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IMPLEMENTING INTERSECTION BOUNDS IN STATA

VICTOR CHERNOZHUKOV, WOOYOUNG KIM, SOKBAE LEE, AND ADAM M. ROSEN

Abstract. We present the clrbound, clr2bound, clr3bound, and clrtest com-
mands for estimation and inference on intersection bounds as developed by
Chernozhukov et al. (2013). The commands clrbound, clr2bound, and clr3bound

provide bound estimates that can be used directly for estimation or to construct
asymptotically valid confidence sets. The command clrbound provides bound es-
timates for one-sided lower or upper intersection bounds on a parameter, while
clr2bound and clr3bound provide two-sided bound estimates based on both lower
and upper intersection bounds. clr2bound uses Bonferroni’s inequality to construct
two-sided bounds, whereas clr3bound inverts a hypothesis test. The former can be
used to perform asymptotically valid inference on the identified set or the parameter,
while the latter can be used to provide asymptotically valid and generally tighter
confidence intervals for the parameter. clrtest performs an intersection bound
test of the hypothesis that a collection of lower intersection bounds is no greater
than zero. Inversion of this test can be used to construct confidence sets based on
conditional moment inequalities as described in Chernozhukov et al. (2013). The
commands include parametric, series, and local linear estimation procedures, and
can be installed from within Stata by typing “ssc install clrbound”.

Key words: clr2bound, clrbound, clrtest, clr3bound, bound analysis, conditional
moments, partial identification, infinite dimensional constraints, adaptive moment
selection.

1. Introduction

In this paper, we present the clrbound, clr2bound, clr3bound, and clrtest

commands for estimation and inference on intersection bounds as developed by Cher-
nozhukov et al. (2013). These commands, summarized in Table 1, enable one to
perform hypothesis tests and construct set estimates and confidence sets for param-
eters restricted by intersection bounds. The procedures employ parametric, series,
and local linear estimators.
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2 CHERNOZHUKOV, KIM, LEE, AND ROSEN

Command Description
clrtest Test the hypothesis that the maximum of lower intersection

bounds is nonpositive.
clrbound Compute a one-sided bound estimate.
clr2bound Compute two-sided bound estimates using Bonferroni’s inequality.
clr3bound Compute two-sided bound estimates by inverting clrtest.

Table 1. Intersection Bound Commands. Bound estimates can be
used to construct asymptotically valid confidence intervals for parame-
ters restricted by intersection bounds.

In Section 2 we recall the underlying framework of the intersection bounds setup
from Chernozhukov et al. (2013). In Section 3 we describe the details of how our Stata
program conducts hypothesis tests and constructs bound estimates. In Section 4, we
explain how to install our Stata module. In Sections 5, 6, 7, and 8 we describe the
clr2bound, clrbound, clrtest and clr3bound commands, respectively. We explain
how each command is used, what each command does, the available command options,
and saved results. In Section 9 we illustrate the use of all four of these commands
using data from the National Longitudinal Survey of Youth of 1979 (NLSY79), as
in Carneiro and Lee (2009). Specifically, we use these commands to estimate and
perform inference on returns to education using monotone treatment response and
monotone instrumental variable bounds developed by Manski and Pepper (2000).

2. Framework

In this paper, we consider intersection bounds of the following form:

max
j∈Jl

sup
xlj∈X l

j

θlj(x
l
j) ≤ θ∗ ≤ min

j∈Ju
inf

xuj ∈Xu
j

θuj (xuj ),(1)

where θ∗ is the parameter of interest, {θlj(·) : j ∈ Jl} are lower bounding functions,

{θuj (·) : j ∈ Ju} are upper bounding functions, X l
j and X u

j are predetermined sets,
and Jl and Ju are index sets with a finite number of positive integers. The interval
of all values that lie within the bounds in (1) is the identified set, which we denote
ΘI :

ΘI ≡
[

max
j∈Jl

sup
xlj∈X l

j

θlj(x
l
j),min

j∈Ju
inf

xuj ∈Xu
j

θuj (xuj )
]
.(2)

We focus on the case where the bounding functions are conditional expectation func-
tions such that

θkj (·) := E[Y k
j |Xk

j = ·], k = l, u,
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where Y k
j and Xk

j are the dependent variable and explanatory variables for each j

and k, respectively. We allow for the possibility that Xk
j are different or the same

across j and k.

The estimation problem of Chernozhukov et al. (2013) is to obtain estimators θ̂n0(p)
that provide bias-corrected estimates or the endpoints of confidence intervals depend-
ing on the chosen value of p, e.g. p = 1/2 or p = 1− α. Implementation details can
be found in Chernozhukov et al. (2013), who focus on the upper bound for θ∗. How-
ever, as explained there, the estimation procedure can be easily adapted for the lower
bound for θ∗. The command clrbound presented below gives estimators for these
one-sided intersection bounds.

