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Abstract

This paper introduces a general method to convert a model defined by mo-

ment conditions involving both observed and unobserved variables into equiv-

alent moment conditions involving only observable variables. This task can

be accomplished without introducing infinite-dimensional nuisance parame-

ters using a least-favorable entropy-maximizing distribution. We demonstrate,

through examples and simulations, that this approach covers a wide class of la-

tent variables models, including some game-theoretic models and models with

limited dependent variables, interval-valued data, errors-in-variables, or com-

binations thereof. Both point- and set-identified models are transparently cov-

ered. In the latter case, the method also complements the recent literature on

generic set-inference methods by providing the moment conditions needed to

construct a GMM-type objective function for a wide class of models. Exten-

sions of the method that cover conditional moments, independence restrictions

and some state-space models are also given.

Keywords: method of moments, latent variables, unobservables, partial iden-

tification, entropy, simulations, least-favorable family.
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1 Introduction

1.1 Outline

Our goal is to find the value(s) of a parameter  ∈ R that satisfy a set of moment

conditions that are known to hold in the population. Unlike the conventional Gener-

alized Method of Moments (GMM) (Hansen (1982)), we consider models where some

of the variables entering the moment conditions are not observable. Specifically, the

moment conditions have the general form:

 [ ( )] = 0 (1)

where  is a -dimensional vector of nonlinear measurable functions depending on

the parameter  ∈ Θ ⊆ R , on an unobserved random vector  taking value in

U ⊆ R and on an observed random vector  taking value in Z ⊆ R . These

moment conditions can be underidentified, just-identified or overidentified. We present

a general method that covers this wide class of models while avoiding any parametric

assumptions (beyond the given functional form of ) and without introducing any

infinite-dimensional nuisance parameters, through the use of a low-dimensional dual

representation of the identification problem. The use of a dual representation for

this purpose has been previously suggested in the important works of Galichon and

Henry (2006) and Ekeland, Galichon, and Henry (2010). This paper’s contribution is

to observe that a different dual formulation offers considerable advantages in terms

of computational simplicity, conceptual interpretation (via a least-favorable family

of distributions enabling a simple nonparametric generalization of the method of

simulated moments), and in terms of weakening the necessary regularity conditions

(notably, allowing for unbounded moment functions  (  ), such as the mean of a

variable with unbounded support).

In essence, the method consists of eliminating the unobservables by averaging the

moment function  ( ) over these unobservables using a least-favorable distribu-

tion (i.e. one that does not make the estimation problem artificially easier) obtained

through an entropy maximization procedure. This averaging can be conveniently car-

ried out via simulations, hence the name “Entropic Latent Variable Integration via

Simulation (ELVIS)”. The result is a set of conventional moment conditions involv-

ing only observable variables that can be cast into a GMM-type objective function or

any of its convenient one-step alternatives, such as Empirical Likelihood (EL) (Owen

(1988)) or its generalizations (GEL, ETEL) (see, for instance, Owen (1990), Qin and

Lawless (1994), Kitamura and Stutzer (1997), Imbens, Spady, and Johnson (1998),
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Newey and Smith (2004), Schennach (2007b)). Although the unobservables have

been “integrated out” from the original moment conditions, the resulting averaged

moment conditions are formally equivalent to the original moment conditions, in the

sense that the values of  solving the averaged moment conditions are the same as

the values solving the original moment conditions.

Latent variable models are often set-identified, that is, Equation (1) often admits

more than one  as a solution. The proposed method bypasses the complex task of

establishing point- or set-identification of the model by providing a vector of moment

conditions that are, by construction, satisfied (asymptotically) over the identified set,

whatever it may be. General methods aimed at carrying out accurate statistical

inference in set-identified models (where the set may be reduced to a single point) are

being actively developed (e.g., Chernozhukov, Hong, and Tamer (2007), Andrews and

Jia (2008), Beresteanu and Molinari (2008), Chiburis (2008), Rosen (2008), Andrews

and Guggenberger (2009), Andrews and Soares (2010), Bugni (2010), Canay (2010),

Romano and Shaikh (2010), Chernozhukov, Kocatulum, and Menzel (2012)). While

these very general methods are applicable to a wide variety of user-specified objective

functions, they provide little guidance on how to construct the objective function

(e.g. via deriving suitable moment inequalities) for the general class of latent variable

models we consider here. Our contribution is thus entirely complementary to this

growing literature, as it provides specific feasible moment conditions that can be

used to construct a GMM-type objective function that is compatible with many of

these inference methods. This objective function is also compatible with traditional

inference methods (e.g. Hansen (1982), Newey andMcFadden (1994)) when the model

happens to be known to be point-identified.

The paper is organized as follows. We first give a series of simple examples moti-

vating the usefulness of the class of model considered. We then describe the method,

both at a formal and at a more intuitive level, before comparing it with existing meth-

ods. A number of important extensions of the method are also described, enabling the

treatment of conditional mean and independence restrictions as well as some state-

space models. Finally, the capabilities of the proposed method are illustrated via

simulations experiments. All proofs can be found in Appendix A or in Section C

of the Supplementary Material. The Supplementary Material describes how existing

general inference techniques (such as Chernozhukov, Hong, and Tamer (2007)) can

be used to construct consistent set-estimates and suggests a simple, but conservative,

alternative method based on a 2 approximation.
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1.2 Motivating examples

A few straightforward examples are helpful to illustrate the very general class of

models that can be handled. Simplifications, such as linearity or separability, are

made for simplicity of exposition, but are in no way necessary.

Example 1.1 (Interval-valued data regression) Consider the model

 ∗ = 1 + 

where the scalar regressor  is perfectly observed but where the scalar dependent

variable  ∗ is not directly observable. Instead, it is known to lie in an interval
£
  

¤
which may vary across individuals. The scalar disturbance  satisfies  [ ] = 0.

This model fits our framework with  =
¡
   

¢0
,  = ( ∗ −  ) 

¡
 − 

¢
, U =

[0 1] and

 ( ) =
¡
 + 

¡
 − 

¢−1
¢


where we have normalized the unobservable variable  to be supported on [0 1] for

convenience.

Example 1.2 (Censored regression) Consider the model

 ∗ = 1 +2 + 

with  [ ] = 0 and  [ ] = 0, and where the scalar regressor  is perfectly observed

but where the scalar dependent variable  ∗ is not directly observable.1 Instead, one

observes

 = min ( ∗ )

for some known constant . This model fits our framework with  = ()
0
,  =

 ∗ −  , U = R+ and

 ( ) =

∙
( + 1 ( = )− 1 −2)

( + 1 ( = )− 1 −2)

¸


letting 1 (·) denote the indicator function. Of course, at best, this model only implies
a one-sided bound on 2, but additional reasonable moment constraints can be easily

added to address this, as we will later see. Although it is known that a linear cen-

sored regression model is point-identified under a conditional median assumption, it is

nevertheless interesting to see the implications of maintaining the usual least-squares

assumption in this context.

1The moment conditions in Examples 1.1 and 1.2 are selected so as to provide the best linear

predictor, in the sense of Ponomareva and Tamer (2010), even in the presence of potential model

misspecification.
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Example 1.3 (Moment inequalities) Consider a model defined via the vector of

moment inequalities  [ (1  )] ≥ 0 (where the inequality holds element by ele-

ment). This model can be re-cast into our framework by defining

 ( ) =  (1  )− 2

where  = (1 2) and 2 is an unobserved vector of positive random variables.

There may be no practical benefits associated with rewriting the original model as

such, but this example demonstrates that the class of models considered here is a

generalization of moment inequality models.

Example 1.4 (Game theoretic and choice models) Consider a model where an

agent receives (parametrically specified) expected payoffs  ( ) if he picks choice

 ∈ C, where  is a vector of observed covariates,  is an unobservable distur-

bance (known to the agent but not to the econometrician) and  is the parame-

ter of interest. The econometrician observes the choice made , and infers that

 ( ) ≥  ( ) for all  ∈ C\ {}. The use of such “revealed pref-
erence” argument has long history in economics (Afriat (1973), Varian (1982)) and

still constitutes a very active area of empirical and theoretical investigation (Haile and

Tamer (2003), Blundell, Browning, and Crawford (2005), McFadden (2005), Pakes,

Porter, Ho, and Ishii (2005) and Example 3 in Chernozhukov, Hong, and Tamer

(2007)). A special feature of our approach is that it allows for the disturbances 

to enter the expected payoffs in a nonlinear, nonmonotone and nonseparable fashion.

The revealed preference argument alone may not yet provide very much information

regarding  since it only sets the support of  for given  and . However, if a vector

of instruments  is observed, one can include the restriction  [ ] = 0 to narrow

down the identified set.2 This model fits our framework with3  = ( 0 0)0, U=R
and

 ( ) =

∙


1−Q∈C 1 [ ( ) ≥  ( )]

¸


The second moment condition imposes that the fraction of the population satisfying

all the necessary payoff inequalities is 1. More generally,  could be a vector (and

the function  could extract some of its components, based on the  argument). Also,

multiplayer games can be handled, with payoffs of the form  ( −  ) for

2Although the identified set may not necessarily shrink down to a single point, even if, without

loss of generality, some of the payoff functions are normalized to zero.
3Alternatively, one may eliminate the second moment condition and use a  and -dependent

support for  , namely U ≡ { ∈ R :  (   ) ≥  (̃   ) for all ̃ ∈ C\ {}}.
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player  ∈ J taking action , while his opponents take actions −, leading to

constraints on  of the form  ( −   ) ≥  ( −  ) for all  ∈
C\ {} and all  ∈ J .
Example 1.5 (Errors-in-variables) Consider a model with an observable scalar

dependent variable  , a scalar disturbance 1, and an unobserved scalar regressor 
∗

whose observed counterpart, , is measured with error 2:

 = ∗ + 2

 = ∗ + 1

A natural set of moment conditions in this case could be:

 [1] = 0,  [2] = 0,  [
∗1] = 0,  [

∗2] = 0 and  [12] = 0

Even though a dataset would not contain values of ∗ 1 and 2, this model effec-

tively has only one unobservable. Without loss of generality, let us select ∗ as our

unobservable and note that all other variables then acquire unique values through

2 =  −∗

1 =  −∗

This model fits our framework with  = ()
0
,  = ∗, U = R and

 ( ) =

⎡⎢⎢⎢⎢⎣
( − )

( − )

 ( − )

 ( − )

( − ) ( − )

⎤⎥⎥⎥⎥⎦ 
Remark 1.1 It should be clear from the above examples that, in our framework,

unobservable variables are those whose values are not uniquely determined once the

observable variables and the parameters are known. For instance, the error term in

conventional regression is not considered an unobservable variable. Similarly, the two

disturbances in a conventional two-equation instrumental variable regression are not

considered unobservable.

While these examples are fairly simple, we will later see (in Section 5) how adding

more moment conditions will lead to substantial reductions in the uncertainty in the

model parameters. The proposed method is especially suited to such an exercise

because it requires no extra analytical work, even in cases where it would be very

difficult to derive the bounds analytically (e.g. when some of the moment functions

are not monotone in the unobservables).

6



2 Method

2.1 Formal result

We first state definitions and conventions used throughout. Random variables (includ-

ing random vectors) are denoted by capital letters and the corresponding lowercase

letters represent specific values of these variables. All random variables taking value

in some specified set (subsets of R for some ) have an associated probability space

based on the corresponding Borel sigma-field. All functions are assumed measurable

under that sigma-field and so are all sets.

Definition 2.1 Let PS denote the set of all probability measures supported on the
set S or any of its measurable subsets. Let PS|C denote the set of all regular (see
Dudley (2002), ch.10.2) conditional probability measures4 supported on S (or any of
its measurable subsets) given events that are measurable subsets of C. For  ∈ PC
and  ∈ PS|C, we let  ≡  ×  denote the measure  ∈ PS×C defined by products of
conditional probabilities under  by probabilities under . In an integral with respect

to , the differential element  ( ) will be written as  (|)  () where  ∈ S and
 ∈ C. Whenever a conditional measure  (·|·) depends on some parameter , it will be
denoted  (·|·; ). Let  [·] denote expectation with respect to the probability measure
. If the subscript is omitted, the expectation is under the true data generating process.

Let k·k denote the Euclidian norm for vectors and matrices.

Assumption 2.1 The marginal distribution of  is supported on some set Z ⊆R ,

while the distribution of  conditional on  =  is supported on or inside5 the set U ⊆
R for any  ∈ Z. The parameter vector  belongs to a compact set Θ ⊆ R .

Remark 2.1 Supports are closed by definition, so, in particular, U and Z are closed.
Without loss of generality, we suppress the dependence of the set U on  or . Such a

dependence can always be eliminated by rewriting an equivalent estimation problem in

4In general, the set PS|C may depend on the probability measure  assigned to C, but this is
suppressed in the notation for conciseness.

5The qualifier “on or inside the set U” takes into account the fact that some points  of the
identified set (e.g., boundary points) may be associated with distributions supported on a set smaller

than U . Indeed, one can construct a sequence of distributions supported on U (whose moments

converge to some limiting value) but that converges to a distribution supported on a set smaller

than U . A typical example is the case of interval-valued data, where the boundaries of the identified
set are associated with point masses in the distribution of the unobservables. This cannot always be

avoided by simply reducing the size of the set U , because different  may correspond to distributions
with different supports This is not a limitation or an artifact of the present approach, but is a

necessary universal feature of moment condition models with unobservables.
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which the dependence of U on  or  has been incorporated into the moment function

. This is illustrated in our earlier Examples 1.1 and 1.2 and discussed in Section

4.1 below. When implementing the method, it is not necessary to transform the model

onto a form where U does not depend on  or  (since a  and -dependent support is

trivial to account for). This reparametrization is done in the paper solely to simplify

the notation.

Remark 2.2 The sets U and Z need not be bounded, although it is clear that, to

minimize the size of the identified set, researchers should select the set U to be as small
as possible given the model’s assumptions. In many popular models (e.g. Examples

1.1 and 1.2) the choice of U is obvious. Taking U to be larger than the actual support
of  results in valid but conservative identified sets, an observation that proves useful

when the choice of U is less obvious. If nothing is known regarding the support U, one
may set U = R and this choice may still yield useful bounded identified sets. For

instance, the measurement error model of Example 1.5 is a case where an unbounded

set U yields a bounded identified set. The validity of Theorem 2.1 below is not affected
by a conservative choice of the set U , because this would affect Equations (5) and (6)
in the same way.

Let  ∈ P denote the probability measure of the observable variables, with 0

denoting the true probability measure of the observable variables. Traditionally, the

identified set Θ∗0 is defined as (e.g., Roehrig (1988), Ekeland, Galichon, and Henry

(2010)):6

Θ∗0 =
©
 ∈ Θ : there exists a  ∈ PU|Z such that ×0 [ ( )] = 0

ª
 (2)

Note that × 0 is not necessarily equal to the true joint probability measure of 

and , even for  ∈ Θ∗0.

In our treatment, it is natural to slightly extend the notion of the identified set in

(2) as follows:

Θ0 =

½
 ∈ Θ : inf

∈PU|Z
k×0 [ ( )]k = 0

¾
 (3)

As discussed in Section E of the Supplementary Material, the refinement (3) avoids

conceptual difficulties in testing (associated with having a potentially open set of

possible values of the moments) and ensures invariance of the identified set under

6To simplify the notation, it is understood that a statement of the form × [ ( )] = 0

means “× [ ( )] is well defined (i.e. × [k ( )k] ∞) and × [ ( )] = 0.
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observationally equivalent reparametrizations of the model’s unobservables. The need

for a more general notion of the identified set arises because we allow for moment

functions  (  ) which may be unbounded or discontinuous and sets U which may
be unbounded.

Our method requires a user-specified dominating conditional measure  for the

distribution of the unobservables given the observables. The exact choice of  has no

effect on the results as long as it satisfies the properties below.7 In general,  may be

-dependent, hence we use the notation  (·|·; ).

Definition 2.2 For any  ∈ Θ, let  (·|·; ) ∈ PU|Z be such that

1. supp  (·|; ) = U for each  ∈ Z and

2. 

£
ln(·|·;) [exp (0 ( )) |]

¤
exists and is twice differentiable in  for all

 ∈ R .

While measures  (|; ) satisfying the above restrictions are easy to construct,
the following proposition is useful to construct a suitable  (|; ) automatically.

Proposition 2.1 The  (·|·; ) ∈ PU|Z in Definition 2.2 always exists: For instance,
select  ∈ ]0 1[ and  ∈ ]0 1[, and for each  ∈ Z and  ∈ Θ, select ̇ ( ) ∈ U such
that k (̇ ( )   )k ≤ inf∈U k (  )k+ . Then set8

 (|; ) =  ( ) exp
¡− k (  )−  (̇ ( )   )k2¢  (|; )  (4)

where  ( ) =
¡
(·|·;)

£
exp

¡− k (  )−  (̇ ( )   )k2¢ | = 
¤¢−1

is a nor-

malization constant and  (·|·; ) is a conditional probability measure satisfying supp
 (·|; ) = U and that has a point mass of probability  at ̇ ( ) conditional on

 = .

