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Abstract

We study econometric models of complete information games with ordered action spaces,

such as the number of store fronts operated in a market by a firm, or the daily number of

flights on a city-pair offered by an airline. The model generalizes single agent models such

as ordered probit and logit to a simultaneous model of ordered response. We characterize

identified sets for model parameters under mild shape restrictions on agents’ payoff functions.

We then propose a novel inference method for a parametric version of our model based on

a test statistic that embeds conditional moment inequalities implied by equilibrium behavior.

Using maximal inequalities for U-processes, we show that an asymptotically valid confidence

set is attained by employing an easy to compute fixed critical value, namely the appropriate

quantile of a chi-square random variable. We apply our method to study capacity decisions

measured as the number of stores operated by Lowe’s and Home Depot in geographic markets.

We demonstrate how our confidence sets for model parameters can be used to perform inference

on other quantities of economic interest, such as the probability that any given outcome is an

equilibrium and the propensity with which any particular outcome is selected when it is one of

multiple equilibria.

Keywords: Discrete games, ordered response, partial identification, conditional moment inequal-

ities.
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1 Introduction

This paper provides set identification and inference results for a model of simultaneous ordered

response. These are settings in which multiple economic agents simultaneously choose actions from

a discrete ordered action space so as to maximize their payoffs. Agents have complete information

regarding each others’ payoff functions, which depend on both their own and their rivals’ actions.

The agents’ payoff-maximizing choices are observed by the econometrician, whose goal is to infer

their latent payoff functions and the distribution of unobserved heterogeneity. Given the degree of

heterogeneity allowed and the dependence of each agent’s payoffs on their rivals’ actions, the model

generally admits multiple equilibria. We remain agnostic as to the selection of multiple equilibria,

thus rendering the model incomplete, and its parameters set identified.

Although our model applies generally to the econometric analysis of complete information games

in which players’ actions are discrete and ordered, our motivation lies in application to models of

firm entry. Typically, empirical models of firm entry have either allowed for only binary entry

decisions, or have placed restrictions on firm heterogeneity that limit strategic interactions.1 Yet

in many contexts firms may decide not only whether to be in a market, but also how many shops

or store fronts to operate. In such settings, the number of stores operated by each firm may

reflect important information on firm profitability, and in particular on strategic interactions. Such

information could be lost by only modeling whether the firm is present in the market and not

additionally how many stores it operates. Consider, for example, a setting in which there are

two firms, A and B, with (a, b) denoting the number of stores each operates in a given market.

Observations of (a, b) = (1, 3) or (a, b) = (3, 1) are intrinsically different from observations with

e.g. (a, b) = (2, 2), the latter possibly reflecting less firm heterogeneity or more fierce competition

relative to either of the former. Yet each of these action profiles appear identical when only firm

presence is considered, as then they would all be coded as (a, b) = (1, 1).

Classical single-agent ordered response models such as the ordered probit and logit have the

property that, conditional on covariates, the observed outcome is weakly increasing in an unobserv-

able profit-shifter. Our model employs shape restrictions on payoff functions, namely diminishing

marginal returns in own action and increasing differences in own action and a player-specific unob-

servable, that deliver an analogous property for each agent. These restrictions facilitate straightfor-

ward characterization of regions of unobservable payoff shifters over which observed model outcomes

are feasible. This in turn enables the transparent development of a system of conditional moment

inequalities that characterize the identified set of agents’ payoff functions.

When the number of actions and/or players is sufficiently large, the characterization of the

identified set can comprise a computationally overwhelming number of moment inequalities. While

ideally one would wish to exploit all of these moment restrictions in order to produce the sharpest

1See e.g. Berry and Reiss (2006) for a detailed overview of complications that arise from and methods for dealing
with heterogeneity in such models.

2



possible set estimates, this may in some cases be infeasible. We thus also characterize outer sets that

embed a subset of the full system of moment inequalities. Although less restrictive, the use of this

system of inequalities can be computationally much easier for use in estimation and inference. As

shown in our application such outer sets can sometimes be used to achieve economically meaningful

inference.

We develop a novel approach for inference that is computationally attractive for the model at

hand. Specifically, we rely on an unconditional mean-zero restriction implied by the conditional

moment inequalities to develop a criterion function based approach for inference as advocated by

Chernozhukov, Hong, and Tamer (2007). We show that, when evaluated at points in the identified

set, our criterion function is asymptotically distributed chi-square. To construct confidence intervals

for model parameters, one can thus use level sets of the criterion function with critical value given

by the quantile of a chi-square random variable with appropriately specified degrees of freedom.

Inference based on conditional moment inequalities is an active area of research and other possible

approaches for inference include those of Andrews and Shi (2013), Chernozhukov, Lee, and Rosen

(2013), Lee, Song, and Whang (2013), Ponomareva (2010), Kim (2009), Menzel (2011), Armstrong

(2011a), Armstrong (2011b), and Chetverikov (2012).

We apply a parametric version of our model to study capacity decisions (number of stores)

in geographic markets by Lowe’s and Home Depot. We show that if pure-strategy behavior is

maintained, a portion of the parameters of interest are point-identified under mild conditions. We

provide point estimates for these and then apply our inference procedure to construct a confidence

set for the entire parameter vector by exploiting the conditional moment inequalities implied by

the model. In applications primary interest does not always rest on model parameters, but rather

quantities of economic interest which can typically be written as (possibly set-valued) functions

of these parameters. We illustrate in our application how our model also allows us to perform

inference on such quantities, such as the likelihood that particular action profiles are equilibria,

and the propensity of the underlying equilibrium selection mechanism to choose certain equilibria

among multiple possibilities.

The paper proceeds as follows. In Section 1.1 we discuss the related literature on simultaneous

discrete models, with particular attention to econometric models of games. In Section 2 we define

the structure of the underlying complete information game and shape restrictions on payoff func-

tions. In Section 3 we derive observable implications, including characterization of the identified set

and computationally simpler outer sets. In Section 4 we provide specialized results for a parametric

model of a two player game with strategic substitutes, including point identification of a subset of

model parameters. In Section 5 we introduce a novel approach to inference based on conditional

moment equalities and inequalities which is computationally attractive for inference on elements of

the sets characterized in Section 3. In Section 6 we apply our method to model capacity (number

of stores) decisions by Lowe’s and Home Depot. Section 7 concludes. All proofs are provided in
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the Appendix.

1.1 Related Literature

We consider an econometric model of a discrete game of complete information. Our work follows the

strand of literature on empirical models of entry initiated by Bresnahan and Reiss (1990, 1991a),

and Berry (1992). Additional early papers on the estimation of complete information discrete games

include Bjorn and Vuong (1984) and Bresnahan and Reiss (1991b). These models often allow the

possibility of multiple or even no equilibria for certain realizations of unobservables, and the related

issues of coherency and completeness have been considered in a number of papers, going back at

least to Heckman (1978), see Chesher and Rosen (2012) for a thorough review. These issues can

be and have been dealt with in a variety of different ways. Berry and Tamer (2007) discuss the

difficulties these problems pose for identification in entry models, in particular with heterogeneity

in firms’ payoffs, and Berry and Reiss (2006) survey the various approaches that have been used to

estimate such models.

The approach we take in this paper, common in the recent literature, is to abstain from imposing

further restrictions simply to complete the model. Rather, we work with observable implications

that may only set identify the model parameters, a technique fruitfully employed in a variety

of contexts, see e.g. Manski (2003), Manski (2007), and Tamer (2010) for references to numerous

examples. In the context of entry games with multiple equilibria, this tact was initially proposed by

Tamer (2003), who showed how an incomplete simultaneous equations binary choice model implies

a system of moment equalities and inequalities that can be used for estimation and inference.

Ciliberto and Tamer (2009) apply this approach to an entry model of airline city-pairs, employing

inferential methods from Chernozhukov, Hong, and Tamer (2007). Andrews, Berry, and Jia (2004)

also consider a bounds approach to the estimation of entry games, based on necessary conditions for

equilibrium. Pakes, Porter, Ho, and Ishii (2006) show how empirical models of games in industrial

organization can generally lead to moment inequalities, and provide additional inference methods for

bounds. Aradillas-López and Tamer (2008) show how weaker restrictions than Nash Equilibrium, in

particular rationalizability and finite levels of rationality, can be used to set identify the parameters

of discrete games. Beresteanu, Molchanov, and Molinari (2011) use techniques from random set

theory to elegantly characterize the identified set of model parameters in a class of models including

entry games. Galichon and Henry (2011) use optimal transportation theory to likewise achieve a

characterization of the identified set applicable to discrete games. Chesher and Rosen (2012) build

on concepts in both of these papers to compare identified sets obtained from alternative approaches

to deal with incompleteness and in particular incoherence in simultaneous discrete outcome models.

What primarily distinguishes our work from most of the aforementioned papers is the particular

focus on a simultaneous discrete model with non-binary, ordered outcomes. Simultaneous binary

models are empirically relevant and have also proved an excellent expository tool in this literature.
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However, as discussed above, the extension to ordered action spaces is important from a practical

standpoint. Relevant examples of such outcomes include the number of store fronts a firm operates

in a market, or the number of daily flights an airline offers for a particular city-pair.

Also related are a recent strand of papers on network economies faced by chain stores when

setting their store location profiles, including Jia (2008), Holmes (2011), Ellickson, Houghton, and

Timmins (2013), and Nishida (2012). These papers study models that allow for the measurement

of payoff externalities from store location choices across different markets, which, like most of

the aforementioned literature, our model does not incorporate. On the other hand, our model

incorporates aspects that these do not, by both not imposing an equilibrium selection rule and by

allowing for firm-specific unobserved heterogeneity. 2

Some other recent papers specifically consider alternative models of ordered response with en-

dogeneity. Davis (2006) also considers a simultaneous model with a game-theoretic foundation. He

takes an alternative approach, employing enough additional structure on equilibrium selection so

as to complete the model and achieve point-identification. Also related is Ishii (2005), who studies

ATM networks. She uses a structural model of a multi-stage game that enables estimation of banks’

revenue functions via GMM. These estimates are then used to estimate bounds for a single param-

eter that measures the cost of ATMs in equilibrium. Chesher (2010), provides set identification

results for a single equation ordered response model with endogenous regressors and instrumental

variables. Indeed, Chesher’s analysis would apply if one were to use a model comprising only one of

our system’s simultaneous equations, and use excluded regressors from the others as instruments.

Here we exploit the structure provided by the simultaneous (rather than single equation) model.

Aradillas-López (2011) and Aradillas-López and Gandhi (2013) also consider simultaneous models

of ordered response. In contrast to this paper, Aradillas-López (2011) focusses on nonparametric

estimation of bounds on Nash outcome probabilities, and Aradillas-López and Gandhi (2013) on a

model with incomplete information.

2 The Model

Our model consists of J economic agents or players J = {1, ..., J} who each simultaneously choose

an action Yj from the ordered action space Yj = {0, ...,Mj}. Each set Yj is discrete but Mj

can be arbitrarily large, possibly infinite. Y ≡ (Y1, ..., YJ)′ denotes the action profile of all J

players, and for any player j ∈ J we adopt the common convention that Y−j denotes the vector of

2Of the papers in this literature, only Ellickson, Houghton, and Timmins (2013) and Nishida (2012) also allow
an ordered but non-binary within-market action space. Nishida (2012), in similar manner to Jia (2008), employs an
equilibrium selection rule to circumvent the identification problems posed by multiple equilibria. We explicitly allow
for multiple equilibria, without imposing restrictions on equilibrium selection. Ellickson, Houghton, and Timmins
(2013) allow for multiple equilibria and partial identification, but employ a very different payoff structure. In partic-
ular, they model unobserved heterogeneity in market-level payoffs through a single scalar unobservable shared by all
firms. In our model, within each market each firm has its own unobservable.

5



actions of j’s rivals, Y−j ≡ (Y1, ..., Yj−1, Yj+1, ..., YJ)′. As shorthand we sometimes write (Yj , Y−j)

to denote an action profile Y with jth component Yj and all other components given by Y−j .

We use Y ≡ Y1 × · · · × YJ to denote the space of feasible action profiles, and for any player j,

Y−j≡ Y1 × · · · × Yj−1 × Yj+1 × · · · × YJ to denote the space of feasible rival action profiles.

The actions of each agent are observed across a large number n of separate environments, e.g.

markets, networks, or neighborhoods, depending on the application at hand. The payoff of action Yj

for each agent j is affected by observable and unobservable payoff shifters Xj ∈ Xj ⊆ Rkj and Uj ∈
R, respectively, as well as their rivals’ actions Y−j . We assume throughout that (Y,X,U) are realized

on a probability space (Ω,F ,P). We use P0 to denote the corresponding marginal distribution

of observables (Y,X), and PU to denote the marginal distribution of unobserved heterogeneity

U = (U1, ..., UJ)′, so that PU (U) denotes the probability that U is realized on the set U . We assume

throughout that U is continuously distributed with respect to Lebesgue measure with everywhere

positive density on RJ . The data comprise a random sample of observations {yi, xi : i = 1, ..., n} of

(Y,X) distributed P0, where X denotes the composite vector of observable payoff shifters Xj , j ∈ J ,

without repetition of any common components. The random sampling assumption guarantees

identification of P0.3

For each player j ∈ J there is a payoff function πj (y, xj , uj) mapping action profile y ∈ Y and

payoff shifters (xj , uj) ∈ Xj × R to payoffs satisfying the following restrictions.

Restriction SRP (Shape Restrictions on Payoffs): The collection of payoff functions (π1, ..., πJ)

belong to a class of payoff functions Π = Π1 × · · · ×ΠJ such that for each j ∈ J ,

πj (·, ·, ·) : Y × Xj × R→ R satisfies the following conditions.

(i) Payoffs are strictly concave in yj :

∀yj ∈ Yj , πj ((yj + 1, y−j), xj , uj)− πj ((yj , y−j), xj , uj)

< πj ((yj , y−j), xj , uj)− πj ((yj − 1, y−j), xj , uj) ,

where by convention πj (−1, xj , uj) = πj (Mj + 1, xj , uj) = −∞.