If one wishes to perform inference on the identified set in such circumstances,
then one can use the intersection of upper and lower one-sided intervals each based
on p̃ = (1 + p)/2 as an asymptotic level-p confidence set for ΘI , which is valid
by Bonferroni’s inequality. The command clr2bound below provides this type of
confidence interval.

Such confidence intervals are, however, conservative for inference on θ∗, generally
providing higher asymptotic coverage for any θ ∈ ΘI . As an alternative, one can
construct a sharper confidence interval for θ∗ by inverting a test. Specifically, we may
consider testing the null hypothesis that a given value, say θnull, is in the identified
set by transforming the full set of lower and upper bounds into a collection of only
one-sided bounds, and then constructing a confidence interval through the inversion
of this test. We offer the command clr3bound for this purpose.

3. Implementation

In this section, we describe the details of our implementation for estimation of one-
sided bounds. We focus on the lower intersection bounds and drop the l superscript
to simplify notation.

Let J denote the number of inequalities concerned. Suppose that we have obser-
vations {(Yji, Xji) : i = 1, . . . , n, j = 1, . . . , J}, where n is the sample size. For each
j = 1, . . . , J , let yj denote the n×1 vector whose ith element is Yji and Xj the n×dj
matrix whose ith row is X ′ji, where dj is the dimension of Xji. We allow multidimen-
sional Xj only for parametric estimation. We set dj = 1 for series and local linear
estimation.

To evaluate the supremum in (1) numerically, we set a dense set of grid points for
each j = 1, . . . , J , say {x1, . . . ,xJ}, where xj = (x′j1, . . . , x

′
jMj

)′ for some sufficiently
large numbers Mj, where each xjm is a dj× 1 vector. Also, let Ψj denote the Mj×dj
matrix whose mth row is x′jm, where m = 1, . . . ,Mj and j = 1, . . . , J . Note that the
number of grid points can be different for different inequalities.
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3.1. Parametric Estimation. Define

X :=

 X1 · · · 0
...

0 · · · XJ

 , y :=

 y1
...

yJ

 , and Ψ :=

 Ψ1 · · · 0
...

0 · · · ΨJ

 .

Let θj(xj) ≡ (θj(xj1), · · · , θj(xjMj
))′ and θ ≡ (θ1(x1)′, . . . ,θJ(xJ)′)′. Then the esti-

mator of θ is θ̂ ≡ Ψβ̂, where β̂ = (X′X)−1X′y. Also, the heteroskedasticity-robust

standard error of θ̂, say ŝ, can be computed as

ŝ ≡
√

diagvec(V),

where

Ω = [diag(y −Xβ̂)]2, V = Ψ(X′X)−1X′ΩX(X′X)−1Ψ′,

diag(a) is the diagonal matrix whose diagonal terms are elements of the vector a, and
diagvec(A) is the vector whose elements are diagonal elements of the matrix A.

To compute the critical value, say k(p), define

Σ̂ := [diag(̂s)]−1V[diag(̂s)]−1.

Let chol(A) denote the Cholesky decomposition of the matrix A such that A =
chol(A)chol(A)′. Simulate pseudo random numbers from N(0, 1) and construct a

dim(Σ̂)×R-dimensional matrix, say ZR. Then the critical value is selected as

k(p) = the pth quantile of maxcol.[chol(Σ̂)ZR],(3)

where maxcol.(B) is a set of maximum values in each column of the matrix B. Then

our bias-corrected estimator θ̂n0(p) for maxj∈Jl supxlj∈X l
j
θlj(x

l
j) is

θ̂n0(p) = maxcol.[Ψβ̂ − k(p)ŝ].(4)

The critical value in (4) is obtained under the least favorable case. To improve the
estimator, we carry out the following adaptive inequality selection (AIS) procedure:

(Step 1) Set γ̃n ≡ 1−.1/ log n. Let ψ′k denote the kth row of Ψ, where k = 1, . . . ,
∑J

j=1Mj.
Keep each row ψ′k of Ψ if and only if

ψ′kβ̂ ≥ θ̂n0(γ̃n)− 2k(γ̃n)ŝk,

where ŝk is the kth element of ŝ.
(Step 2) Replace Ψ with the kept rows of Ψ in Step 1. Then recompute V and Σ̂ to

update the critical value in (3), and obtain the final estimator θ̂n0(p) in (4)
with the updated critical value.
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3.2. Series Estimation. The implementation of series estimation is similar to para-
metric estimation. For each j = 1, . . . , J , let pnj(x) ≡ (pn,1(x), . . . , pn,κj(x))′ denote
the κj-dimensional vector of approximating functions by cubic B-splines. Here, the

number of series terms κj can be different from one inequality to another. Let X̃j

denote the n×κj matrix whose ith row is pnj(Xji)
′ and Ψ̃j the Mj×κj matrix whose

mth row is pnj(xjm)′. Then the same procedure as described in Section 3.1 can be

carried out, substituting X̃j and Ψ̃j for Xj and Ψj, respectively.