Although the above choice of  provides a way to secure a universal result, in

almost all reasonable (and practically useful) cases, a considerably simpler choice is

equally valid. For instance, the centering by  (̇ ( )   ) is often unnecessary (e.g.

when inf∈U k (  )k is zero or uniformly bounded in  and ). The point mass

7We view this as a definition rather than an assumption, since  can be chosen (unlike the data

generating process).
8A statement of the form  (|) =  ( )  () for some function  ( ), normalized so thatR
 ( )  () = 1 for any , is to be understood as “ (· ) is the Radon-Nikodym derivative of

 (·|) with respect to , i.e.  (·|)  =  (· ).”
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in  is also usually not needed (e.g. whenever ̇ ( ) can be chosen such that the

point  (̇ ( )   ) remains sufficiently far from the boundary of the convex hull

of { (  ) :  ∈ U}). Moreover,  that are -independent are typically possible if
standard dominance conditions on  (  ) hold. We are now ready to state our

main identification result and a convenient corollary (both proven in Appendix A).

Theorem 2.1 Let Assumption 2.1 hold. For any  ∈ Θ and  ∈ PZ,

inf
∈PU|Z

k× [ ( )]k = 0 (5)

if and only if9

inf
∈R

k [̃ (  )]k = 0 (6)

where

̃ (  ) ≡
R
 (  ) exp (0 (  ))  (|; )R

exp (0 (  ))  (|; )  (7)

where  (·|·; ) ∈ U|Z is the user-specified conditional probability measure from Defi-

nition 2.2.

Corollary 2.1 Under Assumption 2.1 and for  (·|·; ) ∈ U|Z as in Definition 2.2,

for any  ∈ Θ and  ∈ PZ,

Closure
©
× [ ( )] :  ∈ PU|Z

ª
= Closure

©
 [̃ (  )] :  ∈ R

ª


Theorem 2.1 proves that the infinite-dimensional problem of establishing the ex-

istence of some measure  solving the original moment condition is equivalent to the

much simpler problem of establishing that a finite-dimensional parameter  solves a

modified moment condition (6). This is not only convenient, but opens the way to

simple estimation methodologies that are free of bias-variance trade-offs. It improves

upon the intuitive approach of substituting a series approximation to the distribution

of the unobservables into the method of simulated moments (McFadden (1989), Pakes

and Pollard (1989)). In such an approach, the truncation of the series would result

in a bias that is absent in our method.

The modified moment condition involves a function ̃ (  ) that is just an av-

erage of the original moment condition  (  ) under some distribution of the un-

observables that belongs to a specific exponential family. Corollary 2.1 tells us that

9The norm in equation (6) need not be the Euclidian norm, thanks to the equivalence of all norms

in finite-dimensional spaces. For instance, one could use a reciprocal-variance-weighted Euclidian

norm, in analogy with efficient GMM.
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what is special about the exponential family selected is its “least-favorable” property,

i.e., it can reproduce the same range of values of the expectation of  ( ) as the

set of every possible conditional distribution supported on U given . In addition to

the general proof of this equivalence found in Appendix A, Section I in the Supple-

mentary Material provides, as an example, an explicit verification that our approach

matches existing bounding results in the well-known special case of interval-valued

data.

It is worth noting that these results require no assumptions regarding  (  )

(other than measurability). Hence, it transparently covers nonsmooth cases, such as

the important case of quantile restrictions. Also, no rank conditions are needed, as

we allow for set-identified models.

Remark 2.3 (regarding the choice of ) It is important to realize that the con-

straints in Definition 2.2 are imposed on the least-favorable family used, not on the

true data generating process. As a result, even though each distribution in the selected

exponential family admits a moment generating function (in terms of  (  ) for

a fixed ), this family is able to reproduce the expectation of  ( ) for all dis-

tributions of  given , including those which do not admit a moment generating

function.

While the method requires a user-specified measure  as an input, its choice has abso-

lutely no effect on the results, as long as it satisfies the two conditions stated: (i) its

support must match the possible support of the unobservables and (ii) some moment

generating function-like quantity must exist and be twice differentiable. The presence

of a user-specified measure in the expression of the estimator is analogous to the form

of exponential families used in pseudolikelihoods (see Definition 1 in Gourieroux, Mon-

fort, and Trognon (1984)). There is an important difference, however: The choice

of the family used in pseudolikelihoods may have an impact on efficiency, whereas

the choice of  has no effect on the statistical properties of our method. This fol-

lows from the fact that Theorem 2.1 and its associated Corollary 2.1 hold for any

 ∈ PZ, not just the true distribution of the observables 0. In particular, if  is
the sample distribution, Corollary 2.1 implies that the range of values spanned by

̂ ( ) ≡ 1


P

=1 ̃ (  ) as  varies does not depend on . Any objective function

based on optimizing a function of ̂ ( ) with respect to  would then have the same

value for a given , regardless of . In other words, the choice of  has no effect on

the set
©
̂ ( ) :  ∈ R

ª
in any given finite sample, even though it has an effect on

̃ (  ) for a given value of . Any specific value of ̂ ( ) for one choice of  will

also be reached by ̂ ( ) for another choice of , although perhaps for a different
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value of .

The presence of an infimum in Equation (6) handles the possibility of a solution

“at infinity” (kk → ∞). This happens when the distribution of the unobservables
needs to be degenerate at the boundary of U in order to match the moment condi-
tions. In set-identified models, such solutions often correspond to the boundaries of

the identified set for  and cannot be overlooked. In practice, the presence of solutions

“at infinity” in Equation (7) makes little difference, because numerical optimization

routines solving for  abort whenever the objective function no longer changes sig-

nificantly between iterations. If the solution is “at infinity”, these routines will stop

at some finite value of  producing a value of  [̃ (  )] that is close to 0 within

a specified tolerance. This is no different from what happens at an interior solution

(finite ), where the optimization routines would stop when producing a value of

 [̃ (  )] that is also close to 0 within a specified tolerance. Hence, solutions at

infinity do not require a separate treatment in practice.

The condition  [̃ (  )] = 0 is the first order condition of a convex optimiza-

tion problem in  (this follows from  [̃ (  )] 
0 being positive-definite, as

shown Lemma A.1 of Appendix A), thus making it possible to find  via numerical

routines that are guaranteed to converge. This also implies that any positive-definite

quadratic form in  [̃ (  )] will reach its unique global minimum for  such that

 [̃ (  )] = 0 and has no other local minima (this can be shown by writing


¡
0

¢
 = 2

¡
0

¢
 where  ≡  [̃ (  )] and where both 

0


and  are positive-definite, so 2
¡
0

¢
 = 0 iff  = 0).

2.2 Intuition

We now explain intuitively why Theorem 2.1 would hold. To avoid obscuring the

main ideas, we present a heuristic motivation for Theorem 2.1 (Appendix A gives a

formal proof).

Given a distribution  ∈ P of the observable , and a  ∈ Θ0, there may

be many possible conditional distributions  ∈ PU|Z of the unobservables satisfying
the moment condition. Since we only need to find one suitable , it is useful to

rank the possible  using some convenient objective function and convert an abstract

“existence problem” into a more concrete optimization problem. If there exists no

 ∈ PU|Z satisfying the moment conditions, the optimization problem will find no

solution. If there exists a unique  ∈ PU|Z satisfying the moment conditions, the
maximization will find it. If there exist more than one  ∈ PU|Z (or even infinitely
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many) satisfying the moment conditions, the maximization problem will find one of

them and it does not matter which one.

For a given  ∈ Θ and a given marginal distribution of the observables , the set

of all conditional distributions  (of  given ) that satisfy the moment conditions

is

M =
©
 ∈ PU|Z : × [ ( )] = 0

ª


To rank distributions inM we use entropy, since it has a long history as way to

maximize the lack of information under given constraints (Kullback (1959), Shore

and Johnson (1980), Csiszar (1991), Golan, Judge, and Miller (1996), Zellner (1997),

Imbens, Spady, and Johnson (1998)). This choice may seem arbitrary, but, as we

will soon show, it will lead to some remarkable simplifications not possible with other

intuitive choices.

Generally, the entropy  of a distribution is defined relative to a reference measure,

say,  ∈ PU|Z (which may depend on , although this is suppressed in the notation

for simplicity) as10

 (||) =
(
− R R ln³(|)

(|)

´
 (|)  () if ¿ 

−∞ otherwise
 (8)

Among all  ∈M we select the one maximizing this quantity:
11

∗ (·  ) = arg max
∈M

 (||) 

We can set up a Lagrangian for this optimization problem:Z Z
ln ( (|))  (|)  (|)  ()− 0

Z Z
 (  )  (|)  (|)  ()

−
Z

 ()

µZ
 (|)  (|)− 1

¶
 () 

where  (|) ≡  (|)  (|) and where  ∈ R is the Lagrange multiplier

vector for the moment constraints while  : R 7→ R is the Lagrange multiplier

function associated with the infinite-dimensional constraint that  constitutes a valid

conditional measure (i.e.
R
 (|) = 1 or

R
( (|)  (|))  (|) = 1 for

-almost every  ∈ Z). This infinite-dimensional constraint also ensures that the
10The notation  ¿  means that  admits a density with respect to , which is denoted by

Radon-Nikodym derivative
(|)
(|) .

11By convention, we do not exclude a solution  such that  (||) = −∞, corresponding to the
cases where we do not have ¿  .

13



marginal distribution of the observables under  ×  is equal to . The first order

condition is that the quantity is stationary under small changes in  (|), denoted
 (|):Z Z

(1 + ln  (|)− 0 (  )−  ())  (|)  (|)  () = 0

As this must hold for any  (|), we have 1+ ln  (|)−0 (  )− () = 0 or

 (|) = exp ( ()− 1) exp (0 (  ))  (9)

We can solve for  () by noting that we must have
R
 (|)  (|) = 1, implying

that

exp ( ()− 1) =
µZ

exp (0 (  ))  (|)
¶−1

 (10)

Substituting (10) in (9), we obtain:

 (|) = exp (0 (  ))R
exp (0 (  ))  (|)  (11)

The Lagrange multiplier  must be such that
R R

 (  )  (|)  (|)  () = 0,
i.e. Z Z

 (  )
exp (0 (  ))R

exp (0 (  ))  (|) (|)  () = 0 (12)

We have just obtained the expression for the equivalent moment condition stated in

Theorem 2.1.

Remark 2.4 The above reasoning is heuristic, because it overlooks issues such as the

validity of the Lagrangian procedure for uncountable constraints or the possibility of

solutions “at infinity”. It also does not explicitly address the converse result – if  is

not in the identified set, then (12) cannot be satisfied. The proof in Appendix A avoids

these issues by directly proving that the existence of a  solving (12) is equivalent to the

original problem of finding at least one distribution of the unobservables that satisfies

the moment conditions.

This heuristic derivation illustrates how the nonparametric problem of the exis-

tence of a distribution of the unobservables that satisfies the moment conditions can

be reduced to a parametric problem. Initially, we consider any possible distribution

and merely rank all valid distributions according to some objective function (here, the

entropy). It turns out that the distributions that maximize entropy under given mo-

ment constraints form a parametric family that can be indexed by a finite-dimensional
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parameter . It is well-known within the theory of convex optimization, that the dual

of a constraint optimization problem can have a much smaller dimension than the

original problem. Here, there is an additional factor in our favor. The number of con-

straints is infinite in the original problem, so we would have also expected the dual

problem to be infinite-dimensional. However, the special form of the entropy func-

tional is such that we can solve for these infinite-dimensional constraints analytically,

thus leaving only a finite-dimensional vector  to solve for numerically.

Note that it is known that, for a finite number of linear constraints, entropy max-

imization yields a solution whenever there exists at least one distribution satisfying

these constraints (e.g. Csiszar (1975), Section 3). However, here, the requirement that

the marginal of the observables match the actual observable distribution represents

an infinite-dimensional constraint and the standard treatment does not apply.

Using almost any objective function other than entropy would not have resulted in

the function  () nicely separating out in Equation (9), thus precluding an analytic

solution. For instance, the most natural alternative would have been maximizing

the likelihood
R R

ln
³
(|)
(|)

´
 (|)  () (instead of (8)). As shown in Section

F of the Supplementary Material, this leads to a dual problem where the function

 () enters nonseparably and cannot be solved for analytically. This requires the

solution of a different nonlinear optimization problem at each . Readers familiar

with the Empirical Likelihood (EL) literature may be surprised by this result, since

the Lagrange multiplier associated with the total unit probability constraint in EL

can be solved for analytically. However, applying the same techniques in the present

case would require the moment conditions to be satisfied at each , which is not the

case in the present case, where they hold after averaging over .

Through calculations similar to those in Section F of the Supplementary Material,

it can be shown that any other objective functions associated with the well-known

Cressie-Read family (Cressie and Read (1984)) do not admit analytic solutions for

 (), except for the objective function
R R ³

(|)
(|)

´2
 (|)  (), traditionally as-

sociated with the continuous updating GMM estimator. However, this objective func-

tion may result in negative probabilities and therefore leads to inconsistent estimates

of the identified set in general.12

12This can be seen in the following simple example: If  is known to be supported on [−1 1],
then the identified set for the mean of  is [−1 1]. However, if signed measures (still supported on
[−1 1]) are allowed, then the “mean” could be any real number.
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2.3 Estimation outline

The simplest way to evaluate the integral (7) defining the moment function is to draw

random vectors ,  = 1      from a distribution proportional to exp (
0 (  ))  (|; )

using, e.g., the Metropolis algorithm and calculate the average

̂ (  ) =
1



X
=1

 (  )  (13)

A nice feature of the Metropolis algorithm is that it automatically takes care of the

normalization integral in the denominator of (7). This simulation-based approach

essentially amounts to plugging-in our least-favorable entropy maximizing family into

the method of simulated moments (MSM) (McFadden (1989), Pakes and Pollard

(1989)).

As mentioned in Section 2.1, solving for  includes considering solutions “at in-

finity”. In the limit as kk→∞, the conditional distribution of the unobservable is
typically degenerate and, thanks to the use of an exponential tilting, minimizing the

norm of Equation (13) amounts to minimizing a function using the so-called simu-

lated annealing method (Kirkpatrick, Gelatt, and Vecchi (1983)), which is known to

be especially effective at avoiding trapping in local minima.

To facilitate optimization with respect to  or , it is useful to construct an average

that is a smooth function of  and  by construction (provided  is). To this effect,

one can exploit the following equality:

̃ (  ) =

R
 (  ) exp (0 (  )− 00 (  0))  (| 0 0)  (|; 0)R

exp (0 (  )− 00 (  0))  (| 0 0)  (|; 0)


where

 (| 0 0) =
exp (00 (  0))R

exp (00 (  0))  (|; 0)


For given values of 0 and 0, one can then evaluate ̃ (  ) for any   by drawing

 from a density proportional to exp (00 (  0))  (|; 0) and by calculating
the ratio of averages:

̂ (  ) =

1


P

=1  (  ) exp (
0 (  )− 00 (  0))

1


P

=1 exp (
0 (  )− 00 (  0))



Smoothness in the parameters (at least in an almost-everywhere sense) is also im-

portant to establish consistency of simulation-based estimators, as it ensures stochas-

tic equicontinuity. The remaining technical complications in the derivation of asymp-

totic properties associated with the use of simulations to evaluate integrals have been
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studied in detail in earlier work (McFadden (1989), Pakes and Pollard (1989), Hajivas-

siliou and Ruud (1994), Gourieroux and Monfort (1997), Geweke and Keane (2001)).

For conciseness, we do not consider such issues here further.

Averaging over the unobservables then provides us with a conventional moment

condition  [̃ (  )] = 0 involving only observable variables that is equivalent to

the original problem. As a result, solving for the parameter  of interest and for the

nuisance parameter  can be accomplished through a variety of standard techniques.

Conventional GMM estimation is perhaps the simplest approach, preferably using

the efficient weighting matrix. One-step alternatives to efficient GMM can also be

used, such as Empirical Likelihood (EL) or Exponentially Tilted Empirical Likelihood

(ETEL), which are known to yield more efficient estimates with a typically smaller

small-sample bias in point-identified settings (Newey and Smith (2004), Schennach

(2007b)). EL is also known to exhibit desirable optimal power properties under

large deviation criteria in the context of point identified (Kitamura (2001), Kitamura,

Santos, and Shaikh (2010)) and in a large class of set-identified models (Canay (2010)).

While statistical optimality criteria point towards one-step methods, GMM offers one

convenient computational advantage: Its objective function involves some sample

averages that are linear in ̃ (  ), which enables a more rapid convergence of the

simulation-based algorithm (fewer draws of  are needed), because averaging over 

reduces the noise in ̂ (  ).

