paper. One of

them concerns with the case of infinitely many CMI. The other one deals with local CMI.

For brevity, I only discuss basic results. In both cases, I am interested in testing the null

hypothesis, H0, that θ = θ0 against the alternative, Ha, that θ 6= θ0.

Infinitely Many CMI. In many cases the parameter θ is restricted by a countably infinite

number of CMI, i.e. p = ∞. For example, recall the English auction model and the model

with interval data from section 2. In those models, inequalities (2.1) and (2.3)-(2.4) hold for

all v ∈ R. Taking rational values of v leads to a countably infinite number of CMI. Note

that the last step does not change the identified set if left-hand sides of these inequalities are

continuous in v or, at least, right or left continuous.

Let m̃ : Rd × Rk × Θ → RN be some known function where N denotes the set of natural

8It is easy to show that the lower bound is achieved by the test with a higher order kernel, so the lower
bound is tight.
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numbers. Suppose that θ ∈ Θ satisfies

E[m̃(X,W, θ)|X] ≤ 0 a.s. (5.1)

Given θ0, define f̃(X) = E[m̃(X,W, θ0)|X]. In addition, denote ε̃i = m̃(Xi,Wi, θ0) − f̃(Xi),

and Σ̃i = E[ε̃iε̃
T
i |Xi]. Let G denote the set of all models (f̃ , {ε̃i}∞i=1, {Xi}∞i=1) satisfying

assumptions 1-3 with ε̃, Σ̃, and f̃ instead of ε, Σ, and f correspondingly and p =∞. Let G0
denote the set of models w = (f̃ , {ε̃i}∞i=1, {Xi}∞i=1) in G satisfying f̃ ≤ 0 a.s., G00 denote the

set of models w in G0 satisfying f̃ = 0 a.s., and Gρ denote the set of models w in G satisfying

ρ(w,H0) ≥ ρ where ρ(w,H0) is defined as in (4.6) with f̃ instead of f and p = ∞. Consider

the test based on the first Q = Qn inequalities. More precisely, let m : Rd × Rk × Θ →
RQ be the vector-valued function whose j-th component coincides with j-th component of

m̃ for all j = 1, ..., Q, and consider the test described in section 3 based on inequalities

E[m(X,W, θ)|X] ≤ 0 a.s. Denote its critical value by cP1−α with P = PIA or RMS. It will be

assumed that Qn → ∞ as n → ∞. An advantage of the finite sample approach used in this

paper is that it immediately gives certain conditions that ensure that such a test maintains

the required size as n→∞.

Corollary 1. Let assumptions 4(i), 5, 7, and 8 hold with Qn instead of p. In addition,

assume that (i) maxi=1,...,n ‖Σ̂i − Σi‖o = op(n
−κ) for some κ > 09, (ii) Qn → ∞, (iii)

(Qn log n)1/2/nκ/4 → 0 as n → ∞, and (iv) n1−εh3dmin > Q6
nC5 for all n. Then for P = PIA

or RMS,

inf
w∈G0

Pw{T̂ ≤ cP1−α} ≥ 1− α+ o(1) (5.2)

as n→∞. In addition,

sup
w∈G00

Pw{T̂ ≤ cP1−α} = 1− α+ o(1) (5.3)

Finally,

Pw{T̂ ≤ cP1−α} → 0 (5.4)

for any w ∈ Gρ with ρ > 0.

Remark 5. (i) This corollary shows that the randomized test has the correct asymptotic size,

is asymptotically not conservative, and is consistent against fixed alternatives outside of the

set ΘI .

(ii) Note that κ appearing in conditions (i) and (iii) in this corollary will generally be

different from κ used in assumption 6 because of increasing number of moment functions.

9All quantities undefined in this section coincide symbol-by-symbol with those used in sections 3 and 4.
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Local CMI. Suppose that the parameter θ is restricted by the following inequalities:

E[m(X,W, θ)|X, Z = z0] ≤ 0 a.s. (5.5)

where m(·, ·, ·), X, and W are as above, Z is some random Rdz -dimensional random vector,

which may or may not include some components of W , and z0 is some fixed point. CMI of

the form (5.5) arise in nonparametric and semiparametric inference. For example, recall the

English auction model from section 2. In that model, suppose that the set of covariates is

(X,Z) instead of X so that F = F (v,X,Z). Suppose that the case Z = z0 is of interest.

Denote F̃ (v,X) = F (v,X, z0). Then inequality (2.1) leads to

E[φ−1(F̃ (v,X))− I{bi:m ≤ v}|X, Z = z0] ≤ 0 a.s. (5.6)

Parameterizing the function F̃ (·, ·) gives inequalities of the form (5.5). Note that parameter-

izing F̃ (·, ·) instead of F (·, ·, ·) reduces the risk of misspecification, which makes this approach

attractive when the only interesting value of Z is z0.

Given θ0, define fx,z(X,Z) = E[m(X,W, θ0)|X,Z]. In addition, denote εx,zi = m(Xi,Wi, θ0)−
fx,z(Xi, Zi), and Σx,z

i = E[εx,zi (εx,zi )T |Xi, Zi]. Let Σ̂x,z
i be an estimator of Σx,z

i (i = 1, ..., n)

as described in section 3.3. Let N be a subset of all observations i = 1, ..., n such that

‖Zi − z0‖ < a for all i ∈ N . It will be assumed that a = an → 0 as n → ∞. De-

note the number of elements in N by na. Without loss of generality, I assume that ob-

servations in N are those corresponding to i = 1, ..., na. Let G denote the set of models

(fx,z, {εx,zi }∞i=1, {(Xi, Zi)}∞i=1) satisfying assumptions 1-3 with εx,zi , Σx,z
i , fx,z, d + dz, and

(Xi, Zi) instead of εi, Σi, f , d, and Xi correspondingly. Let G0 denote the set of all mod-

els w in G satisfying fx,z(X, z0) ≤ 0 a.s., G00 denote the set of models w in G0 satisfying

fx,z(X, z0) = 0 a.s. Denote Na = {(i,m) : i = 1, ...,∞, m = 1, ..., p, ‖Zi − z0‖ ≤ a}. De-

fine the distance between the model w = (fx,z, {εx,zi }∞i=1, {(Xi, Zi)}∞i=1) ∈ G and the null

hypothesis by

ρz(w,H0) = inf
a∈(0,∞)

sup
(i,m)∈Na

[fx,zm (Xi, Zi)]+ (5.7)

Let Gz,ρ denote the set of all models w in G satisfying ρz(w,H0) ≥ ρ > 0.

Consider the test described in section 3 based on the data {(Xi,Wi)}i∈N with Σ̂x,z
i instead

of Σ̂i (i = 1, ..., na) as if we would like to test the null hypothesis that θ = θ0 in the model

E[m(X,W, θ)|X] ≤ 0 with na observations. Note that this test uses Zi only for selecting N

and estimating Σ̂x,z
i . Denote its critical value by cP1−α with P = PIA or RMS.

Corollary 2. Let assumption 6 hold with Σ̂x,z
i and Σx,z

i instead of Σ̂i and Σi correspondingly.

In addition, let assumptions 4, 5, 7, and 8 hold with na instead of n. Finally, assume that (i)
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a = an → 0, (ii) for some constant C > 0, na ≥ Cnadzn , (iii) for some constants 0 < C1 <

C2 < ∞, the number of elements in the set {Xj : ‖Xj − Xi‖ ≤ h, j ∈ N} is bounded away

from zero and from above by C1nah
d and C2nah

d correspondingly for all i ∈ N and h ∈ Hn.

Then for P = PIA or RMS,

inf
w∈G0

Pw{T̂ ≤ cP1−α} ≥ 1− α+ o(1) (5.8)

as n → ∞ provided that in addition to (i)-(iii) we have (iv) nadz+2
n hdmax log n → 0, and (v)

for some constant C > 0, fx,zm (Xi, Zi) ≤ Can for all i ∈ N and m = 1, ..., p. Further,

sup
w∈G00

Pw{T̂ ≤ cP1−α} ≥ 1− α+ o(1) (5.9)

as n → ∞ provided that in addition to (i)-(v) we have (vi) for some constant C > 0,

fx,zm (Xi, Zi) ≥ −Can for all i ∈ N and m = 1, ..., p. Finally,

Pw{T̂ ≤ cP1−α} → 0 (5.10)

for any w ∈ Gz,ρ with ρ > 0.

Remark 6. (i) Note that in an iid setting, if fx,z(x, z0) > 0 for some x such that (x, z0) is

inside of the support of (X,Z), then it follows as in the proof of lemma 4 that ρz(w,H0) > 0

a.s. So, the corollary above shows that the test has correct asymptotic size, is asymptotically

not conservative, and is consistent against any fixed alternative outside of the set ΘI .

(ii) Note that the corollary remains valid if hmax → 0 as n→ 0.

(iii) Condition (iv) in this corollary requires that nadz+2hdmax log n → 0. This condition

ensures that the bias due to using data with Zi 6= z0 is asymptotically negligible. Given that

small values of a lead to small effective sample size na while small values of hmax lead to large

variance of the kernel estimator, it is useful to set hmax → 0 as n → ∞ to balance these

effects.

6 Monte Carlo Results

In this section, I present results of two Monte Carlo simulation studies. The aim of these

simulations is twofold. First, I demonstrate that my test accurately maintains size in finite

samples. Second, I compare relative advantages and disadvantages of my test and the tests

of Andrews and Shi (2010), Chernozhukov et al. (2009), and Lee et al. (2011). The methods

of Andrews and Shi (2010) and Lee et al. (2011) are most appropriate for detecting flat alter-

natives, which represent one-dimensional local alternatives. These methods have low power
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against alternatives with peaks, however. The test of Chernozhukov et al. (2009) has higher

power against such alternatives, but it requires knowing smoothness properties of the moment

functions. The authors suggest certain rule-of-thumb techniques to choose a bandwidth value.

Finally, the main advantage of my test is its adaptiveness. In comparison with Andrews and

Shi (2010) and Lee et al. (2011), my test has higher power against alternatives with peaks.

In comparison with Chernozhukov et al. (2009), my test has higher power when their rule-of-

thumb techniques lead to an inappropriate bandwidth value. For example, this happens when

the underlying moment function is mostly flat but varies significantly in the region where the

null hypothesis is violated (the case of spatially inhomogeneous alternatives, see Lepski and

Spokoiny (1999)).