(ii) For each (y−j , x) ∈ Y−j×X , πj ((yj , y−j) , x, uj) exhibits strictly increasing differences in (yj , uj),

namely that if u′j > uj and y′j > yj , then

πj
((
y′j , y−j

)
, x, uj

)
− πj ((yj , y−j) , x, uj) < πj

((
y′j , y−j

)
, x, u′j

)
− πj

(
(yj , y−j) , x, u

′
j

)
. �

Restriction SRP(i) imposes that marginal payoffs are decreasing in each player’s own action yj . It

also implies that, given a rival pure strategy profile y−j , agent j’s best response correspondence

is unique with probability one. Restriction SRP(ii) imposes that the payoff function exhibits

3We impose random sampling for simplicity and expositional ease, but our results can be generalized to less
restrictive sampling schemes. For instance our identification results require that P0 is identified, for which random
sampling is a sufficient, but not necessary, condition.
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strictly increasing differences in (yj , uj). It plays a similar role to the monotonicity of latent utility

functions in unobservables in single agent decision problems, implying that the optimal choice of yj

is weakly increasing in unobservable uj , as in classical ordered choice models. This restriction aids

in our identification analysis by guaranteeing the existence of intervals for uj within which any yj

maximizes payoffs for any fixed (y−j , x).

We focus attention on models where the distribution of unobserved heterogeneity is restricted

to be independent of payoff shifters, as is common in the literature. This restriction can be relaxed,

see e.g. Kline (2012), though at the cost of weakening the identifying power of the model, or

requiring stronger restrictions otherwise.

Restriction I (Independence): U and X are stochastically independent, with the distribution of

unobserved heterogeneity PU belonging to some class of distributions PU . �

3 Equilibrium Behavior and Observable Implications

In the model set out in Section 2 above a structure that generates a distribution of observables (Y,X)

is a collection of payoff functions (π1, ..., πJ) ∈ Π and a distribution of unobserved heterogeneity

PU . The goal of identification analysis is to deduce what structures (π, PU ) ∈ Π × PU , and what

relevant features of these structures, i.e. functionals of (π, PU ), are admitted by the model and

compatible with the distribution of observables P0.

In order to close the model and relate structures (π, PU ) to the distribution P0 of (Y,X), we

must additionally specify how players possessing payoff functions π play joint action profiles Y . We

assume in this paper that players have complete information, and thus know the realizations of all

payoff shifters (X,U) when they choose their actions. That is, there is no private information.4

What then remains is to specify a solution concept for the underlying complete information game.

We restrict attention to Pure Strategy Nash Equilibrium (PSNE) as our solution concept to

simplify the exposition. Yet our inference approach applies to other solution concepts too. This is

due to the fact that for inference we exploit observable implications of PSNE that take the form

of conditional moment inequalities. Observable implications of alternative solution concepts, such

as rationalizability and (mixed or pure strategy) Nash Equilibrium also give rise to conditional

moment inequalities, as shown for example by Aradillas-López and Tamer (2008), Aradillas-López

(2011), Galichon and Henry (2011), and Beresteanu, Molchanov, and Molinari (2011), and the

inference approach developed in Section 5 can also be readily applied to these alternative systems

of conditional moment inequalities. Given our payoff restrictions we wish to emphasize that mixed-

strategy Nash Equilibrium behavior can be readily handled through conditional moment inequalities

that follow as special cases of the results in Aradillas-López (2011).

4For econometric analysis of incomplete information binary and ordered games see for example Aradillas-López
(2010), de Paula and Tang (2012), Aradillas-López and Gandhi (2013) and the references therein.
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A concern in the literature, and a motivation for considering these alternative solution concepts,

is the possibility of non-existence of PSNE. However, in games where all actions are strategic

complements, or in 2 player games where actions are either strategic substitutes or complements, a

PSNE always exists. This follows from observing that in these cases the game is supermodular, or

can be transformed into an equivalent representation as a supermodular game. This was shown for

the binary outcome game by Molinari and Rosen (2008), based on the reformulation used by Vives

(1999, Chapter 2.2.3) for Cournot duopoly. Tarski’s Fixed Point Theorem, see e.g. Theorem 2.2

of Vives (1999) or Section 2.5 of Topkis (1998), then implies the existence of at least one PSNE.

Our empirical example of Section 6 is a two player game of strategic substitutes, so the existence

of PSNE is guaranteed in this context, further motivating our focus on this solution concept.

Nonetheless, in other settings it is possible that no PSNE exists, in which case one could adopt an

alternative solution concept and base inference on the resulting conditional moment inequalities.

Alternatively, one could consider explicit approaches for dealing with non-existence, or incoherence,

as in Chesher and Rosen (2012).

For clarity and completeness, we now formalize the restriction to PSNE behavior. To economize

on notation, we define each player j’s best response correspondence as

y∗j (y−j , xj , uj) ≡ arg max
yj∈Yj

πj ((yj , y−j) , xj , uj) , (3.1)

which delivers the set of payoff maximizing alternatives yj for player j as a function of (y−j , xj , uj).

Restriction PSNE (Pure Strategy Nash Equilibrium): With probability one, for all j ∈ J ,

Yj = y∗j (Y−j , Xj , Uj). �

Strict concavity of each player j’s payoff in her own action under Restriction SRP(i) guarantees

that y∗j (y−j , Xj , Uj) is unique with probability one for any y−j , though it does not imply that

the equilibrium is unique. It also provides a further simplification of the conditions for PSNE, as

summarized in the following Lemma.

Lemma 1 Suppose Restriction SRP(i) holds. Then Restriction PSNE holds if and only if with

probability one, for all j ∈ J ,

πj (Y,Xj , Uj) ≥ max {πj ((Yj + 1, Y−j) , Xj , Uj) , πj ((Yj − 1, Y−j) , Xj , Uj)} , (3.2)

where we define πj ((−1, Y−j) , Xj , Uj) = πj ((Mj + 1, Y−j) , Xj , Uj) = −∞.

The proof of Lemma 1 is simple and thus omitted. That Restriction PSNE implies (3.2) is

immediate. The other direction follows from noting that if (3.2) holds then violation of (3.1) would

contradict strict concavity of πj ((yj , Y−j) , Xj , Uj) in yj . The import of this simple result is a rather

large reduction in the number of inequalities required for characterization of PSNE, and hence the

identified set of structures (π, PU ).
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With these restrictions in hand, we now characterize the identified set of structures (π, PU ).

Define

∆πj (Y,X,Uj) ≡ πj (Y,Xj , Uj)− πj ((Yj − 1, Y−j) , Xj , Uj) ,

as the incremental payoff of action Yj relative to Yj−1 for any (Y−j , X, Uj). From Restriction SRP

(ii) we have that ∆πj (Y,X,Uj) is strictly increasing in Uj and thus invertible. Combining this

with Lemma 1 allows us to deduce that for each player j there is for each (y−j , x) an increasing

sequence of non-overlapping thresholds,
{
u∗j (yj , y−j , x) : yj = 0, ...,Mj+1

}
with

u∗j (Mj+1, y−j , x) = −u∗j (0, y−j , x) =∞,

such that

y∗j (y−j , xj , uj) = yj ⇔ u∗j (yj , y−j , x) < uj ≤ u∗j (yj + 1, y−j , x) . (3.3)

That is, given (y−j , x), player j’s best response yj is uniquely determined by within which of the

non-overlapping intervals
(
u∗j (yj , y−j , x) , u∗j (yj + 1, y−j , x)

]
unobservable Uj falls. This holds for

all j, so under Restriction PSNE each player is best responding to their rivals’ actions. It follows

that with probability one

U ∈ Rπ (Y,X) ≡ ×
j∈J

(
u∗j (Yj , Y−j , X) , u∗j (Yj + 1, Y−j , X)

]
.

In other words, Y is an equilibrium precisely if U belongs to the rectangle Rπ (Y,X). The notation

makes explicit the dependence of the edges of the rectangle on the payoff functions π, through their

implied threshold functions u∗j .

We now use this result to characterize the identified set for (π, PU ). Before doing so we further

define for any set Ỹ ⊆ Y and all x ∈ X ,

Rπ
(
Ỹ, x

)
≡ ∪

y∈Ỹ
Rπ (y, x) ,

which is the union of all rectangles Rπ (y, x) across y ∈ Ỹ, and

R∪ (x) ≡
{
U ⊆ RJ : U = Rπ

(
Ỹ, x

)
for some Ỹ ⊆ Y

}
,

to be the collection of all such unions for any x ∈ X .

Theorem 1 Let Restrictions SRP, I, and PSNE hold. Then the identified set of structures is

S∗ =
{

(π, PU ) ∈ Π× PU : ∀U ∈ R∪ (x) , PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] a.e. x ∈ X
}

, (3.4)
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where, for any x ∈ X , R∪ (x) ⊆ R∪ (x) denotes the collection of sets

R∪ (x) ≡

U ⊆ RJ :
U = Rπ

(
Ỹ, x

)
for some Ỹ ⊆ Y such that ∀ nonempty Ỹ1, Ỹ2 ⊆ Y with

Ỹ1 ∪ Ỹ2 = Ỹ and Ỹ1 ∩ Ỹ2 = ∅, PU
(
Rπ
(
Ỹ1, x

)
∩Rπ

(
Ỹ2, x

))
> 0

 .

(3.5)

The above characterization is sharp. That is, the set of pairs (π, PU ) that satisfy (3.4) all satisfy

the restrictions of the model and are compatible with the observed distribution of (Y,X). The

characterization (3.4) makes use of results from Chesher and Rosen (2012, Theorem 5) to express

the identified set as those (π, PU ) such that the random set Rπ (Y,X) satisfies the conditional

containment functional inequality

PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] , a.e. x ∈ X ,

over the collection of sets U ∈ R∪ (x).5 When Y is finite the identified set coincides with that

of other characterizations given in the literature, e.g. Galichon and Henry (2011, Theorem 1)

and Beresteanu, Molchanov, and Molinari (2011, Theorem D.2), which incorporate inequalities

equivalent to those in (3.4), but over U ∈ R∪ (x). The collection R∪ (x) is a sub-collection of core-

determining test sets, as defined by Galichon and Henry (2011, Theorem 1), shown to be sufficient

by Chesher and Rosen (2012, Theorem 5) to imply (3.4) for all closed U ⊆ RJ . This characterization

comprises fewer conditional moment inequalities while retaining sharpness.

Nonetheless, the identified set S∗ characterized by Theorem 1 may comprise a rather large

number of conditional moment inequalities, namely as many as belong to R∪ (x), for each x. More

inequality restrictions will in general produce smaller identified sets. Yet the incorporation of a

very large number of inequalities may pose challenges for inference, both with regard to the quality

of finite sample approximations as well as computation. As stated in the following Corollary, con-

sideration of those structures satisfying inequality (3.4) applied to only an arbitrary sub-collection

of those in R∪ (x), or indeed any arbitrary collection of sets in U , will produce an outer region that

contains the identified set.

Corollary 1 Let U (x) : X → 2U map from values of x to collections of closed subsets of U . Let

S∗ (U) = {(π, PU ) ∈ Π× PU : ∀U ∈ U (x) , PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] a.e. x ∈ X} .

(3.6)

Then S∗ ⊆ S∗ (U).

Because S∗ (U) contains the identified set, it can be used to estimate valid, but potentially

non-sharp bounds on functionals of (π, PU ), i.e. parameters of interest. Although S∗ (U) is a

5Note that by definition the collection R∪ (x) contains all sets of the form Rπ (y, x) for some y ∈ Y, since the
requirement regarding subsets Ỹ1, Ỹ2 ⊆ Y holds vacuously when Ỹ = {y}.
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larger set than S∗, its reliance on fewer inequalities can lead to significant computational gains

for bound estimation and inference relative to the use of S∗. Even in cases where the researcher

wishes to estimate S∗, it may be faster to first base estimation on S∗ (U). If estimation or inference

based on this outer set delivers sufficiently tight set estimates to address the empirical questions

at hand, a researcher may be happy to stop here. If it does not, the researcher can refine set

estimates or confidence sets based on S∗ (U) by then incorporating additional restrictions, either

proceeding to use S∗ (U′) for some superset U′ of U, or by using S∗ itself. Typically, checking the

imposed inequality restrictions involves searching over a multi-dimensional parameter space, so the

computational advantage can be substantial.

In the two-player parametric model introduced in the following Section, and used in the appli-

cation of Section 6, we show that a particular U (·) is sufficient to point identify all but three of

the model parameters, and we are able to achieve useful inferences based on an outer region that

makes use of this and other conditional moment restrictions.

4 A Two-Player Game of Strategic Substitutes

In this section we introduce a parametric specification satisfying Restriction SRP for a two-player

game with J = {1, 2}. We use this specification in our empirical application, and thus focus

special attention on analysis of this model. We continue to maintain Restrictions I and PSNE. In

this model, existence of at least one PSNE a.e. (X,U), is guaranteed by e.g. Theorem 2.2 of Vives

(1999) or Section 2.5 of Topkis (1998), as discussed in Section 3.

4.1 A Parametric Specification

For each j ∈ J we specify

πj (Y,Xj , Uj) = Yj × (δ +Xjβ −∆jY−j − ηYj + Uj) , (4.1)

where we impose the restriction that η > 0 to ensure that payoffs are strictly concave in Yj , ensuring

Restriction SRP(i). Given this functional form, Restriction SRP(ii) also holds. In this specification

the parameters of the two player’s payoff functions differ only in the strategic interaction parameters

(∆1,∆2), though this is not required for our identification analysis. We additionally impose that

∆1,∆2 ≥ 0, so that actions are strategic substitutes, and existence of PSNE follows as previously

discussed.