The possibility of set-identification (rather than point identification) will require

special attention when calculating confidence regions. Section G of the Supplementary

Material describes how existing general inference techniques (such as Chernozhukov,

Hong, and Tamer (2007)) can be used to construct consistent set-estimates and con-

fidence regions and suggests a simple, but conservative, alternative method based on

a 2 approximation.

2.4 Connection with moment inequalities

An interesting by-product of Theorem 2.1 is that we can rigorously establish that

all moment conditions models with unobservables are formally equivalent to moment

inequality problems, with the important caveat that the number of inequalities can be

uncountably infinite. The Models based on Equation (13) in Section D.1 are specific

examples of this. In special cases (i.e., when Closure
©
× [ ( )] :  ∈ PU|Z

ª
is

polygonal), this infinite set of inequalities can be reduced to a finite set of inequalities,

but not in general.
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Theorem 2.2 The identified set Θ0 can be equivalently described by

{ ∈ Θ : 0 [ (  )] ≥ 0 for all  ∈ B1} 

where B1=
©
 ∈ R : kk = 1ª (the unit ball boundary) and

 (  ) ≡ lim
→∞

0̃ (  ) (14)

for ̃ (  ) as in Theorem 2.1. Note that if, for some , the limit in (14) diverges

then no constraint is associated with this value of . An alternative expression is

 (  ) = sup
∈U

0 ( )  (15)

We have already shown (through example 1.3) that the class of models considered

here includes models defined via a finite number of moment inequalities as a special

case. We now see that it is, in fact, strictly more general than that. While there is some

work on infinite sets of moment inequality restrictions13 (Andrews and Shi (2008),

Kim (2008), Menzel (2008), Molinari (2008), Chernozhukov, Lee, and Rosen (2009)),

there appears to be little benefit to phrase our class of models entirely in terms of an

infinite number of moment inequalities, since our method enables a treatment with

a finite-dimensional nuisance parameter and finitely many moment conditions. This

connection to moment inequalities also shows, via Equation (15), that our identified

set must match the sharp set obtained via inequalities generated from support func-

tion methods (Beresteanu, Molchanov, and Molinari (2011) and Ekeland, Galichon,

and Henry (2010)) when they apply, while avoiding the often difficult calculation of

the support function (Equation (15)), as discussed in Section 3.

3 Relationships to other works

This work touches a number of fields: methods dealing with the presence of un-

observables, frameworks to handle set identification, moment inequality models, sup-

port function-based convex optimization methods, and information-theoretic methods

based on entropy maximization.

A common approach to handle unobservables is the use of a parametric likelihood

in which the unobservables are eliminated by integration so that only the marginal dis-

tribution of the observables remains. This is conceptually straightforward but crucially

13Infinite sets of unconditional moment inequality restrictions ( [ (  )] ≥ 0 ∀ ∈ T ) can be
cast into conditional moment inequality restrictions ( [ (   ) | = ] ≥ 0 ∀ ∈ T where  is a

random variable uniformly distributed on T ).
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relies on the ability to correctly specify a fully parametric likelihood, an assumption

we wish to avoid.

The method of simulated moments (MSM) (McFadden (1989), Pakes and Pollard

(1989)) also performs inference on the basis of a given vector of moment conditions

involving unobservables. The MSM proceeds by generating random draws from the

distribution of the unobserved variables, assumed to belong to a known parametric

family. These draws of the unobservables are combined with the observed data and

fed into a conventional Generalized method of Moment (GMM) estimator. This

method still requires specifying the distribution of the unobservables, up to a vector

of parameters. Our approach is similar in spirit to the MSM but represents the

distribution of the unobservables by a carefully constructed least-favorable parametric

family which is shown to span the exact same range of values of the moment conditions

as the corresponding fully nonparametric family. Our method shares the simplicity

of the MSM, but entirely eliminates its parametric limitations. The computational

requirements of our method are therefore similar to the ones of parametric MSM.

It may be possible to relax the parametric assumptions of theMSMby representing

the distribution of the unobservables nonparametrically using a series approximation

(see Newey (2001) for an example of this approach). A general asymptotic theory

covering this setup in point-identified settings can be found in (Shen (1997)). The dif-

ficulty associated with using this approach is the need to let the number of parameters

describing the flexible form of the distribution of the unobservables grow with sam-

ple size. In contrast, our proposed approach eliminates all parametric distributional

assumptions without introducing any nuisance parameters whose dimension must in-

crease with sample size, thus providing significant computational advantages. For

set-identified models, methods based on series approximation would additionally face

the problem that the distribution of the unobservables associated with the boundary

of the identified set typically exhibit point masses that are difficult to approximate

by truncated series of smooth functions.

Our work also has some connections with some previously proposed information-

theoretic methods (Shen, Shi, and Wong (1999)) and entropy maximization methods

(Golan, Judge, and Miller (1996)), as discussed in more detail in Section J of the

Supplementary Material.

We can also make an interesting connection between our approach and models de-

fined via moment inequalities, which have been extensively studied (Chernozhukov,

Hong, and Tamer (2007), Andrews and Jia (2008), Chiburis (2008), Rosen (2008),

Andrews and Guggenberger (2009), Andrews and Soares (2010), Bugni (2010), Canay
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(2010), Romano and Shaikh (2010), Beresteanu, Molchanov, and Molinari (2011)).

Many moment condition models involving unobservables are known to imply moment

inequality constraints that can be derived by exploiting linearity or monotonicity (see,

among many others, Manski (1995), Manski (2003), Magnac andMaurin (2008), Moli-

nari (2008), Example 1.5 above and the general approach of Bontemps, Magnac, and

Maurin (2007)). More generally, if, for a given model, the inequalities can be easily

derived and their number is finite (or, at the very least, countable), the problem of

constructing a suitable objective function has been addressed (notably, in Andrews

and Jia (2008), Canay (2010)). However, in general, obtaining equivalent inequalities

is not a trivial problem. Our explicit expression (Theorem 2.2) for a set of moment

inequalities that is formally equivalent to Equation (1) reveals one important feature:

The resulting set of inequalities may be uncountably infinite (even if  (  ) and 

are both finite-dimensional), thus making methods developed for a finite number of

inequalities inapplicable. In constrast, our approach (based on Theorem 2.1) remains

finite-dimensional even in moment condition models where the corresponding moment

inequality formulation would involve an infinite number of inequalities. Furthermore,

we consider not only moment conditions that are linear or monotone in the unob-

servable, but also arbitrarily complex nonlinear, nonseparable, moment conditions.

Analytic tractability of the problem becomes irrelevant when it can be replaced by a

generic simulation-based method.

An objective function for moment condition models with unobservables has been

suggested in Galichon and Henry (2006) and Ekeland, Galichon, and Henry (2010).

Like the present approach, their method manages to replace an infinite-dimensional

nuisance parameter by a finite-dimensional one.14 However, their approach involves

the optimization of a nonsmooth function over a bounded set. This entails a number

of complications, such as checking for boundary solutions. Their approach amounts

to finding a convex hull of what is an intricately “folded” curve or hypersurface in

a high-dimensional space in most of the examples we provide in the present paper.

As such, their method can be seen as a support function-based methods (Beresteanu,

Molchanov, and Molinari (2011)), which can be applied to check if the origin is

contained in the convex set of possible values of the moments defining the model.

These methods approach the solution along the boundary of the convex set (see right

half of Figure 1): At each step, one needs to find the so-called support function, that

14A referee pointed out that, even though Equation (3) in Ekeland, Galichon, and Henry (2010)

displays a moment that only depends on the unobservables  , their method can cover moment

functions that couple the unobservables  and the observables , by redefining the unobservables

as  ≡ ( ) and using the -dependent correspondence ( ) = { :  = (  )  ∈ U}.
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is, the linear inequality that is the closest to the set along a given direction. As this

step may involve local extrema issues and boundary solutions, this approach has so far

been used only for problems where this step turns out to be simple. This optimization

problem is then nested into an outer optimization problem to find the direction of

the tightest inequality and check if it is satisfied. While this outer optimization

problem has some nice properties (for instance, it is a convex optimization), it is

still nonsmooth in general, because there may be kinks at the boundary. Given

these difficulties, it is not surprizing that Galichon and Henry (2006) only provide

very simple simulation examples of latent variable models where the inequalities are

not known in advance (with at most 2 moment conditions and discrete observables).

Similarly, Beresteanu, Molchanov, and Molinari (2011) focuses on examples where

the support function is a maximum over a discrete set of at most 3 elements and

where the observable variables are discrete. In both cases, the (typically difficult)

inner optimization problem (over the unobservables) is simple, and only the outer

optimization to find the tightest inequality remains and has to be performed a small

number of times.

In contrast (see left half of Figure 1), the current approach instead results in an

objective function that is smooth in the finite-dimensional nuisance parameter . This

simplification is made possible through the following realization. Instead of devoting

considerable effort in obtaining numerically exact inequalities defining the convex

hull of possible values of the moments (as defined in Corollary 2.2) and then checking

whether it contains the origin, the proposed method parametrizes the interior of this

convex hull via a smooth function (of ) that can be inexpensively calculated from

simple moments, thus enabling the verification of whether the origin is included in the

convex hull via standard smooth optimization methods that approach the solution

from the “inside” of the convex hull rather than along its potentially nonsmooth

boundary.15 Thanks to these simplifications, our examples in Section 5 include up to

27 moment conditions, with all observed and unobserved variables being continuous.

Another limitation of Galichon and Henry (2006) and Ekeland, Galichon, and

Henry (2010) is that their method does not cover unbounded moment functions16

15When the convex hull does not contain the origin, our method amounts to finding the point inside

the convex hull that is the closest to the origin via an optimization method known as simulated

annealing (Kirkpatrick, Gelatt, and Vecchi (1983)), which is known to be especially effective at

avoiding trapping in local minima. Our approach also bears some resemblance with so-called “interior

point methods” in convex optimization (Boyd and Vandenberghe (2004), Chap. 11).
16One of their optimization steps requires compactness of the range of the moment functions to

ensure that the minimum is not at −∞ for nonzero values of the Lagrange multiplier of the moment

constraints, which could mask the true optimum.
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Figure 1: Comparison of the proposed method with methods based on support func-

tions (Galichon and Henry (2006), Ekeland, Galichon, and Henry (2010), Beresteanu,

Molchanov, and Molinari (2011)). (To reduce the dimensionality of the problem so

that it can be pictured, this figure considers a simple case where the observable  is

constant, and where the number of moment conditions is only 2.)

(such as the mean of a variable with unbounded support, a fairly common occurence).

Similarly, Beresteanu, Molchanov, and Molinari (2011) also work with sets that are

bounded (with probability one). Among the examples provided in the present paper,

only the interval-valued data example solely involves bounded sets. Finally, in specific

cases where a natural choice of objective function already exists (such as moment

inequality models or conventional underidentified GMM), the value of Galichon and

Henry’s objective function outside of the identified set does not necessarily coincide

with any of the existing results. While this is not needed for their method to be valid,

it would be conceptually desirable. In contrast, our approach has the property that

it can nest the objective function of GMM or any of its one-step alternatives (GEL,

ETEL) as special cases.

Although the ELVIS approach is very general, it does not mean it should always

be the preferred method. Naturally, if some of the steps leading to the identified set

can be carried out analytically at a modest effort, then this would likely lead to lower

computational requirements (this may happen, for instance, if the support function

can easily be computed analytically and if the resulting optimization over inequalities

is well-behaved).
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4 Generalizations

4.1 Flexible supports

The set U may, in general, depend on  or , but such a dependence can always be

eliminated by rewriting an equivalent estimation problem in which the dependence of

the support U on  or  has been incorporated into the function  (  ). Specifically,
let  (  ) denote the original moment conditions and let U denote the - and
-dependent support of  . Consider a set U having a cardinality larger or equal to the
cardinality of any of U. Construct a many-to-one (which may be reduced to one-
to-one) and onto ( )-dependent measurable mapping  (·  ) : U 7→ U. Define
a new moment condition as 

h̊

³
̊   

´i
= 0 where ̊ (̊  ) =  ( (̊  )   )

and where ̊ is a random variable having support U ≡ U that does not depend on  or
. Hence, the - and -dependent support case can be reduced to the constant support

case. It follows that all of our results trivially continue to hold with U replaced by
U. A constant set U simplifies the exposition and results in no loss of generality. It
avoids replacing simple quantities such as U ×Z and PU|Z by much less transparent
counterparts. In the implementation of the method, it may be more convenient to

use U and keep the original function  (  ).

4.2 Nonlinear functions of moments

Some applications necessitate moment constraints that involve nonlinear functions of

expectations. For instance, independence between two random quantities 1 ( )

and 2 ( ) implies the moment condition:

 [1 ( ) 2 ( )]− [1 ( )] [2 ( )] = 0

This constraint can be readily converted into a set of constraints that are linear in

the expectations by introducing a nuisance parameter :

 [1 ( )− ] = 0

 [1 ( ) 2 ( )− 2 ( )] = 0

This approach can be fully generalized. If

 ( [ ( )]) = 0

for some nonlinear function  : R 7→ R , then one can introduce a nuisance pa-

rameter vector  ∈ R and equivalently write linear moment conditions:

 [ ( )− ] = 0
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with the expanded parameter space being Θ∗ = Θ× Φ where

Φ =
©
 ∈ R :  () = 0

ª


Inference regarding  can then be carried out using an objective function where the

nuisance parameters  have been “profiled” out (see Section G.1 in the Supplementary

Material).

4.3 Conditional moments, independence restrictions and state-

space models

It is natural to consider the extension of conventional moment restrictions to condi-

tional moment restrictions of the form

 [ ( ) | ( )] = 0 (16)

with probability 1, for two given functions  and . It is well known that conditional

moment restrictions of the form (16) are equivalent to an infinite family of uncon-

ditional moment restrictions (Chamberlain (1987), Bierens (1990), Stinchcombe and

White (1998))

 [ ( )  ( ( )  )] = 0

where  (· ) is a suitable family of functions indexed by . The index  can be discrete,
because a countable set of unconditional moments is sufficient to impose a conditional

mean restriction (see, for instance, Chamberlain (1987), pp. 324—325, or Proposition

C.1 in Section C of the Supplementary Material).

A similar idea can be used to enforce independence restrictions. If one wishes to

specify that  ( ) is independent from  ( ), one could impose an infinite

set of moment factorization constraints (indexed by  and ̃):


£
 ( ( )  ) 

¡
 ( )  ̃

¢¤
=  [ ( ( )  )]

£

¡
 ( )  ̃

¢¤
 (17)

where  (· ) is a suitable family of functions. Such nonlinear functions of moments can
be converted into an equivalent sequence of moment conditions  [ (   )] = 0

for  = 1 2    via the introduction of nuisance parameters  using the techniques

of Section 4.2. The equivalence between independence and a sequence of moment

factorization constraints is shown formally in Proposition C.2 of Section C of the

Supplementary Material.

We now state an infinite dimensional version of Theorem 2.1 which covers all of

the above situations.
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Definition 4.1 For all  ∈ Θ, any  ∈ V and any  ∈ N∗, let  ¡·|·;  ()¢ ∈ U|Z
be a user-specified conditional measure satisfying (i) supp 

¡·|;  ()¢ = U for each
 ∈ Z and (ii) 

h
ln

(·|·;())

h
exp

³P

=1  (   )
´
|
ii
exists and is twice

differentiable in  for all  ∈ R .

Theorem 4.1 Let  [ (   )] = 0 for  = 1 2    be a sequence of moment

restrictions potentially depending on a vector of nuisance parameter  ∈ V, where the
set V may be infinite-dimensional, but  (   ) only depends on a finite number
of elements of . Let

Θ0 =

½
 ∈ Θ : inf

∈V
inf

∈PU|Z
sup
∈N∗

|×0 [ (  )]| = 0
¾

and

Θ
()
0 =

½
 ∈ Θ : inf

()∈V()
inf
∈R

°°

£
̃()

¡
  () 

¢¤°° = 0¾ 

where

̃()
¡
  () 

¢ ≡ R () ¡   ()¢ exp ¡0() ¡   ()¢¢  ¡|;  ()¢R
exp (0() (   ()))  (|;  ()) 

where 
¡·|·;  ()¢ is as in Definition 4.1 and () ¡   ()¢ = £ ¡   ¡() 0¢¢¤=1

in which () ∈ V() denotes the elements on  ∈ V, upon which () ¡   ()¢ de-
pends. Then, (i) Θ

(+1)
0 ⊆ Θ

()
0 , (ii) ∩∈N∗Θ()0 = Θ0 and (iii) 

³
Θ
()
0 Θ0

´
→ 0 as

 → ∞, where  (AB) ≡ max
©
sup∈A inf∈B k− k  sup∈B inf∈A k− kª is

the Hausdorff metric:

Typically, this method would be implemented by letting  grow with sample size,

as is commonly done in conditional moment models (e.g. Donald, Imbens, and Newey

(2008), in the case of fully observed variables). Although the above identification

result holds for any rate of divergence of  to infinity, performing inference may

require a controlled growth rate for  (to maintain the 0-Donsker property of sample

averages of the moment functions). The well-known semiparametric efficiency result

of Chamberlain (1987) (i.e. there exists a finite vector of unconditional moment

constraints yielding the same efficiency as the original conditional moments), suggests

that, in finite samples, the loss of efficiency associated with replacing an infinite

number of constraints by a finite number of moment constraints may be small.

