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Abstract

This chapter reviews the literature on the econometric relationship between DSGE and

VAR models from the point of view of estimation and model validation. The mapping

between DSGE and VAR models is broken down into three stages: 1) from DSGE to state-

space model; 2) from state-space model to VAR(1); 3) from VAR(1) to �nite order VAR.

The focus is on discussing what can go wrong at each step of this mapping and on criti-

cally highlighting the hidden assumptions. I also point out some open research questions

and interesting new research directions in the literature on the econometrics of DSGE mod-

els. These include, in no particular order: understanding the effects of log-linearization on

estimation and identi�cation; dealing with multiplicity of equilibria; estimating nonlinear

DSGE models; incorporating into DSGE models information from atheoretical models and

from survey data; adopting �exible modelling approaches that combine the theoretical rigor

of DSGE models and the econometric model's ability to �t the data.
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1 Introduction

This chapter reviews the literature on the econometric relationship between DSGE models and

VAR models. The main focus is on formal statistical methods for estimation and validation

of DSGE and VAR models, in particular via the use of impulse-response analysis. This focus

brings up different issues from those involved in using DSGE and VAR models for forecasting,

which are discussed in Giacomini (2013) and in the chapter by Gurkaynak and Rossi.

Understanding if a DSGE model can be represented as a reduced-form VAR is important for

both estimation and model validation. The topic is relevant for empirical practice as it answers

the question of whether the structural shocks "t can be recovered from a VAR analysis, that is,

whether the following equivalence holds

"t D �
�
Yt � E

�
Yt jY t�1

��
; (1)

where Yt is a vector of observable macroeconomic variables, Y t�1 is the history of Yt up to time

t � 1, Yt � E
�
Yt jY t�1

�
the forecast error from a VAR and � a rotation matrix. Uncovering

such a relationship by imposing identifying restrictions on � is the objective of Structural VAR

(SVAR) analysis, but it also has important implications for both estimation of DSGE models

(when it is carried out by matching impulse-response functions from the VAR) and for their

validation, which often involves assessing whether the impulse responses from the DSGEmodel

can replicate those from a SVAR. If the model shocks cannot be recovered from the SVAR

shocks, model estimation and validation becomemeaningless. This issue has been hotly debated

in the literature, with Chari et al. (2005) in one camp arguing that SVAR models are not suitable

for model validation and estimation and Christiano et al. (2006) in the opposite camp defending

SVAR models as a useful tool but cautioning against their incorrect use.

The main goal of this chapter is to present a selective review of the literature in order to

clarify how and when a mapping between DSGE and VAR models can be obtained. I will show

that the mapping consists of three stages. In the �rst stage, the equilibrium conditions from a

DSGE model are mapped into a linear state-space model; in the second, the state-space model

is represented as a VAR with an in�nite number of lags; in the last stage, the VAR.1/ is either
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shown to be a VAR with a �nite number of lags if the model satis�es some testable conditions,

or the VAR.1/ is approximated by a �nite order VAR.

I will show in detail how the mapping is obtained in the context of the prototypical DSGE

model of An and Schorfheide (2007), whose log-linearized version turns out to have an exact

VAR(1) representation.

My focus throughout the paper will be on highlighting what can go wrong at each stage

and on drawing attention to the many assumptions that underlie the analysis. This will bring up

some interesting open questions that are discussed at the end of the chapter, and inevitably will

end up pointing to my ongoing work on the econometrics of DSGE models.

A notable omission in this chapter is a discussion of the literature on identi�cation of struc-

tural parameters in DSGE models, which is fast growing and will soon require a separate survey

article. A partial, must-read list includes: Canova and Sala (2009), Komunjer and Ng (2011),

Iskrev (2010), Guerron-Quintana, Inoue and Kilian (forthcoming).

2 Stage 1. From DSGE to state-space model

As a �rst step towards understanding the relationship between DSGE and VAR models, I will

begin by discussing the mapping between the equilibrium conditions of a DSGE model and a

linear state-space model written in the ABCD form, which is the starting point for most of the

analyses in the literature

X t D AX t�1 C B"t (2)

Yt D CX t�1 C D"t :

Here X t are the state variables of the model, Yt the observable variables and "t the structural

shocks.