Given this functional form, each player j’s best response function takes the form (3.3), namely

y∗j (y−j , xj , uj) = yj ⇔ u∗j (yj , y−j , xj) < uj ≤ u∗j (yj + 1, y−j , xj) ,

where for ỹj = 0, u∗j (ỹj , y−j , xj) = −∞, for ỹj = Mj + 1, u∗j (ỹj , y−j , xj) = ∞, and for all
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ỹj ∈ {1, ...,Mj},
u∗j (ỹj , y−j , xj) ≡ η (2ỹj − 1) + ∆jy−j − δ − xjβ. (4.2)

In addition we restrict the distribution of bivariate unobserved heterogeneity U to the Farlie-

Gumbel-Morgenstern (FGM) copula indexed by parameter λ ∈ [−1, 1].6 Specifically U1 and U2

each have the logistic marginal CDF

G (uj) =
exp (uj)

1 + exp (uj)
, (4.3)

and their joint cumulative distribution function is

F (u1, u2;λ) = G (u1) ·G (u2) · [1 + λ (1−G (u1)) (1−G (u2))] . (4.4)

The parameter λ measures the degree of dependence between U1 and U2 with correlation coefficient

given by ρ = 3λ/π2. This copula restricts the correlation to the interval [−0.304, 0.304]. This is

clearly a limitation, but one which appears to be reasonable in our application in Section 6. Note

that ρ captures the correlation remaining after controlling for X. Thus with sufficiently many

variables included in X a low “residual” correlation may be reasonable. Naturally, we could use

alternative specifications, such as bivariate normal, but the closed form of F (u1, u2;λ) is easy

to work with and provides computational advantages. Compared to settings with a single agent

ordered choice model, our framework offers a generalization of the ordered logit model, whereas

multivariate normal U generalizes the ordered probit model.

For notational convenience we define α ≡ η − δ and collect parameters into a composite pa-

rameter vector θ ≡
(
θ′1, θ

′
2

)′
where θ1 ≡

(
α, β′, λ

)′
and θ2 = (η,∆1,∆2)′. We show in the following

Section that under fairly mild conditions the parameter subvector θ1 is point identified, another

advantage of the specification for the distribution of U given in (4.4).7

4.2 Observable Implications of Pure Strategy Nash Equilibrium

Given a parametric model, we re-express the sets Rπ (Y,X) described in (4.5) as Rθ (Y,X) in order

to indicate explicitly their dependence on the finite-dimensional parameter θ. It follows from (4.2)

that observed (Y,X,U) correspond to PSNE if and only if U ∈ Rθ (Y,X) where

Rθ (Y,X) ≡

{
U :

η (2Y1 − 1) + ∆1Y2 − δ −X1β < U1 ≤ η (2Y1 + 1) + ∆1Y2 − δ −X1β

η (2Y2 − 1) + ∆2Y1 − δ −X2β < U2 ≤ η (2Y2 + 1) + ∆2Y1 − δ −X2β

}
.

(4.5)

6See Farlie (1960), Gumbel (1960), and Morgenstern (1956).
7Results from Kline (2012) can be used to establish point identification of (α, β) under alternative distributions

of unobserved heterogeneity, e.g. multivariate normal, if X is continuously distributed.
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and from Theorem 1 we have the inequality

PU (U) ≥ P0 [Rθ (Y,X) ⊆ U|X = x] (4.6)

for each U ∈ R∪ (x), a.e. x ∈ X (see the definition of R∪ (x) in (3.5)). However, it is straightforward

to see that Y = (0, 0) is a PSNE if and only if

U ∈ (−∞, α−X1β)× (−∞, α−X2β) . (4.7)

and that when this holds, Y = (0, 0) is the unique PSNE. This follows by the same reasoning

as in the simultaneous binary outcome model, see for example Bresnahan and Reiss (1991a) and

Tamer (2003), and this observation implies that the conditional moment inequality (4.6) using

U = (−∞, α−X1β)× (−∞, α−X2β) in fact holds with equality.8

Specifically, we have from (4.7) with this U that for β̃ ≡
(
α, β′

)′
, and Zj ≡ (1,−Xj),

P0 [Y = (0, 0) |X = x] = F
(
Z1β̃, Z2β̃;λ

)
,

with F
(
Z1β̃, Z2β̃;λ

)
defined in (4.4). Based on this we can construct the partial log-likelihood for

the event Y = (0, 0) and its complement as

L (b, λ) =
n∑
i=1

` (b, λ; zi, yi) , (4.8)

where

` (b, λ; z, y) ≡ 1 [y = (0, 0)] logF (z1b1, z2b2;λ) + 1 [y 6= (0, 0)] log (1− F (z1b1, z2b2;λ)) .

The following theorem establishes that under suitable conditions E [L (b, λ)] is uniquely maximized

at the population values for
(
β̃, λ

)
, which we denote

(
β̃
∗
, λ∗
)

. Thus there is point identification of

the parameter subset θ1, which is consistently estimated by the maximizer of (4.8) at the parametric

rate.

Theorem 2 For each player j ∈ {1, 2} let payoffs take the form (4.1), with U ‖ X, and let

Restriction PSNE hold. Furthermore, assume that (i) for each j ∈ {1, 2} there exists no proper

linear subspace of the support of Zj ≡ (1,−Xj) that contains Zj with probability one, and (ii) For

all conformable column vectors c1, c2 with c2 6= 0, we have that either P {Z2c2 ≤ 0|Z1c1 < 0} > 0

or P {Z2c2 ≥ 0|Z1c1 > 0} > 0. Then:

8See also Chesher and Rosen (2012) for general conditions whereby the inequality in (4.6) can be strengthened to
equality in simultaneous equations discrete outcome models.
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1. If U has known CDF F , then β̃
∗

is identified. If the CDF of U is only known to belong to

some class of distribution functions {Fλ : λ ∈ Γ}, then the identified set for
(
β̃
∗
, λ∗
)

takes

the form {(b (λ) , λ) : λ ∈ Γ′} for some function b (·) : Γ→ B and some Γ′ ⊆ Γ.

2. If U has CDF F (·, ·;λ) given in (4.4) for some λ ∈ [−1, 1], then
(
β̃
∗
, λ∗
)

is point identified

and uniquely maximizes E [L (b, λ)]. Moreover,

√
n
(
θ̂1 − θ∗1

)
d→ N

(
0, H−1

0

)
, (4.9)

where

H0 = E

[
∂` (θ1;Z, Y )

∂θ1

∂` (θ1;Z, Y )

∂θ1

′]
. (4.10)

Theorem 2 makes use of two conditions on the variation in X. The first condition is standard,

requiring that for each j, Z = (1,−Xj) is contained in no proper linear subspace with probably

one. This rules out the possibility that X contains a constant component. The second condition

restricts the joint distribution of Z1 and Z2, requiring that conditional on Zjcj < 0 (> 0), Z−jc−j

is nonpositive (nonnegative) with positive probability. This condition is automatically satisfied

under well-known semiparametric large support restrictions, for example that Xj has a component

Xjk that, conditional on all other components of Xj , has everywhere positive density on R, with

β1k 6= 0. However, it is a less stringent restriction and does not require large support. For example,

it immediately applies to the case where Z1 = Z2, i.e. with no player-specific payoff shifters, even

if all covariates are discrete.

With these restrictions in place, the theorem provides a number of useful results. First, there is

point identification of the parameters θ1 if the distribution of unobserved heterogeneity is known.

Generally econometric models only restrict the distribution of unobserved heterogeneity to be

known (i.e. assumed) to belong to some set of distributions, here PU , indexed by λ ∈ Γ with

corresponding cumulative distributions Fλ. In this case there is, for each fixed distribution, equiva-

lently each λ ∈ Γ, a unique β = b (λ) that maximizes the expected log-likelihood when the CDF of

unobserved heterogeneity is Fλ. Thus, the identified set for θ1 belongs to the set of pairs (b (λ) , λ)

such that λ ∈ Γ. This can simplify characterization and estimation of the identified set, since for

each λ ∈ Γ there is only one value of β to consider as a member of the identified set. Thus, for

estimation, one need only scan over λ ∈ Γ and compute the corresponding maximum likelihood

estimator for each such value, rather than search over all values of β ∈ B. We further show that

when Fλ is restricted to the FGM family, there is in fact point identification of λ∗ and hence also

of θ1, which can be consistently estimated via maximum likelihood using the coarsened outcome

1 [Y = (0, 0)]. The parameter vector θ2 = (η,∆1,∆2)′ remains in general only partially identified.
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5 Inference on the Full Parameter Vector

To perform inference on θ we combine the results of Theorem 2 above with conditional moment

inequalities of the form in Theorem 1 and Corollary 1 over collections of test sets U . In the following

section we describe how we incorporate these moment inequalities into a test statistic for inference.

In the subsequent section we then describe how we combine the use of the moment inequalities

with the results of Theorem 2.9

5.1 Conditional Moment Inequalities

For inference we employ a statistic incorporating density-weighted versions of conditional moment

inequalities, conditioning on each realization xi observed in the sample, namely

Tk (yi, xi; θ) ≡ E [mk (Y, yi, xi; θ) |X = xi] · fX (xi) ≤ 0,

where mk (Y,X, yi; θ) is a “moment function” and where fX (·) is the density of x. For instance,

for moment inequalities of the form given by Theorem 1 and Corollary 1 we have

mk (Y, yi, xi; θ) = 1 [Rθ (Y, xi) ⊆ Uk (xi, yi)]− PU (Uk (xi, yi) ; θ) , (5.1)

where we can allow for the test sets Uk (xi, yi) : k = 1, ...,K to depend on the observations (yi, xi). K

denotes the number of conditional moment inequalities incorporated for inference.10 For example,

we may define

Ri ≡ R (xi, yi) , R (·, ·) : X × Y → 2U ,

where R (·, ·) is a pre-specified mapping from values of (xi yi) to collections of subsets of U , with

R (xi, yi) the collection of test sets incorporated in our test statistic for each observation i. Given

Theorem 1 and Corollary 1 it follows that if R (·, ·) is chosen such that R (xi, yi) = R∪ (xi) for all i,

then inference is based on the identified set, while for other choices of R (·, ·) it is based on an outer

set. As discussed in Section 3, the sets R∪ (xi) may have extremely large cardinality, rendering

their use impractical. The use of other collections of test sets or moment inequalities implied by

the characterization of the identified set given in Theorem 1 may in some cases be computationally

advantageous.

9More generally, our inference approach can accommodate more than two players and alternative solution concepts,
such as those allowing for mixed strategies equilibria. Though it is useful when it occurs, we do not require that a
subset of the parameter vector θ be point identified, i.e. we can set θ1 = ∅. Rather, the essential ingredient is that
the set of restrictions to be employed comprise conditional moment inequalities, in which case the approach in the
following Section can be used in the construction of R̂ (θ) defined below.

10The number of inequalities used can also be allowed to vary with (yi, xi). In this case we could write K (yi, xi) for
the number of conditional moment inequalities for (yi, xi) and set mk (Y, yi, xi; θ) = 0 for each i, k with K (yi, xi) <
k ≤ K̄ ≡ maxiK (yi, xi).
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Consider the function

R (θ) ≡ E
[
K∑
k=1

(Tk (Y,X; θ))+

]
,

where the expectation is taken with respect to the joint distribution of (Y,X), and (·)+ ≡ max {·, 0}.
The function R (θ) is nonnegative, and positive only for θ that violate the conditional moment

inequality E [mk (Y, yi, xi; θ) |X = xi] ≤ 0 for some k = 1, ...,K with positive probability.

For the purpose of inference we employ an estimator for R (θ) that incorporates a kernel es-

timator for Tk (Y,X; θ), and replaces the use of the function (·)+ = max {·, 0} with the function

max {·,−bn} for an appropriately chosen sequence bn ↘ 0. The estimator is thus of the form

R̂ (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

T̂k (yi, xi; θ) · 1
[
T̂k (yi, xi; θ) ≥ −bn

])
,

where 1Xi ≡ 1 [xi ∈ X ∗i ] and the estimators T̂k (yi, xi; θ) are defined below. The use of the sequence

bn will allow us to deal with the “kink” at zero of the function (·)+ while obtaining asymptotically

pivotal properties for R̂(θ).

To derive the properties of our estimator, we assume that each element of X has either a

discrete or absolutely continuous distribution with respect to Lebesgue measure, and we write

X =
(
Xd, Xc

)
, where Xd denotes the discretely distributed components and Xc the continuously

distributed components. Convergence rates of conditional expectations estimators will therefore

depend on z ≡ dim (Xc). For kernel-weighting incorporating all components of X we define

K (xi − x;h) ≡ Kc

(
xci − xc

h

)
· 1
[
xdi = xd

]
,

where Kc : Rz → R is an appropriately defined kernel function for the continuous components of X.

We specify the particular properties required of this function below. The estimators T̂k (yi, xi; θ),

k = 1, ...,K that appear in R̂ (θ) are given by

T̂k (y, x; θ) ≡ 1

nhz

n∑
i=1

mk (yi, y, x; θ) K (xi − x;h) (5.2)

Among other conditions, our approach requires that the bias of these estimators disappears

uniformly at the same rate over the range of values of xi in the data. For this purpose we restrict

the summand in R̂ (θ) to be positive only if xi belongs to a pre-specified “inference range” X ∗

such that the projection of X ∗ onto the continuous components of X is contained in the interior

of the projection of X onto the continuous components of X . In principle we could allow X ∗ to

depend on n and approach X at an appropriate rate as n → ∞. For the sake of brevity, rather

than formalize this argument, we presume fixed X ∗ and state results for the convergence of R̂ (θ)
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to an appropriately re-defined R (θ):

R (θ) ≡ E
[
1X

K∑
k=1

(Tk (Y,X; θ))+

]
. (5.3)

To characterize the asymptotic behavior of n1/2
(
R̂ (θ)−R (θ)

)
, we first impose some further

restrictions. These entail smoothness restrictions, bandwidth restrictions, and conditions that

guarantee manageability of relevant empirical processes. We begin with smoothness restrictions.

Restriction I1 (Smoothness): As before, let z ≡ dim(Xc). For some M ≥ 2z + 1, uniformly in

(y, x) ∈ Supp(Y,X) and θ ∈ Θ, fX (x) and mk (yi, y, x; θ) are almost surely M -times continuously

differentiable with respect to xc, with bounded derivatives. �

Our goal is to characterize sufficient conditions for R̂ (θ) to converge to R (θ) at rate n−1/2. To

this end we combine these smoothness restrictions with the use of bias-reducing kernels, and we

require the bandwidths hn and bn to converge to zero at appropriate rates, as follows.