Allowing for an infinite dimensional nuisance parameter  is essential to cover

independence constraints. It is not needed for conditional moment restrictions (in
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which case Theorem 4.1 applies with V reduced to a singleton). Theorem 4.1 covers

not only conditional mean and independence, but also any other constraints that can

be phrased as a sequence of moment conditions. Another example of such infinite-

dimensional restrictions is the equality between the marginal distributions of different

unobservables. This type of restriction could be useful, for instance, in dynamic state-

space models (e.g. Harvey, Koopman, and Shephard (2004), Harvey (2004)), where

distributional assumptions could be replaced by moment conditions that may involve

coupling between two different lags − and  of the same stationary sequence of some

unobservable variable . In such cases, one may need to introduce a two-dimensional

unobservable, i.e.  = (− ) to impose a constraint of the form  [−] = 0,

where it must be ensured that − and  have the same marginal distribution, if the

process is stationary.

The general class of models covered by Theorem 4.1 also admits, as special cases,

all models defined via a countable number of moment inequalities, through the device

introduced in Example 1.3. One complication associated with these generalizations is

that the treatment does involve an optimization problem whose dimensionality grows

with sample size, unlike the simpler case of unconditional moment constraints. Nev-

ertheless, the dimensionality of the quantities involved is smaller than other existing

methods that could plausibly be adapted to this setting. Series approximations to the

unobservable distribution would generally require the number of nuisance parameter

per moment condition to go to infinity as sample size grows (while this ratio remains

finite with our method). Similarly, moment inequality methods (constructed, e.g.,

via Theorem 2.2) would require an infinite number of inequalities even for finite  .

Remark 4.1 A nice feature of Theorem 4.1 is that the approximate identified set

Θ() obtained with a finite number of constraints is slightly conservative. Therefore,

inference based on this approach would be strictly valid (although conservative) in

finite samples, which is considerably better than a method that would reject the null too

often in finite sample, thus giving an illusion of accuracy. The latter situation would

arise, for instance, if one were to merely write a likelihood function for the model

in terms of nonparametric unobservable densities approximated by truncated series.

In a finite sample, the parametric assumptions involuntarily implied by truncation of

the series would tend to bias the size of the identified set systematically downward.

In contrast, our approach always includes least-favorable distributions by construction

and provides reliable conservative confidence regions that approach the true identified

set “from the outside” (rather than “from the inside”).
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Remark 4.2 While it is conceptually straightfoward to formally establish the validity

of resampling/subsampling methods in the case where the number of moment condi-

tion is finite (e.g., using the methods in Chernozhukov, Hong, and Tamer (2007), as

explained in Section G of the Supplementary Material), it is technically nontrivial to

do so when the number of moment condition increases with sample size (as it does for

the extension considered here). However, such difficulties are not specific to ELVIS

and, in fact, often occur in nonparametric or semiparametric asymptotic analysis.

5 Simulations

5.1 Interval-valued data and censored regression

Sections D.1 and D.2 of the Supplementary Material describe in detail simulation ex-

periments based on our Examples 1.1 (regression with interval-valued data) and 1.2

(censored regression), respectively. They illustrate some key features of the method.

First, the set over which the objective function vanishes matches the well-known

bounds for these models (this is also verified analytically in Section I of the Supple-

mentary Material for Example 1.1). Second, one can easily add plausible moment

conditions to narrow down the identified set. In these examples, the worst-case sce-

nario giving rise to the bounds may be associated with implausible patterns of het-

eroskedasticity in the residuals that can be restricted by adding moment conditions

ensuring that the variance of the residuals is not correlated with the regressors or

their magnitude. As shown in Figure 2, the reduction in the identified set is partic-

ularly striking in the censored example. Interestingly, handling these more complex

models requires no additional effort on the part of the researcher (even though the mo-

ment functions are nonmonotone in the unobservables, which would make an analytic

solution difficult) – the simulations take care of everything.

5.2 Errors-in-variables models

We first consider the simplest errors-in-variables model of Example 1.5, with a sample

of 250 iid observations generated with ∗ ∼  (0 1), 1 ∼  (0 14) and 2 ∼
 (0 14). The algorithm of Section 2.3 (with empirical likelihood) was used with

 = 2000, after 100 equilibration steps. In Figure 3, the objective function is seen

to agree very well with the usual standard “forward and reverse regression” bounds
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Figure 2: Objective function for a censored regression model. a) Result obtained with

the usual uncorrelatedness and zero mean assumptions on the residuals. The upper

diamond mark the well-known analytic lower bound for this model. b) Same exercise

while assuming, in addition, that the variance of the residuals is uncorrelated with

the regressor. In each panel, the horizontal line indicates the critical values at the

95% level and the true value of the parameter is indicated by a vertical dashed line.

(e.g. Klepper and Leamer (1984)) for this model.17

We can build upon this simple model. It is known that a linear specification with

all variables normally distributed is at best set identified but that point identification

is possible when the regressor is not normally distributed and when ∗, 1 and

2 are mutually independent. These are ideal test cases because they illustrate the

method’s ability to transparently cover both set- and point-identified models. We use

a sample of 250 iid observations generated as in Example 1.5 with 1 ∼  (0 14)

and 2 ∼  (0 14) We consider the case (i) where ∗ ∼  (0 1) and (ii) where ∗

is drawn from a uniform distribution with zero mean and unit variance.

Example 1.5 (continued) Mutual independence between ∗, 1 and 2 can be im-

posed via a sequence of moment factorization constraints, as described in Section 4.3.

Here, we require 1 and 2 to have zero mean and all mixed moments of 
∗, 1 and

2 up to order 4 to factor, e.g., 
£
(∗)2 (1)

2
¤
= 

£
(∗)2

¤

£
(1)

2
¤
. This involves

using the techniques described in Section 4.2 and necessitates the introduction of three

nuisance parameters 2 3 4, so that  = (1 2 3 4)
0
. Specifically, the vector of

17In fact, the objective function obtained from the sample should be exactly zero between these

bounds in this case, but a small residual numerical noise is visible here. While these fluctuations can

be virtually eliminated by tightening the optimization tolerance and simulating the unobservables

for a longer time, it is unnecessary to do so, because these fluctuations become inconsequential when

they are orders of magnitude smaller than the critical value.
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Figure 3: Objective function for a simple measurement error model assuming mutual

uncorrelatedness between the true regressor and the two errors. The upper diamonds

mark the standard “forward and reverse regression” bounds for this model. The

horizontal line indicates the critical value (at the 95% level) and the true value of the

parameter is indicated by a vertical dashed line.

moment conditions has 27 elements:  ( ) = (∗ − 2, 
∗2 − 3, 

2
1 − 4, 1,

2, 
∗1, ∗2, 12, ∗21, ∗2,  2

1 (
∗ − 2), 

2
2 (

∗ − 2), 
∗12, ∗31,

∗32,  3
1 2, 

3
2 1, 

3
1 (

∗ − 2), 
3
2 (

∗ − 2), (
∗2 − 3)

2
1 , (

∗2 − 3)
2
2 , (

2
1 − 4)

2
2 ,

∗212,  2
1 

∗2,  2
2 

∗1)0. The number of unobservables is still 1, because 1 and

2 can be expressed in terms of 
∗ and the observable variables (1 =  −∗ and

2 =  −∗).

While it is known that it is possible to analytically construct a set of moment

restrictions that exploit the information provided by moments up to 4 (Cragg (1997)),

our method provides an equivalent way to do this while bypassing most of the difficult

analytical work. Figure 4 compares the objective functions obtained for the set-

identified normal case and the point-identified uniform case. The nuisance parameters

(2 3 4) are profiled out. Note that the variance of 
∗ is the same in both subcases

to ensure that the results are indeed driven by information provided by the higher-

order moments and not by changes in the second moments of the data. The point-

identified case exhibits a clearly more localized maximum in its objective function. In

contrast, the objective function in the set-identified case displays a flatter region which

is consistent with the usual bounds, indicated by diamonds. In this case, the objective

function is not perfectly flat between the bounds and this situation persists as the

numerical accuracy of the calculations is improved. The objective function over the

identified set is clearly at a finite distance from zero, which is a clear indication that

the model is over-identified (all moment conditions need not be satisfied in a given

sample). This is not pathological – it is merely a clear indication that the model

29



-0.25

-0.20

-0.15

-0.10

-0.05

 0.00

 0.6  0.8  1.0  1.2  1.4  1.6
θ1

L n
(θ

)
^

Figure 4: Objective function for the measurement error model under the assumption

of mutual independence between the regressors and the two errors. The dashed curve

is for the set-identified case with normally distributed regressor while the solid curve

is for the point-identified case with uniformly distributed regressor. The horizontal

line as the critical value (at the 95 % level), the topmost diamonds mark the usual

“forward and reverse regression” bounds for this model and the true value of the

parameter is indicated by a vertical dashed line..

happens to not satisfy the so-called degeneracy property (Chernozhukov, Hong, and

Tamer (2007)). As such, this model provides an important example of a model that

is set-identified and yet, over-identified.18

Although the shapes of the objective functions are very revealing regarding the

nature of the identification (point- or set-identification), it is interesting to note that

the lengths of the corresponding confidence regions are not strikingly different. This

reflects the fact that the identification power provided by the higher-order moments

in linear specifications can be somewhat “weak”, an issue that has been observed

in some applications (Hausman, Newey, and Powell (1995)). This problem becomes

more severe as the distribution of the regressors approaches normality.

Section D.3 of the Supplementary Material considers a nonlinear errors-in-variable

model without side information, that is, Example 1.5 for a nonlinear specification

 =  (∗ ) + 2 where  (
∗ ) has one of the two following forms:

 (∗ ) = 1
∗ + 2 (

∗)2 (18)

 (∗ ) = 1
∗ + 2 exp (

∗)  (19)

18Other examples are easy to construct: Combine a moment inequality model involving a subset

of the parameters with an overidentified moment condition model involving another subset of the

parameters. In our example, the under- and over-identified components cannot be so easily separated.
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While it has recently been shown that such models can be point-identified under full

mutual independence assumptions (Schennach and Hu (2013)), no such result exists

under weaker uncorrelatedness conditions. Deriving bounds for this model would

have been extremely difficult due to the nonmonotonicity of the moment functions.

In fact, calculating equivalent moment inequalities from Equation (15) involves an

optimization problem that has no analytic solution for the specification (19). In con-

trast, our method applies directly – only trivial changes in the program handling

the standard measurement error problem were needed.

6 Conclusion

This paper introduces a generalization of GMM to moments involving unobservable

variables that circumvents the need for infinite-dimensional nuisance parameters. The

key idea is to model the distribution of the unobservables via an entropy-maximizing

least-favorable parametric family of distributions that exactly reproduces the same

range of moment values as the original nonparametric family. The resulting feasible

moment conditions can be used within a GMM framework (or any of its one-step al-

ternatives) and transparently cover both point- and set-identified models. Extensions

to conditional moments, independence restrictions and some state-space models are

also given.

A Proofs

Throughout the proofs, we denote  (|; ) by  (|), making the dependence on 

implicit (as all arguments hold pointwise in ).

Lemma A.1 Let Assumption 2.1 hold and assume that for all  ∈ Θ, any unit

vector  and for all  in some subset of Z of positive probability (under the measure

), inf∈U 0 (  ) 6= sup∈U 0 (  ). Then, for  as in Definition 2.2,

 =

Z R
 (  ) exp (0 (  ))  (|)R

exp (0 (  ))  (|)  ()

and

 =

Z R
( (  )− ̃ (  )) ( (  )− ̃ (  ))

0
exp (0 (  ))  (|)R

exp (0 (  ))  (|)  ()

(20)
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are such that, at each  ∈ R , kk  ∞ kk  ∞ and  is positive-definite.

Moreover, derivatives with respect to  up to order 2 commute with the expectations

in  [ln [exp (
0 ( )) |]] and  = 

0.

Proof. See Section C of the Supplementary Material.

Lemma A.2 Given a probability measure  of a nondegenerate random variable 

taking values in R, if for any  ∈ R,  () ≡ R  exp ()  ()  R exp ()  ()
exists, then for all  ∈ R,

 ()  lim
→∞

 () = sup supp

where the right-hand side (the upper bound of the support of  ) could be infinite.

Proof. Let H denote the convex hull of the support of  (i.e. the smallest closed

interval containing the support of  ). Let  be any point in the interior of H (which

is nonempty by assumption). Without loss of generality, we may assume that   0

(Otherwise just add the same constant to ,  and  and note that  () and

sup supp would just be shifted by that same constant, since the multiplicative shift

in the exponentials cancels in the ratio defining  ()). The conclusion is equivalent

to showing that, for  sufficiently large,  () will eventually exceed . Let  = +,

with   0 small enough so that +  is still inside of H. We then have

 () =

R


 exp ()  () +
R
≥  exp ()  ()R

exp ()  ()

≥
− R


|| exp ()  () + R

≥  exp ()  ()R
exp ()  ()

≥
− R


||  () exp () + 

R
≥ exp ()  ()R

exp ()  ()

=
− R


||  () exp () + 

R
≥ exp ()  ()R


exp ()  () +

R
≥ exp ()  ()

=
− R


||  () + 

hR
≥ exp ( (− ))  ()

i
R

exp ( (− ))  () +

hR
≥ exp ( (− ))  ()

i  (21)
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Note that the terms in bracket can be shown to diverge: For some   0 such that

+  is still inside H,Z
≥
exp ( (− ))  () ≥

Z
≥+

exp ( (− ))  ()

≥ exp ( (+ − ))

Z
≥+

 () = exp ()

Z
≥+

 ()→∞

as →∞ since
R
≥+  ()  0 as + is inH. It follows that for sufficiently large ,

the numerator of (21) is positive and we can write (because
R

exp ( (− ))  () ≤R


 () ≤ 1)R
 exp ()  ()R
exp ()  ()

≥
− R


||  () + 

R
≥ exp ( (− ))  ()

1 +
R
≥ exp ( (− ))  ()

→   

Hence, we have shown any  in the interior of H will eventually be exceed as →∞.
This, combined with the fact that  () can only yield a value inside H for finite ,

concludes the proof.

Proof of Theorem 2.1. For given  ∈ Θ and  ∈ PZ , let

K = Closure
©
× [ ( )] :  ∈ PU|Z

ª


the closure of the set of all possible moment values. Note that K is convex because

if 1 ≡ 1×0 [ ( )] and 2 ≡ 2×0 [ ( )] are both sequences con-

verging in K, then 3 = 1 + (1− )2 for any  ∈ [0 1] also does because
it can be generated from the sequence of measures 3 = 1 + (1− )2 ∈ PU|Z
through 3 = 3×0 [ ( )].

Without loss of generality, we assume that, for all  ∈ Θ, any unit vector  and

for all  in some subset Z+ of Z that has positive probability under the measure ,

inf∈U 0 (  ) 6= sup∈U 0 (  ). If that is not the case for some , this means
some linear combination of moment conditions does not depend on . A suitable

linear transformation of  (  ), would then produce an equivalent moment vector

of the form: ∙
 (  )

 ( )

¸


Equation (7) then becomes:

̃
¡
  (0 

0
)
0¢ ≡ " R

() exp(
0
()+

0
())(|)R

exp(0()+0())(|)R
() exp(

0
()+

0
())(|)R

exp(0()+0())(|)

#
=

" R
() exp(

0
())(|)R

exp(0())(|)
 ( )

#

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The dependence on  disappears and the subvector  ( ) is unaffected by the

averaging, that is, it behaves like a regular moment condition that does not require

any special treatment to establish its identifying power. Hence, we focus our attention

on  (  ), which we rename  (  ), and assume that all moment conditions do

depend on , that is, inf∈U 0 (  ) 6= sup∈U 0 (  ) for all  ∈ Θ, any unit

vector  and for all  ∈ Z+.
Let  ≡  [̃ (  )] and  ≡ 

0 be defined as in Lemma A.1. For a given

 ∈ Θ and a given  ∈ PZ , we wish to show that 0 ∈ K iff there exists a path

 : R+ 7→ R such that lim→∞ () = 0. Note that we allow for solutions “at

infinity” (i.e. k ()k→∞ as →∞).
We start with a trial value of  = 0 and gradually update  via a differential

equation until the moment conditions are satisfied. Specifically, set  (0) = 0, and

update  () as the parameter  increases according to

 ()


= −1

2
 −1
()

() (22)

By Lemma A.1, the interchanges of differentiation and integration performed above

are justified and ,  and  −1 exist for all finite values of , then





°°()°°2 =




¡
0()()

¢
= 20()

()

0
 ()


= 20()()

 ()



= −0()() −1()
() = −0()() = −

°°()°°2
from which we can conclude that

°°()°°2 = k0k2 exp (−) Since exp (−) → 0 as

 → ∞, the solution  () to Equation (22) provides the path required to show that

the moment conditions can be satisfied, provided (), () and  −1
()

exist at all

 ∈ R+. Hence the existence of a suitable  () follows whenever we can establish
the existence of (), () and  −1

()
for all  ∈ R+. As shown in Lemma A.1, for

any  ∈ R , we have that ,  and  −1 all exist. So the only possibility for the

moment conditions to not be satisfied is to have  () diverging at some finite . We

now establish when this may or may not happen.