The discussion will assume that the parameters are either known (for example if the purpose

of the exercise is to simulate a calibrated DSGE model to see if it matches moments implied by

a VAR) or are �xed at a particular value, for cases in which stage 1 is part of an optimization

routine whose ultimate goal is to estimate the model's parameters.
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The chapter uses as an example the prototypical DSGE model of An and Schorfheide (2007,

henceforth AS), which is a representative of the class of models currently used in the analysis

of monetary policy at most central banks and policy institutions. The model is a simpli�ed

version of Smets and Wouters (2003) and Christiano et al. (2005), and is characterized by six

equilibrium conditions:

1 D �Et
�
e��bctC1C�bctCbRt�bztC1�b� tC1� (3)

1� �
���2

.e�bct � 1/ D .eb� t � 1/��1� 1
2�
�
eb� t C 1

2�
	

��Et
�
.eb� tC1 � 1/e��bctC1C�bctCbytC1� OytCb� tC1� (4)

ebct�byt D e�bgt � ��2g
2

.eb� t � 1/2 (5)

brt D �Rbrt�1 C .1� �r / 1b� t C .1� �r / 2.byt �bgt/C � r"r;t (6)

bzt D �zbzt�1 C � z"z;t (7)

bgt D �gbgt�1 C � g"g;t : (8)

The model has six state variables X t D .bct ;bzt ;bgt ;b� t ;brt ;byt/ where
� bct D ln.ct=c/; ct D Ct=At is detrended consumption relative to aggregate productivity

At ; assumed to evolve as lnAt D ln  C ln At�1C ln zt ; and c D .1� v/1=� is the steady-

state of detrended consumption

� bzt D ln zt is the innovation to the process governing aggregate productivity
� bgt D ln.gt=g/; where gt is government spending, assumed to evolve as lngt D .1 �

�g/ ln g C �t ln gt�1C � g"g;t

� b� t D ln.� t=�/; where � t is in�ation and � the steady-state in�ation rate
� brt D ln.rt=r/; where rt is gross interest rate and r D 

��
�, with 

� the steady-state real

interest rate and �� the target in�ation rate, which in equilibrium equals �
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� byt D ln.yt=y/; where yt D Yt=At is detrended output and y D g.1� v/1=� is the steady-
state of detrended output.

The model is driven by three independent exogenous shocks: "t D ."r;t ; "z;t ; "g;t/; assumed

to be i.i.d. N(0,1).

Equations (3) to (8) represent a system of six non-linear expectational equations for six state

variables X t and three shocks "t whose solution is an equation of the form

State transition equation: X t D f .X t�1; "t ; �/; (9)

where � D .�; �; �; � ; �; 1;  2; �r ; �z; �g; � r ; � z; � g/ are the structural parameters of the

model.

Once the state transition equation (9) is pinned down either by �nding a closed-form ex-

pression for f .�/ or by numerical approximation, the parameters of the model can be calibrated

and one can simulate paths of the state variables. This would be suf�cient is one's sole ob-

jective were to understand the model's internal propagation mechanism or to derive qualitative

implications about the dynamics and the moments of some of the variables in the system.

Increasingly in recent years, the focus in the literature has shifted towards the adoption of

formal econometric methods in the analysis of DSGE models. An early example is the literature

that tries to formalize the calibration approach, such as Watson (1993), Canova (1994), Diebold,

Ohanian and Berkowitz (1998), De Jong, Ingram and Whiteman (2000) and Dridi, Guay and

Renault (2007). More recently, the development of models that are rich enough (and embed

enough frictions) to generate realistic time series behavior has generated a demand for formal

econometric methods for the estimation and evaluation of DSGE models.

The literature has considered several approaches to estimation, ranging from limited infor-

mation methods such as GMM and minimum-distance estimation based on matching impulse-

response functions (see the survey by Ruge-Murcia, 2007) to full-information likelihood-based

methods. Perhaps because Smets and Wouters (2003) made the case that a DSGE model es-

timated by Bayesian methods could �t the data as well as a VAR model, the literature on the

Bayesian estimation of DSGE models has grown tremendously in recent years and these mod-

els have been widely adopted by central banks around the world (see, respectively, the reviews
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by An and Schorfheide, 2007 and Tovar, 2009). In this article, I will accordingly focus on

likelihood-based estimation of DSGE models.

In order to derive a likelihood for the DSGE model (3) - (8), one needs to �rst choose

a vector of observable variables Yt and then specify a measurement equation which links the

observables to the state variables, which typically takes the following form:

Measurement equation: Yt D HX t : (10)

Equations (9) and (10) form a state-space model which, under suitable conditions, gives a

likelihood that can be computed using �ltering methods. There are �ltering methods for non-

linear state-space models such as the particle �lter (e.g., Pitt and Shephard, 1999) and they have

been adopted by some authors (e.g., Fernandez-Villaverde and Rubio-Ramirez, 2007, Aruoba,

Fernandez-Villaverde and Rubio-Ramirez, 2006) to perform Bayesian estimation of nonlinear

DSGE models. The vast majority of the literature, however, resorts to log-linearization of the

model around the steady state, in order to obtain a linear version of the state transition equation:

Linearized state transition equation: X t D AX t�1 C B"t ; (11)

where the coef�cient matrices A and B implicitly depend on the structural parameters �: As-

suming normality of "t , the linear state space model (10) and (11) can be estimated using the

Kalman �lter.