First simulation study. The data generating process is

Y = L(M − |X|)+ −m+ ε (6.1)

where X, Y , and ε are scalar random variables and L, M , and m are some constants. X is

distributed uniformly on (−2, 2). Depending on the experiment, ε is distributed according

to 0.1 · N(0, 1) or (ξ · 0.07 + (1 − ξ) · 0.18) · N(0, 1) where ξ is a Bernoulli random variable

with p(ξ = 1) = 0.8 and p(ξ = 0) = 0.2 and is independent of N(0, 1). In both cases, ε is

independent of X. I consider the following specifications for parameters. Case 1: L = M =

m = 0. Case 2: L = 0.1, M = 0.2, m = 0.02. Case 3: L = M = 0, m = −0.02. Case 4: L = 2,

M = 0.2, m = 0.2. Note that E[Y |X] ≤ 0 a.s. in cases 1 and 2 while P{E[Y |X] > 0} > 0

in cases 3 and 4. In case 3, the alternative is flat. In case 4, the alternative has a peak in

the region where the null hypothesis is violated. I have chosen parameters so that rejection

probabilities are strictly greater than 0 and strictly smaller than 1 in most cases so that

meaningful comparisons are possible. I generate samples (Xi, Yi)
n
i=1 of size n = 250 and 500

from the distribution of (X,Y ). In all cases, I consider tests with the nominal size 10%. The

results are based on 1000 simulations for each specification.

For the test of Andrews and Shi (2010), I consider their Kolmogorov-Smirnov test statistic

with boxes and truncation parameter 0.05. I simulate both plugin (AS, plugin) and GMS (AS,

GMS) critical values based on the bootstrap suggested in their paper. I use the support of the

empirical distribution of X to choose a set of weighting functions. All other tuning parameters

are set as prescribed in their paper.

Implementing all other tests requires selecting a kernel function. In all cases, I use

K(x) = 1.5(1− 4x2)+ (6.2)

For the test of Chernozhukov et al. (2009), I use their kernel type test statistic with critical
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values based on the multiplier bootstrap both with (CLR, V̂ ) and without (CLR, V ) the

set estimation. Both Chernozhukov et al. (2009) and Lee et al. (2011) (LSW) circumvent

edge effects of kernel estimators by restricting their test statistics to the proper subsets of the

support of X. To accomodate this, I select the 10%th and 90%th percentiles of the empirical

distribution of X as bounds for the set over which the test statistics are calculated. Both

tests are nonadaptive. In particular, there is no formal theory on how to choose bandwidth

values in their tests, so I follow their informal suggestions. For the test of Lee et al. (2011), I

use their test statistic based on one-sided L1-norm.

Let me now describe the choice of parameters for the test developed in this paper. The

largest bandwidth value, hmax, is set to be one half of the length of the support of the empirical

distribution. I choose the smallest bandwidth value, hmin, so that the kernel estimator uses

on average 15 data points when n = 250 and 20 data points when n = 500, which roughly

corresponds to my recommendations in section 3. The scaling parameter, a, equals 0.8 so that

the set of bandwidth values is

Hn = {h = hmax0.8k : h ≥ hmin, k = 0, 1, 2, ...} (6.3)

My test requires selecting the set Sn. For each bandwidth value, h, I select the largest subset,

Sn,h, of Xi’s such that Xi − Xj ≥ h for any nonequal elements in Sn,h, and the smallest

Xi is always in Sn,h. Then Sn = {(i, h) : h ∈ Hn, Xi ∈ Sn,h}. I estimate Σi using the

method of Rice (1984). Specifically, I rearrange the data so that X1 ≤ ... ≤ Xn and set

Σ̂i = Σ̂ =
∑n

i=2(Yi − Yi−1)2/(2n). Finally, for the RMS critical value, I set γ = 0.1/ log(n) to

make meaningful comparisons with the test of Chernozhukov et al. (2009). In all bootstrap

procedures, for all tests, I use 1000 repetitions when n = 250 and 500 repetitions when

n = 500.

The results of the first simulation study are presented in table 1 for n = 250 and in

table 2 for n = 500. In both tables, my test is denoted as Adaptive test with plug-in and

RMS critical values. Consider first results for n = 250. In case 1, where the null hypothesis

holds, all tests have rejection probabilities close to the nominal size 10% both for normal and

mixture of normals disturbances. In case 2, where the null hypothesis holds but the underlying

regression function is mainly strictly below the borderline, all tests are conservative. When

the null hypothesis is violated with a flat alternative (case 3), the tests of Andrews and Shi

(2010) and Lee et al. (2011) have highest rejection probabilities as expected from the theory.

In this case, my test is less powerful in comparison with these tests and somewhat similar

to the method of Chernozhukov et al. (2009). This is compensated in case 4 where the null

hypothesis is violated with the peak-shaped alternative. In this case, the power of my test is
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Table 1: Results of Monte Carlo Experiments, n = 250
Probability of Rejecting Null Hypothesis

Distribution ε Case AS, plugin AS, GMS LSW CLR, V CLR, V̂ Adaptive

test, plugin

Adaptive

test, RMS

Normal

1 0.099 0.102 0.124 0.151 0.151 0.101 0.101

2 0.002 0.007 0.000 0.008 0.008 0.009 0.009

3 0.910 0.910 0.941 0.808 0.808 0.723 0.723

4 0.000 0.143 0.000 0.122 0.191 0.589 0.821

Mixture

1 0.078 0.086 0.107 0.134 0.134 0.124 0.124

2 0.002 0.002 0.000 0.010 0.010 0.016 0.016

3 0.904 0.905 0.925 0.833 0.833 0.692 0.692

4 0.000 0.121 0.000 0.111 0.197 0.555 0.808

Table 2: Results of Monte Carlo Experiments, n = 500
Probability of Rejecting Null Hypothesis

Distribution ε Case AS, plugin AS, GMS LSW CLR, V CLR, V̂ Adaptive

test, plugin

Adaptive

test, RMS

Normal

1 0.095 0.104 0.119 0.126 0.126 0.103 0.103

2 0.000 0.001 0.000 0.002 0.002 0.008 0.008

3 0.997 0.997 0.996 0.954 0.954 .903 0.903

4 0.008 0.587 0.000 0.497 0.694 0.976 0.999

Mixture

1 0.120 0.123 0.130 0.117 0.117 0.119 0.119

2 0.000 0.001 0.000 0.000 0.000 0.010 0.010

3 0.993 0.993 0.996 0.949 0.949 0.903 0.903

4 0.005 0.549 0.000 0.456 0.625 0.978 0.997

much higher than that of competing tests. This is especially true for my test with RMS critical

values whose rejection probability exceeds 80% while rejection probabilities of competing tests

do not exceed 20%. Note that all results are stable across distributions of disturbances. Also

note that my test with RMS critical values has much higher power than the test with plugin

critical values in case 4. So, among these two tests, I recommend the test with RMS critical

values. Results for n = 500 indicate a similar pattern.

Second simulation study. In the second simulation study, I compare the power function

of the test developed in this paper with that of the Andrews and Shi’s (2010) test, which is

most closely related to my method. For my test, I use the RMS critical value. For the test of

Andrews and Shi (2010), I use their GMS critical value. The data generating process is

Y = m+
√

2πφ(τX) + ε (6.4)

where X, Y , and ε are scalar random variables, m and τ are some constants, and φ(·) is

the pdf of the standard Gaussian distribution. X is distributed uniformly on (−2, 2), and ε
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Figure 1: The difference between the rejection probabilities of the test developed in this paper
and of the test of Andrews and Shi (2010) (with RMS and GMS critical values correspond-
ingly). The nominal size is 10%. Results are based on 500 simulations. The figure shows that
the rejection probability of the test developed in this paper is higher than that of the test of
Andrews and Shi (2010) in most cases and is strictly higher over a wide region of parameter
values.

has N(0, 1) distrubution. In this simulation study, I use samples (Xi, Yi)
n
i=1 of size n = 250

from the distribution of (X,Y ). Both tests are based on the same specifications as in the first

simulation study except that now I use 100 repetitions for all bootstrap procedures in order

to conserve computing time. At each point, the rejection probabilities are estimated using

500 simulations.

Note that τ is naturally bounded from below because τ and −τ yield the same results.

So, I set τ ≥ 0. In addition, E[Y |X] ≤ 0 a.s. if m ≤ −1. Therefore, I set m ≥ −1. Figure 1

shows the difference between the rejection probabilities of my test and of the test of Andrews

and Shi (2010). This figure shows that the rejection probability of the test developed in this

paper is higher than that of the test of Andrews and Shi (2010) in most cases and is strictly

higher over a wide region of parameter values. The exception is a narrow region where τ is

close to 0 (flat alternatives) and m is close to −1. Concluding this section, I note that all

simulation results are consistent with the presented theory.

7 Conclusions

In this paper, I develop a new test of conditional moment inequalities. In contrast to some

other tests in the literature, my test is directed against general nonparametric alternatives

yielding high power in a large class of CMI models. Considering kernel estimates of moment

functions with many different values of the bandwidth parameter allows me to construct a

test that automatically adapts to the unknown smoothness of moment functions and selects

the most appropriate testing bandwidth value. The test developed in this paper has uniformly
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correct asymptotic size, no matter whether the model is identified, weakly identified, or not

identified, is consistent against any fixed alternative outside of the set ΘI , and is uniformly

consistent against certain, but not all, large classes of smooth alternatives whose distance from

the null hypothesis converges to zero at a fastest possible rate. The tests of Andrews and

Shi (2010) and Lee et al. (2011) have nontrivial power against n−1/2-local one-dimensional

alternatives whereas my method only allows for nontrivial testing against (n/ log n)−1/2-local

alternatives of this type. The additional (log n)1/2 factor should be regarded as the price for

having fast rate of uniform consistency. There exist sequences of local alternatives against

which their tests are not consistent whereas mine is. Monte Carlo experiments give an example

of a CMI model where finite sample power of my test greatly exceeds that of competing tests.