Letting  =  for some unit vector  and applying Lemma A.2 for a fixed  ∈ Z+
with  = 0 (  ) and  equal to the distribution of 0 (  ) (which is nonde-

generate since inf∈U 0 (  ) 6= sup∈U 0 (  ) for  ∈ Z+ and supp  (·|) =
U), implies that,

0̃ (  ) =

R
0 (  ) exp (0 (  ))  (|)R

exp (0 (  ))  (|)
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is less than sup∈U 
0 (  ) for any finite  and only reaches it when  →∞. (For

 ∈ Z\Z+, the quantity 0̃ (  ) may be independent of  for some value(s) of

, in which case the supremum is reached at all , including when  → ∞.) Next,
consider the quantity 0 evaluated at  =  in the limit as  →∞:

lim
→∞

0 = lim
→∞

Z
0̃ (  )  () =

Z
lim
→∞

0̃ (  )  () 

where the interchange of the limit and the integral is justified by Lebesgue’s monotone

convergence theorem19 since 0̃ (  ) is monotone in , as it can be readily verified

that 0̃ (  )  is equal toR
(0 (  )− 0̃ (  ))2 exp (0 (  ))  (|)R

exp (0 (  ))  (|) ≥ 0

where the interchange of derivatives and integration is allowed since the integrand

is positive. It follows that, if kk =  → ∞, not only does 0̃ (  ) reach its
maximum value at each  but so does 0. As this reasoning holds for any , it

follows that  would therefore converges to a point on the boundary of the convex

set K. Conversely, for finite , and for all  ∈ Z+ (a set of positive probability
under ), 0̃ (  ) does not reach its maximum value and 0, the corresponding

average over , cannot reach its maximum value either. It follows that  would lie in

the interior of K. Hence, kk =  →∞, iff  converges to a point on the boundary

of K. Equivalently, Equation (22) only breaks down when  reaches the boundary

of K.

Next, we note that if () does not converge to the boundary of the convex set

K, it traces out (as  goes from 0 to infinity) a straight segment joining 0 to 0 (see

Figure 5a), because the change in () is parallel to () itself:




() =

()

0
 ()


= −1

2
()

−1
()

() = −1
2
()

However, if () crossed the boundary of K somewhere along the segment from 0

to 0 (see Figure 5b), the process would stop and  could not reach 0. By definition,

19See Endou, Narita, and Shidama (2008), Section 52 for a statement of the Lebesgue Mono-

tone Convergence Theorem generalized to extended reals (i.e. including “infinity”), thus allowing

the interchange of integrals and limits for sequences of functions that have pointwise finite or in-

finite limits. Note that an infinite value of lim→∞ 0 is not pathological, as it only signifies
that no inequality constraint is associated with the direction . Also note that the Theorem’s re-

quirement that the integrand be nonnegative can be easily met by writing
R
0̃ (  )  () =R

0 (̃ (  )− ̃ (  0))  () +
R
0̃ (  0)  () for all  ≥ 0 and for some 0 ∈ R.
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Figure 5: a) Path of () when the origin is contained in K. b) Path of () when

the origin is not contained in K.

0 ∈ K (because 0 = × [ ( )] for  = ). Since K is closed and convex,

the segment joining 0 to 0 is entirely contained in K iff 0 belongs to K. It follows

that () cannot reach 0 if and only if 0 does not belong to K. Since K is the

closure of the set of all possible values of × [ ( )] for  ∈ PU|Z , the process
only fails if inf∈PU|Z k× [ ( )]k 6= 0.
Proof of Corollary 2.1. Apply Theorem 2.1 to the moment function ̊

³
  ̊

´
≡

 (  )− with ̊ ≡ ( ). For any given , the identified set for  gives the range
of possible values of  [ (  )].

Proof of Theorem 2.2. Let K = Closure
©
×0 [ ( )] :  ∈ PU|Z

ª
, the set

of all possible values of the moment conditions and note that, by definition 0 ∈ K

iff  ∈ Θ0. As in the proof of Theorem 2.1, K is convex. Hence, the set K can be

written as an intersection of half spaces (Rockafellar (1970)):

K = ∩∈B1 { : 0 ≤ ̄ ( )}  (23)

where ̄ ( ) is a scalar function (the so-called “support function” of the set K)

that we will now determine through ̄ ( ) = sup∈K 
0. Note that we allow ̄ ( )

to take the value “infinity” for some values of , indicating that no constraint is

associated with those values of . (This convention differs from the one in Rockafel-

lar (1970), where the domain of the support function is instead restricted so that

̄ ( ) is never infinite. These two conventions merely represent two different ways

to state the same fact. Note that, without loss of generality,  can be restricted to

the unit hypersphere, since both sides of an inequality can be scaled by a strictly

positive constant without changing the set of values of  satisfying the inequality.)

By Corollary 2.1, K is also equal to Closure
©
0 [̃ (  )] :  ∈ R

ª
. Therefore, ̄

( ) = sup∈R 0 [
0̃ (  )]. Considering one value of  and applying Lemma

A.2 for a fixed  with  = 0 (  ) and  equal to the distribution of 0 (  )
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implies that

sup
∈R

0̃ (  ) ≤ lim
→∞

0̃ (  ) = sup
∈U

0 (  ) 

Note that this indicates that the supremum of interest for a given  can be calculated

using the same  (or sequence of ) at each value of . Since multiplication by positive

quantities and integration preserve inequalities, we also have

 [0̃ (  )] ≤  [ (  )] ≡ ̄ ( )

with  (  ) ≡ lim→∞ 0̃ (  ) or  (  ) = sup∈U 
0 (  ). We then need

to verify if 0 ∈ K using (23), which can be done by checking whether 
00 ≤ ̄ ( )

for all  ∈ B1 or, equivalently ̄ ( ) =  [ (  )] ≥ 0.
Proof of Theorem 4.1. By Theorem 2.1, at each finite  , it is clear that

Θ
()
0 =

(
 ∈ Θ : inf

()∈V()
inf

∈PU|Z
sup

∈{0}
|×0 [ (  )]| = 0

)


The sup is nondecreasing in  while the inf over () ∈ V() is the same as over  ∈ V.
It follows that (i) Θ

(+1)
0 ⊆ Θ

()
0 .

If  6∈ Θ0, then inf∈V inf∈PU|Z sup∈N∗
°°R R  (   )  (|)  ()°° 6= 0 and

there exists a 0 such that for all  ≥ 0 inf∈V inf∈PU|Z sup∈{0} k
R R

 (   )

 (|)  () k 6= 0. If  ∈ Θ0 then inf∈V inf∈PU|Z
°°R R  (   )  (|)  ()°° =

0 for all  ∈ N∗. It follows that (ii) ∩∈N∗Θ()0 = Θ0.

Finally, 
¡
Θ0Θ

(+1)
¢
= 

¡
Θ̄0 Θ̄

(+1)
¢
since closure does not affect the Haus-

dorff distance. Also, 
¡
Θ̄0 Θ̄

(+1)
¢
= sup∈Θ̄(+1) inf ̃∈Θ̄0

°°° − ̃
°°° because sup∈Θ̄0

inf ̃∈Θ̄(+1)
°°° − ̃

°°° = 0 since Θ̄0 ⊂ Θ̄(+1). Next, 
¡
Θ̄0 Θ̄

(+1)
¢ ≤ sup∈Θ̄() inf ̃∈Θ̄0 °°° − ̃

°°° =

¡
Θ̄0 Θ̄

()
¢
since Θ̄(+1) ⊆ Θ̄(). Since 

¡
Θ̄0 Θ̄

()
¢
forms a nonincreasing sequence

and 
¡
Θ̄0 Θ̄

()
¢ ≥ 0, we have  ¡Θ̄0 Θ̄

()
¢ →  ≥ 0. We now show that  must

be 0. We must have sup∈Θ̄() inf ̃∈Θ̄0

°°° − ̃
°°° ≥  for all  . Since Θ̄() and Θ̄0 are

compact and the norm k·k is continuous, there exists  ∈ Θ̄() and ̃ ∈ Θ̄0 such

that
°°° − ̃

°°° ≥  for all  . Since Θ̄ is compact, there exists a subsequence 

such that  and ̃ converge. Let ∞ = lim→∞  and ̃∞ = lim→∞ ̃ . Note

that ∞ ∈ ∩∈N∗Θ̄() for otherwise, eventually ∞ would lie at a finite distance from
Θ̄() and

°° − ∞
°° 6→ 0. Therefore ∞ ∈ Θ̄0, as Θ̄0 is closed. Also ̃∞ ∈ Θ̄0

by construction, as Θ̄0 is closed. Since ̃∞ minimizes the distance to ∞ and both

̃∞ and ∞ belong to Θ̄0, it follows that
°°°∞ − ̃∞

°°° = 0 and that  = 0. Hence


¡
Θ̄0 Θ̄

()
¢→ 0.
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B Introduction

This Supplementary material includes (i) proofs omitted from the main text, (ii)

additional simulation examples, (iii) an extended notion of the identified set, (iv)

difficulties associated with the use of alternative discrepancies, (v) inference methods,

(vi) computational details of the implementation of the method in the paper, (vii) an

example of equivalence to standard bounding techniques and (viii) relationships with

earlier information-theoretic and entropy-based methods.

C Proofs omitted from the main text

Throughout the proofs, we denote  (|; ) by  (|), making the dependence on 

implicit (as all arguments hold pointwise in ).

Proof of Proposition 2.1. This proof frequently makes the use of random variables

(and expectations, probabilities or support thereof) that are conditional on the event

 =  and the following qualifications will apply throughout. Since we consider

regular conditional probability measures, a distribution (say, of a random variable

) conditional on  =  will be a well-defined probability measure for all  in a set

Z 0 ⊆ Z of probability 1 under the distribution of . All statements for a given  will
be for  ∈ Z 0 and we need not consider  ∈ Z\Z 0, since such events have probability
0 and will not affect any unconditional probabilities or expectations. Also, recall

that  (  ) is assumed measurable throughout. Finally, since all arguments hold

pointwise in , we make dependence on  implicit and denote  (|; ) by  (|),
 (|; ) by  (|) and ̇ ( ) by ̇ ().

We now verify that the example satisfies the conditions of Definition 2.2. We

first note that the support of  (·|) is U by construction and that  differs from 

only by a multiplicative prefactor  ( ) exp
¡− k (  )−  (̇ ()   )k2¢. Since

 ( ) ≥ 1 by construction, the prefactor is nonvanishing for any finite  (  )

and it follows that the supports of  (·|) and  (·|) agree.
Next, we check the differentiability requirement on [ln [exp (

0 ( )) |]].
We first check that the second derivative is finite – the boundedness of the function

itself and of its first derivative follow by similar arguments. By the same reasoning as

in the proof of Lemma A.1, the interchanges of derivatives with expectation performed

below are allowed. We then have

2

0
 [ln [exp (

0 ( )) |]]

= 

∙
 [ ( ) 

0 ( ) exp (0 ( )) |]
 [exp (0 ( )) |]

¸
− [̃ (  ) ̃

0 (  )]

= 

"


£
( ( )− ̃ (  )) ( ( )− ̃ (  ))

0
exp (0 ( )) |¤

 [exp (0 ( )) |]

#
 (1)
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where

̃ (  ) ≡  [ ( ) exp (
0 ( )) | = ]

 [exp (0 ( )) | = ]


We then bound each element of the matrix (1) by a single scalar quantity: For

  ∈ {1     }, we have
 [( ( )− ̃ (  )) ( ( )− ̃ (  )) exp (

0 ( )) | = ]

 [exp (0 ( )) | = ]

≤ ¡


£
( ( )− ̃ (  ))

2
exp (0 ( )) | = 

¤
 [exp (

0 ( )) | = ]
¢12 ×¡



£
( ( )− ̃ (  ))

2
exp (0 ( )) | = 

¤
 [exp (

0 ( )) | = ]
¢12

≤ 

£k ( )− ̃ (  )k2 exp (0 ( )) | = 
¤

 [exp (0 ( )) | = ]

=


£k ( )− ̃ (  )k2 exp (0 ( )) | = 
¤

 [exp (0 ( )) | = ]

exp (−0 (̇ ()   ))
exp (−0 (̇ ()   ))

=


£k ( )− ̃ (  )k2 exp (0 ( ( )−  (̇ ()   ))) | = 
¤

 [exp (0 ( ( )−  (̇ ()   ))) | = ]
 (2)

where we have (i) used the Cauchy-Schwartz inequality, (ii) used the fact that ( (  )−
̃ (  ))

2 ≤ k (  )− ̃ (  )k2 for  = 1      and (iii) multiplied the nu-
merator and denominator by the same non-vanishing factor exp (−0 (̇ ()   )).
We now bound, in turn, the numerator and the denominator of (2). Since the

expected square deviation about the mean is less than about any other point (such

as  (̇ ()   )), we have



£k ( )− ̃ (  )k2 exp (0 ( ( )−  (̇ ()   ))) | = 
¤

≤ 

£k ( )−  (̇ ()   )k2 exp (0 ( ( )−  (̇ ()   ))) | = 
¤


Next, since a polynomial can be bounded by suitable linear combination of exponen-

tials (uniformly for any value of their corresponding argument),



£k ( )−  (̇ ()   )k2 exp (0 ( ( )−  (̇ ()   ))) | = 
¤

≤
X
=0



£
exp

¡
0 ( ( )−  (̇ ()   ))

¢ | = 
¤

(3)

for some finite 0      ∈ R+ and some 0      , each taking value in R and

lying in an -neighborhood of  (for some finite   0 independent of ). Considering

any one term in the sum (3) we have, by the definition of ,



£
exp

¡
0 ( ( )−  (̇ ()   ))

¢ | = 
¤

= 



£
exp

¡
0 ( ( )−  (̇ ()   ))− k ( )−  (̇ ()   )k2¢ | = 

¤


£
exp

¡− k ( )−  (̇ ()   )k2¢ | = 
¤


(4)
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where the denominator is simply the reciprocal of the normalization constant  ( ).

The denominator of (4) can be easily bounded below by exploiting the assumed

presence, in , of a point mass of probability   0 at  = ̇ ():



£
exp

¡− k ( )−  (̇ ()   )k2¢ | = 
¤

≥ 

£
exp

¡− k ( )−  (̇ ()   )k2¢ 1 ( ( ) =  (̇ ()   )) | = 
¤

=  [exp (0) 1 ( ( ) =  (̇ ()   )) | = ]

=  [1 ( ( ) =  (̇ ()   )) | = ]

≥  [1 ( = ̇ ()) | = ] =   0 (5)

where we have used the fact that (i) including an indicator function multiplier in

an expectation of a positive quantity can only reduce its value and (ii) the event

 ( ) =  (̇ ()   ) is no less probable than  = ̇ () because there may be

multiple  ∈ U such that  (  ) =  (̇ ()   ). We can then bound (4) as



£
exp

¡
0 ( ( )−  (̇ ()   ))

¢ | = 
¤

≤ −1

£
exp

¡
0 ( ( )−  (̇ ()   ))− k ( )−  (̇ ()   )k2¢ | = 

¤
≤ −1

£
exp

¡°°°° k ( )−  (̇ ()   )k− k ( )−  (̇ ()   )k2¢ | = 
¤

≤ −1

∙
exp

µ
sup
∈R

¡°°°°− 2
¢¶ | = 

¸
= −1

h
exp

³°°°°2 4´ | = 
i
= −1 exp

³°°°°2 4´
≤ −1 exp

¡
(kk+ )

2
4
¢
 (6)

where we have used (i) Inequality (5) (ii) the fact that sup∈R
¡°°°°− 2

¢
=°°°°2 4 and (iii) the fact that  is in an -neighborhood of , combined with the

triangle inequality.