Restriction I2 (Kernels and bandwidths): Kc is a bias-reducing kernel of order M with bounded

support, exhibits bounded variation, is symmetric around zero, and supv∈Rz |K (v)| ≤ K̄ <∞. The

positive bandwidth sequences bn and hn satisfy n1/2hznbn → ∞, and there exists ε > 0, such that

h
−z/2
n bnn

ε → 0, and n1/2+εb2n → 0. In addition, M is large enough such that n1/2+εbMn → 0. �

Suppose our bandwidths satisfy hn ∝ n−αh and bn ∝ n−αb . Then Restriction I2 is satisfied if

αh and αb are chosen to satisfy

αh =
1

4z
− εh, αb =

1

4
+ εb, with 0 < εh ≤

1

4z (2z + 1)
, 0 < εb < εh.

With these bandwidths, the smallest value of M compatible with Restriction I2 is M = 2z + 1.

Combined with the smoothness Restriction I1, our bandwidth and kernel restrictions will be used

to establish convergence of R̂ (θ) to R (θ) at rate n−1/2, and asymptotically pivotal properties of

R̂ (θ)−R (θ), appropriately studentized.

Our next restriction, illustrated in Figure 1, imposes a condition on the behavior of each

Tk (Y,X; θ). This restriction admits the possibility that P (Tk (Y,X; θ) = 0) > 0, i.e. that any

of the conditional moment inequalities are satisfied with equality with positive probability. Al-

though inference would be simplified by ruling this out, it is important to allow the possibility of

binding inequalities. Our restriction thus allows this, but requires that the density of Tk (Y,X; θ)

not “blow up” in a neighborhood to the left of zero. The restriction does allow for Tk (Y,X; θ) to

have mass points.

Restriction I3 (Behavior of Tk (Y,X, θ) at zero from below): There exist constants b̄ > 0 and

Ā <∞ such that for all positive b < b̄ and each k = 1, ...,K, supθ∈Θ P (−b ≤ Tk (Y,X; θ) < 0) ≤ bĀ.

�

We next impose a restriction on the manageability of relevant empirical processes, with man-
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ageability as defined in Definition 7.9 of Pollard (1990). In the context of our model, unless stated

otherwise, mk is as defined in (5.1).

Restriction I4 (Manageability of Empirical Processes I): For each k = 1, ...,K, (i) the process

M≡ {mk (Yi, y, x; θ) ·K (Xi − x;h) : (y, x, θ) ∈ Supp(Y,X)×Θ, h > 0, 1 ≤ i ≤ n}

is manageable with respect to the constant envelope K̄ ≡ supv∈R Kc (v;h), and (ii) there exists a

c̄ > 0 such that the process

I ≡ {1 {−c ≤ Tk (Yi, Xi; θ) < 0} : θ ∈ Θ, 0 < c < c̄, 1 ≤ i ≤ n} ,

is manageable with respect to the constant envelope 1. �

Sufficient conditions for manageability, which comprise restrictions on the classes of functions

allowed, are abundant in the empirical process literature. For example, if the kernel function Kc

is of bounded variation then Lemma 22 in Nolan and Pollard (1987) and Lemmas 2.4 and 2.14

in Pakes and Pollard (1989) imply that the the class of functions {K (x− v;h) : v ∈ X , h > 0} is

Euclidean, as defined in Pakes and Pollard (1989) Definition 2.7, with respect to the constant

envelope K̄. From here, manageability of M follows, for example, if the classes of functions

{g (y) = mk (y, y′, x; θ) : (y, x, θ) ∈ SY,X ×Θ} are Euclidean with respect to the constant envelope

1. Sufficient conditions for this property can be found in Nolan and Pollard (1987) and Pakes and

Pollard (1989), for example.

Likewise, sufficient conditions for manageability of I can be established, for example, if the

class of sets

Ψk ≡ {(y, x) ∈ SY,X : −c ≤ Tk (y, x; θ) < 0, θ ∈ Θ, 0 < c < c̄}

have polynomial discrimination (see Pollard (1984) Definition 13) of degree at most r <∞. Lemma

1 of Asparouhova, Golanski, Kasprzyk, Sherman, and Asparouhov (2002) provides a sufficient

condition for this to hold, namely that the number of points at which Tk (y, x; ·) changes sign be

uniformly bounded over (y, x) ∈ SY,X and k = 1, ...,K.

We now establish a linear representation for R̂ (θ) around R (θ), which will be key to our

inference approach. This result relies on two parts. First we establish the effect of the use of the

threshold bn with respect to T̂k (Y,X; θ) in R̂ (θ) in place of the zero threshold for Tk (yi, xi, θ) in

R (θ). We then use a Hoeffding (1948) projection and results from Sherman (1994) to establish the

asymptotically linear representation, and the corresponding “influence function” for characterizing

the limiting behavior of n1/2
(
R̂ (θ)−R (θ)

)
.

To establish the first result, define

R̃ (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

T̂k (yi, xi; θ) · 1 {Tk (yi, xi, θ) ≥ 0}

)
, (5.4)
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which is equivalent to R̂ (θ) but for the replacement of 1
{
T̂k (yi, xi; θ) ≥ −bn

}
with 1 {Tk (yi, xi, θ) ≥ 0}.

With the following Lemma we establish that R̃ (θ) and R̂ (θ) are uniformly close, specifically that

they differ by no more that op
(
n−1/2

)
uniformly in θ.

Lemma 2 Let Restrictions I1-I4 hold. Then there exists a > 1/2 such that

sup
θ∈Θ

∣∣∣R̃ (θ)− R̂ (θ)
∣∣∣ = Op

(
n−a

)
.

With Lemma 2 established, the task of producing a linear representation for n1/2
(
R̂ (θ)−R (θ)

)
is simplified to establishing such a representation for n1/2

(
R̃ (θ)−R (θ)

)
, which does not depend

on the bandwidth bn. For notational convenience let us group

W ≡ (X,Y ) .

With some minor algebraic manipulation of R̃ (θ) defined in (5.4) and use of the definition of

T̂k (wi; θ) given in (5.2) we obtain

R̃ (θ) =
1

n

n∑
i=1

1Xi

K∑
k=1

(Tk (wi, θ))+ +

K∑
k=1

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) , (5.5)

where

vk (w`, wi; θ, hn) ≡
(

1

hzn
mk (y`, yi, xi; θ) ·K (xi − x`;hn)− Tk (wi, θ)

)
1Xi1 {Tk (wi, θ) ≥ 0} . (5.6)

In the proof of the following Lemma, we write the second term of (5.5) as a sum of three component

terms. We use our smoothness restrictions and a result of Sherman (1994) to establish that all but

one of these is uniformly Op (n−a) for some a > 1/2. For the application of Sherman’s result we

impose a further restriction, namely that for each k the class of functions

Vk = {v : v (w1, w2) = vk (w1, w2; θ, h) , θ ∈ Θ, h > 0} ,

is Euclidean (see Definition 2.7 in Pakes and Pollard (1989) or Definition 3 in Sherman (1994))

with respect to an envelope V̄ such that E
[
V̄ 2+δ

]
< ∞ for some δ > 0.11 Primitive conditions to

establish this property can be found, e.g., in Nolan and Pollard (1987), Pakes and Pollard (1989)

and Sherman (1994).

11More generally we only require that the U-process produced by the class Vk satisfy the maximal inequality in
Sherman (1994), for which the Euclidean property is sufficient.
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Lemma 3 Let Restrictions I1-I4 hold and suppose that for each k = 1, ...,K, the class of functions

Vk is Euclidean with envelope V̄ . Then for some a > 1/2, and for each k = 1, ...,K, uniformly in

θ ∈ Θ,

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) =
1

n

n∑
i=1

[g̃k (wi; θ, hn)− E [g̃k (W ; θ, hn)]] +Op
(
n−a

)
.

where vk (w`, wi; θ, hn) is as defined in (5.6) and where

g̃k (w; θ, h) ≡
∫

(vk (w1, w2; θ, h) + vk (w2, w1; θ, h)) dFW
(
w′
)

.

Finally, with Lemmas 2 and 3 in hand, we state the resulting linear approximation for R̂ (θ).

Theorem 3 Let the restrictions of Lemma 3 hold. Then for some a > 1/2,

R̂ (θ) = R (θ) +
1

n

n∑
i=1

ψR (yi, xi; θ, hn) + ξn (θ) , where sup
θ∈Θ
|ξn (θ)| = Op

(
n−a

)
,

and where

ψR (yi, xi; θ, h) =

K∑
k=1

(
1Xi (Tk (wi, θ))+ − E

[
1Xi (Tk (W, θ))+

])
+ [g̃ (wi; θ, h)− E [g̃ (W ; θ, h)]] .

5.2 Combination of Moment Inequalities and Partial Likelihood

We now combine the linear representation for R̂ (θ) given by Theorem 3 with the maximum likeli-

hood estimator described in Theorem 2 for θ1 to perform inference on the set of parameters

Θ∗ ≡

{
θ ∈ Θ :

∀k = 1, ...,K, ∀y ∈ Y, E [mk (Y, y,X; θ) |X = x] ≤ 0 ∧
P0 [Y = (0, 0) |X = x] = F

(
Z1β̃, Z2β̃;λ

)
, a.e. x ∈ X ∗

}
.

As described in Section 5.1,depending on the choice of moments E [mk (Y, y,X; θ) |X = x] ≤ 0, Θ∗

can be either the identified set, or an outer set.

As before, let us group wi ≡ (yi, xi). Let ψM (wi) denote the MLE influence function for θ̂1.

From Theorems 2 and 3 we have that uniformly over θ ∈ Θ, for some ε > 0,

V̂ (θ) ≡ n1/2

(
θ̂1 − θ1

R̂ (θ)

)
= n1/2

(
θ∗1 − θ1

R (θ)

)
+

(
n−1/2

∑n
i=1 ψM (wi)

n−1/2
∑n

i=1 ψR (wi; θ, hn)

)
+

(
op (1)

op (n−ε)

)
. (5.7)

For inference we use the quadratic form

Q̂n (θ) ≡ V̂ (θ)′ Σ̂ (θ)−1 V̂ (θ) ,
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where

Σ̂ (θ) ≡

(
Σ̂MM (θ) Σ̂MR (θ)

Σ̂′MR (θ) Σ̂RR (θ)

)
,

is an estimator for the variance of V̂ (θ). Specifically, we set

Σ̂MM (θ) ≡
(
n−1

n∑
i=1

ψ̂M (wi) ψ̂M (wi)
′
)−1

,

Σ̂MR (θ) ≡ n−1
n∑
i=1

ψ̂M (wi) ψ̂R (wi; θ, hn)′ ,

Σ̂RR (θ) ≡ max

{
n−1

n∑
i=1

ψ̂R (wi; θ, hn)2 , κn

}
,

where ψ̂M (wi) and ψ̂R (wi; θ, hn) consistently estimate ψM (wi) and ψR (wi; θ, hn), respectively, and

where κn ↘ 0 is a slowly decreasing sequence of nonnegative constants such that for all ε > 0,

nεκn →∞, for example κn = (log n)−1. This ensures that for any n, Σ̂RR (θ) is bounded away from

zero. In Appendix A we show that using κn in this way achieves valid inference, as it guarantees

that for all θ ∈ Θ
∗
, Ω̂−1(θ) − Σ̂−1(θ) is positive semidefinite with probability approaching one as

n → ∞, where Ω̂ (θ) is the same as Σ̂ (θ), but with σ̂2
n (θ) = 1

n

∑n
i=1 ψ̂R (wi; θ, hn)2 in place of

Σ̂RR (θ).

Under appropriate regularity conditions, the quadratic form V̂ (θ) is asymptotically distributed

χ2 for any θ ∈ Θ∗, where the degrees of freedom of the asymptotic distribution depend on whether

any of the K conditional moment inequalities bind with positive probability PX . If θ ∈ Θ∗ and

all of the conditional moment inequalities are satisfied strictly at θ, then n1/2R̂ (θ) = op (1), and

Q̂n (θ)
d→ χ2

r , where r ≡ dim (θ1). If, on the other hand, θ ∈ Θ∗ but at least one of the conditional

moment inequalities are satisfied with equality at θ with positive probability, i.e. if θ belongs to

the set

Θ̄∗ ≡

{
θ ∈ Θ∗ :

P {x ∈ X ∗ : E [mk (Y, y,X; θ) |X = x] = 0} > 0,

for at least one k ∈ {1, ...,K} and some y ∈ Y

}
,

then n1/2R̂ (θ) is asymptotically normal and shows up in the asymptotic distribution of Q̂n (θ)

such that Q̂n (θ)
d→ χ2

r+1. Finally, if θ /∈ Θ∗, then Q̂n (θ) “blows up”, i.e. for any c > 0,

Pr
{
Q̂n (θ) > c

}
→ 1 as n→∞.

Theorem 4 below uses these results to provide an asymptotically valid confidence set for θ

uniformly over θ ∈ Θ∗. The aforementioned distributional results on which it relies are provided in

Appendix A. Before stating the Theorem, we provide an additional restriction, which imposes some

mild regularity conditions on the influence function ψR (wi; θ, hn) over θ ∈ Θ̄∗. We also require

21



that Σ̂ (θ) be within op (1) of its population counterpart

Σ (θ) ≡

(
ΣMM (θ) ΣMR (θ)

Σ′MR (θ) ΣRR (θ)

)
,

with ΣMM (θ), ΣMR (θ), ΣRR (θ) defined identically to Σ̂MM (θ), Σ̂MR (θ), Σ̂RR (θ), respectively,

but with population expectations E [·] rather than sample means and taking the limit as hn → 0

for ΣMR and ΣRR.

Restriction I5 (Regularity on Θ̄∗): ΣMR (θ) and ΣRR (θ) are continuous on Θ̄∗ and the estimator

Σ̂ (θ) is uniformly consistent on Θ̄∗, namely

sup
θ∈Θ̄∗

∥∥∥Σ̂ (θ)− Σn (θ)
∥∥∥ = op (1) .