3.3. Local Linear Estimation. For any vector v, let ρ̂j(v) denote the vector whose
kth element is the local linear regression estimate of yj on Xj at the kth element of
v. In detail, the kth element of ρ̂j(v), say ρ̂j(vk), is defined as follows:

ρ̂j(vk) ≡ e′1(X ′vkWjXvk)−1X ′vkWjyj,

where e1 ≡ (1, 0)′,

Xvk ≡

 1 (Xj1 − vk)
...

...
1 (Xjn − vk)

 , Wj ≡ diag

(
K

(
Xj1 − vk

hj

)
, · · · , K

(
Xjn − vk

hj

))
,

K(·) is a kernel function, and hj is the bandwidth for inequality j. In our implemen-
tation, we used the following kernel function:

K(s) =
15

16
(1− s2)21(| s |≤ 1).

Then the estimator of θ ≡ (θ1(x1)′, . . . ,θJ(xJ)′)′ is θ̂ ≡ (ρ̂1(ψ1)′, . . . , ρ̂J(ψJ))′, where
ψj denotes the Mj × 1 vector whose mth element is xjm.

Now let ŝj denote the Mj × 1 vector whose mth element is
√
g2
jm(yj,Xj)/nhj,

where

g2
jm(yj,Xj) = n−1

n∑
i=1

ĝji(Yji, Xji, xjm)2,

ĝji(Yji, Xji, xjm) =
Yji − ρ̂j(Xji)√
hj f̂j(xjm)

K

(
xjm −Xji

hj

)
,

f̂j(xjm) is the kernel estimate of the density of the covariate for the jth inequality,
evaluated at xjm. Then, ŝ can be computed as ŝ = (ŝ′1, . . . , ŝ

′
J)′ .

To compute the critical value, k(p), let Φj denote the Mj × n matrix whose mth

row is (ĝj1(Yj1, Xj1, xjm), . . . , ĝjn(Yjn, Xjn, xjm))/
√
nhjg2

jm(yj,Xj). Define

Φ ≡

 Φ1
...

ΦJ

 .
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We simulate pseudo random numbers from the N(0, 1) distribution and construct a
n×R matrix, ZR. Then, the critical value is selected as

k(p) = the pth quantile of maxcol.[ΦZR].(5)

The calculation of the bias-corrected estimator θ̂n0(p) is almost the same as that of
parametric estimation. That is,

θ̂n0(p) = maxcol.[θ̂ − k(p)ŝ].(6)

However, the AIS procedure is slightly different since we do not use Ψ in local linear
estimation.

(Step 1) Set γ̃n ≡ 1− .1/ log n. Keep the mth row of each Φj, j = 1, . . . , J , if and only
if

ρ̂j(xjm) ≥ θ̂n0(γ̃n)− 2k(γ̃n)ŝjm,

where ŝjm is the mth element of ŝj.
(Step 2) For j = 1, . . . , J , replace Φj with the kept rows of Φj in Step 1. Then

recompute the critical value in (5), and obtain the final estimator θ̂n0(p) with
the updated critical value.

4. Installation of the clrbound package

All Stata commands below are available at the Statistical Software Components
(SSC) archive. Our Stata module called clrbound (Chernozhukov et al. (2013))1

can be installed from within Stata by typing “ssc install clrbound”. All of our
commands require the package moremata (Jann (2005))2 , which can also be installed
by typing “ssc install moremata, replace” in the Stata command window.

5. The clr2bound command

5.1. Syntax. The syntax of clr2bound is as follows:

clr2bound (( lowerdepvar1 indepvars1 range1) ( lowerdepvar2 indepvars2 range2) ... (

lowerdepvarN indepvarsN rangeN)) (( upperdepvarN+1 indepvarsN+1 rangeN+1) (

upperdepvarN+2 indepvarsN+2 rangeN+2) ... ( upperdepvarN+M indepvarsN+M

rangeN+M))
[
if
] [

in
] [

, method("series"|"local") notest null(real ) level(numlist

) noais minsmooth(#) maxsmooth(#) noundersmooth bandwidth(numlist ) rnd(#)

norseed seed(#)
]