In the case of the AS model, log-linearization of (1) - (6) around the steady state gives the

following system of linear expectational equations

byt D EtbytC1 Cbgt � EtbgtC1 � 1
�
.brt � Etb� tC1 � EtbztC1/ (12)

b� t D �Etb� tC1 C � .1� v/
v�2�

.byt �bgt/ (13)

bct D byt �bgt (14)

brt D �rbrt�1 C .1� �r / 1b� t C .1� �r / 2.byt �bgt/C � r"r;t (15)

bzt D �zbzt�1 C � z"z;t (16)

bgt D �gbgt�1 C � g"g;t : (17)
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which can be solved using, for example, the algorithms of Blanchard and Kahn (1980), Uhlig

(1999) or Sims (2002) to obtain an equation of the form (11).

The next step involves choosing the set of observables, which in the AS model are

Yt D .brt ;byt ;b� t/: (18)

Putting together (11) and (10) one can obtain the ABCD representation (2) of the log-

linearized DSGE model, which is a useful starting point for discussing the relationship between

DSGE and VAR models.

In the case of the AS model, for example, as shown by Komunjer and Ng (2011) and Morris

(2012), the minimal state representation of the model (i.e., the representation of the model with

the smallest number of state variables) for parameters calibrated as

� D .�; �; �; � ; �; 1;  2; �r ; �z; �g; � r ; � z; � g/ D (19)

.0:995; 0:1; 53:68; 2; 1:01; 1:5; 0:5; 0:75; 0:9; 0:95; 0:002; 0:003; 0:006/

is given by:26664
bztbgtbrt

37775
| {z }

X t

D

26664
0:90 0 0

0 0:95 0

0:55 0 0:51

37775
| {z }

A

26664
bzt�1bgt�1brt�1

37775C
26664

1 0 0

0 1 0

0:61 0 0:69

37775
| {z }

B

26664
"zt

"gt

"r t

37775
| {z }

"t

(20)

26664
brtbytb� t

37775
| {z }

Yt

D

26664
0:90 0 0

0 0:95 0

0:55 0 0:51

37775
| {z }

C

26664
bzt�1bgt�1brt�1

37775C
26664

1 0 0

0 1 0

0:61 0 0:69

37775
| {z }

D

26664
"zt

"gt

"r t

37775 :

with error covariance matrix

6 D

26664
0:0032 0 0

0 0:0062 0

0 0 0:0022

37775 : (21)
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2.1 Summary of stage 1 and discussion

To summarize, stage 1 consists of the following steps: a) start with the equilibrium conditions

of a nonlinear DSGE model; b) linearize the equations around the non-stochastic steady-state;

c) use a solution algorithm to �nd the log-linearized state transition equation (11); d) choose a

vector Yt of observable variables and write down the measurement equation (10); e) put c) and

d) together and �nd matrices A,B,C,D in the representation (2).

There are several issues that can arise at each of the above steps, as well as some implicit

assumptions that one needs to make when considering the ABCD representation as the starting

point of the analysis.

The �rst issue is that a meaningful discussion of the relationship between DSGE and VAR

models can only be carried out in the context of log-linearized DSGEmodels, taking for granted

the adequacy of the linear approximation and ignoring possible nonlinear dynamics that cannot

be replicated by linear VAR models.

Perhaps due to the high computational costs of using nonlinear �lters in the likelihood eval-

uation, estimation of nonlinear DSGE models is still a small proportion of the literature, but

it is nonetheless growing fast (e.g., Fernandez-Villaverde and Rubio-Ramirez, 2007, Amisano

and Tristani, 2011, Chen , Petralia and Lopes, 2010). This makes it possible that in a few years

nonlinear models will be the standard and thus much of the discussion contained in this chapter

will become obsolete. At the time of writing, however, it is fair to say that the profession at

large is not yet fully convinced of the need for nonlinear solution methods for DSGE models

and routinely continues to rely on log-linearized models that are estimated by the Kalman �lter.

Nevertheless, the development of nonlinear methods continues at a rapid pace. For example, in

ongoing research with Ron Gallant and Giuseppe Ragusa (Gallant et al, 2013), we develop new

estimation methods for nonlinear DSGE models that do not require approximating the model

in order to obtain a likelihood. Our limited-information state-space methods will allow one to

estimate nonlinear DSGE models directly from the equilibrium conditions.

In the context of linear vs. nonlinear DSGE models, a further important issue that has been

scarcely investigated is the effect of log-linearization on the identi�cation and estimation of
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the structural parameters of the model. Much of the discussion in the literature that I report

in the rest of the chapter will be about whether and when the state-space model (2) can be

written as or approximated by a �nite-order VAR, and about trying to understand the economic

signi�cance of the possible approximation error. Perhaps the same effort should be dedicated to

understanding the importance of the log-linearization error - as it is possible that the latter might

dominate the former in applications. See Fernandez-Villaverde et al. (2006) and den Haan and

de Wind (2009) for some notable contributions on this topic.