In addition, the following integrability and manageability conditions hold:

(i) For some C̄ <∞ and δ > 0,

lim
n→∞

sup
θ∈Θ̄∗

E

[
|ψR (wi; θ, hn)|2+δ

σ2+δ
n (θ)

]
≤ C̄,

where σ2
n (θ) ≡ var (ψR (wi; θ, hn)).

(ii) The triangular array of processes

{
ψR (wi; θ, hn) : i ≤ n, n ≥ 1, θ ∈ Θ̄∗

}
is manageable with respect to an envelope Ḡ satisfying E

[
Ḡ2
]
<∞. �

Theorem 4 Let the restrictions of Lemma 3 and Restriction I5 hold. Then the set

CS1−α ≡
{
θ ∈ Θ : Q̂n (θ) ≤ c1−α

}
,

where α > 0, c1−α is the 1− α quantile of the χ2
r+1 distribution, and r ≡ dim (θ1) satisfies

lim
n→∞

inf
θ∈Θ∗

P (θ ∈ CS1−α) ≥ 1− α,

and for all θ /∈ Θ∗,

lim
n→∞

P (θ ∈ CS1−α) = 0.

The confidence set CS1−α provides correct (≥ 1−α) asymptotic coverage for fixed P uniformly

over θ ∈ Θ∗, and the associated test for θ ∈ Θ∗ is consistent against all alternatives θ /∈ Θ∗. It is
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worth noting that our CS1−α can attain good pointwise asymptotic properties, i.e.

inf
θ∈Θ∗

lim
n→∞

P (θ ∈ CS1−α) ≥ 1− α,

under weaker regularity conditions than those stated here. In particular, with Restrictions I1, I2,

I3 maintained we could relax Restrictions I4 and I5, as well as the Euclidean property invoked in

Lemma 3, as only sufficient conditions for the asymptotically linear representation of Theorem 3

to hold pointwise in θ would be required.

6 An Application to Home Depot and Lowe’s

We apply our model to the study of the home improvement industry in the United States. According

to IBISWorld, this industry has two dominant firms: Home Depot and Lowe’s, whose market shares

in 2011 were 40.8% and 32.6%, respectively. We label these two players as

Player 1: Lowe’s, Player 2: Home Depot.

We take the outcome of interest yi = (yi1, yi2) to be the number of stores operated by each firm in

geographic market i. We define a market as a core based statistical area (CBSA) in the contiguous

United States.12 Our sample consists of a cross section of n = 954 markets in April 2012. Table 1

summarizes features of the observed distribution of outcomes.

As Table 1 shows, roughly 75 percent of markets have at most 3 stores. However, more than 10

percent of markets in the sample have 9 stores or more. If we focus on markets with asymmetries

in the number of stores operated by each firm, Table 1 suggests that Lowe’s tends to have more

stores than Home Depot in smaller markets and viceversa. Our justification for modeling this as a

static game with PSNE as our solution concept is the assumption that the outcome observed is the

realization of a long-run equilibrium.13 Because there is no natural upper bound for the number of

stores each firm could open in a market, we allowed ȳj to be arbitrarily large. We maintained the

assumptions of mutual strategic substitutes and pure-strategy Nash equilibrium behavior with the

parametrization described in Section 4.

12The Office of Budget and Management defines a CBSA as an area that consists of one or more counties and
includes the counties containing the core urban area, as well as any adjacent counties that have a high degree of
social and economic integration (as measured by commute to work) with the urban core. Metropolitan CBSAs are
those with a population of 50,000 or more. Some metropolitan CBSAs with 2.5 million people or more are split into
divisions. We considered all such divisions as individual markets.

13The relative maturity of the home improvement industry suggests that the assumption that the market is in a
PSNE, commonly used in the empirical entry literature, is relatively well-suited to this application. Although, as is
the case in any industry, market structure evolves over time, 82% of markets in our data exhibited no change in store
configuration between March 2009 and September 2012.
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Table 1: Summary of outcomes observed in the data, including average, median, and percentiles
for each of Y1 and Y2.

Y1 Y2

Average 1.68 1.97
Median 1 1

75th percentile 2 1
90th percentile 4 5
95th percentile 7 11
99th percentile 17 25

Total 1,603 1,880

(%Y 1 > Y 2) 33%

(%Y 1 < Y 2) 25%

(%Y 1 + Y 2 > 0) 74%

(%Y 1 + Y 2 > 0, Y 1 = Y 2) 16%

player 1: Lowe’s, player 2: Home Depot.

6.1 Observable Payoff Shifters

For each market, the covariates included in Xj were: population, total payroll per capita, land area,

and distance to the nearest distribution center of player j for j = {1, 2}. The first three of these

were obtained from Census data. Our covariates aim to control for basic socioeconomic indicators,

geographic size, and transportation costs for each firm14. Note that X includes 5 covariates, 3

common to each player as well as the player-specific distances to their own distribution centers. All

covariates were treated as continuously distributed in our analysis.

Table 1 suggests a pattern where Home Depot operates more stores than Lowe’s in larger

markets. In the data we found that median market size and payroll were 50% and 18% larger,

respectively, in markets where Home Depot had more store than Lowe’s relative to markets where

the opposite held. Overall, Home Depot opened more stores than Lowe’s in markets that were

larger, with higher earnings per capita. Our methodology allows us to investigate whether these

types of systematic asymmetries are owed to the structure of the game, the underlying equilibrium

selection mechanism, or unobserved heterogeneity.

6.2 Inference on Model Parameters

We began by computing partial maximum likelihood estimates for θ1, corresponding to those of

equation (4.9), Theorem 2. These are shown in the first column of Table 2. Given the ordinal

14Payroll per capita is included both as a measure of income and as an indicator of the overall state of the labor
market in each CBSA. We employed alternative economic indicators such as income per household, but they proved
to have less explanatory power as determinants of entry in our estimation and inference results.
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nature of our action space, these point estimates indicate that within a each market, all else equal,

a population increase of 100,000 has roughly the same effect on per store profit as a $45 increase

in payroll per capital, a 12,300 sq mile increase in land area, or a 400 mile decrease in distance to

the nearest distribution center. The second column of Table 2 shows the corresponding 95% CI

based on these estimates. Figure 2 depicts the estimated partial log-likelihood for each individual

parameter in a neighborhood of the corresponding estimate. Comparing their curvatures, we see

that the one for ρ was relatively flatter than those of the remaining parameters. This is reflected

in the rather wide MLE 95% CI for ρ. The 95% CI for the coefficients on population and land area

include only positive values, while the 95% CI for the coefficient on payroll, though most positive,

contains some small negative values. The MLE 90% CI for this coefficient (not reported) contained

only positive values.

The last column in Table 2 provides 95% projection CIs for each parameter using the approach

described in Section 5.2, using statistic V̂ (θ) defined in (5.7). This statistic incorporated both the

moment equalities corresponding to likelihood contributions for the events Y = (0, 0) and Y 6= (0, 0)

in the partial log-likelihood, as well as moment inequalities implied by the characterization in

Theorem 1. Given the action space, the number of inequalities comprising the identified set would

be extremely large. In the interest of computational tractability the inference approach we used

incorporated conditional moment inequalities for only two moment functions (≤ 0), specifically,

m1 (Yi, y, x; θ) = 1 (y 6= (0, 0)) · (1 [Rθ (Y,X) ⊆ Rθ (y, x)]− PU (Rθ (y, x) ; θ)) , (6.1)

m2 (Yi, y, x; θ) = 1 (y 6= (0, 0)) · (1 [Rθ (Y,X) ⊆ Rθ (y, x)]− PU (Rcθ ((0, 0) , x) ; θ)) , (6.2)

where Rcθ ((0, 0) , x) denotes the complement of Rθ ((0, 0) , x).15 The term 1 (y 6= (0, 0)) appears

because the likelihood for the event Y = (0, 0) is already incorporated through the partial likelihood

estimator θ̂1, so the inequalities with y = (0, 0) would be redundant. The moment function (6.1)

corresponds to using the test set Uk (xi, yi) = Rθ (y, x) in the inequalities given in Theorem 1, and

(6.2) is an implication of those provided by the Theorem.

Our covariate vector X comprised five continuous random variables. We employed a multiplica-

tive kernel K (ψ1, . . . , ψ5) = k(ψ1)k(ψ2) · · ·k(ψ5), where each k(·) was given by

k(u) =
10∑
`=1

c` ·
(
1− u2

)2` · 1 {|u| ≤ 30} ,

with c1, . . . , c10 chosen such that k(·) is a bias-reducing Biweight-type kernel of order 20. This is

the same type of kernel used by Aradillas-López, Gandhi, and Quint (2013). Let z ≡ dim(Xc) = 5,

15As indicated previously, in this application the payoff functions π and the distribution of unobserved heterogeneity
PU are known functions of parameters θ. We therefore write Rθ (Y,X) in place of Rπ (Y,X) defined in (4.5), and
PU (·; θ) in place of PU (·).
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and denote

ε ≡ 9

10
· 1

4z(2z + 1)
, αh ≡

1

4z
− ε.

For each element of X, the bandwidth used was of the form hn = c · σ̂(X) · n−αh .16 The order of

the kernel and the bandwidth convergence rate were chosen to satisfy Restriction I2. The constant

c was set at 0.25.17 The bandwidth bn was set to be 0.001 at our sample size (n = 954). The

“regularization” sequence κn was set below machine precision. All the results that follow were

robust to moderate changes in our tuning parameters. The inference region X ∗ was set to include

our entire sample, so there was no trimming used in our results. Our CS was constructed through

a grid search that included over 30 million points. The computational simplicity of our approach

makes a grid search of this magnitude a feasible task on a personal computer.

The third column of Table 2 presents the resulting 95% confidence intervals for each component

of θ, i.e. projections given by the smallest and largest values of each parameter in our CS. Relative

to the MLE CIs shown in column 2, our confidence intervals are shifted slightly and in some cases

larger while in other cases smaller. In classical models where there is point identification ML

estimators are asymptotically efficient, and hence produce smaller confidence intervals than those

based on other estimators. The comparison here however is not so straightforward. The MLE

is based only on the observation of whether each player is in or out of the market, and not the

ordinal value of the outcome. The statistic we employ incorporates these likelihood equations as

moment equalities and additionally some moment inequalities. That is, these inequalities constitute

additional information not used in the partial log-likelihood. Furthermore, the CIs in Table 2 are

projections onto individual parameter components, including parameter components for which the

profile likelihood carries no information such as the interaction coefficients, ∆1,2 and ∆2,1. For all

of these reasons, neither approach is expected to provide tighter CIs than the other. Reassuringly,

the CIs for point-identified parameter components using either method are in all cases reasonably

close to each other, yielding qualitatively similar interpretations.

One and two-dimensional graphical inspections of our CS did not reveal any holes but we are not

16Note that the use of a different bandwidth for each element of X is compatible with our econometric procedure.
This particular choice of bandwidth is in fact equivalent to one using the same bandwidth for each component of X,
but where each is first re-scaled by its standard deviation.

17c = 0.25 is approximately equal to the one that minimizes

AMISE = plim

{∫ ∞
−∞

E

[(
f̂(x)− f(x)

)2]
dx

}
,

if we employ Silverman’s “rule of thumb”, Silverman (1986), using the Normal distribution as the reference distribu-
tion. In this case the constant c simplifies to

c = 2 ·

(
π1/2 (M !)3 ·Rk

(2M) · (2M)! ·
(
k2

M

)) 1
2M+1

, where Rk ≡
∫ 1

−1

k2(u)du, kM ≡
∫ 1

−1

uMk(u)du.

Given our choice of kernel, the solution yields c ≈ 0.25, the value we used.
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sure about the robustness of this feature for our CS as a whole given its dimension. Population, land

area and distance were the only payoff shifters with coefficient estimates statistically significantly

different from zero at the 5% level. The 95% CS for the correlation coefficient ρ was again wide

and included zero. The payoff-concavity coefficient η was significantly positive and well above the

lower bound 0.001 of our parameter space, indicating decreasing returns to scale for new stores in

a market. Figure 3 depicts joint confidence regions for pairs of parameters.

Table 2: Estimates and Confidence Intervals for each Parameter

MLE MLE Moment-
Estimate 95% CI inequalities

95% CI†

Population (100,000) 2.219 [0.869, 3.568] [1.739, 3.850]
Payroll per capita ($5 USD) 0.244 [−0.023, 0.510] [−0.095, 0.691]
Land Area (1,000 sq miles) 0.180 [0.027, 0.333] [0.041, 0.415]

Distance (100 miles) −0.544 [−0.929,−0.159] [−1.008,−0.395]
ρ (Corr(ε1, ε2)) −0.050 [−0.304, 0.204] [−0.284, 0.303]

δ − η (Intercept minus concavity coefficient) −1.309 [−2.084,−0.534] [−1.970,−0.169]
δ (Intercept) N/A N/A [−0.432, 5.581]

η (Concavity coefficient) N/A N/A [1.038, 6.711]
∆12 (Effect of Home Depot on Lowes) N/A N/A [0, 4.047]
∆21 (Effect of Lowes on Home Depot ) N/A N/A [0.622, 4.102]

(†) Denotes the individual “projection” from the joint 95% CS obtained as described in Theorem 4.

Figure 4 depicts the joint CS for the strategic interaction coefficients, ∆1,2 and ∆2,1. Our grid

search for these parameters covered the two-dimensional rectangle [0, 16] × [0, 16]. As we can see,

our results did not provide definitive evidence as to whether the strategic interaction effect was

larger for one of the two firms, as our CS included elements above and below the 45-degree line.

It did exclude, however the point ∆1,2 = ∆2,1 = 0, so we can reject the assertion that no strategic

effect is present. In particular, while our CS includes ∆1,2 = 0, it excludes ∆2,1 = 0, leading us

to reject the assertion that Lowes’ decisions have no effect on Home Depot18. Finally, Figure 5

depicts joint confidence sets for strategic interaction coefficients and slope parameters in the model.