1http://econpapers.repec.org/software/bocbocode/s457674.htm.
2http://econpapers.repec.org/software/bocbocode/s455001.htm.

http://econpapers.repec.org/software/bocbocode/s457674.htm
http://econpapers.repec.org/software/bocbocode/s455001.htm
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5.2. Description. clr2bound estimates two-sided intersection bounds on a param-
eter. The variables called lowerdepvar1∼lowerdepvarN are the dependent variables
(Y l

j ’s) for the lower bounding functions and the upperdepvarN+1∼upperdepvarN+M
are the dependent variables (Y u

j ’s) for the upper bounding functions, respectively.
The variables indepvars1∼lowerdepvarN+M in the syntax refer to explanatory vari-
ables for the corresponding dependent variables. Recall that clr2bound allows for
multidimensional indepvars for parametric estimation, but only for a one dimensional
independent variable for series and local linear estimation.

The variables range1∼rangeN+M are sets of grid points over which the bounding
function is estimated. The number of observations for the range is not necessary the
same as the number of observations for the depvar and indepvars. The latter is the
sample size, whereas the former is the number of grid points to evaluate the maximum
or minimum values of the bounding functions.

It should be noted that the parentheses must be used properly. Variables for lower
bounds and upper bounds must be put in additional parentheses separately. For
example, if there are two variable sets, (ldepvar1 indepvars1 range1 ) and (ldepvar2
indepvars2 range2 ), for the lower bounds estimation and one variable set, (udepvar1
indepvars3 range3 ), for the upper bounds estimation, the right syntax for two-sided
intersection bounds estimation is ((ldepvar1 indepvars1 range1 )(ldepvar2 indepvars2
range2 ))((udepvar1 indepvars3 range3 )).

5.3. Options. method(string) specifies the method of estimation. By default, clr2bound
will conduct parametric estimation. Specifying method("series"), clr2bound will
conduct series estimation with cubic B-splines. Specifying method("local"), will
result in local linear estimation.

notest determines whether clr2bound conducts a test or not. clr2bound provides a
test for the null hypothesis that the specified value is in the intersection bounds at
the confidence levels specified in the level option below. By default, clr2bound
conducts the test. Specifying this option causes clr2bound to output Bonferroni
bounds only.

null(real) specifies the value for θ∗ under the null hypothesis of the test we described
above. The default value is null(0).

level(numlist) specifies confidence levels. numlist has to be filled with real numbers
between 0 and 1. In particular, if this option is specified as level(0.5), the result
is the half-median-unbiased estimator of the parameter of the interest. The default
is level(0.5 0.9 0.95 0.99).

noais determines whether the adaptive inequality selection would be applied or not.
The adaptive inequality selection (AIS) helps to get sharper bounds by using the
problem-dependent cutoff to drop irrelevant grid points of the range. The default
is to use AIS.

minsmooth(#) and maxsmooth(#) specify the minimum and maximum possible
numbers of approximating functions considered in the cross validation procedure
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for B-splines. Specifically, the number of approximating functions K̂cv is set to
the minimizer of the leave-one-out least squares cross validation score within this
range. For example, if a user inputs minsmooth(5) and maxsmooth(9), K̂cv is
chosen from the set {5,6,7,8,9}. The procedure calculates this number separately
for each inequality. The default is minsmooth(5) and maxsmooth(20). If under-
smoothing is performed, the number of approximating functions K ultimately used
will be given by the largest integer smaller than K̂cv times the under-smoothing
factor n−1/5×n2/7, see option noundersmooth below. This option is only available
for series estimation.

bandwidth(#) specifies the value of the bandwidth used in the local linear estima-
tion. By default, clr2bound calculates a bandwidth for each inequality. With
undersmoothing, we use the rule of thumb bandwidth h = ĥROT × ŝv×n1/5×n−2/7

where ŝv is the square root of the sample variance of V , and ĥROT is the rule-of-
thumb bandwidth for estimation of θ(v) with Studentized V . See Chernozhukov

et al. (2013) for the exact form of ĥROT . When the bandwidth(#) is specified,
clr2bound uses the given bandwidth as the global bandwidth for every inequality.
This option is only available for local linear estimation.

noundersmooth determines whether under-smoothing is carried out, with the default
being to under-smooth. In series estimation, under-smoothing is implemented by
first computing K̂cv as the minimizer of the leave-one-out least squares cross val-
idation score. We then set the number of approximating functions to K, given
by the largest integer which is smaller than or equal to K̂ := K̂cv × n−1/5 × n2/7.
The noundersmooth option simply uses K̂cv. For local linear estimation under-
smoothing is done by setting the bandwidth to h = ĥROT × ŝv×n1/5×n−2/7, where
ĥROT , is the rule-of-thumb bandwidth used in Chernozhukov et al. (2013). The

noundersmooth option instead uses ĥROT × ŝv. This option is only available for
series and local linear estimation.