We now obtain a lower bound on the denominator of (2):

 [exp (
0 ( ( )−  (̇ ()   ))) | = ]

=


£
exp (0 ( ( )−  (̇ ()   ))) exp

¡− k ( )−  (̇ ()   )k2¢ | = 
¤



£
exp

¡− k ( )−  (̇ ()   )k2¢ | = 
¤

≥ 

£
exp (0 ( ( )−  (̇ ()   ))) exp

¡− k ( )−  (̇ ()   )k2¢ | = 
¤

≥ 

£
exp (0 ( ( )−  (̇ ()   ))) exp

¡− k ( )−  (̇ ()   )k2¢×
1 ( ( ) =  (̇ ()   )) | = ]

=  [1 ( ( ) =  (̇ ()   )) | = ]

≥  [1 ( = ̇) | = ] =  (7)

where we have used the definition of  and the facts (i) that [exp(−k ( )−
 (̇ ()   ) k2)| = ] ≤  [1| = ] = 1, (ii) that a multiplicative indicator func-

tion can only reduce the value of an expectation of a positive quantity, (iii) that
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 ( ) =  (̇ ()   ) implies that both exponentials equal 1, (iv) that  = ̇ ()

implies  (  ) =  (̇ ()   ) and (v) that the event  = ̇ () given  =  has

probability  by construction.

Combining the bounds (6) and (7), both of which hold uniformly in  and do

not depend on , the expectation in (1) can be bounded by a finite quantity at any

 ∈ R :



"


£k ( )− ̃ (  )k2 exp (0 ( )) |¤
 [exp (0 ( )) |]

#
≤ ̄ exp

¡
(kk+ )

2
4
¢


(8)

where ̄ ≡ −2
P

=0. This bound on the second derivative of [ln [exp (
0 ( )) |]] ≡

̃ () also implies that ̃ () and ̃ ()  are finite at all  ∈ R . Indeed,

̃ ()  is given by the path integral:

̃ (1)


=

̃ (1)



¯̄̄̄
¯
1=0

+

Z 1

0

2̃ ()

0
· 

=
̃ (1)



¯̄̄̄
¯
1=0

+

Z 1

0

2̃ (1)

0
· 1 (9)

where we take a linear integration path for simplicity. Note that ̃ (1) |1=0 is
given by



∙
 [ ( ) exp (

0
1 ( )) |]

 [exp (
0
1 ( )) |]

¸¯̄̄̄
1=0

=  [ [ ( ) |]]

= 

"


£
 ( ) exp

¡− k ( )−  (̇ ()   )k2¢ |¤


£
exp

¡− k ( )−  (̇ ()   )k2¢ |¤
#

= 

"


£
( ( )−  (̇ ()   )) exp

¡− k ( )−  (̇ ()   )k2¢ |¤


£
exp

¡− k ( )−  (̇ ()   )k2¢ |¤
#
+

+ [ [ (̇ ()   )]]
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so that,
°°°̃ (1) |1=0

°°° is bounded by


"


£k ( )−  (̇ ()   )k exp ¡− k ( )−  (̇ ()   )k2¢ |¤


£
exp

¡− k ( )−  (̇ ()   )k2¢ |¤
#
+

+ [ [k (̇ ()   )k]]
≤ 

£
−1

£k ( )−  (̇ ()   )k exp ¡− k ( )−  (̇ ()   )k2¢ |¤¤+
+ [k (̇ ()   )k]

≤ 

∙
−1

∙µ
sup
∈R

|| exp ¡−2¢¶ |¸¸+ [k (̇ ()   )k]

≤ 

£
−1 [1|]

¤
+ [k (̇ ()   )k] = −1 + [k (̇ ()   )k]

≤ −1 +

∙
inf
∈U

k (  )k
¸
+ 

≤ −1 +× [k ( )k] +  ∞ (10)

where we have used the facts that (i) result (5) holds, (ii) that sup∈R || exp (−2) ≤ 1
(iii) that k (̇ ()   )k ≤ inf∈U k (  )k+ by construction, (iv) that inf∈U k ( )k ≤
k (̃  )k for any ̃ ∈ U and that × [k ( )k] (with  denoting the true

data generating process of  given ) must be finite for the model to be well-defined.

Combining (9), (10) and (8), we then have°°°°°̃ (1)



°°°°° ≤
°°°°°° ̃ (1)



¯̄̄̄
¯
1=0

°°°°°°+
Z 1

0

°°°°°2̃ (1)

0

°°°°° k1k 
≤ −1 +× [k ( )k] +  + k1k sup

∈[01]

°°°°°2̃ (1)

0

°°°°°
≤ −1 +× [k ( )k] +  + k1k ̄ exp

¡
(k1k+ )

2
4
¢


By a similar reasoning, ̃ () is also bounded at each  ∈ R since ̃ (1) =

̃ (0) +
R 1
0

̃(1)


· 1 and ̃ (0) = 0.

We have thus shown that the  provided satisfies the required support condi-

tion and the corresponding  [ln [exp (
0 ( )) |]] satisfies the existence and

differentiability conditions of Definition 2.2.

Proof of Lemma A.1. If  [ln [exp (
0 ( )) |]] exists for all  ∈ R ,

then  [exp (
0 ( )) | = ] must exist and be finite for all  ∈ R and for

almost all , except perhaps on a set of probability zero under . By the properties

of moment generating functions defined for all  ∈ R , the 

and 2

0 operators
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therefore commute with  [·| = ] and we have

2

2
ln [exp (

0 ( )) | = ]

=

R
( (  )− ̃ (  ))

2
exp (0 (  ))  (|)R

exp (0 (  ))  (|) ≡  ()

for  = 1    . Since this quantity is non-negative at any , we also have

 [ ()] = 

∙
2

2
ln [exp (

0 ( )) |]
¸
=

2

2
 [ln [exp (

0 ( )) |]] 

where the latter quantity is finite by assumption. Hence,  [ln [exp (
0 ( )) |]]

being twice differentiable implies that  () has finite expectation under . As co-

variances and means can be bounded in terms of variances, the first derivatives and

mixed second derivatives of ln [exp (
0 ( )) |] also commute with the expec-

tation  [·| = ]. This in turn implies that both



∙¯̄̄̄



ln [exp (

0 ( )) | = ]

¯̄̄̄¸
and



∙¯̄̄̄
2

0
ln [exp (

0 ( )) | = ]

¯̄̄̄¸
are finite and this absolute integrability result implies that  and 

20 also

commutes with. Since we have shown that interchanges of derivatives and expecta-

tions are allowed, we can verify that  =


 [ln [exp (

0 ( )) |]] and  =
2

0 [ln [exp (
0 ( )) |]], which both exist because [ln [exp (

0 ( )) |]]
is twice differentiable.

To show that  −1 exists for all  ∈ R , we show that 0 never vanishes for
any unit vector . Note that 0 is the expected value (under ) of the variance of
0 (  ) (conditional on ) under the measure ̃ (|) defined via

̃ (|) = exp (0 (  ))  (|) 
Z
exp (0 (  ))  (|) 

By Assumption, 0 (  ) does not remain constant as  varies in U (for all  in a
subset of positive probability under ). Since  (|) is supported on all of U , and
exp (0 (  )) is strictly positive for finite , it follows that the measure ̃ (|) is
also supported on all of U . Hence, the variance of 0 (  ) under ̃ (|) is strictly
positive for any unit vector .

Proposition C.1 Let  and  be random vectors (which could be functions of other

random variables). If a conditional expectation  [ |] (and its corresponding un-
conditional expectation  [ ]) are well-defined,1 then the restriction  [ |] = 0

1This entails measurability assumptions, absolute conditional moment existence and regularity

of the appropriate conditional measures.
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(with probability 1 under the distribution of ) is equivalent to a countable set of

unconditional moment restrictions.

Proof of Proposition C.1. By iterated expectation it is trivial to show that

 [ |] = 0 (with probability 1 under  , the distribution of) implies that [  ()] =
0 for any measurable function  (·), in particular a countable set of functions  (·).
To show the converse, we consider moments of the form 

£
 i

0
¤
, for  ∈ R,

where i =
√−1. First note that if  [ ] is well-defined, then  [| |] must exist. By

Lemma 3 in Schennach (2007), this implies that 
£
 i

0
¤
is continuous in . Hence,

having 
£
 i

0
¤
= 0 for all rational  implies that 

£
 i

0
¤
= 0 for all  ∈ R.

The inverse Fourier transform of 
£
 i

0
¤
= 

£
 [ |] i0¤ therefore vanishes al-

most everywhere. Since 
£
i

0 [ |]¤ = R i0 [ |]  (), its inverse Fourier
transform is the measure defined via the differential element [ | = ]  (). Hav-

ing this measure vanish almost everywhere is equivalent to having  [ | = ] = 0

with probability 1 under  . Therefore, we have just shown that a countable set of

unconditional moment restrictions2 (
£
 i

0
¤
= 0 for all rational ) implies a con-

ditional mean restriction ( [ |] = 0 with probability 1). Note that the sequence
of moments constructed here is not the only one possible (See Chamberlain (1987)

for an alternative).

Proposition C.2 Independence restrictions can be imposed via a countable number

of moment factorization restriction of the form (17), i.e. without loss of generality,

the index  can be discrete.

Proof of Proposition C.2. Without loss of generality, let the random variables

 and  denote two random quantities (which could be functions of other random

variables) to be required to be independent (more independent quantities can be

handled similarly). By Theorem 16-B in Loève (1977), two random variables  and

 are independent iff

 [exp (i) exp (i )] =  [exp (i)] [exp (i )]  (11)

for all   ∈ R where i = √−1. By result 13.4-A in Loève (1977), all three expec-
tations in (11) are continuous functions of  and . Hence, imposing the constraint

(11) at all rational  and  is sufficient to imply that (11) holds for all   ∈ R. Since
rationals are countable, the result is proven. Note that the sequence of moments

constructed here is not the only possibility.

2Note that rationals can be ordered in sequence: For instance, write them as , picking

() ∈ Z2 along a “square spiral pattern” and eliminating duplicates.
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D Additional simulation examples

D.1 Regression with interval-valued data

We now illustrate the method with our Example 1.1. To this effect we use an iid

sample of 250 observations, generated according to3

 ∗ = 1 +  with 1 = 1

 = d ∗e
 = b ∗c 

where  ∼  (0 1) and  ∼  (0 14). The algorithm of Section 2.3 (with em-

pirical likelihood) was used with  = 500, after 50 equilibration steps.4 As seen in

Figure 1, the set over which the objective function (solid curve) vanishes matches the

conventional bounds (indicated by diamonds and calculated as in Manski and Tamer

(2002)). This is verified analytically in Section I of the Supplementary Material. (The

small apparent discrepancy visible in the graph merely reflects the fact that the ob-

jective function is computed on a discrete mesh of values of 1. This qualification will

apply to our remaining examples as well.) However, what is more interesting and new

is that we can now easily add any other types of reasonable moment conditions we

are willing to assume to narrow down the identified set (including moment conditions

that may be nonmonotone in the unobservables).

Example 1.1 (continued) The worst-case scenario giving rise to the bounds may

be associated with unusual patterns of heteroskedasticity in the residuals  ∗ − ,

with point masses in the distribution of  ∗ for large || but not for small ||. If this
appears extremely implausible, one could add two more moment conditions ensuring

that the variance of the residuals (conditional on ) is not correlated with 2. The

moment function would then be

 ( ) =

⎡⎣  

( 2 − 2)
2

 2 − 2

⎤⎦  (12)

where  =  + 
¡
 − 

¢ − 1 and  = (1 2) in which 2 is an additional

nuisance parameter (the mean of  2).

Interestingly, this more complex model requires no additional effort on the part of

the researcher – the simulations take care of everything. It would have been quite

difficult to compute the bounds for this more complex model analytically, let alone

properly handling the sampling noise.

3Let d·e and b·c denote the “round up” and “round down” operations, respectively.
4The number of simulation steps was determined by gradually increasing the number of steps until

the simulation noise (which can be obtained by a standard variance calculation) became negligible

relative to the critical value used to calculate the confidence regions.
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Figure 1: Objective function for an interval-valued data regression model. The up-

per diamonds mark the standard bounds for this model while the true value of the

parameter is indicated by a vertical dashed line. The solid curve is obtained with the

usual uncorrelatedness assumption while the dashed line is for a model also assuming

that the variance of the residuals is uncorrelated with the (squared) regressor. The

horizontal solid and dashed lines indicate the corresponding critical values at the 95%

level.

Of course, one has to take into account sampling variation in order to get a proper

confidence region. This is done here by calculating a critical value and keeping all

values of theta such that the objective function exceeds the critical value. Here,

the critical value is obtained using Theorem G.1 in the Supplementary Material (all

critical values obtained in the present simulation section are obtained similarly).

D.2 Censored regression

We now apply our method to the censored regression of Example 1.2 by generating

an iid sample of 250 observations as follows:

 ∼  (0 1)

 ∼  (0 14)

 ∗ = 1 +2 + 

 = min ( ∗ 1) 

The algorithm of Section 2.3 (with empirical likelihood) was used with  = 900, after

100 equilibration steps. Figure 2a) shows the resulting objective function. In this

example, there is both an intercept and a slope parameter but we are profiling out

the intercept to only show the objective function as a function of the slope coefficient

10



2, which is of greater interest. The set over which the objective function (solid curve)

vanishes matches the conventional bound (indicated by a diamond and calculated as

in Manski and Tamer (2002)). Without any other information beyond the standard

uncorrelatedness assumption between the regressor and the residuals, the censored

regression of Example 1.2 only admits a lower bound on the slope coefficient for the

(randomly generated) sample used here. No upper bound for the slope coefficient

exists because the possible values of  ∗ give the observed data can be arbitrarily
large when there are censored observations.5

However, large values of the slope coefficient imply a rather strange distribution of

the residuals, namely, residuals of a much larger magnitude for censored observations

than for the uncensored ones. By imposing slightly more structure on the residuals,

it is possible to obtain both a lower and an upper bound on the slope coefficient, as

shown in Figure 2b).

Example 1.2 (continued) The problem of the absence of an upper bound in our

censored regression example can be eliminated by simply constraining the variance of

the residuals to be uncorrelated with the regressors, in addition to the usual uncorre-

latedness assumption:

 ( ) =

∙
( + 1 ( = )−)

( + 1 ( = )−)
2


¸


This amounts to imposing a weak form of homoskedasticity. (Note that the moment

conditions here exploit the knowledge that  has zero mean, for simplicity).

This represents a substantial reduction in the uncertainty in the model parameters.

As before, this required no extra analytical work. In contrast, it would be very

difficult to derive the bounds analytically because some of the moment functions are

not monotone in the unobservable.

D.3 Nonlinear errors-in-variable model without side infor-

mation

We now consider a model for which a pre-existing analysis of identification is not

available.

Example 1.5 (continued) Consider a nonlinear errors-in-variables model

 =  (∗ ) + 2 (13)

 = ∗ + 1

where  (∗ ) is a given parametric specification with unknown parameter vector
 = (1 2) and we impose the following vector of moment conditions:  ( ) =

5The problem still admits a lower bound because there are no censored observations below the

mean of the .
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Figure 2: Objective function for a censored regression model. a) Result obtained

with the usual uncorrelatedness and zero mean assumptions on the residuals. The

upper diamond mark the well-known lower bound for this model. b) Same exercise

while assuming, in addition, that the variance of the residuals is uncorrelated with

the regressor. In each panel, the horizontal line indicates the critical values at the

95% level and the true value of the parameter is indicated by a vertical dashed line.

(1 2 1 (
∗ ) 1 1 (∗ ) 2 2 (∗ ) 1 2 (∗ ) 2 12)0.

These conditions essentially combine the uncorrelatedness assumptions of an errors-

in-variables model with the standard normal equations for a least-square regression.

While it is known that this model can be point-identified under full mutual in-

dependence assumptions (Schennach and Hu (2013)), no such result exists under the

weaker uncorrelatedness conditions imposed here. A sample of 250 iid observation

is generated according to Equation (13) with 1 = 1, 2 = 05 and ∗ ∼  (0 1),

1 ∼  (0 14) and 2 ∼  (0 14). The resulting objective function is shown in

Figure 3 for two specifications:

 (∗ ) = 1
∗ + 2 (

∗)2 (14)

 (∗ ) = 1
∗ + 2 exp (

∗)  (15)

This example illustrates the construction of a confidence region (instead of a confi-

dence interval). It should be noted that deriving bounds for this model would have

been extremely difficult due to the nonmonotonicity of the moment functions. In fact,

calculating equivalent moment inequalities from Equation (15) involves an optimiza-

tion problem that has no analytic solution for the specification (15). In contrast, our

method applies directly – only trivial changes in the program handling the standard

measurement error problem were needed.

The time need to complete these simulations range from a few minutes (for the

simplest models) to a few hours (for the one with 27 moment conditions) on an aver-

age single processor personal computer in 2008-2009 and using the Gauss language.
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Figure 3: Objective function for (a) the polynomial measurement error model of

Equation (14) and (b) for the linear-exponential measurement error model of Equation

(15). The base plane shows the joint critical region at the 95% and the 99% levels

while the true value of the parameters is indicated by the filled circle.