Once again taking the ML point estimate for the coefficient on population as our benchmark, our

95% CIs on the strategic interaction coefficients from Table 2 can be used to bound the relative

effect of interactions on profitability. These indicate that, again all else equal and within a given

market, the effect of an additional Home Depot store on Lowe’s profit is bounded above by that

of a population decrease of roughly 182,000. Similarly, the effect of an additional Lowe’s store on

18We also tried variants of our payoff form specification where strategic interaction was allowed to be a function of
market characteristics, including population, population density and relative distance. In all cases our results failed
to reject that strategic interaction effect is constant for each firm across markets.
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Home Depot’s profit is the equivalent of a population decrease of anywhere from roughly 28,000 to

185,000.

6.3 Analysis of Equilibrium Likelihood, Selection, and Counterfactual Experi-

ments

Primary interest may not lie in the value of underlying model parameters, but rather on quantities

of economic interest that can typically be expressed as (sometimes set-valued) functionals of these

parameters. Equipped with a confidence set for θ, we now construct confidence regions for several

such quantities, namely (i) the probability that a given outcome y is an equilibrium, (ii) the

probability that a given outcome y′ is an equilibrium conditional on a realized outcome Y = y and

covariates X = x, (iii) the probability that an equilibrium is selected given it is an equilibrium,

and (iv) counterfactual conditional outcome probabilities generated by economically meaningful

equilibrium selection rules.

6.4 Likelihood of Equilibria

Let PE (y|x) denote the probability that y is an equilibrium outcome given X = x. From Lemma

1 and (3.3) we have

PE (y|x) = PU (Rθ (y, x) ; θ) .

This relation plays a role in addressing the question: given market characteristics x and the out-

come y observed in a given market, what is the probability that some other action profile y′ was

simultaneously an equilibrium, but not selected? We define this as PE (y′|y, x), which, using the

rules of conditional probability, is given by

PE
(
y′|y, x

)
=
PE (y′, y|x)

PE (y|x)
=
PU (Rθ (y′, x) ∩Rθ (y, x) ; θ)

PU (Rθ (y, x) ; θ)
,

when θ = θ0, where PE (y′, y|x) denotes the conditional probability that both y′ and y are equilibria

givenX = x. This expression is a known function of θ, and we can construct a 95% CI for PE (y′|y, x)

by collecting the corresponding value for each θ ∈ CS1−α, our confidence set for θ. For the sake

of illustration, Table 3 presents results using the realized outcome y = (2, 2) and demographics x

observed in CBSA 11100 (Amarillo, TX), a metropolitan market.

Every outcome y excluded from Table 3 had zero probability of co-existing with (2, 2) as a

PSNE. Notice that the lower bound in our CI was zero in each case. Overall, 13 different equilibrium

outcomes y′ could have simultaneously been equilibria with the observed y with positive probability.

In eight cases, the probability PE (y′, y|x) could be higher than 95%. If we consider all outcomes

included in Table 3 and think of them as possible counterfactual equilibria in this market, we can

see that the total number of stores could have ranged between 3 and 7. The actual number of

28



stores observed here (4) was closer to the lower bound.

We now consider the unconditional probability that any y ∈ Y is an equilibrium, denoted PE (y).

By the law of iterated expectations we can write

PE (y) = E [PE (y|Y,X)] ,

where the expectation is taken over Y,X. For θ = θ0, a consistent estimator for PE (y) is given by

P̂E (y, θ) ≡ 1

n

n∑
i=1

PE (y|yi, xi, θ) , PE (y|yi, xi, θ) ≡
PU (Rθ (y, xi) ∩Rθ (yi, xi) ; θ)

PU (Rθ (yi, xi) ; θ)
.

Let σ̂ (θ) denote the sample variance of PE (y|Y,X, θ), i.e.

σ̂ (θ) ≡ 1

n

n∑
i=1

(
PE (y|yi, xi, θ)− P̂E (y, θ)

)2
.

If θ0 were known, then by a central limit theorem, the set
{
P̂E (y, θ0)± n−1/2zασ̂ (θ0)

}
with zα ≡

Φ−1 (1− α/2) would provide an asymptotic 1−α CI for PE (y). In practice θ0 is unknown, but we

can use the union of such sets over θ values in CS1−α to construct our CI

CI (PE (y)) ≡
⋃

θ∈CS1−α

{
r ∈ [0, 1] : P̂E (y, θ)− n−1/2zασ̂ (θ) ≤ r ≤ P̂E (y, θ) + n−1/2zασ̂ (θ)

}
. (6.3)

If it were known (i.e. with probability one) that θ0 ∈ CS1−α, then CI (PE (y)) would contain PE (y)

with at least probability 1− α asymptotically. With θ0 ∈ CS1−α with probability bounded below

by 1− α asymptotically, CI (PE (y)) provides a nominal (1− α)2 CI.

Table 4 presents the 0.9025 (α = 0.05) CI for PE(y) for the ten most frequently observed

outcomes in the data.

Table 3: Outcomes y that could have co-existed as equilibria with the realized outcome (2, 2) in
CBSA 11100 (Amarillo, TX).

y 95% CI for PE(y|Yi, Xi) y 95% CI for PE(y|Yi, Xi)
(0, 4) [0, 0.9997] (4, 0) [0, 0.9785]
(6, 0) [0, 0.9996] (3, 0) [0, 0.3386]
(4, 1) [0, 0.9993] (5, 1) [0, 0.1306]
(0, 3) [0, 0.9987] (0, 5) [0, 0.0844]
(5, 0) [0, 0.9975] (7, 0) [0, 0.0517]
(1, 3) [0, 0.9973] (1, 4) [0, 0.0102]
(3, 1) [0, 0.9884]
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Table 4: Outcomes y with the largest aggregate probability of being equilibria, PE(y)

y 90.25% CI for PE(y) Observed frequency
(α = 0.05) for y

(0, 0) [0.2351, 0.2910] 0.2631
(1, 0) [0.1768, 0.3213] 0.2023
(1, 1) [0.1047, 0.1635] 0.1257
(0, 1) [0.0998, 0.3346] 0.1205
(2, 1) [0.0328, 0.0823] 0.0461
(1, 2) [0.0110, 0.0824] 0.0199
(2, 0) [0.0070, 0.1703] 0.0146
(3, 1) [0.0062, 0.0436] 0.0136
(2, 2) [0.0062, 0.0411] 0.0136
(3, 2) [0.0032, 0.0320] 0.0094
(2, 3) [0.0032, 0.0324] 0.0094
(3, 3) [0.0025, 0.0220] 0.0083

Outcomes ordered by observed frequency.

6.4.1 Propensity of Equilibrium Selection

Our model is silent as to how any particular market outcome is selected when there are multiple

equilibria. Nonetheless, a confidence set for θ can be used to ascertain some information on various

measures regarding the underlying equilibrium selection mechanism M. Consider for example the

propensity that a given outcome y is selected when it is an equilibrium,

PM (y) ≡ P (Y = y)

PE (y)
.

In similar manner to the construction of the CI (6.3) for the probability that some outcome y is an

equilibrium, we can construct an asymptotic (1− α)2 CI for PM (y) as

CI (PM (y)) ≡
⋃

θ∈CS1−α

{
r ∈ [0, 1] : P̂M (y; θ)− zαŝ (θ) ≤ r ≤ P̂M (y; θ) + zαŝ (θ)

}
,

where now ŝ (θ) consistently estimates the standard deviation of

P̂M (y; θ) ≡ P (Y = y)

PE (y; θ)
.

Recall that (0, 0) cannot coexist with any other equilibrium and therefore PM(0, 0) = 1. In

Table 5 we present a CI for the selection propensity PM (y) for all other outcomes listed in Table

4. In all cases in Table 5 the upper bound of our CIs was 1, so only the lower bounds of our CIs
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on the selection probabilities are informative.

Table 5: Aggregate propensity PM(y) to select y when it is a NE.
y 95% CI for PM(y) Observed frequency

for y

(1, 1) [0.8402, 1] 0.1257
(1, 0) [0.6384, 1] 0.2023
(2, 1) [0.5801, 1] 0.0461
(0, 1) [0.3382, 1] 0.1205
(3, 3) [0.3187, 1] 0.0083
(2, 2) [0.2690, 1] 0.0136
(3, 1) [0.2470, 1] 0.0136
(3, 2) [0.2089, 1] 0.0094
(2, 3) [0.2049, 1] 0.0094
(1, 2) [0.1863, 1] 0.0199
(2, 0) [0.0495, 1] 0.0146

Outcomes ranked by the CI lower bound.

We can also make direct comparisons of the selection propensities PM (y) across particular

profiles. Figure 6 makes such comparisons by plotting P̂M (y; θ) for each θ ∈ CS1−α. With the

exception of θ yielding selection propensities very close to one for both outcomes considered in each

graph, which our analysis does not rule out, the comparisons in parts (A)-(C) of Figure 6 can be

summarized as follows:

(1) Equilibria with at most one store by each firm: We compare the propensity of equilibrium se-

lection for the outcomes (0, 1), (1, 0) and (1, 1). Our results yield two findings: (i) Comparing

equilibria where only one store is opened, there is a higher selection propensity for Lowe’s to

have the only store than for Home Depot. (ii) There is a greater selection propensity for the

equilibrium in which both firms operate one store than those where only one firm does.

(2) Equilibria with a monopolist opening multiple stores: We focus on the outcomes (0, 2), (2, 0),

(0, 3) and (3, 0). Our results indicate that the selection propensity is higher for the outcome

in which Lowe’s operates two stores than those where Home Depot operates two stores. Our

findings regarding selection propensities for (0, 3) and (3, 0) were less conclusive.

(3) Equilibria where both firms enter with the same number of stores: We focus on the outcomes

(1, 1), (2, 2) and (3, 3). Although not illustrated in the figure, the propensity to select sym-

metric equilibria where both firms are present appeared to be comparably higher than the

propensity to select equilibria where there is only one firm in the market. For most θ ∈ CS1−α,

the outcome (1, 1) was the most favored.
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Without a structural model, the observed frequencies alone are not informative about selection

propensities. For example, even though (1, 1) was observed in only 12.5% of markets while (1, 0)

was observed in 20.2% of them, our results show that, except for some θ ∈ CS1−α with both

selection propensities close to one, the selection propensity for (1, 1) when it was an equilibrium

was higher than that of (1, 0). The fact that the latter is observed more frequently simply indicates

that payoff realizations where (1, 1) is an equilibrium occurred relatively rarely.

6.4.2 Some counterfactual experiments

As explained above, our framework allows us to study the likelihood that other outcomes could

have co-existed as equilibria along with the outcomes actually observed in each market in the data.

With this information at hand we can do counterfactual analysis based on pre-specified (by us)

equilibrium selection mechanisms. Here we generate counterfactual outcomes in each market based

on four hypothetical equilibrium selection rules. We focus our analysis on those markets where at

least one firm entered and each firm opened at most 15 stores.19 This accounts for approximately

70% of the entire sample.

(A) Selection rule favoring Lowe’s.- For each market i, a counterfactual outcome yci ≡(
y1,c
i , y2,c

i

)
was generated through the following steps:

1.− Find all the outcomes y for which

P E(y|Yi, Xi) = max

{
PE(y, Yi, Xi|θ)
PE(Yi, Xi|θ)

: θ ∈ CS1−α

}
(the upper bound within our CS for the probability of co-existing with Yi as NE) was at least

95%. If there are no such outcomes, then set yci = Yi. Otherwise proceed to step 2.

2.− Choose the outcome y with the largest number of Lowe’s stores. If there are ties, choose the

one with the largest number of Home Depot stores.

(B) Selection rule favoring Home Depot.- Same as (A), but switching the roles of Home

Depot and Lowe’s.

(C) Selection rule favoring entry by both firms and largest total number of stores.-

Here we took the following steps to determine yci :

1.− As in (A) and (B), look for all the outcomes y for which P E(y|Yi, Xi) ≥ 0.95. If no such

y 6= Yi exists, set yci = Yi. Do the same if no y was found where both firms enter. Otherwise

proceed to step 2.

19Recall again that observing (0, 0) in a given market implies that no other counterfactual equilibrium was possible.
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2.− Among the outcomes y found in step 1, look for the one that maximizes the total number of

stores y1 + y2. If there are ties, then choose the one that minimizes |y1 − y2|. If more than

one such outcome exists, choose randomly among them using uniform probabilities.

(D) Selection rule favoring symmetry.- Each yci was generated as follows:

1.− As in (A)-(C), look for all the outcomes y for which P E(y|Yi, Xi) ≥ 0.95. If no such y 6= Yi

exists, set yci = Yi. Otherwise proceed to step 2.

2.− Among the outcomes y found in step 1, look for the one that minimizes |y1 − y2|. If more

than one such outcomes exist, choose randomly among them using uniform probabilities.

Table 6: Results of counterfactual equilibrium selection experiments
Selection rules

Observed data† (A) (B) (C) (D)
Y 1 Y 2 y1,c y2,c y1,c y2,c y1,c y2,c y1,c y2,c

Average 1.76 1.62 4.34 0.48 0.41 3.09 3.08 1.11 1.74 1.78
Median 1 1 1 0 0 1 1 1 1 1

75th percentile 2 1 4 0 0 3 2 1 1 1
90th percentile 4 4 12 1 1 8 9 2 4 4
95th percentile 6 7 20 1 1 15 17 2 8 8

Total 1,180 1,090 2,917 326 275 2,078 2,072 746 1,172 1,197

%
(
y1 > y2

)
47% 60% 15% 42% 26%

%
(
y1 = y2

)
23% 26% 27% 40% 51%

(†) The markets considered in this experiment where those where at least one firm entered and each firm

opened at most 15 stores. This included approx. 70% of the entire sample.

Examining Table 6, the pattern of market outcomes that results from counterfactual selection

rules (A), (B) and (C) is decisively different from the features of the observed outcomes in the

data. This is less so for selection rule (D). Table 6 also suggests that a selection mechanism

which maximizes the total number of stores in each market (rule (C)) would produce a pattern of

outcomes heavily biased in favor of Lowe’s. Overall, among these counterfactual experiments, the

one employing selection rule (d) favoring symmetry most closely matches the observed pattern of

store profiles in the data.