rnd(#) specifies the number of columns of the random matrix generated from the
standard normal distribution. This matrix is used for computation of critical values.
For example, if the number is 10000 and the level is 0.95, we choose the 0.95 quantile
from 10000 randomly generated elements. The default is rnd(10000).

norseed determines whether the seed number for the simulation used in the calcula-
tion would be reset. If a user wants to use this command for simulations such as
Monte Carlo method, he can prevent the command from resetting the seed number
every lap by using this option. The default is to reset the seed number.

seed(#) specifies the seed number for the random number generation described
above. To prevent the estimation result from changing one particular values to
another randomly, clr2bound always conducts set seed # initially. The default
is seed(0).
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5.4. Saved results. In the following, “l.b.e.” stands for lower bound estimation,
“u.b.e.” for upper bound estimation, and “ineq” means an inequality. (i) denotes the
i-th inequality. (lev) means the confidence level’s decimal part. For example, when
the confidence level is 97.5% or 0.975, (lev) is 975. The number of elements in (lev) is
equal to the number of confidence levels specified by the level option. Some results
are only available for series or local linear estimation.
clr2bound saves the following in e(). Note that for this and all other commands,

in the saved AIS results 1 is used to denote values that were kept in the index set,
and 0 values that were dropped.

Scalars
e(N) #of observations e(null) The null hypothesis
e(l ineq) #of ineq’s in l.b.e. e(u ineq) #of ineq’s in r.b.e.
e(l grid(i)) #of grid points in (i) of l.b.e. e(u grid(i)) #of grid points in (i) of r.b.e.
e(l nf x(i)) #of approx. functions for l.b.e.

at x(i)
e(u nf x(i)) #of approx. functions for

u.b.e. at x(i)
e(l bdwh(i)) bandwidth for (i) of l.b.e e(l bdwh(i)) bandwidth for (i) of u.b.e.
e(lbd(lev)) est. results of l.b.e. e(ubd(lev)) est. results of u.b.e.
e(lcl(lev)) critical value of l.b.e. e(ucl(lev)) critical value of l.b.e.
e(t det(lev)) 1 : in the bound 0 : not e(t cvl(lev)) critical value of test
e(t bd(lev)) est. results of test e(t nf x(i)) #of approx. functions in test

Macros
e(cmd) ”clr2bound” e(title) ”CLR Intersection Bounds

(method)”
e(ldepvar) dep. var. in l.b.e. e(udepvar) dep. var. in r.b.e.
e(level) confidence levels e(smoothing) ”(NOT) Undersmoothed”
e(l indep(i)) indep. var. in (i) of l.b.e. e(u indep(i)) indep. var. in (i) of u.b.e.
e(l range(i)) range in (i) of l.b.e. e(u range(i)) range in (i) of u.b.e.

Matrices

e(l omega) Ω̂n for l.b.e. e(u omega) Ω̂n for u.b.e.

e(l theta(i)) θ̂n(v) for each v in l.b.e. e(u theta(i)) θ̂n(v) for each v in u.b.e.
e(l se(i)) sn(v) for each v in l.b.e. e(u se(i)) sn(v) for each v in u.b.e.
e(l ais(i)) AIS result for each v in l.b.e. e(u ais(i)) AIS result for each v in u.b.e.

e(t omega) Ω̂n for test e(t theta(i)) θ̂n(v) for each v in test
e(t se(i)) sn(v) for each v in test e(t ais(i)) AIS result for each v in test

See Chernozhukov et al. (2013) for details on θ̂n(v), sn(v), and Ω̂n.

6. The clrbound command

6.1. Syntax. The syntax of clrbound is as follows:

clrbound ( depvar1 indepvars1 range1 ) ( depvar2 indepvars2 range2 ) ... ( depvarN

indepvarsN rangeN )
[
if
] [

in
] [

, lower | upper method("series"|"local")

level(numlist ) noais minsmooth(#) maxsmooth(#) noundersmooth bandwidth(numlist )

rnd(#) norseed seed(#)
]

6.2. Description. clrbound estimates the one-sided lower or upper intersection bounds
of a parameter. The variables are defined similarly as for clr2bound.
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6.3. Options. lower specifies whether the estimation is for the lower bound or the
upper bound. By default, it will return the upper intersection bound. Specifying
lower, clrbound will return the lower intersection bound.
Other options of the clrbound are the same as those of the clr2bound. However,

the clrbound does not have notest and null options because it does not provide a
testing procedure.