A Appendix

This Appendix contains proofs of all results stated in the main part of the paper. Section A.1

gives a proof of the uniform consistency of the estimator Σ̂i of Σi described in section 3.3. I

provide the proof because I was not able to find it in the literature. Section A.2 derives a bound

on the modulus of continuity in the spectral norm of the square root operator on the space of

symmetric positive semidefinite matrices. Section A.3 gives a straighforward generalization

of results in Chatterjee (2005) on stochastic approximation to the case of multidimensional

random variables. Those results have their own value as they can be used as an alternative

to results in empirical process theory. They are also useful because they give an explicit

bound on the approximation error. Section A.4 gives sufficient conditions for assumption 1

in the main part of the paper. Section A.5 presents an anticoncentration inequality for the

maximum of Gaussian random variables with unit variance. Section A.6 describes a result on

Gaussian random variables that is used in the proof of the lower bound on the minimax rate.

Section A.7 develops some preliminary technical results necessary for the proofs of the main

theorems. Finally, section A.8 presents the proofs of the theorems stated in the main part of

the paper.

In this appendix, I use C and its variants to denote generic constants that are independent

of n.

A.1 Lemma on the Estimator of Σi

Lemma 1. Let Σ̂i be an estimator of Σi described in section 3.3. Let assumptions 1-3 hold. In

addition, assume that (i) E[|εj |4+δ] < C for all j = 1, ..., n and some C > 0, (ii) b ≤ n−C for

some C > 0, (iii) mini=1,...,n |J(i)|/n1/(2+δ) ≥ nC for some C > 0, (iv) ‖Σi −Σj‖o ≤ C‖Xi −
Xj‖ for some C > 0. Then there exists some κ > 0 such that maxi=1,...,n ‖Σ̂i−Σi‖o = op(n

−κ).
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Remark 7. Note that under assumptions of lemma 4, condition (iii) above follows from

n(1+δ)/(2+δ)bd ≥ nC , which is an elementary condition.

Proof. By definition,

Σ̂i =
∑
j∈J(i)

(Yk(j) − Yj)(Yk(j) − Yj)T /(2|J(i)|) (A.1)

Since all norms on the finite-dimensional linear space are equivalent (theorem 1.6 in Kress

(1999)), it is enough to prove that

max
i=1,...,n

|Σ̂i,m1m2 − Σi,m1m2 | = op(n
−κ) (A.2)

for all m1,m2 = 1, ..., p. The proof will be given for m1 = m2 = 1. The result for all other

m1,m2 follows from the same argument. To simplify notation, I will write Σi, Σ̂i, f(Xi), and

εi instead of Σi,11, Σ̂i,11, f1(Xi), and εi,1 correspondingly as if it were a one-dimensional case.

Denote ε̃i = εiI{εi ≤ M} for M = n1/(4+δ/2). Since E[|εi|4+δ] < C, it follows that

E[maxi=1,...,n |εi|] ≤ Cn1/(4+δ) for some (possibly different) C > 0 (see lemma 2.2.2 in Van der

Vaart and Wellner (1996)). Then Markov inequality gives

P{ max
i=1,...,n

|εi| > M} ≤ Cn1/(4+δ)/M → 0 (A.3)

So,

P1 = P{ max
i=1,...,n

|ε̃i − εi| > 0} → 0 (A.4)

Denote Σ̃i = E[ε̃2i ] (i = 1, ..., n). Then Σ̃i = Σi − E[ε2i I{εi > M}]. Combining Fubini

theorem and Markov inequality yields

E[ε2i I{εi > M}] =

ˆ ∞
0

P{ε2i I{εi > M} > t}dt

≤ MP{εi > M}+

ˆ ∞
M

E[ε4i ]/t
2dt

≤ E[ε4i ](1/M
3 + 1/M)

≤ 2E[ε4i ]/M

In addition, denote Ỹi = f(Xi) + ε̃i and

Σ̄i =
∑
j∈J(i)

(Ỹk(j) − Ỹj)(Ỹk(j) − Ỹj)T /(2|J(i)|) (A.5)
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(i = 1, ..., n). Then

P{ max
i=1,...,n

|Σ̄i − Σ̂i| > 0} = P1 → 0 (A.6)

Note that for sufficiently small κ (κ < 1/(4 + δ/2)),

P{ max
i=1,...,n

|Σ̂i − Σi| > n−κ} ≤ P{ max
i=1,...,n

|Σ̄i − Σ̃i| > n−κ/2}+ o(1) (A.7)

as n→∞. By the union bound,

P{ max
i=1,...,n

|Σ̄i − Σ̃i| > n−κ/2} ≤
n∑
i=1

P{|Σ̄i − Σ̃i| > n−κ/2} (A.8)

Then

P{|Σ̄i − Σ̃i| > n−κ/2} ≤ P1 + P2 + P3 (A.9)

where

P1 = P{
∑
j∈J(i)

(f(Xk(j))− f(Xj))
2/(2|J(i)|) > n−κ/6} (A.10)

P2 = P{|
∑
j∈J(i)

(f(Xk(j))− f(Xj)(ε̃k(j) − ε̃j))|/|J(i)| > n−κ/6} (A.11)

P3 = {|
∑
j∈J(i)

(ε̃k(j) − ε̃j)2/(2|J(i)|)− Σ̃i| > n−κ/6} (A.12)

By assumption 3, |f(Xk(j))− f(Xj)| ≤ L‖Xk(j)−Xj‖ ≤ 2Lb. Since b converges to zero at

a polynomial rate, P1 = 0 for sufficiently large n if κ is sufficiently small. Consider P3. Note

that P3 ≤ P31 + P32 where

P31 = {|
∑
j∈J(i)

ε̃2j/|J(i)| − Σ̃i| > n−κ/12} (A.13)

and

P32 = {|
∑
j∈J(i)

ε̃k(j)ε̃j |/|J(i)| > n−κ/12} (A.14)

Since |Σi − Σj | ≤ L‖Xi −Xj‖, it follows that

P31 = {|
∑
j∈J(i)

(ε̃2j − Σ̃j)|/|J(i)| > n−κ/24}+ o(1) (A.15)

if κ is sufficiently small. Then Hoeffding inequality gives (see proposition 1.3.5 in Dudley

(1999))

P31 ≤ 2 exp{−C|J(i)|/(M2n2κ)} (A.16)
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Therefore, nP31 → 0 as n → 0 if mini=1,...,n |J(i)|/M2 > nC for some C > 0, which holds by

assumption (iii), and κ is sufficiently small.

Now consider P32. Denote U(i) = {j ∈ J(i) : j < k(j)}. Apply Hoeffding inequality

conditional on {ε̃j}j∈U(i). Since |ε̃j | ≤M for all j = 1, ..., n, nP32 → 0 like nP31 → 0. Similar

argument shows that nP2 → 0 as well. The result follows.

A.2 Continuity of the Square Root Operator on the Set of Positive Semidef-

inite Matrices

Lemma 2. Let A and B be p×p-dimensional symmetric positive semidefinite matrices. Then

‖A1/2 − B1/2‖o ≤ p1/2‖A − B‖1/2o where ‖ · ‖o means the spectral norm corresponding to the

Euclidean norm on Rp.

Proof. Let a1, ..., ap and b1, ..., bn be orthogonal eigenvectors of matrices A and B correspond-

ingly. Without loss of generality, I can and will assume that ‖ai‖ = ‖bi‖ = 1 for all i = 1, ..., p

where ‖ · ‖ denotes the Euclidean norm on Rp. Let λ1(A), ..., λp(A) and λ1(B), ..., λp(B) be

corresponding eigenvalues. Let fi1, ..., fip be coordinates of ai in the basis (b1, ..., bp) for all

i = 1, ..., p. Then
∑p

j=1 f
2
ij = 1 for all i = 1, ..., p.

For any i = 1, ..., p,

p∑
j=1

(λi(A)− λj(B))2f2ij = ‖
p∑
j=1

(λi(A)− λj(B))fijbj‖2

= ‖λi(A)ai −
p∑
j=1

λj(B)fijbj‖2

= ‖(A−B)ai‖2

≤ ‖A−B‖2o

since ‖(A−B)ai‖ ≤ ‖A−B‖o‖ai‖ = ‖A−B‖o.
For P = A,B, P 1/2 has the same eigenvectors as P with corresponding eigenvalues equal
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to λ
1/2
1 (P ), ..., λ

1/2
n (P ). Therefore, for any i = 1, ..., p,

‖(A1/2 −B1/2)ai‖2 =

p∑
j=1

(λ
1/2
i (A)− λ1/2j (B))2f2ij

≤
p∑
j=1

|λi(A)− λj(B)|f2ij

≤

 p∑
j=1

(λi(A)− λj(B))2f2ij

1/2

≤ ‖A−B‖o

where the last line used the inequality derived above. For any c ∈ Rp with ‖c‖ = 1, let

d1, ..., dp be coordinates of c in the basis (a1, ..., ap). Then

‖(A1/2 −B1/2)c‖ = ‖(A1/2 −B1/2)

p∑
i=1

diai‖

≤
p∑
i=1

|di|‖(A1/2 −B1/2)ai‖

≤
p∑
i=1

|di|‖A−B‖1/2o

≤ p1/2‖A−B‖1/2o

since
∑p

i=1 d
2
i = 1. Thus, ‖A1/2 −B1/2‖o ≤ p1/2‖A−B‖1/2o .

A.3 Invariance Principle

In this section, I generalize results of Chatterjee (2005) to the case of random vectors (p > 1).

I also specialize results for the case of linear functions because it allows to improve the rate

derived in that paper. Let Z1, ..., Zn be a sequence of independent p-dimensional random

vectors with E[Zj ] = 0 for all j = 1, ..., n. Denote Z = (Z1, ..., Zn). For all k = 1, ...,K and

m = 1, ..., p, let fkm(Z) =
∑n

j=1 akjmZj,m be some linear function of Z where akjm ≥ 0 for

all k = 1, ...,K, j = 1, ..., n, and m = 1, ..., p, and Zj,m denotes m-th component of vector Zj .

Let U1, ..., Un be a sequence of independent normal p-dimensional random vectors such that

E[Uj ] = 0 and E[ZjZ
T
j ] = E[UjU

T
j ] for all j = 1, ..., n. Denote U = (U1, ..., Un),

M = max
j,m

E[|Zj,m|3] + max
j,m

E[|Uj,m|3] (A.17)
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and

C(g, α) = ‖g′′′‖∞ + 3α‖g′′‖∞ + α2‖g′‖∞ (A.18)

for any thrice differentiable function g : R→ R and α > 0. Denote a = maxk,j,m akjm. Then

Theorem 6. For any thrice differentiable function g on R and α > 0,∣∣∣∣E [g(max
k,m

fkm(Z))− g(max
k,m

fkm(U))

]∣∣∣∣ ≤ 2‖g′‖∞α−1 log(Kp) + np3a3C(g, α)M/6 (A.19)

Remark. The constants in the inequality above can be improved somewhat by using expres-

sions for A1, A2, and A3 in the proof given below. I do not follow this step because that

would mess up the statement of the theorem significantly.