The second issue that arises when �nding a solution to the log-linearized DSGE model (12)-

(17) is the possible existence of multiple solutions, what is commonly referred to in the literature

as indeterminacy (see McCallum, 2003 for a differing view on why it might be helpful to keep

the two concepts distinct). The issue of multiplicity of solutions in dynamic rational expecta-

tion models is well known in the literature, and several different criteria have been suggested

for selecting one model among alternative model solutions, for example, the expectational sta-

bility criterion of Evans (1986), the minimum state variable criterion of McCallum (1983) and

the stability criterion advocated e.g., by Sargent (1987) and Blanchard and Kahn (1980). As

discussed by McCallum (1999), even though it is often unclear which of the selection criteria

is adopted in a particular study, the most popular approach in the literature is to utilize the sta-

bility criterion and rule out unstable solutions by restricting the parameter space. For notable

exceptions, see for example Benhabib and Farmer (2000) and Lubik and Schorfheide (2004),

who show that indeterminacy might be empirically relevant.

The issue of the multiplicity of solutions is relevant for our discussion because it means

that in many cases which variables enter X t and what the matrices A and B are is not uniquely

determined by the model, and the choices made by the researcher about whether and how to

deal with multiple solutions will result in different state-space representations. This in turn may

have an impact on the analysis in the following sections since a great part of the discussion will

be about the relative sizes of X t and Yt and the values of the matrices A; B; C and D: To give a

concrete example, the local identi�cation analysis of Komunjer and Ng (2011) requires one to

start from the minimal state-variable representation of the state-space system (2), and in their

application to the AS model the authors rule out indeterminacy. See Qu and Tkachenko (2012)
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for an analysis of the interplay between indeterminacy and identi�cation in DSGE models.

The third, related, issue is the choice of observable variables Yt , which is even more arbitrary

than the choice of how to deal with multiple solutions discussed above. Again, the interaction

between the agent's information set (i.e., what is contained in X t ) and the econometrician's

information set (what is in Yt ) will be a key factor in discussing the relationship between the

state-space model (2) and a VAR, so it is important to pay attention to issues of data selection.

Fortunately, this is an area where the econometrician has both more control (as she can decide

which data to use) and a better understanding of the consequences of her choices (as there is

some literature on the topic, which I discuss in the next section).

3 Stage 2. From state-space model to VAR(1)

This section discusses the mapping between the state-space model written in the ABCD form

(2) and a VAR(1), and is the starting point of most of the literature on the topic.

Let us suppose that the model has been mapped into the state-space representation (2) where

X t is nx�1; Yt is ny�1 and "t is n"�1; so that A is nx�nx ; B is nx�n"; C is ny�nx and D

is ny�n": The general representation of the log-linearized DSGE model is thus a VARMA (see,

e.g., Aoki, 1990) so the question of whether the DSGE can be written as a VAR is equivalent

to asking whether the VARMA model can be inverted and written as a VAR(1). For the case

in which there are as many observables as shocks (and thus D is non-singular), the invertibility

condition can be formulated in terms of the matrices A; B; C and D (Hannan and Deistler,

1988, Fernandez-Villaverde et al., 2007) and is easy to check. We have the following result:

Proposition 1. If the eigenvalues of A� BD�1C are strictly less than one in absolute value

the state-space model in (2) Yt can be written as a VAR(1):

Yt D C
1X
jD1

�
A � BD�1C

� j
BD�1Yt� j C D"t : (22)

Fernandez-Villaverde et al. (2007) show that the condition in Proposition 1 does not hold in

important classes of models, such as the permanent income consumption model (Sargent 1987,

chapter XII). The literature on non-fundamentalness - which we will see in the next section is
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related to the same condition - has also pointed out several cases of empirical interest in which

the mapping between model shocks and VAR shocks breaks down. We discuss this literature

below.

3.1 Relationship with fundamentalness

Another way to state the condition in Proposition 1 is to relate the invertibility of VARMAmod-

els to the issue of fundamentalness of MA representations (see the reviews by Sims, 2012 and

Alessi, Barigozzi and Capasso, 2008). As in the previous section, a discussion of fundamen-

talness is carried out in the context of square systems, in which there are as many observable

variables as shocks. We have the following de�nition from Alessi et al. (2011):

De�nition (Fundamentalness). A covariance stationary process Yt has a fundamental MA

representation Yt D � .L/ "t if � .L/ has no poles inside the unit circle and det(� .L// has no

roots inside the unit circle.

As discussed by Alessi et al. (2011), in practice detecting nonfundamentalness in the case

of DSGE models is the same as checking the invertibility condition in Proposition 1. To under-

stand the implications of nonfundamentalness, note that if an MA representation is fundamental

the inverse of the MA lag polynomial � .L/ depends only on nonnegative powers of L , and thus

the model can be equivalently written as a VAR(1). It is important to keep the issue of funda-

mentalness separate from invertibility as it can happen (when det(� .L// has roots inside the unit

circle) that the MA polynomial can still be inverted, but � .L/�1 depends on negative powers

of L : In this case, we say that there is invertibility in the future, which means that a VAR(1)

representation does not exist and thus one cannot recover nonfundamental shocks from (S)VAR

analysis.