7 Conclusion

In this paper we have analyzed a simultaneous equations model for a complete information game in

which agents’ actions are ordered. This generalized the well-known simultaneous binary outcome

model used for models of firm entry to cases where firms take ordered rather than binary actions,
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for example the number of store fronts to operate in a market, or the number of daily routes offered

on a city pair by an airline.

We applied recently-developed methods from the literature to characterize (sharp) identified sets

for model structures via conditional moment inequalities under easily interpreted shape restrictions.

While one may ideally wish to incorporate all of the identifying information delivered by the model

in performing estimation and inference, the number of implied conditional moment inequalities can

be rather large, potentially posing significant challenges for both computation and the quality of

asymptotic approximations in finite samples. However, the structure of this characterization lends

itself readily to outer regions for model parameters, also characterized by conditional moment

inequalities, which may be easier to use for estimation and inference. We further showed that in a

parametric two player instance of our model, we achieve point identification of all but 3 parameters

under fairly mild conditions, without using large support restrictions.

We proposed a novel method for inference based on a test statistic that employed density-

weighted kernel estimators of conditional moments, summing over measured deviations of condi-

tional moment inequalities. We used results from the behavior of U-processes to show that our test

statistic behaves asymptotically as a chi-square random variable when evaluated at points in the

identified set, with degrees of freedom dependent upon whether the conditional moments are bind-

ing with positive probability. This was then used to construct confidence sets for parameters, where

the critical value employed is simply a quantile of a chi-square distribution with the appropriate

degrees of freedom.

We applied our inference approach to data on the number of stores operated by Lowe’s and Home

Depot in different markets. We presented confidence sets for model parameters, and showed how

these confidence sets could in turn be used to construct confidence intervals for other quantities of

economic interest, such as equilibrium selection probabilities and the probability that counterfactual

outcomes are equilibria jointly with observed outcomes in a given market. Our inference approach

can be applied much more generally to models that comprise conditional moment inequalities, with

or without identification of a subvector of parameters. Although we focused on Pure Strategy

Nash Equilibrium as a solution concept, this was not essential to our inference method. It could

alternatively be based on conditional moment inequalities implied by (mixed or pure strategy) Nash

Equilibrium, or other solution concepts, such as rationalizability.

Moreover, in our application we only employed a small subset of the conditional moment in-

equalities comprising the (sharp) identified set. In principle our approach can be applied to sharp

characterizations too, but the number of inequalities these incorporate can be rather large. The

shear number of inequalities raises interesting questions regarding computational feasibility and

the accuracy of asymptotic approximations in finite sample, both for our inference approach and

others in the literature. Future research on these issues thus seems warranted.
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A Proofs

In this section we provide proofs for the results stated in the main text and auxiliary lemmas.

A.1 Proofs of Results from the Main Text

Proof of Theorem 1. Let Rπ (Y,X) be the rectangles described in (4.5). It follows from Theorem

1 of Chesher and Rosen (2012) that the identified set is given by

S∗ =
{

(π, PU ) ∈ Π× PU : ∀U ∈ F
(
RJ
)

, PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] a.e. x ∈ X
}

, (A.1)

where F
(
RJ
)

denotes all closed sets in RJ . This is equivalent to the characterizations of Galichon

and Henry (2011, Theorem 1) and Beresteanu, Molchanov, and Molinari (2011, Theorem D.2)

applicable with finite Y, specifically

S∗ =

{
(π, PU ) ∈ Π× PU :

∀C ∈ 2Y , PU (∃y ∈ C : y ∈ PSNE (π,X,U) |X = x) ≥ P0 [Y ∈ C|X = x] a.e. x ∈ X

}
,

where PSNE (π,X,U) denotes the set of PSNE when the payoff functions are π for the given (X,U).

It follows from Chesher and Rosen (2012, Theorem 5) that (A.1) can be refined by replacing F
(
RJ
)

with the sub-collection R∪ (x). �

Proof of Corollary 1. This follows from the observation that for any x ∈ X ,

∀U ∈ R∪ (x) , PU (U) ≥ P0 [Rπ (Y,X) ⊆ U|X = x] (A.2)

implies that the same inequality holds for all U ∈ R∪ (x), and in particular for all U ∈ U (x). �

Proof of Theorem 2. We prove parts 1 and 2 in the statement of the Theorem in separate steps.

Step 1. Suppose that F is known and define the sets

S+
b ≡ {z : z1 (b1 − β∗1) > 0 ∧ z2 (b2 − β∗2) ≥ 0} ,

S−b ≡ {z : z1 (b1 − β∗1) < 0 ∧ z2 (b2 − β∗2) ≤ 0} .

For any z ∈ S+
b we have that

F (z1b1, z2b2) > F (z1β
∗
1, z2β

∗
2) = P {Y = (0, 0)|z} ,

and likewise for any z ∈ S−b ,

F (z1b1, z2b2) < F (z1β
∗
1, z2β

∗
2) = P {Y = (0, 0)|z} .
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The probability that Z ∈ Sb ≡ S+
b ∪ S

−
b is

P {Z ∈ Sb} = P
{
Z ∈ S+

b

}
+ P

{
Z ∈ S−b

}
=

(
P {Z2 (b2 − β∗2) ≥ 0|Z1 (b1 − β∗1) > 0}P {Z1 (b1 − β∗1) > 0}

+P {Z2 (b2 − β∗2) ≤ 0|Z1 (b1 − β∗1) < 0}P {Z1 (b1 − β∗1) < 0}

)
.

Both P {Z1 (b1 − β∗1) > 0} and P {Z1 (b1 − β∗1) < 0} are strictly positive by (i), and at least one

of P {Z2 (b2 − β∗2) ≥ 0|Z1 (b1 − β∗1) > 0} and P {Z2 (b2 − β∗2) ≤ 0|Z1 (b1 − β∗1) < 0} must be strictly

positive by (ii). Therefore P {Z ∈ Sb} > 0, implying that with λ∗ known b is observationally

distinct from β∗ since for each z ∈ Sb, P {Y = (0, 0)|z} 6= F (z1b1, z2b2).

If instead F is only known to belong to some class of distribution functions {Fλ : λ ∈ Γ}, the

above reasoning implies that for each λ ∈ Γ, E [L (b, λ)] is uniquely maximized with respect to b.

Then the conclusion of the first claim of the Theorem follows letting b∗ (λ) denote the maximizer

of E [L (b, λ)] for any λ ∈ Γ.

Step 2. Suppose now that U has CDF F (·, ·;λ) of the form given in (4.4) for some λ ∈ [−1, 1].

To show that λ∗ is identified, consider the expectation of the profiled log-likelihood:

L0 (λ) ≡ E [L (b∗ (λ) , λ)] = E [` (b∗ (λ) , λ;Z, Y )] .

Note that because
(
β̃
∗
, λ∗
)

maximizes E [L (b, λ)] with respect to (b, λ), it follows that λ∗ maximizes

L0 (λ) = maxbE [L (b, λ)]. That λ∗ is the unique maximizer of L0 (λ), and thus point-identified,

follows from strict concavity of L0 (λ) in λ, shown in Lemma 4.

A standard mean value theorem expansion for maximum likelihood estimation then gives

θ̂1 = θ∗1 +
1

n

n∑
i=1

ψM (yi, xi) + op

(
n−1/2

)
,

where

ψM (yi, xi) ≡ H−1
0

∂` (θ1; zi, yi)

∂θ1

is the maximum likelihood influence function satisfying

n−1/2
n∑
i=1

ψM (yi, xi)→ N
(
0, H−1

0

)
,

with H0 as defined in (4.10). �

Proof of Lemma 2. As in the main text, to simplify notation let w ≡ (x, y) with support

denoted W. We abbreviate T̂k (wi; θ) and Tk (wi; θ) for T̂k (yi, xi; θ) and Tk (yi, xi; θ), respectively,

k = 1, ...,K. Suprema with respect to w, θ are to be understood to be taken with respect toW×Θ
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unless otherwise stated. Let

ξn (θ) ≡ R̂ (θ)− R̃ (θ)

=
1

n

n∑
i=1

1Xi

(
K∑
k=1

T̂k (wi; θ) ·
(

1
{
T̂k (wi; θ) ≥ −bn

}
− 1 {T (wi; θ) ≥ 0}

))
.

Note that

|ξn (θ)| ≤ ξ1
n (θ) + ξ2

n (θ) ,

where

ξ1
n (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

∣∣∣T̂k (wi; θ)
∣∣∣ · 1 {−2bn ≤ Tk (wi, θ) < 0}

)
,

ξ2
n (θ) ≡ 1

n

n∑
i=1

1Xi

(
K∑
k=1

∣∣∣T̂k (wi; θ)
∣∣∣ · 1{∣∣∣T̂k (wi; θ)− Tk (wi, θ)

∣∣∣ ≥ bn}) .

To complete the proof, we now show that each of these terms is Op (n−a) uniformly over θ ∈ Θ for

some a > 1/2.

Step 1 (Bound on
∣∣ξ1
n (θ)

∣∣).
We have

sup
θ

∣∣ξ1
n (θ)

∣∣ ≤ sup
θ


1
n

n∑
i=1

1Xi

(
K∑
k=1

|Tk (wi, θ)| · 1 {−2bn ≤ Tk (wi, θ) < 0}

)

+ 1
n

n∑
i=1

1Xi

(
K∑
k=1

∣∣∣T̂k (wi, θ)− Tk (wi, θ)
∣∣∣ · 1 {−2bn ≤ Tk (wi, θ) < 0}

)


≤

(
2bn + sup

w,θ

∣∣∣T̂k (wi, θ)− Tk (wi, θ)
∣∣∣)× sup

θ

∣∣∣∣∣ 1n
n∑
i=1

1Xi

(
K∑
k=1

1 {−2bn ≤ Tk (wi, θ) < 0}

)∣∣∣∣∣
=

(
2bn +Op

(
log n√
nhzn

))
× sup

k,θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ Tk (wi, θ) < 0}

∣∣∣∣∣ , (A.3)

where the first inequality follows from the triangle inequality, the second from elementary algebra,

and the third from

sup
w,θ

∣∣∣T̂k (wi, θ)− Tk (wi, θ)
∣∣∣ = Op

(
log n√
nhzn

)
for all k = 1, ...,K holding under I2 and I4. Now for b̄ and Ā as defined in Restriction I3 we have
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for all k = 1, ...,K and large enough n, 2bn ≤ b̄ and therefore

sup
θ
E [1 {−2bn ≤ Tk (W, θ) < 0}] ≤ 2Ābn, (A.4)

Ω̄n ≡ sup
θ
V ar [1 {−2bn ≤ Tk (W, θ) < 0}] ≤ 2Ābn. (A.5)

It now follows from the triangle inequality and (A.4) above that for any k = 1, ...,K,

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ Tk (wi, θ) < 0}

∣∣∣∣∣
≤ sup

θ

∣∣∣∣∣ 1n
n∑
i=1

(1 {−2bn ≤ Tk (wi, θ) < 0} − E [−2bn ≤ Tk (wi, θ) < 0])

∣∣∣∣∣+ 2Ābn.

The manageability Restriction I4 implies,

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

(1 {−2bn ≤ Tk (wi, θ) < 0} − E [−2bn ≤ Tk (wi, θ) < 0])

∣∣∣∣∣ = Op

(√
Ω̄n

n

)
,

which is in fact Op

(√
bn
n

)
by virtue of (A.5). Thus

sup
θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ Tk (wi, θ) < 0}

∣∣∣∣∣ = Op

(√
bn
n

)
+O (bn)

= bn

(
Op

(
1√
bnn

)
+O (1)

)
= bn (op (1) +O (1))

= Op (bn) .

Plugging this into (A.3) we have

sup
θ

∣∣ξ1
n (θ)

∣∣ =

(
2bn +Op

(
log n√
nhzn

))
·Op (bn)

= Op
(
b2n
)

+Op

(
bn log n√
nhzn

)
= Op

(
n−a

)
for some a > 1/2 by the bandwidth conditions in Restriction I2.

Step 2 (Bound on P
{

supw,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ c}).

From Restriction I4 and application of Theorem 3.5 and equation (7.3) of Pollard (1990), there
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exist positive constants κ1, κ2 such that for any c > 0, and any U ∈

P

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ c} ≤ κ1 exp

(
−
(
nhdnκ2c

)2
)

. (A.6)

Our smoothness restriction I1 and an M th order expansion imply the existence of a constant C

such that

sup
w,θ

∣∣∣E [T̂k (w; θ)
]
− Tk (w; θ)

∣∣∣ ≤ ChMn . (A.7)

Thus

P

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ bn} (A.8)

≤ P

{
sup
w,θ

∣∣∣T̂k (w; θ,U)− E
[
T̂k (w; θ)

]∣∣∣+ sup
w,θ

∣∣∣E [T̂k (w; θ,U)
]
− Tk (w; θ)

∣∣∣ ≥ bn}

≤ P

{
sup
w,θ

∣∣∣T̂k (w; θ,U)− Tk (w; θ)
∣∣∣ ≥ bn − ChMn

}
,

where the first inequality follows by the triangle inequality and the second by (A.7). Under our

bandwidth restrictions I2 we have for large enough n that bn > ChMn , and so application of (A.6)

to (A.8) with c = bn − ChMn gives

P

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ c} ≤ κ1 exp

(
−
(
nhdnκ2

(
bn − ChMn

))2
)

. (A.9)

Step 3 (Bound on
∣∣ξ2
n (θ)

∣∣).
We have

sup
θ

∣∣ξ2
n (θ)

∣∣ ≤ sup
w,θ

∣∣∣T̂k (w; θ)
∣∣∣ · sup

w,θ
1
{∣∣∣T̂k (w; θ)− Tk (w; θ)

∣∣∣ ≥ bn}
= Op (1)× sup

w,θ
1
{∣∣∣T̂k (w; θ)− Tk (w; θ)

∣∣∣ ≥ bn}
= Op (1)× 1

{
sup
w,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ bn} .