Proof. As in Chatterjee (2005), for α ≥ 1, let Fα : Rp×n → R be such that

Fα(x) = α−1 log(
∑
k,m

exp(αfkm(x))) (A.20)

for all x ∈ Rp×n. Then

max
k,m

fkm(x) = α−1 log(exp(αmax
k,m

fkm(x)))

≤ α−1 log(
∑
k,m

exp(αfkm(x)))

≤ α−1 log(Kp exp(αmax
k,m

fkm(x)))

≤ α−1 log(Kp) + max
k,m

fkm(x)

So,

|max
k,m

fkm(x)− Fα(x)| ≤ α−1 log(Kp) (A.21)

Thus,

|E[g(max
k,m

fkm(Z))]− E[g(max
k,m

fkm(U))]| ≤

2‖g′‖∞α−1 log(Kp) + |E[g(Fα(Z))]− E[g(Fα(U))]|

For any j = 0, ..., n, denote Zj = (Z1, ..., Zj , Uj+1, ..., Un) where Z0 = (U1, ..., Un) and Zn =

(Z1, ..., Zn). Then

|E[g(Fα(Z))]− E[g(Fα(U))]| ≤
n∑
j=1

|E[g(Fα(Zj)]− E[g(F (Zj−1))]| (A.22)
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For Z1, ..., Zj−1, Uj+1, ..., Un fixed, denote l(Zj) = g(Fα(Zj)). By Taylor formula,

g(Fα(Zj))− g(Fα(Zj−1)) = l(Zj)− l(Uj)

=
∑
m1

∂l(0)

∂Zjm1

(Zjm1 − Ujm1)

+ (1/2)
∑
m1,m2

∂2l(0)

∂Zjm1∂Zjm2

(0)(Zjm1Zjm2 − Ujm1Ujm2)

+ (1/6)
∑

m1,m2,m3

∂3l(Z̃)

∂Zjm1∂Zjm2∂Zjm3

Zjm1Zjm2Zjm3

− (1/6)
∑

m1,m2,m3

∂3l(Ũ)

∂Zjm1∂Zjm2∂Zjm3

Ujm1Ujm2Ujm3

where Z̃ and Ũ are on the lines connecting 0 and Zj and 0 and Uj correspondingly. By

independence,

|E[g(Fα(Zj)]− E[g(Fα(Zj−1))]|

≤ (1/6)
∑

m1,m2,m3

sup
X∈Rp×n

∣∣∣∣ ∂3g(Fα(X))

∂Xjm1∂Xjm2∂Xjm3

∣∣∣∣ (E[|Zjm1Zjm2Zjm3 |] + E[|Ujm1Ujm2Ujm3 |])

By Holder inequality,

E[|Zjm1Zjm2Zjm3 |] ≤ max
m

E[|Zjm|3] (A.23)

and

E[|Ujm1Ujm2Ujm3 |] ≤ max
m

E[|Ujm|3] (A.24)

Denote

A1 = sup
X∈Rp×n

∣∣∣∣∂Fα(X)

∂Xjm1

∂Fα(X)

∂Xjm2

∂Fα(X)

∂Xjm3

∣∣∣∣ (A.25)

A2 = sup
X∈Rp×n

∣∣∣∣∂Fα(X)

∂Xjm1

∂2Fα(X)

∂Xjm2∂Xjm3

∣∣∣∣+
sup

X∈Rp×n

∣∣∣∣∂Fα(X)

∂Xjm2

∂2Fα(X)

∂Xjm1∂Xjm3

∣∣∣∣+ sup
X∈Rp×n

∣∣∣∣∂Fα(X)

∂Xjm3

∂2Fα(X)

∂Xjm1∂Xjm2

∣∣∣∣
and

A3 = sup
X∈Rp×n

∣∣∣∣ ∂3Fα(X)

∂Xjm1∂Xjm2∂Xjm3

∣∣∣∣ (A.26)

Then

sup
X∈Rp×n

∣∣∣∣ ∂3g(Fα(X))

∂Xjm1∂Xjm2∂Xjm3

∣∣∣∣ ≤ ‖g′′′‖∞A1 + ‖g′′‖∞A2 + ‖g′‖∞A3 (A.27)
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So, it only remains to bound partial derivatives of Fα.

To simplify notation, denote Bkm = exp(αfkm(X)) for k = 1, ...,K and m = 1, ..., p. Then

∂Fα(X)

∂Xjm1

=

∑
k Bkm1akjm1∑
k,mBkm

(A.28)

The expression on the right hand side of the formula above is the expectation of a random

variable which takes value akjm1 with probability Bkm1/
∑

kmBkm for k = 1, ...,K and 0 with

probability 1−
∑

k Bkm1/
∑

kmBkm. If m1, m2, and m3 are all different, then

∂Fα(X)

∂Xjm1

∂Fα(X)

∂Xjm2

∂Fα(X)

∂Xjm3

(A.29)

will be the product of expectations of 3 random variables with nonitersecting supports. It is

easy to see that this product will be not greater than a3/27. All other cases can be treated

by the same argument. We have

A1 ≤


a3/27 if m1, m2, and m3 are all different

4a3/27 if m1 = m2 6= m3

a3 if m1 = m2 = m3

(A.30)

If m1, m2, and m3 are all different, then

∂2Fα(X)

∂Xjm1∂Xjm2

= −α
∑

k Bkm1akjm1

∑
k Bkm2akjm2

(
∑

kmBkm)2
(A.31)

and

∂3Fα(X)

∂Xjm1∂Xjm2∂Xjm3

= 2α2

∑
k Bkm1akjm1

∑
k Bkm2akjm2

∑
k Bkm3akjm3

(
∑

kmBkm)3
(A.32)

If m1 = m2 6= m3, then

∂2Fα(X)

∂Xjm1∂Xjm2

= −α
(
∑

k Bkm1akjm1)2

(
∑

kmBkm)2
+ α

∑
k Bkm1a

2
kjm1∑

kmBkm
(A.33)

and

∂3Fα(X)

∂Xjm1∂Xjm2∂Xjm3

= 2α2 (
∑

k Bkm1akjm1)2
∑

k Bkm3akjm3

(
∑

kmBkm)3
− α2

∑
k Bkm1a

2
kjm1

∑
k Bkm3akjm3

(
∑

kmBkm)2
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If m1 = m2 = m3, then

∂3Fα(X)

∂Xjm1∂Xjm2∂Xjm3

= α2

∑
k Bkm1a

3
kjm1

(
∑

kmBkm)
− 3α2

∑
k Bkm1a

2
kjm1

∑
k Bkm1akjm1

(
∑

kmBkm)2
+ 2α2 (

∑
k Bkm1akjm1)3

(
∑

kmBkm)3

So,

A2 ≤


3αa3/27 if m1, m2, and m3 are all different

59αa3/108 if m1 = m2 6= m3

3αa3 if m1 = m2 = m3

(A.34)

and

A3 ≤


2α2a3/27 if m1, m2, and m3 are all different

8α2a3/27 if m1 = m2 6= m3

α2a3 if m1 = m2 = m3

(A.35)

Combining these bounds yields the result.

A.4 Primitive Conditions for Assumption 1

In this section, I give a counter-example for the statement that for assumption 1 to hold, it

suffices to assume that {Xi : i = 1, ..., n} are sampled from a distribution that is absolutely

continuous with respect to Lebegue measure, has bounded support, and whose density is

bounded from above and away from zero on the support. I also prove that assumption 1 holds

if, in addition to above conditions, one assumes that the support is a convex set.

Lemma 3. There exists a probability distribution on [−1, 1]2 that is uniform on its support

such that if {Xi : i = 1, ..., n} are sampled from this distribution, then assumption 1 fails.

Proof. As an example of such a probability distribution, consider the uniform distribution on

S = {(x1, x2) ∈ [−1, 1]2 : x1 ≥ 0; −(1 + α)xα1 /2 ≤ x2 ≤ (1 + α)xα1 /2} (A.36)

for some α > 0. For fixed i, the probability that Xi,1 ≤ h is p = h1+α, and the probability

that Xi,1 > h is p = 1 − h1+α. Let An be an event that Xi,1 ≤ h for exactly one i = 1, ..., n

whereas Xi,1 > h for all other i = 1, ..., n with h < h. The probability of this event is

P (An) = nppn−1 = nh1+α(1− h1+α)n−1 (A.37)

Set h = (C1/n)1/(1+α) and h = (C2/n)1/(1+α) with 0 < C1 < C2 < 1. Then I can find the
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limit of P (An) as n→∞:

lim
n→∞

P (An) = lim
n→∞

C1(1− C2/n)n−1 = C1e
−C2 > 0 (A.38)

Note that on An, there is an observation Xi such that there is no other observations in the

ball with center at Xi and radius (C
1/(1+α)
2 − C1/(1+α)

1 )/n1/(1+α). The result now follows by

choosing α sufficiently large such that n−1/(1+α) converges to zero slower then hmin.

Now I give a sufficient primitive condition for assumption 1.

Lemma 4. If {Xi : i = 1, ..., n} are sampled from a distribution that is absolutely continuous

with respect to Lebegue measure, has bounded and convex support S ⊂ Rd, and whose density is

bounded from above and away from zero on the support, then assumption 1 holds for sufficiently

large n a.s.

Proof. Consider sets of the following form: I(a1, ..., ad, c) = S∩{x : a1x1+...+adxd = c} with

a21 + ...+ a2d = 1. These are convex sets. It follows from the fact that the density is bounded

from above that infa1,...,ad supcD(I(a1, ..., ad, c)) > 0 where D(·) denotes the diameter of the

set. So, there exists some constant 0 < C ≤ 1 such that for all r < 1 and all x ∈ S, each ball

B(x, r) with center at x and radius r has at least fraction C of its Lebegue measure inside of

the support S: λ(B(x, r) ∩ S)/λ(B(x, r)) > C.