The problem of nonfundamentalness has been known and discussed in the macro literature

for some time, at least since Hansen and Sargent (1980, 1991) and Lippi and Reichlin (1993,

1994). These authors showed that nonfundamental representations matter empirically, and can

arise either as a feature of the model - for example in the context of permanent income models

(Blanchard and Quah, 1993) or rational expectations (Hansens and Sargent, 1980) models - or
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because of the way in which the exogenous variables are modelled (Lippi and Reichlin, 1993).

In the former case nonfundamentalness is often caused by a situation in which the information

set of the agents is larger than the information set of the econometrician. An example of the

latter case is considered by Lippi and Reichlin (1993), who show that a simple and plausible

extension of the model considered by Blanchard and Quah (1993) with dynamics in produc-

tivity gives rise to nonfundamental representations and to radically different conclusions from

impulse-response analysis and forecast error variance decompositions.

A second example for how the problem of nonfundamentalness may be addressed within

a VAR model is Kilian and Murphy (forthcoming), who observe that nonfundamentalness is

a problem for oil market VAR models when traders act on information about the future not

available to the econometrician. They show that this problem may be overcome by the inclusion

of data on oil inventories in the VAR model combined with suitable identifying restrictions

derived from economic theory.

Finally, a �eld in which the issue of nonfundamentalness has come recently to the forefront

of the academic discussion is that of VAR analysis aimed at understanding the effect of �scal

shocks, where nonfundamentalness can arise because of the failure to account for the effects of

�scal news (Leeper, Walker and Yang, 2008; Mertens and Ravn, 2010).

When a model does not satisfy the fundamentalness condition, a natural question to ask

is: what should one do? One possibility is to estimate nonfundamental representations of the

econometric model and see whether they yield plausible impulse-response functions that can be

used for estimation or model validation. This is the route taken by Lippi and Reichlin (1994),

who show how nonfundamental representations can be obtained applying Blaschke matrices to

MA processes. See also Lanne and Saikkonen (2011) for an approach to estimating noncausal

VAR models that are implied by nonfundamentalness. A second way to deal (at least in part)

with nonfundamentalness that is caused by a model in which the agents have access to future

information that the econometrician does not observe is to try to enlarge the econometrician's

information set, for example by adding variables that capture information used by market par-

ticipants (Kilian and Murphy, forthcoming) or by exploiting the cross-sectional dimension via

factor models (Giannone et al, 2006, Boivin and Giannoni, 2006).
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3.2 Summary of stage 2 and discussion

Once the DSGE has been log-linearized and written in the state-space form (2), which is equiva-

lent to a VARMA, the question of whether the impulse-response functions implied by the DSGE

can be meaningfully compared to the impulse-response functions obtained by a VAR(1) cru-

cially depends on whether a VAR.1/ representation of the model exists. The condition to check

is that the eigenvalues A � BD�1C are strictly less than one in absolute value. If the condition

is satis�ed, the MA representation of the system is fundamental, and it is thus possible to re-

cover the structural shocks and their associated impulse-responses from the innovations and the

impulse-responses computed from a VAR, by imposing suitable identifying restrictions. This

in turn means that it is meaningful to use SVAR impulse responses for DSGE model estimation

and validation.

An issue that arises in stage 2 is that it cannot be performed when the model implies stochas-

tic singularity, which occurs when there are fewer shocks than observables, i.e., n" < ny: This

is a common occurrence in DSGE models, where a small number of structural shocks typically

drive a larger set of variables, linked by identities that might not hold in the data. The literature

has dealt with stochastic singularity in three ways: 1) by only using a subset of the observ-

able variables Yt in the estimation of the VAR model; 2) by increasing the number of structural

shocks in the DSGE model; and 3) by using all available observables but adding measurement

errors in the DSGE model (e.g., Ireland, 2004). Each approach has drawbacks and involves

arbitrary decisions on the part of the econometrician which may have important effects on the

results of the analysis. Dropping variables from the estimation results in a loss of information

and opens up the possibility that the results will differ depending on which subset of variables

is used. Shocks that are added to the DSGE model may lack a structural interpretation and,

from an econometric perspective, increase the number of parameters and the chance of mis-

speci�cation. For example, it is common to add preference shocks which are merely violations

of �rst order conditions. Like measurement error, they lack microfoundations and undermine

the perceived advantage of DSGE models over VAR models, namely the advantage of being

rigorously derived from micro foundations. That in turns raises the question of why we would
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take such semi-micro founded models as our starting point for the analysis. Measurement errors

can similarly be viewed as an ad-hoc econometric device that lacks economic interpretation. In

general, any arbitrary modi�cation of the original model whose sole purpose is to make the

model match empirical features can make the parameters lose structural interpretability and at

the very least cast doubts on the model's predictions.