These times could undoubtedly be improved significantly by fine-tuning the imple-

mentation and using a compiled language. The main advantages of the method lie in

its simplicity (regarless of the complexity of the model), its straighforward adaptabil-

ity to new models and its robustness (e.g. guaranteed convergence of the optimization

algorithms thanks to smoothness and convexity).

E Extended notion of the Identified Set

E.1 Motivation

Our extended notion of the identified set given in Equation (3) accounts for the

possibility of a measure  that does not belong to PU|Z (for instance, a distribution
that is improper in the sense that it cannot be normalized so that

R
 (|) = 1 for

 in a set of positive probability) but that is the limit of some sequence  in PU|Z
such that × [ ( )]→ 0. The set Θ0 (from Equation (3)) is preferable to Θ

∗
0

(Equation (2)) for two reasons:

1. Under Θ∗0, the set of possible values of the moments (as  ∈ PU|Z varies) may
be open, which cause some conceptual issues in testing: Some values of the

moments may, technically, be inconsistent with the model (because they are

“just outside” of an open set), but there exist moment values arbitrarily close

to that which are consistent with the model. This implies that any statistical

test would fail to reject a model that is apparently false. These problems do
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not occur with Θ0, since the set of possible values of the moments is closed by

construction.

2. The set Θ∗0 is not invariant to reparametrization of the dependence of  (  )
on . An explicit example is given in Section E.2 below. This invariance is

important because the choice of particular parametrization of the unobservables

of the model is arbitrary as it does not result in any detectable changes in the

observable quantities. In contrast, the set Θ0 has this invariance property. This

follows from the fact that the value of a supremum is the same whether the

least upper bound is reached for one value of the argument or not.

The need for a more general notion of the identified set arises because we allow

for moment functions  (  ) which may be unbounded or discontinuous and sets

U which may be unbounded. Under stronger assumptions, one can ensure Θ0 = Θ∗0
(e.g. Galichon and Henry (2006) make uniform integrability assumptions to rule out

improper distributions). But this is unnecessary here, since, in light of point 1 above,

the distinction between Θ0 and Θ∗0 is inconsequential in practice, as it could never
be detected and since Point 2 even emphasizes that any difference between Θ∗0 and
Θ0 would be parametrization-dependent and therefore, meaningless. Only Θ0 has a

parametrization-independent interpretation.

E.2 Example

Let  ( ) = exp (−2) +  with  ∈ Θ = [0 1] and  taking values in U = R.
(This example does not rely on any dependence on  hence the conditional distribu-

tion of  may be taken independent of  without loss of generality.) We will show

that Θ∗0 is empty while Θ0 = {0}. However, under an innocuous reparametrization
of the unobservables, Θ∗0 = Θ0 = {0}, thus showing that Θ∗0 is not parametrization
invariant, while Θ0 is.

Since sup∈PU|Z  [ ( )]  0 for all   0, the identified set is, at best, the

singleton {0} and we therefore carry out the analysis for  = 0 only.
1. The case of U = R.

(a) Any proper (i.e. tight) probability measure must assign a positive probabil-

ity to a compact set. Since exp (−2) is strictly positive on any compact

nondegenerate interval,  [exp (−2)]  0 for any  ∈ PU|Z and Θ∗0 is
empty.

(b) However, consider a sequence of probability measure  such as a sequence

of Gaussians with width diverging to infinity. It can be readily verified

that 
[exp (−2)] → 0 even though 

[exp (−2)]  0 at each .

Clearly,  does not converge to a proper probability measure (the increas-

ing width of the Gaussian causes the limit to fail to be tight). Nevertheless

sup∈PU|Z  [exp (−2)] = 0 and we have Θ0 = {0}.
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2. Take ̃ ≡ arctan and ̃
³e ´ ≡ 

³
tan e ´. By definition, the

support of ̃ is the closure of {arctan :  ∈ R}, that is eU = [−2 2].
The function ̃

³e ´ is clearly defined for e ∈ ]−2 2[ and can nat-
urally be extended by continuity for ̃ = ±2, that is ̃ (±2  ) =
lim̃→±2 ̃

³
̃   

´
= 0 + .

(a) We then have that Θ∗0 = {0} because 

h
̃
³e ´i = 0 for  = 0 and

 equal to a point mass at ̃ = 2.

(b) We also have Θ0 = {0} for the same reason.

Hence, in this case, Θ∗0 is not parametrization invariant, while Θ0 is.

F Difficulties with Alternative Discrepancies

This section shows that using likelihood maximization instead of entropy maximiza-

tion leads to a solution where the Lagrange multipliers for the infinite-dimensional

constraints cannot be solved for analytically.

The Lagrangian for likelihood maximization (in the notation of Section 2.2) is:Z Z
ln ( (|))  (|)  ()− 0

Z Z
 (  )  (|)  (|)  ()

−
Z

 ()

µZ
 (|)  (|)− 1

¶
 () 

The first order condition is then:Z Z µ
1

 (|) − 0 (  )−  ()

¶
 (|)  (|)  () = 0

Since the equality must hold for any  (|), we have
1

 (|) − 0 (  )−  () = 0

or, after rearranging,

 (|) = 1

0 (  ) +  ()


The fact that conditional distributions must integrate to one at each value of the

conditioning variable implies thatZ
1

0 (  ) +  ()
 (|) = 1 (16)
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Clearly,  () cannot be solved for analytically. Even the technique used to determine

the analogue of  () in conventional Empirical Likelihood (EL) does not work. To

see this, rewrite (16) as∙
−
Z

0 (  )
0 (  ) +  ()

 (|)
¸
+ (1−  ())

Z
1

0 (  ) +  ()
 (|) = 0

(17)

In EL, the first term in bracket would vanish as a consequence of the moment con-

ditions being satisfied (thus implying that  () would have to be 1). However, here,

the moment conditions only imply thatZ Z
0 (  )

0 (  ) +  ()
 (|)  () = 0

and the first term in (17) cannot be concluded to vanish (and  () 6= 1 in general).
The distinction arise from the presence of conditional distributions in the present

setup that are absent in EL.

G Inference methods

As models defined via moment conditions involving unobservables are often set-

identified, inference methods capable of handling this situation are essential. We

describe below how the inferential techniques based on subsampling or other simu-

lation techniques (as described in Chernozhukov, Hong, and Tamer (2007)) can be

applied in our settings.

G.1 Objective functions and confidence regions

We first introduce a general class of possible objective functions.

Definition G.1 Given an iid sample 1     , we consider an empirical objective

function admitting the representation

̂ () = sup
∈R

̂ ( )

̂ ( ) = −1
2
̂0 ( ) ( ) ̂ ( ) + ̂ ( ) 

where  ( ) is a positive semidefinite6 matrix and

̂ ( ) =
1



X
=1

̃ (  )

6Even though this allows for singular weighting matrices, Equation (18) below prevents the

objective function from vanishing when ̂ ( ) 6= 0.
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and where the remainder satisfies

sup
{∈Θ∈R :k()k=(−12)}

¯̄̄
̂ ( )

¯̄̄
= 

¡
−1

¢
and is such that

̂ ( ) ≤ − k̂ ( )k2 (18)

for some   0 w.p.a. 1. We also assume throughout that the  (|) used to construct
̃ (  ) is as in Definition 2.2 and that the unobservables  are iid.

This definition includes GMM-like objective functions. In the important special

case where ( ) =  − ( ), the generalized inverse of  ( ) =  [̃ (  ) ̃
0 (  )],

this definition includes the log empirical likelihood (EL) and the Continuous Updating

Estimator (CUE) as special cases:

̂
 () = sup

∈R
inf

∈R
1



X
=1

− ln (1− 0̃ (  ))

̂
 () = sup

∈R
−1
2
̂0 ( ) ̂ −1 ( ) ̂ ( ) with ̂ ( ) =

1



X
=1

̃ (  ) ̃
0 (  ) 

The inclusion of EL is useful, in light of its known optimality properties in the context

of point identified (Newey and Smith (2004), Kitamura (2001), Kitamura, Santos,

and Shaikh (2010), among others) and in a large class of set-identified models (Canay

(2010)). ̂ () also includes any GEL and ETEL as special cases.

It should be noted that, although ̂ ( ) depends on the choice of  in Definition

2.2, the objective function ̂ () does not, as can be seen by setting  to the sample

distribution in Corollary 2.1.

For maximum generality, we decompose the parameter vector as  = ( ), where

 ∈ B is the parameter vector of interest while  ∈ N is a vector of nuisance param-

eters (which may be “empty” if desired). We focus on the construction of confidence

regions for  in the identified set B0 ≡
©
 ∈ B : inf∈N

inf∈R k [̃ (  )]k = 0
ª

via the “profiled” statistic:

̂ () = −
Ã
sup
∈N

sup
∈R

̂ (( )  )− sup
∈Θ

sup
∈R

̂ ( )

!
 (19)

where N is a compact subset of Θ (which may be -dependent). If no nuisance pa-

rameters are needed, the supremum over  is to be eliminated. The statistic ̂ () is

positive by construction (to follow the convention of Chernozhukov, Hong, and Tamer

(2007)). The idea of subtracting the maximum value of the objective function for an

“unrestricted model” is known to yield efficiency improvements in point-identified

models (for instance, it reduces the number of degrees of freedom of the limiting 2
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distribution of likelihood ratio-type tests (Newey and McFadden (1994))) and it is

natural to expect improvements in set-identified models. This idea is also exploited

in Chernozhukov, Hong, and Tamer (2007).

In this framework, consistent estimates of the identified set and/or confidence

regions have the general form

B̂ =
n
 : ̂ () ≤ ̂

o
 (20)

where ̂ is a critical value selected so that B̂ is consistent and/or has the correct
coverage 1− .

G.2 Consistency

Consistency of B̂ (in the sense that the Hausdorff distance between B̂ and B0 goes
to zero in probability) follows by a straightforward application of Theorem 3.2 in

Chernozhukov, Hong, and Tamer (2007). Most of this theorem’s requisite assumptions

translate directly in the present context. We focus here only on the assumptions

demanding special attention.

One less obvious issue is that the set of possible values of the parameter  is not

compact (it is R). This can be handled by reparametrizing the moment functions

to render the parameter space compact.7 To this effect, let ̄ ( ) =  [̃ (  )],

K ≡ Closure
©
0 [̃ (  )] :  ∈ R

ª
and K∗ = K ∩ C, where C is a sufficiently

large compact convex set containing a neighborhood of {0}. The reparametrized
moment functions are then

̃ (  ) ≡ lim
→∞

̃
¡
  

¢
(21)

with  ( = 1 2   ) such that ̄
¡
 

¢
= +(̄− ) , where ̄ denotes the center

of mass of K∗. These definitions effectively parametrize the sample moment function
by their value  in the population. The limit in (21) is introduced to handle potential

solutions at infinity (kk → ∞). These solution at infinity (in ) are mapped into

solutions (in terms of ) at the boundary of K. Although the boundary of K may,

sometimes, itself be at infinity, we can restrict K to a compact set K∗ = K ∩ C,
without loss of generality because we are interested in values of  making the sample

moment as small as possible, i.e. values of  near zero. The constraint  ∈ C is
therefore not binding with probability approaching one. The reparametrized moment

functions ̃ (·  ) are then indexed over a domain ∪∈Θ {}×K∗, which is compact
by construction.

7Of course, any regularity conditions must then apply to the reparametrized functions – oth-

erwise any noncompact parameter space could be made compact in this fashion without loss of

generality.
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Remark G.1 This reparametrization is merely a device in the proof of consistency

– this is not needed for the implementation of the method. As explained at the

end of Section 2.1, optimizing  over a noncompact set poses absolutely no practical

implemention problems. In fact, it is easier than having to worry about boundary

solutions.

Another important step is to characterize the stochastic convergence of ̂ ( ).

This can be accomplished by first showing that the “tilted” moment functions ̃ (  )

are 0-Donsker (van der Vaart and Wellner (1996), van der Vaart (1998)), i.e., their

normalized sample averages converge to a tight Gaussian process in the sup metric.8

A sufficient condition is as follows:

Assumption G.1  is iid, 

∙°°°̃ ³ ̃ ̃
´°°°2¸ ∞ for some ̃ ∈ Θ and ̃ ∈ R .

For some  ∈ ]0 1], the family ̃ (·  ) satisfies, for all positive  less than some

0 ∈ ]0∞[,

sup
1∈Θ

sup
1∈R



"
sup

2∈R :k̄(12)−̄(11)k≤
k̃ ( 1 2)− ̃ ( 1 1)k2

#
=  ()(22)

sup
1∈Θ

sup
1∈R



"
sup

2∈Θ:k2−1k≤
k̃ ( 2 1)− ̃ ( 1 1)k2

#
=  () (23)

where ̄ ( ) =  [̃ (  )].

This assumption can be understood as a type of “Hölder continuity in expectation”

condition. It is a very weak condition that essentially requires points of discontinuity

to be rarely sampled. A violation of this assumption would involve having the bound-

ary of the set K∗ being not piecewise-differentiable, a somewhat pathological setting.
Note that the metric used for  in (22), namely k̄ ( 2)− ̄ ( 1)k, ensures the
Hölder condition for the reparametrized moment functions. This condition is general

enough to allow for nonsmooth functions, which is important in our setting because

the limit of ̃ (  ) as kk→∞may be nonsmooth in  in the common case where

the boundary of the set K contains “flat” portions. Allowing for nonsmooth func-

tions is also useful to handle quantile restrictions. By Corollary 19.35 in van der Vaart

(1998), Assumption G.1 implies that sup∈Θ sup∈R k̃ (  )k = 

¡
−12

¢
, thus

providing a specific rate of uniform convergence in probability, one of the assump-

tions of Theorem 3.2 in Chernozhukov, Hong, and Tamer (2007). Assumption G.1

is implied by more primitive conditions on  (  ), such moment existence and

smoothness. For instance, see Lemma G.1 in Section G.5 for the interval-valued data

model of Example 1.1.

8This result, in turn, will imply that ̂ ( ) converges to a Gaussian process as well (over the

identified set, and dominated by a Gaussian process elsewhere), as a result of the permanence of the

Donsker property under Lipschitz transformations.
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The asymptotic treatment of Chernozhukov, Hong, and Tamer (2007) depends

crucially on whether the objective functions satisfies a so-called degeneracy property.

In essence, this property holds when the objective function ̂ () is exactly zero in a

finite sample over a set that is asymptotically close to the identified set. The class of

models we consider is so general that it includes objective functions that do satisfy

the degeneracy property and some that do not. For instance, the interval-valued and

censored data models (Examples 1.1 and 1.2) satisfy the degeneracy property, but

some of the measurement error models we consider (extensions of Example 1.5 treated

in Section 2.3) do not. The main implication is that regions of the type (20) provide

root- consistent estimates in the degenerate case (for any nonnegative constant ̂)

but fall just short of root- consistency (with a convergence rate of
p
ln) in the

nondegenerate case (with ̂ ∝ ln).

G.3 Critical values

The general subsampling techniques proposed in the context of set-identified models

(Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh (2010)) can be

used to obtain suitable critical values ̂. As noted, e.g., in Imbens and Manski

(2004) and Chernozhukov, Hong, and Tamer (2007), there are two main types of

confidence region: Pointwise regions satisfying lim→∞ 
h
0 ∈ B̂

i
≥ 1 −  for any

0 ∈ B0 and “setwise” regions satisfying lim→∞ 
h
B0 ⊂ B̂

i
≥ 1 − . Each have

their relative merits and domain of applicability, an issue which we will not discuss

here.

In the setwise case, the critical value ̂ can be obtained by computing the 1− 

quantile of realizations of sup∈B̃̂ () (where B̃ is a suitable consistent estimate
of the identified set) obtained by drawing subsamples of size  ¿  out of the full

sample of size .

In the pointwise case, the critical value ̂ is, in general, a function of , denoted

̂ (). It can be obtained by computing the 1− quantile of realizations of ̂ ()

obtained by drawing subsamples of size  ¿  out of the full sample of size . An

alternative critical value in the pointwise case, is to set ̂ to be the supremum of

̂ () over an estimate of the identified set.
9 The latter alternative tends to produce

larger regions but avoids unsightly discontinuities in the confidence region boundary

whose location unfortunately depends on user-specified parameters. As noted in

Imbens and Manski (2004) and Andrews and Guggenberger (2009), it is important to

ensure that pointwise confidence regions exhibit a coverage that converges uniformly

(where the uniformity is with respect to the data generating process). This avoids

paradoxes such as having a family of set-identified models having a smaller confidence

regions than a point-identified model nested as a special case of this family. Andrews

9Note that this does not produce setwise coverage because the supremum of a family of quantiles

is not the same as the quantile of the supremum over a family.
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and Guggenberger (2009) provides conditions under which pointwise regions have

uniformly converging coverage in our general setup.