Note that δ-covering numbers of the set S satisfy N(δ) . δd as δ → 0, i.e. there exists

some constant C > 0 such that N(δ) < C/δd. Consider the lower bound in assumption

1(ii). For each h ∈ Hn, consider the set of covering balls with centers Gh,1,...,Gh,N(h) and

radii δh = h/2. Then for each Xi and h ∈ Hn, there exists some j ∈ {1, ..., N(h)} such

that B(Xi, h) ⊃ B(Gh,j , δh). Thus, it is enough to prove the lower bound for the number

of observations droping into these covering balls. Since the density is bounded away from

zero and from above, there exist some constants C1, C2 > 0 such that for each h ∈ Hn and

j = 1, ..., N(h), C1h
d < P (Xi ∈ B(Gh,j , δh)) < C2h

d. Denote Ih,j(Xi) = I{Xi ∈ B(Gh,j , δh)}.
Bernstein inequality (see proposition 1.3.2 in Dudley (1999)) gives

P{
n∑
i=1

Ih,j(Xi)/n < C1h
d/2} ≤ P{

n∑
i=1

Ih,j(Xi)/n− E[Ih,d(Xi)] < −C1h
d/2)}

≤ C exp(−C1nh
d)

Then by union bound,

P (∪h∈Hn,j=1,...,N(h){
n∑
i=1

Ih,j(Xi)/n < C1h
d/2}) ≤ Ch−dmin log n exp(−C1nh

d
min) (A.39)
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as n→∞. By assumption 4(ii), there exists some C > 0 such that nhdmin > nC . So, summing

the probabilities above over n, I conclude, by the Borel-Cantelli lemma, that the lower bound

in assumption 1(ii) holds for sufficiently large n a.s. A similar argument gives the upper

bound. So, assumption 1 holds.

A.5 Anticoncentration Inequality for the Maximum of Gaussian Random

Variables

In this section, I describe an upper bound on the pdf of the maximum of correlated Gaussian

random variables derived in Chernozhukov and Kengo (2011). Let {Zi : i = 1, ..., S} be a set

of standard Gaussian (possibly correlated) random variables. Define W = maxi=1,...,S Zi and

let fW (·) denote its pdf. Then

Lemma 5. supw∈R fW (w) ≤ C
√

logS for some universal constant C.

Proof. Theorem 1 in Chernozhukov and Kengo (2011) proves that supw∈R fW (w) ≤ CE[W ].

In addition, it follows from the same argument as in lemma 8 that E[W ] ≤ C
√

log n. Com-

bining these bounds gives the result.

A.6 Result on Gaussian Random Variables

In this section, I state a result on Gaussian random variables which will be used in the

derivation of the lower bound on the rate of uniform consistency.

Lemma 6. Let ξn, n = 1, ...,∞, be a sequence of independent standard Gaussian random

variables and wi,n, i = 1, ..., n, n = 1, ...,∞, be a triangular array of positive numbers. If

wi,n < C
√

log n with C ∈ (0, 1) for all i = 1, ..., n, n = 1, ...,∞, then

lim
n→∞

E[|n−1
n∑
i=1

exp(wi,nξi − w2
i,n/2)− 1|] = 0 (A.40)

Proof. The proof is closely related to that in lemma 6.2 in Dumbgen and Spokoiny (2001).

Denote Zi,n = exp(wi,nξi−w2
i,n/2) and tn = (E[(

∑n
i=1 Zi,n/n−1)2])1/2. Note that E[Zi,n] = 1

and E[Z2
i,n] = exp(w2

i,n). Thus,

t2n =

n∑
i=1

(E[Z2
i,n]− (E[Zi,n])2)/n2 ≤

n∑
i=1

exp(w2
i,n)/n2 → 0 (A.41)
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if maxi=1,...,n exp(w2
i,n)/n→ 0. The last condition holds by assumption. So,

E[|n−1
n∑
i=1

exp(wi,nξi − w2
i,n/2)− 1|] =

ˆ ∞
0

P (|n−1
n∑
i=1

Zi,n − 1| > t)dt

≤ tn +

ˆ ∞
tn

t2n/t
2dt

= 2tn → 0

The result follows.

A.7 Preliminary Technical Results

In this section, I derive some necessary preliminary results that are used in the proofs of the

theorems stated in the main part of the paper. It is assumed throughout that assumptions

1-8 hold. I will use the following additional notation. Let {ψn}∞n=1 be a sequence of positive

real numbers such that ψn ≥ Cψ(p log n)1/2/nκ/4 for some sufficiently large constant Cψ > 0

and ψn → 0 as n → ∞. For any λ ∈ (0, 1), define cPIA,01−λ ∈ R by analogy with cPIA1−λ with

Σi used instead of Σ̂i for all i = 1, ..., n. Denote SDn = {s ∈ Sn : fs/Vs > −cPIA,01−γn−ψn}. For

any λ ∈ (0, 1), define cD1−λ ∈ R by analogy with cRMS
1−λ with SDn used instead of SRMS

n . Let

{εi : i = 1, ..., n} be an iid sequence of p-dimensional standard Gaussian random vectors that

are independent of the data. Denote êj = Σ̂1/2εj and ej = Σ1/2εj . Note that êj is equal in

distribution to Ỹj . Finally, denote

ε(i,m,h) =
n∑
j=1

wh(Xi, Xj)εj,m (A.42)

f(i,m,h) =

n∑
j=1

wh(Xi, Xj)fm(Xj) (A.43)

e(i,m,h) =

n∑
j=1

wh(Xi, Xj)ej (A.44)

ê(i,m,h) =
n∑
j=1

wh(Xi, Xj)êj (A.45)

TPIA = max
s∈Sn

(ês/V̂s) (A.46)

TPIA,0 = max
s∈Sn

(es/Vs) (A.47)

Note that TPIA is equal in distribution to the simulated statistic.
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I start with a result on bounds for weights and variances of the kernel estimator. The

same result can be found in Horowitz and Spokoiny (2001).

Lemma 7. There exist constants C > 0 and 0 < C1 < C2 <∞ such that for any i, j = 1, ..., n,

m = 1, ..., p, and h ∈ Hn,

wh(Xi, Xj) ≤ C/(nhd) (A.48)

and

C1/
√
nhd ≤ V(i,m,h) ≤ C2/

√
nhd (A.49)

uniformly over the set of models G.

Proof. By assumptions 1 and 7, for any i = 1, ..., n and h ∈ Hn,

C1nh
d ≤ CMh/2(Xi) ≤

n∑
k=1

K(Xi −Xk) ≤Mh(Xi) ≤ C2nh
d (A.50)

and

C1nh
d ≤

n∑
k=1

K2(Xi −Xk) ≤ C2nh
d (A.51)

for some constants C > 0 and 0 < C1 < C2 < ∞. In addition, K(Xi − Xj) ≤ 1 for any

j = 1, ..., n. So,

wh(Xi, Xj) = K(Xi −Xj)/

n∑
k=1

K(Xi −Xk) ≤ C/(nhd) (A.52)

By assumption 2, since
∑n

j=1wh(Xi, Xj) = 1,

V(i,m,h) =

 n∑
j=1

w2
h(Xi, Xj)Σj,mm

1/2

≤ C

 n∑
j=1

w2
h(Xi, Xj)

1/2

≤ C max
j=1,...,n

w
1/2
h (Xi, Xj)

≤ C/
√
nhd

and

V(i,m,h) ≥ C

 n∑
j=1

w2
h(Xi, Xj)

1/2

≥ (C/nhd)

 n∑
j=1

K2(Xi −Xj)

1/2

≥ C/
√
nhd (A.53)
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Lemma 8. E[maxs∈Sn |es/Vs|] ≤ C(log n)1/2 uniformly over the set of models G. In particu-

lar, cPIA,01−λ ≤ C
√

log n/λ for all λ ∈ (0, 1) uniformly over the set of models G.

Proof. For any s ∈ Sn, es/Vs is a standard Gaussian random variable. Denote ψ = exp(x2)−1.

Let ‖ · ‖ψ denote ψ-Orlicz norm. It is easy to check that ‖es/Vs‖ψ < C < ∞. So, by lemma

2.2.2 in Van der Vaart and Wellner (1996),

E[max
s∈Sn

|es/Vs|] ≤ C‖max
s∈Sn

|es/Vs|‖ψ ≤ C(log n)1/2 (A.54)

since |Sn| ≤ Cnφ for some φ > 0, which gives the first result. To obtain the second result,

note that Markov inequality gives

λ ≤ P{max
s∈Sn

|es/Vs| ≥ cPIA,01−λ } ≤ E[max
s∈Sn

|es/Vs|]/cPIA,01−λ ≤ C
√

log n/cPIA,01−λ (A.55)

for any λ ∈ (0, 1). So, cPIA,01−λ ≤ C
√

log n/λ.

Lemma 9. maxs∈Sn |V̂s/Vs−1| = op(n
−κ) and maxs∈Sn |Vs/V̂s−1| = op(n

−κ) uniformly over

the set of models G.

Proof. By assumption 2, for any (i,m, h) ∈ Sn,

V 2
(i,m,h) =

n∑
j=1

w2
h(Xi, Xj)Σj,mm ≥ C

n∑
j=1

w2
h(Xi, Xj) (A.56)

In addition,

|V̂ 2
(i,m,h) − V

2
(i,m,h)| ≤

n∑
j=1

w2
h(Xi, Xj)|Σ̂j,mm − Σj,mm| (A.57)

So,

max
s∈Sn

|V̂ 2
s /V

2
s − 1| ≤ C max

m=1,...,p
max

j=1,...,n
|Σ̂j,mm − Σj,mm|

≤ C max
j=1,...,n

‖Σ̂j − Σj‖o

Assumption 6 gives maxj=1,...,n ‖Σ̂j − Σj‖o = op(n
−κ). So, maxs∈Sn |V̂ 2

s /V
2
s − 1| = op(n

−κ).

Combining this result with inequality |x − 1| ≤ |x2 − 1|, which holds for any x > 0, yields

the first result of the lemma. The second result follows from the first one and the inequality

|1/x− 1| < 2|x− 1|, which holds for any |x− 1| < 1/2.
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Lemma 10. P{cPIA,01−λ−ψn > cPIA1−λ } = o(1) and P{cPIA,01−λ+ψn < cPIA1−λ } = o(1) uniformly over all

λ ∈ (0, 1)10 and over the set of models G where ψn is defined in the beginning of this section

(ψn ≥ Cψ(p log n)1/2/nκ/4 with sufficiently large Cψ > 0 and ψn → 0).