Canova et al. (2013) propose to deal with the problems of nonsingularity by selecting ob-

servables in a way that either optimizes parameter identi�cation or that minimizes the distance

between singular and non-singular models. King, Plosser, Stock and Watson (1991) advocate

using reduced-rank models as a remedy to non-singularity, but the issue of identi�cation should

be better investigated in this context.

4 Stage 3. From VAR(1) to VAR(p)

In this �nal stage of the analysis, let us suppose that all the previous conditions for the mapping

between a DSGE and a VAR(1) have been met. Even though a VAR(1) representation exists,

in practice one typically estimates a �nite order VAR(p) and it is thus important to understand

the impact of this approximation error on the resulting analysis. This problem is investigated in

Ravenna (2007) and Morris (2012). Morris (2012) analyzes the question in the context of the

representation (2) of the log-linearized DSGE and �rst of all points out that one trivial case in

which an exact (restricted) VAR(1) representation exists is when X t and Yt are observable and

thus the state-space system can be equivalently written as:24 X t

Yt

35 D
24 A 0

C 0

3524 X t�1

Yt�1

35C
24 B

D

35 "t : (23)

In the more general and realistic case in which some state variables are unobservable, Morris

(2012) further gives the following two conditions that can be used to assess whether a DSGE

written in the ABCD form (2) can be expressed respectively as a VAR(1) or as a VAR(p), with

p > 1 but �nite.

Proposition 2 (VAR(1)). If Yt is a linear function of X t ; ny � nx and A and C are full

column rank, then the DSGE model (2) has a VAR(1) representation:
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Yt D 8Yt�1 C D"t (24)

with

8 D CA
�
C 0C

��1 C 0: (25)

Proposition 3 (VAR(p)). The DSGE model (2) has a VAR(p) representation if and only if

�
 2 : : :  pC1

�
D
�
 1 : : :  p

�
26666664

 0  1 : : :  p�1

 01  0 : : :  p�2
:::

:::
: : :

:::

 0p�1  0p�2 : : :  0

37777775

�126666664
 1  2 : : :  p

 00  1 : : :  p�1
:::

:::
: : :

:::

 0p�2  0p�3 : : :  1

37777775
(26)

where  i D E
�
YtY 0t�i

�
: In this case, the VAR(p) representation is

Yt D 8
h
Y 0t�1 : : : Y

0
t�p

i0
C ut (27)

with

8 D
�
 1 : : :  p

�
26666664

 0  1 : : :  p�1

 01  0 : : :  p�2
:::

:::
: : :

:::

 0p�1  0p�2 : : :  0

37777775

�1

(28)

and

E
�
utu0t

�
D  0 �

�
 1 : : :  p

�
26666664

 0  1 : : :  p�1

 01  0 : : :  p�2
:::

:::
: : :

:::

 0p�1  0p�2 : : :  0

37777775

�126666664
 01

 02
:::

 0p

37777775 : (29)

Ravenna (2007) similarly derives conditions for the existence of a �nite order VAR repre-

sentation of a DSGE model written in a different state-space form, which makes the distinction

between endogenous state variables (Wt ) and exogenous state variables (Z t ) explicit:

Wt D RWt�1 C SZ t (30)

Yt D PWt�1 C QZ t

Z t D 8Z t�1 C "t :
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For the AS model, for example, Z t contains the technology and government spending

processes Z t D .bzt ;bgt/ and Wt includes all remaining variables in the model.
Let Wt be n � 1; Z t be m � 1 and Yt be r � 1: Under the assumptions that all elements of

Wt and Yt are observable and that m D n C r; the DSGE model (30) has a restricted VAR(2)

representation

eYt D .A C B8B�1/eYt�1 � .B8B�1A/eYt�2 C B"t ;
eYt D

24 Wt

Yt

35 ; A D
24 R 0

P 0

35 ; B D
24 S

Q

35 :
In the most realistic case in which some of the the state variables Wt are unobservable, we have

the following result.

Proposition 4 (VAR(p)). A necessary and suf�cient condition for a DSGE model written in

the form (30) to have a �nite order VAR representation is that the determinant of
�
I �

�
R � SQ�1P

�
L
�

is of degree zero in L :

When some endogenous state variables are unobservable and the condition in Proposition 4

does not hold but the condition in Proposition 1 is valid, it is important to understand the impact

of approximation error when one estimates (as one does in practice) a �nite order VAR when

the true data-generating process is a VAR.1/. Starting from the DSGE representation (30),

when the condition of fundamentalness is satis�ed, the VAR(1/ has the form

Yt D Q8Q�1Yt�1 �
h
Q8Q�1PL � P

i 1X
jD0

�
R � SQ�1P

� j
L jC1SQ�1Yt C Q"t

and thus a �nite order VARmay still be a good approximation if the second term is small, which

occurs when Q8Q�1PL � P is small and/or
�
R � SQ�1P

� j converges to zero fast enough.
How important the approximation error is in practice can only be assessed on a case by case

basis, but some general conclusions can still be reached about whether truncation affects the

approximating VAR performance only via a pure truncation bias channel, or if in addition it

induces identi�cation bias. The former refers to the bias in estimated coef�cients and impulse

responses due to the omission of higher order lags; the latter can occur when these biased

VAR coef�cients are also used to identify structural shocks from the reduced form innovations.
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Note that the identi�cation bias in this case is not a result of incorrect identifying assumptions,

nor is it only a matter of small sample bias. Using a calibrated RBC model with a VAR(1/

representation, Ravenna (2007) shows that truncation can have sizable effects on the impulse-

response analysis based on the model.