6.4. Saved results. In the following, we use the same abbreviations as in Section
5.4. The clrbound saves the following in e():
Scalars

e(N) #of observations e(n ineq) #of inequality
e(grid(i)) #of grids points (i) e(nf x(i)) #of approx. functions in (i)
e(bd(lev)) results of estimation e(cl(lev)) critical value
e(bdwh(i)) bandwidth for (i)

Macros
e(cmd) ”clrbound” e(title) ”CLR Intersection (up-

per/lower) Bounds (method)”
e(depvar) dependent variables e(level) confidence levels
e(smoothing) ”(NOT) Undersmoothed” e(indep(i)) indep. variables in (i)
e(range(i)) range in (i)

Matrices

e(omega) Ω̂n e(theta(i)) θ̂n(v) for each v
e(se(i)) sn(v) for each v e(ais(i)) AIS result for each v

7. The clrtest command

7.1. Syntax. The syntax of clrtest is as follows:

clrtest ( depvar1 indepvars1 range1 ) ( depvar2 indepvars2 range2 ) ... ( depvarN

indepvarsN rangeN )
[
if
] [

in
] [

, method("series"|"local") level(numlist ) noais

minsmooth(#) maxsmooth(#) noundersmooth bandwidth(numlist ) rnd(#) norseed

seed(#)
]

7.2. Description. clrtest offers a more comprehensive testing procedure than the
clr2bound does. It returns the output telling whether the result of the lower inter-
section bound estimation deducted from the given depvar ’s and confidence levels is
smaller than 0 or not. For example, suppose that one wants to test the null hypothesis
that 0.59 is in the 95% confidence interval for yl and yu. Then, we can make two
inequalities, yl test = yl − 0.59 and yu test = 0.59 − yu. If the resulting estimator
is larger than 0, the procedure rejects the null hypothesis. The variables are defined
similarly as in the clr2bound.

7.3. Options. Since the options of the clrtest are the same as those of the clrbound,
the explanation of options is omitted.
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7.4. Saved results. Other saved results are the same as those of clrbound except
the following:
Scalars

e(det(lev)) rejected : 0, not rejected : 1

8. The clr3bound command

8.1. Syntax. The syntax of clr3bound is as follows:

clr3bound ((lowerdepvar1 indepvars1 range1) (lowerdepvar2 indepvars2 range2) ...

(lowerdepvarN indepvarsN rangeN)) ((upperdepvarN+1 indepvarsN+1 rangeN+1)

(upperdepvarN+2 indepvarsN+2 rangeN+2) ...(upperdepvarN+M indepvarsN+M

rangeN+M))
[
if
] [

in
] [

, start(#) end(#) grid(#) method("series"|"local")

level(#) noais minsmooth(#) maxsmooth(#) noundersmooth bandwidth(#) rnd(#)

norseed seed(#)
]

8.2. Description. clr3bound estimates the two-sided intersection bound of a pa-
rameter by carrying out pointwise tests using the clrtest command. Note that
when one-sided intersection bounds are concerned, there is no need to implement
pointwise tests. This is because in (1), we consider one-sided intersection bounds
with θ∗ additively separable with respect to the bounding functions. In this case, the
command clrbound estimates tight bounds for θ∗.

Since this command is only relevant for two-sided intersection bounds, a user should
input variables for both lower and upper bounds to calculate the bound. The variables
are defined similarly as in the clr2bound. This command generally provides tighter
bounds than those provided by the clrtest command over equi-spaced grids, which
employ Bonferroni’s inequality. Unlike the previous commands, clr3bound can only
deal with one confidence level.

8.3. Options. stepsize(#) specifies the distance between two consecutive grid
points. The procedure divides Bonferroni’s bound into equi-distanced grids and
implements the clrtest command for each grid point to determine a possible
tighter bound. The default is 0.01.

level(#) specifies the confidence level of the estimation. Different from previous
commands, clr3bound can only deal with one confidence level. The default is 0.95.
Other options are exactly the same as those of clr2bound.

8.4. Saved results. clr3bound saves the following in e():
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Scalars
e(N) #of observations e(step) step size
e(level) confidence level
e(l ineq) #of ineq’s in l.b.e. e(u ineq) #of ineq’s in r.b.e.
e(l grid(i)) #of grids points for l.b.e. at

observation (i)
e(u grid(i)) #of grids points for r.b.e. at

observation (i)
e(l nf x(i)) #of approx. functions in (i) of

l.b.e.
e(u nf x(i)) #of approx. functions in (i) of

u.b.e.
e(l bdwh(i)) bandwidth for (i) of l.b.e e(l bdwh(i)) bandwidth for (i) of u.b.e.
e(lbd) est. results of l.b.e. e(ubd) est. results of u.b.e.
e(lbd(lev)) Bonferroni results of l.b.e. e(ubd(lev)) Bonferroni results of u.b.e.
e(lcl(lev)) critical value of l.b.e. e(ucl(lev)) critical value of l.b.e.