Proof. Denote

p1 = max
s∈Sn

∣∣∣∣ esVs
∣∣∣∣max
s∈Sn

∣∣∣∣VsV̂s − 1

∣∣∣∣ (A.58)

and

p2 = max
(i,m,h)∈Sn

∣∣∣∣∣
∑n

j=1wh(Xi, Xj)((Σ̂
1/2
j − Σ

1/2
j )εj)m

V̂(i,m,h)

∣∣∣∣∣ (A.59)

where (·)m denotes m-th component of the vector (·). Then

|TPIA − TPIA,0| ≤ p1 + p2 (A.60)

Let A denote the event {maxj=1,...,n ‖Σ̂j − Σj‖o < n−κ}. By assumption 6, P (A) → 1 as

n→∞. Thus, it is enough to show that cPIA,01−λ−ψn ≤ c
PIA
1−λ and cPIA,01−λ+ψn ≥ c

PIA
1−λ on A.

As in the proof of lemma 9, maxs∈Sn |Vs/V̂s−1| ≤ Cn−κ onA. By lemma 8, E[maxs∈Sn es/Vs] ≤
C
√

log n. So, Markov inequality gives for any B > 0, on A,

P (p1 > C
√

log nn−κB|Y n
1 ) ≤ 1/B (A.61)

for sufficiently large C where Y n
1 is a shorthand for {Yi}ni=1. Consider p2. For any j = 1, ..., n

and m = 1, ..., p,

E[((Σ̂
1/2
j − Σ

1/2
j )εj)

2
m|Y n

1 ] ≤ E[‖(Σ̂1/2
j − Σ

1/2
j )εj‖2|Y n

1 ]

≤ E[‖Σ̂1/2
j − Σ

1/2
j ‖

2
o‖εj‖2|Y n

1 ]

≤ p‖(Σ̂1/2
j − Σ

1/2
j )‖2o

≤ p2‖Σ̂j − Σj‖o

where the last line follows from lemma 2. So, conditional on Y n
1 , on A,

n∑
j=1

wh(Xi, Xj)((Σ̂
1/2
j − Σ

1/2
j )εj)m/V(i,m,h) (A.62)

is a mean-zero Gaussian random variable with variance bounded by p2n−κ for any (i,m, h) ∈
Sn. In addition, on A, maxs∈Sn Vs/V̂s ≤ 2 for sufficiently large n. Thus, Markov inequality

10If ψn ≥ λ or λ+ ψn ≥ 1, set cPIA,01−λ+ψn
= +∞ or cPIA,01−λ−ψn

= −∞ correspondingly.
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and the argument like that used in lemma 8 yield

P (p2 > C
√

log npn−κ/2B|Y n
1 ) ≤ 1/B (A.63)

on A. Let B = nκ/4/(p log n)1/2. Let C1 be some large positive constant satisfying C1 < Cψ. I

also assume that Cψ > 4. Recall that ψn ≥ Cψ(p log n)1/2/nκ/4. So, ψn > max(4/B, C1(p log n)n−κ/2B).

Note that TPIA,0 is the maximum over |Sn| standard Gaussian random variables. Since

|Sn| ≤ Cnφ for some φ > 0, lemma 5 gives cPIA,01−λ−ψn/2 − c
PIA,0
1−λ−ψn ≥ C2ψn/(log n)1/2. I will

assume that C1 is sufficiently large so that C1C2 > C. Then

cPIA,01−λ−ψn/2 − c
PIA,0
1−λ−ψn ≥ C

√
log npn−κ/2B (A.64)

Now the first part of the lemma follows from

P{TPIA ≤ cPIA,01−λ−ψn |Y
n
1 } ≤ P{TPIA,0 − p1 − p2 ≤ cPIA,01−λ−ψn |Y

n
1 }

≤ P{TPIA,0 − C
√

log npn−κ/2B ≤ cPIA,01−λ−ψn |Y
n
1 }+ 2/B

≤ P{TPIA,0 ≤ cPIA,01−λ−ψn/2|Y
n
1 }+ 2/B

≤ 1− λ− ψn/2 + 2/B

≤ 1− λ

on A. The second part of the lemma follows from a similar argument.

Lemma 11. P [maxs∈Sn(εs/Vs) ≤ cPIA,01−λ ] = 1−λ+o(1) and E[−maxs∈Sn(εs/Vs) ≤ cPIA,01−λ ] =

1− λ+ o(1) uniformly over all λ ∈ (0, 1) and over the set of models G.

Proof. By lemma 7, for any (i,m, h) ∈ Sn and any j = 1, ..., n,

wh(Xi, Xj)/V(i,m,h) ≤ C/
√
nhd ≤ C/

√
nhdmin (A.65)

It follows from assumption 4(ii) that there exists a sequence {νn} of positive numbers satisfying

νn → ∞ sufficiently slowly so that ν10n (log n)7/(nh3dmin) → 0. Let g0 : R → R be a thrice

continuously differentiable function satisfying (i) g0(x) = 1 for x ≤ 0 and (ii) g0(x) = 0 for

x ≥ 1. Let gn(x) = g0(νn
√

log n(x − cPIA,01−λ )) for all x ∈ R. Clearly, ‖g′n‖∞ ≤ Cνn
√

log n,

‖g′′n‖∞ ≤ C(νn
√

log n)2, and ‖g′′′n ‖∞ ≤ C(νn
√

log n)3. Apply theorem 6 with g = gn, Zj = εj ,

Yj = Σ
1/2
j εj , a = C/

√
nhdmin and K ≤ Cnφ for some φ > 0 and α = ν2n(log n)3/2. It follows

that ∣∣∣∣E [gn(max
s∈Sn

(εs/Vs))− gn(max
s∈Sn

(es/Vs))

]∣∣∣∣→ 0 (A.66)
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Therefore, the upper bound follows from

P{max
s∈Sn

(εs/Vs) ≤ cPIA,01−λ } ≤ E[gn(max
s∈Sn

(εs/Vs))]

≤ E[gn(max
s∈Sn

(es/Vs))] + o(1)

≤ P{max
s∈Sn

(es/Vs) ≤ cPIA,01−λ + 1/(νn
√

log n)}+ o(1)

≤ P{max
s∈Sn

(es/Vs) ≤ cPIA,01−λ }+ o(1)

≤ 1− λ+ o(1)

where the last line follows from lemma 5.

The lower bound follows from the same argument with gn(x) = g0(ν
√

log n(x− cPIA,01−λ ) +

1). The result for E[−maxs∈Sn(εs/Vs) ≤ cPIA,01−λ ] follows because {es}s∈Sn has a symmetric

distribution.

Lemma 12. maxs∈Sn |εs/Vs| = Op(
√

log n) and maxs∈Sn |εs/V̂s| = Op(
√

log n) uniformly

over the set of models G.

Proof. The result for maxs∈Sn |εs/Vs| follows from combining lemmas 8 and 11. The second

result follows from

max
s∈Sn

|εs/V̂s| ≤ max
s∈Sn

|εs/Vs|max
s∈Sn

(Vs/V̂s) = Op(
√

log n) (A.67)

since maxs∈Sn(Vs/V̂s) = Op(1) by lemma 9.

Lemma 13. P{maxs∈Sn\SDn f̂s/V̂s > 0} ≤ o(1) uniformly over the set of models G.

Proof. By lemma 11,

P{max
s∈Sn

(εs/Vs) ≤ cPIA,01−γn−ψn} = 1− γn − ψn + o(1) (A.68)

Since for any s ∈ Sn\SDn , fs/Vs ≤ −cPIA,01−γn−ψn ,

P{ max
s∈Sn\SDn

(f̂s/V̂s) > 0} = P{ max
s∈Sn\SDn

(f̂s/Vs) > 0}

= P{ max
s∈Sn\SDn

(fs/Vs + εs/Vs) > 0}

≤ P{ max
s∈Sn\SDn

(−cPIA,01−γn−ψn + εs/Vs) > 0}

≤ P{max
s∈Sn

(εs/Vs) > cPIA,01−γn−ψn}

≤ 1− (1− γn − ψn) + o(1)

= γn + ψn + o(1)
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Noting that γn +ψn = o(1), which holds by the definition of ψn and assumption 5, yields the

result.

Lemma 14. P{SDn ⊂ SRMS
n } ≥ 1 + o(1) uniformly over the set of models G.

Proof. By lemma 10, P{cPIA,01−γn−ψn > cPIA1−γn} = o(1). In addition, for any x ∈ (−1, 1),

2/(1 + x)− 1 ≥ 2(1− x)− 1 ≥ 1− 2x ≥ 1− 2|x| (A.69)

So,

P{SDn ⊂ SRMS
n } = P{min

s∈SDn
(f̂s/V̂s) > −2cPIA1−γn}

≥ P{min
s∈SDn

(f̂s/Vs) max
s∈SDn

(Vs/V̂s) > −2cPIA1−γn}

≥ P{min
s∈SDn

(−cPIA,01−γn−ψn + εs/Vs) max
s∈SDn

(Vs/V̂s) > −2cPIA1−γn}

= P{min
s∈SDn

(εs/Vs) > cPIA,01−γn−ψn − 2cPIA1−γn/ max
s∈SDn

(Vs/V̂s)}

≥ P{max
s∈Sn

(−εs/Vs) < −cPIA,01−γn−ψn + 2cPIA,01−γn−ψn/ max
s∈SDn

(Vs/V̂s)}+ o(1)

≥ P{max
s∈Sn

(−εs/Vs) < cPIA,01−γn−ψn(1− 2|max
s∈SDn

(Vs/V̂s)− 1|}+ o(1)

By lemma 8, that cPIA,01−γn−ψn ≤ C(log n)1/2/(γn + ψn). By lemma 9, |maxs∈SDn (Vs/V̂s) − 1| <
Cn−κ wpa1. So, wpa1,

cPIA,01−γn−ψn(1− 2|max
s∈SDn

(Vs/V̂s)− 1|) ≥ cPIA,01−γn−ψn − C(log n)1/2n−κ/(γn + ψn) (A.70)

Take χn = C(log n)n−κ/(γn + ψn). Then χn = o(1) by the choice of ψn. By lemma 5,

cPIA,01−γn−ψn − C(log n)1/2n−κ/(γn + ψn) ≥ cPIA,01−γn−ψn−χn (A.71)

Therefore,

P{SDn ⊂ SRMS
n } ≥ P{max

s∈Sn
(−εs/Vs) < cPIA,01−γn−ψn−χn}+ o(1)

≥ 1− γn − ψn − χn + o(1)

The result follows since γn + ψn + χn = o(1) by the definitions of ψn and χn and assumption

5.