A further consideration is that the choice of asymptotic or bootstrap inference for impulse-

response functions matters when it is made in the context of VAR models that are an approxi-

mation of a true in�nite order VAR. This issue is considered by Inoue and Kilian (2002) who

show that the residual-based bootstrap is still valid in this situation.

4.1 Summary of stage 3 and discussion

In this �nal stage of the mapping between a DSGE and a VAR, we saw that a �nite order

VAR(p) representation of a DSGE model exists when either all endogenous state variables are

observable or when the coef�cients in the state space representations (2) or (30) satisfy the

conditions in Propositions 2 or 3 or 4, from Ravenna (2007) and Morris (2012).

Given a particular calibration or estimation of a DSGE model expressed in form (2) or (30)

one can check the conditions for the existence of a �nite-order VAR representation of the model.

For example, for the minimal state representation of the AS model calibrated as in (20), we have

that ny D nx and the coef�cient matrices A and C are full rank, which means that Proposition

2 holds and the AS model has the following VAR(1) representation:26664
brtbytb� t

37775 D
26664
0:79 0 0:25

0:19 0:95 �0:46

0:12 0 :62

37775
| {z }

8DCAC�1

26664
brt�1byt�1b� t�1

37775C
26664
0:61 0 0:69

1:49 1 �1:10

1:49 0 �0:75

37775
| {z }

D

26664
"zt

"gt

"r t

37775

with variance D6D0:

As discussed by Morris (2012), one can similarly show that the model of Christiano et

al. (2005) has a VAR(1) representation, whereas the popular model of Smets and Wouters

(2007) does not, and caution should therefore be exercised when using impulse responses from

estimated VAR models to validate Smets and Wouters' (2007) model.
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Even if a �nite-order VAR representation of a DSGE model exists, there is still the pos-

sibility that the VAR model one estimates in practice does not provide a representation of the

data that is consistent with the DSGE model. I am referring in particular to the issue of data

transformations and their effect on model estimation and validation. Gorodnichenko and Ng

(2010) point out the fact that DSGE models implicitly embed assumption about whether the

model variables have deterministic or stochastic trends and that even mild violations of these

assumptions can severely affect estimation. They then propose estimation methods that do not

require a researcher to take a stand on the nature of the persistence found in the data.

One crucial feature of the robust procedure proposed by Gorodnichenko and Ng (2010) is

the fact that they apply the same transformations to both the data and the model variables. This

is an important consideration to take into account when comparing DSGE and VAR models, as

pointed out by Sims (2003) in a comment to Smets and Wouters (2003). Sims (2003) expresses

the suspicion that the pre-processing of the data utilized by Smets andWouters (2003) implicitly

favours the DSGE over the VAR and Giacomini and Rossi (2010) con�rm the correctness of

this conjecture by applying their test for time-varying comparison of model �t to test the relative

performance of Smets and Wouters' (2003) model and a Bayesian VAR (BVAR). They �nd that

the way the data is detrended severely affects the conclusion of which model �t the data best at

different time periods, and show that Smets and Wouters' (2003) model is outperformed by the

BVAR once the detrending is done in a way that correctly takes into account the information

that was available at the time of interest.

Canova (2012) similarly cautions against applying preliminary data transformations when

estimating DSGE models, as they may introduce bias and distort a model's policy implications.

He proposes an alternative approach to estimation which does not use some cross equations

restrictions from the model and instead builds a �exible link between model and data that cap-

tures some features of the data, such as trends, which no longer need to be removed before

estimation.

One further issue is that the identifying restrictions in the structural VAR model whose

responses we compare to the DSGE model's responses have to be consistent with the DSGE

model. That can be dif�cult especially when using delay restrictions for identi�cation, as ex-
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empli�ed by Rotemberg and Woodford (1998), who tweaked the timing in their DSGE model

to make it conform with their structural VAR model.

Consolo, Favero and Paccagnini (2009) add to the discussion on the suitability of reduced

form VAR as benchmarks for evaluating DSGE models by resorting to the notion of statisti-

cal identi�cation (Spanos, 1990). Spanos (1990) advocates validating structural models using

reduced form models that are themselves valid, in the sense that they pass a battery of tests.