Macros
e(cmd) ”clr3bound” e(title) ”CLR Intersection Bounds: in-

verting test bounds”
e(ldepvar) dep. var. in l.b.e. e(udepvar) dep. var. in r.b.e.
e(method) Estimation method e(smoothing) ”(NOT) Undersmoothed”
e(l indep(i)) indep. var. in (i) of l.b.e. e(u indep(i)) indep. var. in (i) of u.b.e.
e(l range(i)) range in (i) of l.b.e. e(u range(i)) range in (i) of u.b.e.

Matrices

e(l omega) Ω̂n for l.b.e. e(u omega) Ω̂n for u.b.e.

e(l theta(i)) θ̂n(v) for each v in l.b.e. e(u theta(i)) θ̂n(v) for each v in u.b.e.
e(l se(i)) sn(v) for each v in l.b.e. e(u se(i)) sn(v) for each v in u.b.e.
e(l ais(i)) AIS result for each v in l.b.e. e(u ais(i)) AIS result for each v in u.b.e.

9. Examples

To illustrate the usage of clrbound, clr2bound, clr3bound, and clrtest, we use
the data from the National Longitudinal Survey of Youth of 1979 (NLSY79), as in
Carneiro and Lee (2009). The variable lnwage is hourly log wage, eduyr is years of
schooling and afqt is the Armed Forces Qualifying Test score. As in Chernozhukov
et al. (2013), we consider the MIV-MTR (monotone instrument variable - monotone
treatment response) bounds of Manski and Pepper (2000). Specifically, let the param-
eter of interest be θ∗ = P[Yi(t) > y|Vi = v] at y = log(16) (approximately the 70th
percentile of hourly wages), v = 0 and t = 13 (college attendees, in other words those
who have more years of schooling than high school graduates). Then the MIV-MTR
upper bound is

θ∗ ≤ inf
u≥v

P[1{Yi > y] · 1{t ≤ Zi}+ 1{t > Zi}|Vi = u],

where Yi is the observed wages, Zi is years of schooling, and Vi is the AFQT score.
The lower bound is

θ∗ ≥ sup
u≤v

P[1{Yi > y] · 1{t ≥ Zi}|Vi = u].

Note that, in this case, when choosing range, one has to be careful due to the
MIV bound. In other words, when estimating the intersection bound, the range is
different between the lower and upper bounds. A new variable which contains grid
points larger(smaller) than 0 should be used for the upper(lower) bound estimation,
since we want to know the value θ∗ at v = 0.
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We include range variables in our NLSY79 dataset, vl afqt for lower intersection
bounds, and vu afqt for upper bounds which contain 101 grid points from -2 to 0
and 0 to 2, respectively. The commands we used for making the range variables are
as follows:

. egen vl_afqt = fill("-2 -1.98")

. replace vl_afqt = . if vl_afqt > 0
(1943 real changes made, 1943 to missing)

. egen vu_afqt = fill("0 0.02")

. replace vu_afqt = . if vu_afqt > 2
(1943 real changes made, 1943 to missing)

9.1. clr2bound. First of all, one should create the dependent variables. The dataset
provided for this paper contains these variables, yl for the lower bound and yu for
the upper bound already. The commands for making these variables were as follows:

. gen yl = (lnwage > log(16)) * (eduyr >= 13)

. gen yu = (lnwage > log(16)) * (eduyr >= 13) + (eduyr < 13)

We compare three estimation methods (parametric, local linear, and series estima-
tion). For the sake of illustration we also include the test result for whether or not
0.1 is in the two-sided intersection bounds using series estimation. The results are as
follows:

. use NLSY, clear

. clr2bound ((yl afqt vl_afqt))((yu afqt vu_afqt)), notest

CLR Intersection Bounds (Parametric) Number of obs : 2044

< Lower Side >
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )
< Upper Side >
Inequality #1 : yu (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied

Bonferroni Bounds | Value
-------------------------------------+---------------------------------------------
50% two-sided confidence interval | [ 0.2139264, 0.5663448 ]
90% two-sided confidence interval | [ 0.2057242, 0.5879866 ]
95% two-sided confidence interval | [ 0.2033481, 0.5947234 ]
99% two-sided confidence interval | [ 0.1981462, 0.6064652 ]
-----------------------------------------------------------------------------------

. clr2bound ((yl afqt vl_afqt))((yu afqt vu_afqt)), notest met("local")