Lemma 15. P{SRMS
n = Sn} ≥ 1 + o(1) uniformly over the set of models G00.
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Proof. By lemma 10, P{cPIA,01−γn−ψn > cPIA1−γn} = o(1). By lemma 9, maxs∈Sn(Vs/V̂s) ≤ 1 + n−κ

wpa1 as n→∞. If f = 0p, then for any s ∈ Sn, f̂s = εs. So,

P{SRMS
n = Sn} = P{min

s∈Sn
(εs/V̂s) > −2cPIA1−γn}

≥ P{min
s∈Sn

(εs/V̂s) > −2cPIA,01−γn−ψn}+ o(1)

≥ P{min
s∈Sn

(εs/Vs) max
s∈Sn

(Vs/V̂s) > −2cPIA,01−γn−ψn}+ o(1)

≥ P{min
s∈Sn

(εs/Vs)(1 + n−κ) > −2cPIA,01−γn−ψn}+ o(1)

≥ P{min
s∈Sn

(εs/Vs) > −2cPIA,01−γn−ψn(1− n−κ)}+ o(1)

≥ P{min
s∈Sn

(εs/Vs) > −cPIA,01−γn−ψn}+ o(1)

= P{max
s∈Sn

(−εs/Vs) < cPIA,01−γn−ψn}+ o(1)

Combining these results with lemma 11 yields

P{SRMS
n = Sn} ≥ 1− γn − ψn + o(1) (A.72)

The result follows by noting that γn + ψn = o(1).

Lemma 16. cRMS
1−α ≤ cPIA1−α = Op(

√
log n) uniformly over the set of models G.

Proof. Since SRMS
n ⊆ Sn, it follows that cRMS

1−α ≤ cPIA1−α . By lemma 10, P{cPIA,01−α/2 < cPIA1−α} =

o(1). In addition cPIA,01−α/2 ≤ C
√

log n by lemma 8. Combining these results yields the statement

of the lemma.

Lemma 17. Let τ > 1, L > 0, x = (x1, ..., xd) ∈ Rd, h = (h1, ..., hd) ∈ Rd, and g ∈ Fς(τ, L)

for some ς = 1, ..., [τ ]. Then ∂g(x1, ..., xd)/∂xm ≥ 0 for all m = 1, ..., d implies that for any

y = (y1, ..., yd) ∈ Rd satisfying 0 ≤ y ≤ h,

g(x+ y)− g(x) ≥ − max(Lτ−[τ ], L)∏
j=1,...,ς(τ − ς + j)

‖h‖ζ (A.73)

for ζ = min(ς + 1, τ).

Proof. For any y = (y1, ..., yd) ∈ Rd satisfying 0 ≤ y ≤ h, let l = y/‖y‖. Then g(1,l)(x) ≥ 0.

If g(1,l)(x + tl) ≥ 0 for all t ∈ (0, ‖y‖), the result is obvious. If g(1,l)(x + t0l) = 0 for some

t0 ∈ (0, ‖y‖), then g(k,l)(x+ t0l) = 0 for all k = 1, ..., ς. If ς = [τ ], then by Holder smoothness,

g([τ ],l)(x+ tl) ≥ −(L(t− t0))τ−[τ ]. Integrating it [τ ] times gives

g(x+ y)− g(x) ≥ − Lτ−[τ ]∏
j=1,...,[τ ](τ − [τ ] + j)

‖y‖ζ (A.74)
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since ζ = τ in this case. If ς < [τ ], then g(ς,l)(x+ tl) ≥ −L(t− t0). Integrating it ς times gives

the inequality similar to (A.74) with ς+1, ς, and L instead of ζ, [τ ], and Lτ−[τ ] correspondingly.

The result follows by noting that ‖y‖ ≤ ‖h‖.

A.8 Proofs of Theorems

Proof of Theorem 1. Consider any (f, {εi}∞i=1, {Xi}∞i=1) ∈ G0. For any s ∈ Sn, fs ≤ 0 since

the kernel K is positive by assumption 7. By lemma 10, P{cPIA,01−α−ψn > cPIA1−α} = o(1). By

lemma 9, maxs∈Sn(Vs/V̂s) ≤ 1 + n−κ wpa1 as n→∞. So,

P{T̂ ≤ cPIA1−α} = P{max
s∈Sn

(f̂s/V̂s) ≤ cPIA1−α}

≥ P{max
s∈Sn

(εs/V̂s) ≤ cPIA1−α}

≥ P{max
s∈Sn

(εs/V̂s) ≤ cPIA,01−α−ψn}+ o(1)

≥ P{max
s∈Sn

(εs/Vs) max
s∈Sn

(Vs/V̂s) ≤ cPIA,01−α−ψn}+ o(1)

≥ P{max
s∈Sn

(εs/Vs)(1 + n−κ) ≤ cPIA,01−α−ψn}+ o(1)

Let χn = (log n)3/2n−κ. Since maxs∈Sn |εs/Vs| = Op(
√

log n) by lemma 12, an application of

lemma 5 shows that the last expression is bounded from below by

P{max
s∈Sn

(εs/Vs) ≤ cPIA,01−α−ψn−χn}+ o(1) (A.75)

Then P{T̂ ≤ cPIA1−α} ≥ 1−α+ o(1) follows from this bound and lemma 11 since ψn +χn → 0.

Now consider the RMS critical value. By lemma 14, P{cD1−α > cRMS
1−α } ≤ o(1). By lemma

13, P{maxs∈Sn\SDn f̂s/V̂s > 0} ≤ o(1). So,

P{T̂ ≤ cRMS
1−α } = P{max

s∈Sn
(f̂s/V̂s) ≤ cRMS

1−α }

≥ P{max
s∈Sn

(f̂s/V̂s) ≤ cD1−α}+ o(1)

≥ P{max
s∈SDn

(f̂s/V̂s) ≤ cD1−α}+ o(1)

Since SDn is nonstochastic, from this point, the argument similar to that used in the proof for

the plug-in test function with SDn instead of Sn yields the result for the RMS critical value.

Note that all asymptotic results in this part of the proof hold uniformly over G0.
Next consider any (f, {εi}∞i=1, {Xi}∞i=1) ∈ G00 so that f = 0p. By lemma 10, P{cPIA,01−α+ψn <
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cPIA1−α} = o(1). By lemma 9, mins∈Sn(Vs/V̂s) ≥ 1− n−κ wpa1 as n→∞. So,

P{T̂ ≤ cPIA1−α} = P{max
s∈Sn

(f̂s/V̂s) ≤ cPIA1−α}

= P{max
s∈Sn

(εs/V̂s) ≤ cPIA1−α}

≤ P{max
s∈Sn

(εs/V̂s) ≤ cPIA,01−α+ψn}+ o(1)

≤ P{max
s∈Sn

(εs/Vs) min
s∈Sn

(Vs/V̂s) ≤ cPIA,01−α+ψn}+ o(1)

≤ P{max
s∈Sn

(εs/Vs)(1− n−κ) ≤ cPIA,01−α+ψn}+ o(1)

An argument like that used above shows that the last expression equals 1− α+ o(1).

For the RMS critical value, note that by lemma 15, P{SRMS
n = Sn} ≥ 1 + o(1) whenever

f = 0p. So,

P{T̂ ≤ cRMS
1−α } = P{T̂ ≤ cPIA1−α}+ o(1) = 1− α+ o(1) (A.76)

Note that all asymptotic results in this part of the proof hold uniformly over G00.

Proof of Theorem 2. For any w = (f, {εi}∞i=1, {Xi}∞i=1} ∈ Gρ, there exist i ∈ N andm = 1, ..., p

such that fm(Xi) ≥ 3ρ/4. By assumption 3, there exists a ball Bδ(Xi) with center at Xi and

radius δ such that fm(Xj) ≥ ρ/2 for all Xj ∈ Bδ(Xi). Note that δ can be chosen independently

of w. So, for some N ∈ N and any n ≥ N , there exists a triple sn = (in,m, hn) ∈ Sn

with hn bounded away from zero such that fm(Xj) ≥ ρ/2 for all Xj ∈ Bhn(Xin). Hence,

fsn ≥ ρ/2. Lemma 7 gives Vsn ≤ n−φ for some φ > 0, so fsn/Vsn > Cnφ. By lemma 9,

|V̂sn/Vsn − 1| = op(1). So, for any C̃ < C, P{fsn/V̂sn > C̃nφ} → 1. Thus,

P{T̂ ≤ cP1−α} ≤ P{fsn/V̂sn ≤ cP1−α + max
s∈Sn

|εs/V̂s|}

≤ P{cP1−α + max
s∈Sn

|εs/V̂s| > C̃nφ}+ o(1)

The result follows by noting that from lemmas 12 and 16, cP1−α+maxs∈Sn |εs/V̂s| = Op(
√

log n).

Proof of Theorem 3. As in the proof of theorem 2, since ρ(w(0), H0) > 0, there exists i ∈ N
such that f0m(Xi) ≥ ρ for some m = 1, ..., p and ρ > 0. In addition, by assumption 3, there

exists a ball Bδ(Xi) such that f0m(Xj) ≥ ρ/2 for all Xj ∈ Bδ(Xi). So, for some N ∈ N
and any n ≥ N , there exists a triple sn = (in,m, h) ∈ Sn such that f0m(Xj) ≥ ρ/2 for all

Xj ∈ Bh(Xin). Hence, fnsn ≥ anρ/2. By lemma 7, Vsn ≤ C/
√
n. Then lemma 9 gives

P{fnsn/V̂sn > C̃an/
√
n} → 1 for some C̃ > 0. The same argument as in the proof of theorem
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2 yields

P{T̂ ≤ cP1−α} ≤ P{cP1−α + max
s∈Sn

|εs/V̂s| > C̃an
√
n}+ o(1) (A.77)

Combining cP1−α + maxs∈Sn |εs/V̂s| = Op(
√

log n) and an
√
n/ log n→∞ gives the result.