Let Dn ≡ 1
{

supw,θ

∣∣∣T̂k (w; θ)− Tk (w; θ)
∣∣∣ ≥ bn}. Now using Chebyshev’s inequality we have

|Dn − E [Dn]| = Op

(√
var (Dn)

)
= Op

(√
E [Dn] (1− E [Dn])

)
=
√
E [Dn]Op (1) .
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Therefore

Dn ≤
√
E [Dn] ·Op (1) + E [Dn] =

√
E [Dn]

(
Op (1) +

√
E [Dn]

)
=
√
E [Dn]Op (1) . (A.10)

From (A.9) in Step 2 we have

E [Dn] ≤ κ1 exp

(
−
(
nhdnκ2

(
bn − ChMn

))2
)

,

which combined with (A.10) gives

Dn = Op

(
√
κ1 exp

(
−1

2

(
nhdnκ2

(
bn − ChMn

))2
))

,

from which it follows that Dn = Op (n−a), completing the proof. �

Proof of Lemma 3. We prove the lemma for K = 1 and drop the subscript k notation for

convenience. This suffices for the claim of the lemma since K is finite, and a finite sum of Op (n−a)

terms is Op (n−a). Define

g (w1, w2; θ, h) ≡ v (w1, w2; θ, hn) + v (w2, w1; θ, hn) ,

g̃ (w; θ, h) ≡
∫
g
(
w,w′; θ, h

)
dFW

(
w′
)

, µ (θ, h) ≡
∫
g̃ (w; θ, h) dFW (w) ,

ṽ (w1, w2; θ, h) ≡ g (w1, w2; θ, h)− g̃ (w1; θ, h)− g̃ (w2; θ, h) + µ (θ, h) .

A Hoeffding (1948) decomposition of our U-process, making use of the relation E [g̃ (W ; θ, h)] =

µ (θ, h), gives

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn)

= µ (θ, h) +
1

n

n∑
i=1

[g̃ (wi; θ, h)− E [g̃ (W ; θ, h)]] +
1

n (n− 1)

∑
1≤i<`≤n

ṽ (wi, w`; θ, h) + op
(
n−1

)
.

The third term above is a degenerate U-process of order 2. By Corollary 4 in Sherman (1994),

sup
θ∈Θ

1

n (n− 1)

∑
1≤i<`≤n

ṽ (wi, w`; θ, h) = Op
(
nh−zn

)
= op

(
n−1/2−ε

)
,

where the last equality follows from Restriction I2. Note that securing the above rate is the sole

motivation for imposing that the class V be Euclidean. Any alternative restriction that could

deliver this result would suffice.

Under the smoothness Restriction I1, using iterated expectations and an M th order approxi-
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mation,

sup
θ∈Θ
|µ (θ, h)| = ChMn = Op

(
n−1/2−ε

)
,

for some ε > 0. Thus

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) =
1

n

n∑
i=1

[g̃ (wi; θ, h)− E [g̃ (W ; θ, h)]] +Op

(
n1/2+ε

)
. �

Proof of Theorem 3. Let

∆g,i (θ, h) ≡
K∑
k=1

[g̃k (wi; θ, h)− E [g̃k (W ; θ, h)]] .

Combining Lemma 2 with the definition of R̃ (θ) in (5.4) we have for some a > 1/2,

R̂ (θ) =
1

n

n∑
i=1

1Xi

K∑
k=1

(Tk (wi, θ))+ +

K∑
k=1

1

n2

n∑
i=1

n∑
`=1

vk (w`, wi; θ, hn) +Op
(
n−a

)
=

1

n

n∑
i=1

1Xi

K∑
k=1

(Tk (wi, θ))+ +
1

n

n∑
i=1

∆g,i (θ, hn) +Op
(
n−a

)
= R (θ) +

1

n

n∑
i=1

(
1Xi

K∑
k=1

(Tk (wi, θ))+ −R (θ)

)
+

1

n

n∑
i=1

∆g,i (θ, hn) +Op
(
n−a

)
= R (θ) +

1

n

n∑
i=1

(
K∑
k=1

1Xi (Tk (wi, θ))+ − E
[
1Xi (Tk (wi, θ))+

])
+

1

n

n∑
i=1

∆g,i (θ, hn) +Op
(
n−a

)
,

where the second line follows from Lemma 3, the third adding subtracting R (θ), and the fourth

substituting for R (θ) using (5.3) and interchanging summation and expectation. �

Proof of Theorem 4. We characterize the limiting behavior of Q̂n (θ) = V̂ (θ) Σ̂ (θ)−1 V̂ (θ).

From Theorems 2 and 3 we have from (5.7) that uniformly over θ ∈ Θ,

V̂ (θ) = n1/2

(
θ∗1 − θ1

R (θ)

)
+

(
n−1/2

∑n
i=1 ψM (wi)

n−1/2
∑n

i=1 ψR (wi; θ, hn)

)
+

(
op (1)

op (n−ε)

)
, (A.11)

where ε > 0. We consider each of the three cases (i) θ ∈ Θ∗/Θ̄∗, (ii) θ ∈ Θ̄∗, and (iii) θ /∈ Θ∗, which

together prove the Theorem.

Case (i), θ ∈ Θ∗/Θ̄∗: Because θ ∈ Θ∗, θ∗1 − θ1 = 0 and R (θ) = 0. By definition of Θ̄∗, we have

that

inf
θ∈Θ∗/Θ̄∗

PW

(
max

k=1,...,K
Tk (W, θ) < 0

)
= 1.

It follows from the definition of ψR (wi; θ, hn) that n−1/2
∑n

i=1 ψR (wi; θ, hn) = 0 wp→ 1 for all
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θ ∈ Θ∗/Θ̄∗. Therefore

Q̂n (θ) = n−1
n∑
i=1

ψM (wi) Ĥ
−1
0

n∑
i=1

ψM (wi) + op (1) ,

uniformly over θ ∈ Θ∗/Θ̄∗. Then by Theorem 2, (4.9), for any c > 0, and any sequence θn ∈ Θ∗/Θ̄∗

lim
n→∞

P
(
Q̂n (θn) ≤ c

)
= P

(
χ2
r ≤ c

)
.

Case (ii): θ ∈ Θ̄∗. Again, θ ∈ Θ∗ so θ∗1 − θ1 = 0 and R (θ) = 0. Let

Ω (θ) ≡

(
ΣMM (θ) ΣMR (θ)

Σ′MR (θ) σ2 (θ)

)
, Ω̂ (θ) ≡

(
Σ̂MM (θ) Σ̂MR (θ)

Σ̂′MR (θ) σ̂2
n (θ)

)

where

σ2 (θ) ≡ lim
n→∞

σ2
n (θ) , σ̂2

n (θ) ≡ n−1
n∑
i=1

ψ̂R (wi; θ, hn)2 .

We assume Ω (θ) to be well-defined and invertible at each θ ∈ Θ̄∗. Part (i) of Restriction I5 suffices

for a Lindeberg condition to hold, see Lemma 1 of Romano (2004). It allows for the limiting

variance of ψ̂R to become arbitrarily close to zero on θ ∈ Θ∗, but essentially dictates that its

absolute expectation vanish faster. Combined with the manageability condition of Restriction I5

(ii), it follows that for any sequence θn ∈ Θ∗ such that σ2
n (θ) has a well-defined limit,

n−1/2
n∑
i=1

ψ̂R (wi; θn, hn)

σn (θn)
→ N (0, 1) .

For a given θ ∈ Θ̄∗, let

Q̆n (θ) ≡ V̂ (θ) Ω̂n (θ)−1 V̂ (θ) .

By construction Ω̂−1 (θ) − Σ̂−1 (θ) is positive semidefinite and therefore Q̂n (θ) ≤ Q̆n (θ) for all

θ ∈ Θ̄∗.

Now let θn be a sequence in Θ∗. Since Θ is compact, the sequence θn is bounded and has a

convergent subsequence θan . By the continuity conditions in Restriction I5, Ω̂−1
an (θan) exists and

has a well-defined limit. For any c > 0, parts (i) and (ii) of Restriction I5 then yield

lim
n→∞

P
(
Q̆n (θan) ≤ c

)
= P

(
χ2
r+1 ≤ c

)
,

and since for all θ ∈ Θ̄∗ Q̂n (θ) ≤ Q̆n (θ),

lim
n→∞

P
(
Q̂n (θan) ≤ c

)
≥ P

(
χ2
r+1 ≤ c

)
.
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To analyze the behavior of

lim
n→∞

inf
θ∈Θ∗

P
(
Q̂n (θan) ≤ c

)
now choose a sequence θn ∈ Θ∗ such that for some δn ↘ 0,∣∣∣∣P (Q̂n (θn) ≤ c

)
− inf
θ∈Θ∗

P
(
Q̂n (θ) ≤ c

)∣∣∣∣ ≤ δn.

Note that we can always find such a sequence. Using Theorem 3, Restriction I5, and P
(
χ2
r ≤ c

)
≥

P
(
χ2
r+1 ≤ c

)
, our previous arguments show that we can always find a subsequence θan such that

lim
n→∞

P
(
Q̂n (θan) ≤ c

)
≥ P

(
χ2
r+1 ≤ c

)
,

and from here we conclude that

lim inf
θ∈Θ∗

P
(
Q̂n (θ) ≤ c

)
≥ P

(
χ2
r+1 ≤ c

)
,

which proves the first assertion of the Theorem.

Case (iii): θ /∈ Θ∗. Now either θ∗1 − θ1 6= 0 or R (θ) 6= 0, or both. It follows from (A.11) that for

any c > 0,

lim
n→∞

P
(
V̂ (θ) ≤ c

)
= 0,

and therefore

lim
n→∞

P
(
Q̂n (θ) ≤ c

)
= 0,

completing the proof. �

A.2 Auxiliary Lemmas and Proofs

Lemma 4 Let the conditions of Theorem 2 hold and assume that U has CDF F (·, ·;λ∗) given in

(4.4) for some λ∗ ∈ [−1, 1]. Then L0 (λ) defined in the proof of Theorem 2 is strictly concave in λ.

Proof. By definition, for any λ ∈ [−1, 1], β∗ (λ) satisfies the first and second order necessary

conditions:
∂L0 (β∗ (λ) , λ)

∂β
= 0,

∂2L0 (β∗ (λ) , λ)

∂β∂β′
≤ 0, (A.12)

where ≤ 0 denotes non-positive definiteness. These conditions require, respectively,

g (λ, β) ≡ E
[
m1 (λ, z)

dF ∗

∂β

]
= 0, (A.13)
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at β = β∗ (λ), and

E

[
m2 (λ, z)

∂F ∗

∂β

∂F ∗

∂β′
+m1 (λ, z)

∂2F ∗

∂β∂β′

]
≤ 0, (A.14)

where for ease of notation p (z) ≡ P0 [Y = (0, 0) |Z = z], and for any parameter µ,

∂F ∗

∂µ
≡ dF (z1β, z2β;λ)

dµ
, evaluated at β = β∗ (λ) ,

m1 (λ, z) ≡ p (z)F (z1β
∗ (λ) , z2β

∗ (λ) ;λ)−1 − (1− p (z)) (1− F (z1β
∗ (λ) , z2β

∗ (λ) ;λ))−1 ,

m2 (λ, z) ≡ −p (z)F (z1β
∗ (λ) , z2β

∗ (λ) ;λ)−2 − (1− p (z)) (1− F (z1β
∗ (λ) , z2β

∗ (λ) ;λ))−2 < 0.

We now use these conditions to show concavity of L0 (λ). Using (A.13), equivalently the envelope

theorem, we have that
∂L0 (λ)

∂λ
= E

[
∂L (β∗ (λ) , λ; z)

∂λ

]
.

The second derivative with respect to λ is

∂2L0 (λ)

∂λ2 = E

[
∂2L (β∗ (λ) , λ; z)

∂λ∂β′
∂β∗ (λ)

∂λ
+
∂2L (β∗ (λ) , λ; z)

∂λ2

]
(A.15)

We now proceed to solve for each term in (A.15).

To solve for
∂β∗ (λ)

∂λ
we apply the implicit function theorem to (A.13), obtaining

∂β∗ (λ)

∂λ
=
∂g

∂β

−1 ∂g

∂λ
= E

[
m2

∂F ∗

∂β

∂F ∗

∂β′
+m1

∂2F ∗

∂β∂β′

]−1

E

[
m2

∂F ∗

∂β

∂F ∗

∂λ
+m1

∂2F ∗

∂β∂λ

]
.

In addition we have

∂2L (β∗ (λ) , λ; z)

∂λ∂β′
= m2

∂F ∗

∂λ

∂F ∗

∂β′
+m1

∂2F ∗ (z, λ)

∂λ∂β
, (A.16)

and
∂2L (β∗ (λ) , λ; z)

∂λ2 = m2
∂2F ∗

∂λ2 = 0.

Putting these expressions together in (A.15) gives,

∂2L0 (λ)

∂λ2 = AB−1A′ +D, (A.17)

where

A = E

[
m2

∂F ∗

∂λ

∂F ∗

∂β′
+m1

∂2F ∗

∂λ∂β′

]
, B = E

[
m2

∂F ∗

∂β

∂F ∗

∂β′
+m1

∂2F ∗

∂β∂β′

]
,
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and

D = E

[
m2

(
∂F ∗

∂λ

)2
]

.

By (A.14), B is negative semi-definite so that AB−1A′ ≤ 0. Then m2 ≤ 0 implies that

∂2L0 (λ)

∂λ2 ≤ 0,

and strictness of the inequality follows from F (·, ·;λ) ∈ (0, 1). Therefore L0 (λ) is strictly concave

in λ and consequently β∗ and λ∗ are point identified. �
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Figure 1: Illustration of Restriction I3
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Figure 2: Profiled log-likelihood for each parameter in θI
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Figure 3: Joint 95% confidence regions for slopes, intercept, and η
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Figure 4: Joint 95% confidence region for strategic interaction coefficients
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Figure 5: Joint 95% confidence region for strategic interaction coefficients and slope parameters
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Figure 6: Confidence sets for estimated propensities of equilibrium selection

(A) Equilibria with at most one store by each firm

(B) Equilibria with a monopolist opening multiple stores

(C) Equilibria where both firms enter with the same number of stores
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