CLR Intersection Bounds (Local Linear) Number of obs : 2044

< Lower Side >
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )
< Upper Side >
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Inequality #1 : yu (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied
Bandwidths are undersmoothed

Bonferroni Bounds | Value
-------------------------------------+---------------------------------------------
50% two-sided confidence interval | [ 0.1196608, 0.6405670 ]
90% two-sided confidence interval | [ 0.1052949, 0.6591008 ]
95% two-sided confidence interval | [ 0.1005279, 0.6657757 ]
99% two-sided confidence interval | [ 0.0884076, 0.6782955 ]
-----------------------------------------------------------------------------------

. clr2bound ((yl afqt vl_afqt))((yu afqt vu_afqt)), met("series") null(0.1)

CLR Intersection Bounds (Series) Number of obs : 2044
Estimation Method : Cubic B-Spline (Undersmoothed)

< Lower Side >
---------------------------------------------------------------------------------
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )
Numbers of Approximating Functions : 9
< Upper Side >
---------------------------------------------------------------------------------
Inequality #1 : yu (# of Grid Points : 101, Independent Variables : afqt )
Numbers of Approximating Functions : 9

AIS(adaptive inequality selection) is applied

Bonferroni bounds | Value
-------------------------------------+---------------------------------------------
50% two-sided confidence interval | [ 0.1026632, 0.6262088 ]
90% two-sided confidence interval | [ 0.0868428, 0.6457816 ]
95% two-sided confidence interval | [ 0.0819432, 0.6519276 ]
99% two-sided confidence interval | [ 0.0716845, 0.6651358 ]
-----------------------------------------------------------------------------------

< Testing Result > Null Hypothesis : .1
The value .1 is NOT in the 50 % confidence interval for two-sided bounds
The value .1 is in the 90 % confidence interval for two-sided bounds
The value .1 is in the 95 % confidence interval for two-sided bounds
The value .1 is in the 99 % confidence interval for two-sided bounds

The results show that the parametric bound is the narrowest. In local linear and
series estimation, the output contains information about bandwidths and numbers of
approximating functions, respectively. Notice that since we do not specify level, the
procedure automatically gave four different confidence levels: 50%, 90%, 95%, and
99%, respectively. The testing result for series estimation is shown at the last part of
the output.

9.2. clrbound. In this section, we show how estimation of the one-sided intersection
bounds works. For illustration we generated another inequality for lower bounds, yl2:

. gen yl2 = -yu

We also added an additional independent variable, afqt2. This variable takes value
of afqt squared. Accordingly, we add an additional range variable, vl afqt2. We
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use these variables only for the inequality #1, yl, to illustrate that the dimension
of independent variables of one inequality may not be the same as that of other
inequalities in the parametric approach. The result is as follows:

. clrbound (yl afqt afqt2 vl_afqt vl_afqt2)(yl2 afqt vu_afqt), lower

CLR Intersection Lower Bounds (Parametric) Number of obs : 2044
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt afqt2 )
Inequality #2 : yl2 (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied

| Value
-------------------------------------+---------------------------------------------
half-median-unbiased est. | 0.1569847
90% one-sided confidence interval | [ 0.1440277, inf)
95% one-sided confidence interval | [ 0.1405620, inf)
99% one-sided confidence interval | [ 0.1336535, inf)
-----------------------------------------------------------------------------------

9.3. clrtest. The result of testing the null hypothesis that 0.59 is in the 95% confi-
dence interval of the parametric estimation is as follows:

. gen yl_test = yl - 0.59

. gen yu_test = 0.59 - yu

. clrtest (yl_test afqt vl_afqt)(yu_test afqt vu_afqt), level(0.95)

CLR Intersection Bounds (Test) Number of obs : 2044
Inequality #1 : yl_test (# of Grid Points : 101, Independent Variables : afqt )
Inequality #2 : yu_test (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied

< Testing Result >
The testing value is NOT in the 95 % confidence interval.

9.4. clr3bound. This command can obtain a tighter, or less conservative, confidence
interval than the one given by clr2bound, which uses Bonferroni’s inequality. The
tighter bound is obtained as follows:

. clr3bound ((yl afqt vl_afqt)) ((yu afqt vu_afqt))

CLR Intersection Bounds: Test inversion bounds Number of obs : 2044
Method : Parametric estimation Step size : .01
AIS(adaptive inequality selection) is applied

95% Bonferroni bounds: (0.2030250 , 0.5945532)
95% Test inversion bounds: (0.2233481 , 0.5747234)

The last two lines of the result show that indeed the bound we obtain by using
clr3bound is tighter than that which uses Bonferroni’s inequality.
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