Most of the regularity conditions needed for the validity of subsampling invoked

in Chernozhukov, Hong, and Tamer (2007) directly translate to the present setting.

We focus here only on those which may require special attention. Establishing the

stochastic convergence of ̂ ( ) can be accomplished as in the consistency result

(see Assumption G.1), by first showing that the “tilted” moment functions ̃ (  )

are 0-Donsker. Under some additional measurability and approximability conditions

(following Chernozhukov, Hong, and Tamer (2007)), ̂ () then admits a limiting

distribution.10

Another technical issue is that the set over which the maximizations take place

must be sufficiently regular, i.e. satisfy a condition known as Chernoff-regularity

(Chernoff (1954), Silvapulle and Sen (2005)). Intuitively, this requires these sets to

have a boundary whose nonsmooth points consist, at worst, of kinks. This ensures

that the boundary solutions in the optimization problem (which cannot be assumed

away in the present settings) still result in well-defined limiting distributions. While

the set Θ can be directly assumed to satisfy this property, one cannot merely arbi-

trarily fix the set over which  is optimized. This is handled, as for the consistency

result, by reparametrizing the moment function by their expectations  in the pop-

ulation. The domain of  is K ∩ C, which is a convex set because K is convex by

construction and so is C, by assumption. Convexity then implies Chernoff-regularity
(see, e.g. Claeskens (2004)).

Subsampling is not the only way to obtain critical values, one can also use the

bootstrap or simulations methods that draw from the supremum of a Gaussian process

(Canay (2010), Bugni (2010), Chernozhukov, Hong, and Tamer (2007), Romano and

Shaikh (2010), Andrews and Soares (2010), Andrews and Jia (2008)).

G.4 Simple but conservative critical values

A companion paper (Schennach (2009)) presents an asymptotic treatment providing

conservative critical values in a nearly closed form, along with a simpler computational

method to construct confidence regions. This alternative treatment draws on the

literature on constrained statistics methods (Silvapulle and Sen (2005), Rosen (2008))

and expresses the limiting distribution of the test statistic in terms of the so-called 2-

bar distribution. In this fashion, a repeated optimization over  at each resampling

step is unnecessary. This method provides the limiting distribution of ̂ () and

10Note that establishing that ̂ ( ) is 0-Donsker does not necessarily imply that ̂ () is

(because the maximization over  may cause loss of stochastic equicontinuity). This is an issue related

to the lack of stochastic equicontinuity in moment inequality problems noted by Chernozhukov,

Hong, and Tamer (2007). Nevertheless, under fairly weak conditions (see conditions S.1 and S.3 in

Chernozhukov, Hong, and Tamer (2007)), suprema over  and  still admit a limiting distribution.
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confidence regions of the form(
 ∈ B : sup

∈N

−̂ (( )) ≤ ̂

)

but does not allow for a subtraction of the objective function of the “unrestricted

model” as in (19). For this reason, the resulting confidence regions tend to be conser-

vative in general, although they are still perfectly valid. Nevertheless, in special cases,

sup∈Θ ̂ () = 0 with probability approaching one, and confidence regions that are

not conservative can be obtained in this fashion without recourse to resampling. This

condition is closely related (though not identical) to the so-called “degeneracy prop-

erty” introduced by11 Chernozhukov, Hong, and Tamer (2007) and is satisfied in many

commonly used models, such as the interval-valued data model of Example 1.1.

We conclude this section by providing an even simpler way to calculate critical

values that are also more conservative.

Assumption G.2  is iid.

Assumption G.3 The set Θ is compact and the set Γ =
©
 ∈ R :  [k̃ (  )k] ≤ 

ª
is nonempty for all  ∈ Θ, for some  ∞.

Assumption G.4 
£k̃ (  )k2¤ ∞ ∀ ∈ Θ and  ∈ Γ

Theorem G.1 Let ̂ () be as in Definition G.1 with  ( ) =  − ( ), the
generalized inverse of  ( ) =  [̃ (  ) ̃

0 (  )]. Under Assumptions G.2,

G.3 and G.4, if  ∈ Θ0, then

lim
→∞

Pr
h
−2̂ () ≥ 2 

i
≤ 

where 2 denotes the (1− ) quantile of the 2 distribution with  degrees of

freedom (2).

Proof. Theorem 3.4 in Owen (2001) establishes that −2̂ ( )
→ 2 for  ∈ Θ0

and  such that  [̃ (  )] = 0 with  =rank( [̃ (  ) ̃0 (  )]) for the Em-
pirical Likelihood (EL) objective function. His proof first proceeds by showing that

EL has the representation of Definition G.1, hence his result applies more generally

for any objective function with that representation. Note that  ≤  and since 
2


stochastically dominates 2, using a 
2

instead of 2 will produce valid but conserva-

tive confidence regions. It follows that R =
n
( ) ∈ Θ×R : −2̂ ( ) ≥ 2

o
11Chernozhukov, Hong, and Tamer (2007) state their degeneracy property as ̂ () −

sup∈Θ ̂ () = 0 for all  in a set that is asymptotically close to the true identified set.
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is a confidence region of level ≤  for ( ). A (slightly more) conservative re-

gion (of level ≤ ) for  can be obtained by keeping all  such that there exists

at least one  such that ( ) ∈ R. This is equivalent to keeping all  such that
sup∈R −2̂ ( ) ≥ 2 , that is −2̂ () ≥ 2 .

This theorem is useful to get a quick idea of what the confidence regions look like

– a lookup in a 2 table is all that is needed. In some cases, the resulting region will

be sufficiently small to already reject the null hypothesis of interest, in which case no

further steps would be needed.

G.5 Primitive conditions for Assumption G.1 in Example 1.1

Lemma G.1 In Example 1.1, if  [4] ∞ and  [ 4] ∞ (where ≡ ¡ − 
¢
)

and  is not degenerate at 0, then Assumption G.1 holds.

Proof. In this example, the moment condition is ̃ (  ) =
¡
 + 

¡
 − 

¢− 
¢


with  =
¡
 ̄ 

¢
and we have

̃ (  ) =

R 1
0

¡
 + 

¡
 − 

¢− 
¢
 exp

¡

¡
 + 

¡
 − 

¢− 
¢

¢
R 1

0
exp

¡

¡
 + 

¡
 − 

¢− 
¢

¢


=
¡
 − 

¢
+



1− −(−)
− 1


 (24)

where  ≡ ¡
 − 

¢
. We then have, by a mean value argument, for 1 ∈ Θ and

1 ∈ R ,

11
≡ 

"
sup

2∈Θ:k2−1k≤
k̃ ( 2 1)− ̃ ( 1 1)k2

#
≤ 

⎡⎣ sup
̄∈Θ:k̄−1k≤

°°∇0 ̃
¡
 ̄ 1

¢°°2⎤⎦ 2
where, for any ̄ ∈ Θ and  ∈ R ,

∇0 ̃
¡
 ̄ 

¢
= −2

So sup1∈Θ sup1∈R 11
≤  [4] 2 = 

¡
2
¢
if  [4] ∞. This establishes (23)

in Assumption G.1.

To establishes (22), let us first relate the original and reparametrized moment

functions (via  ≡ ̄
¡
1 

¢
for  = 1 2):

11
≡ 

"
sup

2∈R :k̄(12)−̄(11)k≤
k̃ ( 1 2)− ̃ ( 1 1)k2

#

= 

"
sup

2∈K :k2−1k≤
k̃ (  2)− ̃ (  1)k2

#

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By a mean value argument, we have

11
≤ 

"
sup

̄∈K:k̄−1k≤
k∇0 ̃ ( 1 ̄)k2

#
2 (25)

To calculate∇0 ̃ ( 1 ̄), we note that∇0 ̃ (  ) = ∇0 ̃ (  )

0 = ∇0 ̃ (  )

∇0 ̄ ( ), so that

∇0 ̃ (  ) = ∇0 ̃ (  ) (∇0 ̄ ( ))
−1

(26)

for  and  such that  = ̄ ( ). In order to bound (26) we will now find a lower

bound on ∇0 ̄ ( ) and then an upper bound on ∇0 ̃ (  ). To calculate these

derivatives, we note that, from (24), we have

∇ ̃ (  ) = ∇

µ


1− −
− 1



¶
=
1

2
− 2

(2 − −2)2
 (27)

where  ≡ ¡ − 
¢
. Using the inequality

¡
2 − −2

¢2 ≥ 2+412 for any  ∈ R
(obtained by a Taylor expansion combined with a convexity argument), Equation (27)

can be bounded below:

1

2
− 2

(2 − −2)2
≥ 1

2
− 2

22 + 4412
=

1

122 + 2


Next, we observe that, if  =
¡
 − 

¢
 is not degenerate at 0, there exists 1  0

so that
R
||≥1  () = 1 − 2 for some 2 ∈ ]0 1[. We can the write, after noting

that the integrand is positive and increasing in 2,

 [∇ ̃ (  )] ≥ 

∙
1

12 2 + 2

¸
=

Z
1

122 + 2
 ()

≥
Z
||≥1

1

122 + 2
 () ≥

Z
||≥1

1

1221 + 2
 ()

=
1

1221 + 2

Z
||≥1

 () =
1− 2

1221 + 2
 (28)

We now turn to the problem of finding an upper bound on ∇0 ̃ (  ). From (27)

∇0 ̃ (  ) =
1

2

Ã
1− 22

(2 − −2)2

!


where one can show that 1− 2

(2−−2)2
≤ 212 for any  ∈ R (by a Taylor expansion

combined with a concavity argument). We can also show that 1 − 2

(2−−2)2
is
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increasing in || and reach its maximum value of 1 as || → ∞. Hence, we have
1− 2

(2−−2)2
≤ min {212 1} and

∇0 ̃ (  ) ≤ 1

2
min

©
2212 1

ª
= min

½
2

12

1

2

¾
 (29)

Combining (25), (26) (28) and (29), we have, for ̄ such that ̄ = ̄ ( ̄),

11
≤ 2

"
sup

̄∈K:k̄−1k≤

µ
1221 + ̄2

1− 2
min

½
 212

1

̄2

¾¶2#
 (30)

Let 3  0 and consider two complementary cases.

(i) For 1 ≡ ̄ ( 1) such that k1 −  ( ̄)k ≤  for some |̄| ≤ 3, we use the

fact that min ( ) ≤  to write (30) as

11
≤ 2

"
sup

̄∈K :k̄−1k≤

µ
1221 + ̄2

1− 2
 212

¶2#
= 2

"µ
1221 + 23
1− 2

 212

¶2#

= 2
µ
1221 + 23
12 (1− 2)

¶2

£
 4
¤ ≡ 21

£
 4
¤
 (31)

(ii) For all other 1 (those associated with |̄|  3), we use the fact thatmin ( ) ≤
 to write (30) as

11
≤ 2

"
sup

̄∈K :k̄−1k≤

µ
1221 + ̄2

1− 2

1

̄2

¶2#
= 2

"
sup

̄∈K:k̄−1k≤

µ
1221
1− 2

1

̄2
+

1

1− 2

¶2#

≤ 2

"
sup

̄∈K :k̄−1k≤

µ
1221
1− 2

1

23
+

1

1− 2

¶2#
= 2

µ
1221
1− 2

1

23
+

1

1− 2

¶2
≡ 22 (32)

Combining (31) and (32), we have that

sup
1∈Θ

sup
1∈R

11
≤ 2max

©
1

£
 4
¤
 2

ª


which is 
¡
2
¢
if  [ 4] ∞. This establishes (22) in Assumption G.1.

H Computational details

Given the very different properties of the optimization problems in  and , we do

not jointly optimize the objective function over  and . The optimization over  is

“difficult” in the sense that (i) the maximum could be reached over a set instead of

at single point (since we allow for set-identified models) and (ii) as in any nonlinear
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model (such as GMM), the optimization problem may have multiple local optima. In

contrast, the problem of finding  can be cast as a convex optimization problem with

a unique global optimum. For these reasons, we scan over a grid of values of  to

map out the identified set and avoid any trapping in local minima. For each , the

optimization over  is well-behaved and we use the simplex method due to Nelder and

Mead (1965). This method is computationally convenient because it does not require

the calculation of the derivatives of the objective function. Faster convergence of the

numerical optimization could be achieved by exploiting derivatives of the objective

function via a guarded Newton method (see Boyd and Vandenberghe (2004), Chap.

9.5.2) or quasi-Newton method, such as L-BGFS (Nocedal (1980)).

I Example of equivalence to analytic bounds

In this section, we directly show equivalence between our approach with known ana-

lytic bounds in the simple case of Example 1.1. This verification is redundant (because

we have already formally shown in Theorem 2.1 that our method correctly determines

the identified set) but some readers may find this independent verification helpful.

To show this equivalence, we use the moment bounds provided by Theorem 2.2

(which is itself equivalent to the result of Theorem 2.1). In this example,  (  ) =¡
 + 

¡
 − 

¢− 
¢
 with  =

¡
  

¢
and  ∈ U = [0 1]. Since the unobservable

is one-dimensional, the unit vector  (in Theorem 2.2) can only be +1 or −1.
(i) We can calculate lim→∞ 0̃ (  ) for  = ±1:

0̃ (  ) =

R 1
0
 (  ) exp ( (  )) R 1

0
exp ( (  )) 

= 
¡
 − 

¢
+

⎡⎣
³
1 + 1



¡
− − 1¢´

1− −

⎤⎦
=(−)

and therefore

lim
→∞

0̃ (  ) =  ( − ) if  ≥ 0
lim
→∞

0̃ (  ) = 
¡
 − 

¢
 if   0

(ii) Equivalently, we can calculate sup∈U 
0 (  ). If  = 1, then

sup
∈U

0 (  ) = sup
∈[01]

¡
 + 

¡
 − 

¢− 
¢
 =

½
( − ) if  ≥ 0¡
 − 

¢
 if   0



For  = −1, we have

sup
∈U

0 (  ) = sup
∈[01]

¡
 + 

¡
 − 

¢− 
¢
 =

½ − ¡ − 
¢
 if  ≥ 0

− ( − ) if   0

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Through route (i) or (ii), we therefore obtain the same moment inequalities:

(+1)

∙½
( − ) if  ≥ 0¡
 − 

¢
 if   0

¾¸
≥ 0

(−1)
∙½ ¡

 − 
¢
 if  ≥ 0

( − ) if   0

¾¸
≥ 0

Isolating  yields:

¡

£
2
¤¢−1



∙½
 if  ≥ 0
 if   0

¾¸
≤  ≤ ¡ £2¤¢−1 ∙½  if  ≥ 0

 if   0

¾¸


in agreement with, e.g., Manski and Tamer (2002). The above treatment holds

whether the expectation is under the population or the sample distribution, that

is, it also ensures agreement in finite samples.

J Comparison with other methods

Our work has some connections with some previously proposed information-theoretic

methods: Shen, Shi, and Wong (1999) suggested the use of an empirical likelihood-

type objective function in the presence of unobservable variables. Their method con-

sists of creating a discrete grid of points that approximates the support of the un-

observables for each observed data point and maximizing the empirical likelihood

calculated from this augmented sample consisting of both actual data points and the

created grid points. This approach has been shown to identify the true parameter

value in a special case where the unobservable has a binary support. However, such a

proof cannot be generalized further, because it can be verified that this method does

not recover the well-known bounds in the interval data model of Example 1.1.

Example J.1 Applying the method of Shen, Shi, and Wong (1999) to Example 1.1

does not yield the correct identified set. In their method, one would create a grid of

fictitious observation points within the sets
£
   

¤×. The empirical likelihood of

all fictitious observation points is maximized when all points receive the same weights.

The value of the slope coefficient 1 corresponding to these weights is simply the slope

of the regression of
¡
  +  

¢
2 on , because the uniform weights simply result in

averaging values in the interval
£
   

¤
. Now, if instead one places all the weight on

  for   0 and all weight on   for   0, the corresponding 1 parameter is

the slope of the regression of  1 [  0] +  1 [  0] on . This is, in general,

a different value of 1 that is nevertheless equally plausible (one cannot rule out that

the dependent variable takes these specific values). Yet, the value of the empirical

likelihood for this set of weights is much lower (in fact, it is zero). Hence the method

assigns a different likelihood to two equally likely values of the slope parameter 1.
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Our proposed method may be reminiscent of various entropy maximization meth-

ods proposed in Golan, Judge, and Miller (1996). Like Shen et al.’s method, dis-

cretization of the unobservables is built into the method and its computational re-

quirements scale rapidly with the number of created support points for the unob-

servables. A crucial distinction with our method is the fact that their method is

aimed at problems where the “unobservables” are variables such as the disturbances

in a conventional least-square regression (note that their method does not reduce to

conventional least-squares in such a case). Genuinely unobservable variables, as con-

sidered here, are not investigated in Golan, Judge, and Miller (1996) and subsequent

work.
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