Proof of Theorem 4. First, consider τ ≤ 1 case. In this case, ζ = τ . Since d ≥ 1, I have

ζ ≤ d. For any w = (f, {εi}∞i=1, {Xi}∞i=1) ∈ Gϑ, there exist i ∈ Nϑ and m = 1, ..., p such

that fm(Xi) ≥ (C/2)hζmin. By assumptions 1 and 8, there exists j = 1, ..., n such that

‖Xi − Xj‖ ≤ 3hmin and sn(w) = (j,m, hmin) ∈ Sn. By assumption 3, fm(Xl) ≥ C̃hζmin for

all l = 1, ..., n such that Xl ∈ Bhmin
(Xj) for some constant C̃. So, fsn(w) ≥ C̃hζmin. By

assumption 4(ii), nh3dmin/ log n→∞ as n→∞. By lemma 7, Vsn(w) ≤ C/
√
nhdmin. So,

fsn(w)/(Vsn(w)
√

log n) ≥ (C̃/C)

√
nh2ζ+dmin / log n ≥ (C̃/C)

√
nh3dmin/ log n→∞ (A.78)

uniformly over w ∈ Gϑ. The result follows from the same argument as in the proof of theorem

2.

Consider τ > 1 case. Suppose ζ ≤ d. For any w = (f, {εi}∞i=1, {Xi}∞i=1) ∈ Gϑ, there exist

i ∈ Nϑ and m = 1, ..., p such that fm(Xi) ≥ (C/2)hζmin. For m = 1, ..., d, set em = 4hmin if

∂fm(Xi)/∂xm ≥ 0 and −4hmin otherwise. Consider the cube C whose edges are parallel to

axes and that contains vertices (Xi,1, ..., Xi,d) and (Xi,1 + 2e1, ..., Xi,d + 2ed). By lemma 17,

for all x ∈ C, fm(x) ≥ C̃hζmin for some constant C̃. By the definition of Nϑ and assumption 1,

there exists l = 1, ..., n such that Xl ∈ Bhmin
(Xi,1 + e1, ..., Xi,d + ed). By assumption 8, there

exists j = 1, ..., n such that Xj ∈ B3hmin
(Xi,1 +e1, ..., Xi,d+ed) and sn(w) = (j,m, hmin) ∈ Sn.

So, fm(Xl) ≥ C̃hζmin for all l = 1, ..., n such that Xl ∈ Bhmin
(Xj). The rest of the proof follows

from the same argument as in the case τ ≤ 1.

Suppose ζ > d. The only difference between this case and the previous one is that now

optimal testing bandwidth value is greater than hmin. Let ho be the largest bandwidth value

in the set Sn that is smaller than (log n/n)1/(2ζ+d). For any w ∈ Gϑ, the same construction as

above gives sn(w) = (j,m, ho) ∈ Sn such that fm(Xl) ≥ ρϑ(w,H0) − C̃hζo for all l = 1, ..., n

such that Xl ∈ Bho(Xj). Since ρϑ(w,H0) ≥ bn(log n/n)ζ/(2ζ+d) for some sequence of real

numbers {bn}∞n=1 such that bn →∞ as n→∞, fsn(w) ≥ (bn− C̃)(log n/n)ζ/(2ζ+d). By lemma

7, Vsn(w) ≤ C/
√
nhdo. Then

fsn(w)/(Vsn(w)
√

log n) ≥ (bn − C̃)/(2C)→∞ (A.79)

The result follows as above.

Proof of Theorem 5. First, define functions b1, ..., bK on (0, 1] for K = [τ ] by the following
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induction. Set b1(x) = +1 for x ∈ (0, 1/2] and −1 for x ∈ (1/2, 1]. Given b1, ..., bk−1,

for i = 1, 3, ..., 2k − 1 and x ∈ ((i − 1)2−k, i2−k], set bk(x) = +1 if bk−1(y) = +1 for y ∈
((i − 1)2−k, (i + 1)2−k] and −1 otherwise. For i = 2, 4, ..., 2k and x ∈ ((i − 1)2−k, i2−k], set

bk(x) = −1 if bk−1(y) = +1 for y ∈ ((i− 2)2−k, i2−k] and +1 otherwise.

Now let us define v : R×R+ → R+. Set v(x, h) = 0 if x < 0 or x > 2 for all h ∈ R+. For

x ∈ [0, 2], v will be defined through its derivatives. Set ∂kv(0, h)/∂xk = 0 for all k = 0, ...,K.

For i = 1, ..., 2K , once function ∂Kv(x, h)/∂xK is defined for x ∈ [0, (i− 1)2−K ], set

∂Kv(x, h)/∂xK = ∂Kv((i− 1)2−K , h)/∂xK + bK(x)hKL(x− (i− 1)2−K)τ−K (A.80)

for x ∈ ((i− 1)2−K , i2−K ]. These conditions define function v(x, h) for x ∈ [0, 1] and h ∈ R+.

For x ∈ (1, 2] and h ∈ R+, set v(x, h) = v(2−x, h) so that v is symmetric in x around x = 1. It

is easy to see that for fixed h ∈ R+, v(·/h, h) ∈ F[τ ](τ, L) and supx∈R v(x/h, h) ∈ (C1h
τ , C2h

τ )

for some positive constants C1 and C2 independent of h.

Let q : Rd × R+ → R+ be given by q(x, h) = v(‖x‖/h + 1, h) for all (x, h) ∈ Rd × R+.

Note that for fixed h ∈ R+, q(·, h) ∈ F[τ ](τ, L), q(x, h) = 0 if ‖x‖ > h, and q(0d, h) =

supx∈Rd q(x, h) ∈ (C1h
τ , C2h

τ ).

Since rn(n/ log n)τ/(2τ+d) → 0, there exists a sequence of positive numbers {ψn}∞n=1 such

that rn = ψτn(log n/n)τ/(2τ+d) and ψn → 0. Set hn = ψn(log n/n)1/(2τ+d). By the assumption

on packing numbers N(h, Sϑ), there exists a set {j(l) ∈ Nϑ : l = 1, ..., Nn} such that ‖Xj(l1)−
Xj(l2)‖ > 2hn for l1, l2 = 1, ..., Nn if l1 6= l2 and Nn > Ch−dn for some constant C. For

l = 1, ..., Nn, define function f l : Rd → Rp given by f l1(x) = q(x − Xj(l), hn) and f lm(x) =

0 for all m = 2, ..., p for all x ∈ Rd. Note that functions {f l}Nnl=1 have disjoint supports.

Moreover, for every l = 1, ..., Nn and m = 1, ..., p, f lm ∈ F[τ ](τ, L). Let {εi}∞i=1 be a sequence

of independent standard Gaussian random vectors N(0, Ip). For l = 1, ..., Nn, define an

alternative wl = (f l, {εi}∞i=1, {Xi}∞i=1}. Note that ρϑ(wl, H0) ≥ Crn for all l = 1, ..., Nn for

some constant C. In addition, let w0 = (0, {εi}∞i=1, {Xi}∞i=1).

As in the proof of lemma 6.2 in Dumbgen and Spokoiny (2001), for any sequence φn =
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φn(Y1, ..., Yn) of tests with supw∈G0∩GX Ew[φn] ≤ α,

inf
w∈GX ,ρϑ(w,H0)≥Crn

Ew[φn]− α ≤ min
l=1,...,Nn

Ewl [φn]− Ew0 [φn]

≤
Nn∑
i=1

Ewl [φn]/Nn − Ew0 [φn]

≤ Ew0 [(

Nn∑
i=1

(dPwl/dPw0)/Nn − 1)φn]

≤ Ew0 [|
Nn∑
i=1

dPwl/dPw0/Nn − 1|]

where dPwl/dPw0 denotes a Radon-Nykodim derivative. For l = 1, ..., Nn, denote ωl =

(
∑n

i=1(f
l
1(Xi))

2)1/2 and ξl =
∑n

i=1 f
l
1(Xi)εi,1/ωl. Then

dPwl/dPw0 = exp(ωlξl − ω2
l /2) (A.81)

Note that ωl ≤ Cn1/2h
τ+d/2
n . In addition, under the model w0, ξl are independent standard

Gaussian random variables. So, an application of lemma 6 gives

Ew0 [|
Nn∑
i=1

dPwl/dPw0/Nn − 1|]→ 0 (A.82)

if Cn1/2h
τ+d/2
n < C̃(logNn)1/2 for some constant C̃ ∈ (0, 1) for all large enough n. The result

follows by noting that n1/2h
τ+d/2
n = o(

√
log n) and logNn ≥ C log n for some constant C.

Proof of Corollary 1. Replace p by Qn everywhere in the proofs given above. Then all pre-

liminary results except lemma 11 hold for the test with Qn → ∞. Lemma 11 holds with

condition (iv) in the corollary replacing assumption 4(ii). So, the first result follows from

the same argument as in theorem 1. For any w ∈ Gρ, there exists some m ∈ N such that

supi∈N[fm(Xi)]+ > 0. Once m is included in the test statistic, the second result follows as in

the proof of theorem 2.

Proof of Corollary 2. To prove the first result, note that fx,zm (Xi, Zi) < Ca for all i ∈ N and

m = 1, ..., p by assumption (v). So, fs ≤ Ca for any s ∈ Sn. Therefore, combining lemmas 7

and 9 gives

max
s∈Sn

(fs/V̂s) ≤ Ca
√
nahdmax

wpa1. Since a
√
nahdmax log n → 0 by assumption (iv), the bias is asymptotically negligible
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in comparison with the concentration rate of the test statistic. Therefore, the argument like

that used in the proof of theorem 1 leads to

P{T̂ ≤ cP1−α} ≥ P{max
s∈Sn

(εx,zs /Vs) ≤ cP1−α}+ o(1) = 1− α+ o(1) (A.83)

as n→∞ for P = PIA or RMS.

The second result follows from the same argument since under assumptions (v) and (vi)

−Ca ≤ fs ≤ Ca.

Finally, consider the third part of the corollary. If ρz(w,H0) > ρ, then for sufficiently

large n, there exists a triple sn = (in,m, hn) ∈ Sn with hn bounded away from zero such that

fm(Xj) ≥ ρ/2 for all Xj ∈ Bhn(Xin) and ‖Zin − z0‖ ≤ an. The rest of the proof follows from

the argument similar to that used in the proof of theorem 2.
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