Consolo et al. (2009) point out that in the literature on DSGE validation, instead, the choice

of the reduced form model is solely driven by that of the structural model, without considera-

tions about how accurately the reduced form model describes the data. The critique is applied

in particular to the model evaluation approach of Del Negro and Schorfheide (2004, 2006),

who obtain the reduced form model by relaxing the cross-equation restrictions imposed by the

DSGE, but the point Consolo et al. (2009) make is relevant in our discussion as well. If the

mapping between DSGE and VAR is done in the rigorous way mapped out in this chapter,

the benchmark VAR will be low-dimensional, it will omit potentially relevant variables, it will

not have time-varying parameters, and as a result it may not be a good representation of the

data. Consolo et al. (2009) propose to overcome this limitation by comparing DSGE models to

factor-agumented VAR, but the mapping from the theoretical to the reduced form model will in

this case be lost and it will be dif�cult to understand whether the model is rejected because of

misspeci�ed restrictions or because of omitted variables.

5 What next?

The work of Canova (2012), Consolo et al. (2009) and Del Negro and Schorfheide (2004, 2006)

share the concern that DSGE models are too stylized and that the restrictions they impose on

their reduced form counterparts are too restrictive for the outcomes of their estimation and

validation to be taken too seriously. A more radical view is expressed by Howitt et. al (2008)

and Pesaran and Smith (2011), who call for the profession to move beyond the narrow and ad

hoc modelling framework of DSGE models, echoing the widely expressed concern that these

models ignored important �nancial, housing and foreign channels that were crucial during the
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2007 crisis. Howitt et al. (2008) advocate a return to atheoretical econometric methods, and

Pesaran and Smith (2011) suggest a �exible approach where theory guides the choice of long-

run relationships among variables while the short run dynamics are less restricted, where trade

and �nancial variables are incorporated via the use of global VAR models and where theoretical

restrictions are used to discipline estimation in these necessarily high-dimensional models. As

it is not clear how to identify structural shocks in this framework, Pesaran and Smith's (2011)

approach has a "non-structural" �avour.

Caldara et al. (2012) focus on the missing channels in DSGE models and provide a simi-

larly "semi-structural" approach to formalize what they argue is the current tendency at central

banks to expand DSGE models to include missing channels and mechanisms of interest. They

advocate augmenting the DSGE by including proxies for the missing channels (such as house

prices) which are typically derived from auxiliary econometric models, such as VAR.

An almost opposite, "back to basics" approach is adopted by Giacomini and Ragusa (2012),

who advocate starting from an econometric model which is known to provide a good description

of the data and forcing it to satisfy some of the (nonlinear) equilibrium conditions implied

by theory using exponential tilting. The approach is �exible and general, and can be used

to incorporate only a subset of the equations from a DSGE model (e.g., the Euler equation),

thus addressing the concern that not all the equations in the DSGE model may have the same

"theoretical content" and that the researcher does not have equal faith in all aspects of the DSGE

model.

6 Conclusion

Now that the dust has settled on the debate about the usefulness of reduced form time series

methods for DSGE model estimation and validation, the emerging picture from the literature is

that VAR analysis is a useful tool for estimation and validation of DSGEmodels, but of course as

any tool it should be used with caution. As this chapter made clear, a rigorous mapping between

the structural model and the reduced form model can only be established under very stringent

assumptions. The literature offers some insight into whether such a mapping is possible for a
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given model and parameterization, but there are many situations in which the formal methods

discussed here are not applicable.

The running theme throughout the chapter has been to advocate moving beyond the narrow

question of whether a DSGE model can be written as a VAR, and to focus on understanding

the impact of the many assumptions and arbitrary decisions that underlie the current practice of

estimating and validating DSGE models.

First, the DSGE model has to be log-linearized, but the effects of log-linearization have

been scarcely investigated, and it might well be that this approximation error will end up dom-

inating the approximation error from using a �nite order VAR on which the literature solely

concentrates. More research is needed on this topic.

Second, the log-linearized model is solved and multiple solutions are typically ruled out,

again without clear motivation or an understanding of the effects of this choice on the model

estimates. This is another area that would bene�t from deeper investigation.

Third, the conclusions depend on which arbitrary choices the researcher makes when bring-

ing the log-linearized model to the data: the choice of observable variables, whether to drop

observables, add shocks or measurement errors to avoid stochastic singularity, whether to rule

out nonfundamental representations.

Fourth, even if a �nite order VAR representation exists, the outcome of estimation and

validation could be severely affected by preliminary data transformations such as demeaning

and detrending and by the assumptions made about whether the trends are deterministic or

stochastic.

Finally, a choice of benchmark VAR model that is purely driven by the initial DSGE model

and by the selected observables, and not by the VAR model's ability to �t the data, casts doubts

on the validity of the VAR's predictions. It is also not clear why a speci�c DSGE model should

be the starting point of the analysis and why VARmodels should be adapted to �t a given DSGE

speci�cation. DSGE models rely on many arbitrary choices about functional form or market

structure, about the exogeneity of driving processes (such as government spending, productivity

or monetary aggregates) and about the dynamic speci�cation of the latent driving shocks. DSGE

models might be rigorous, but they are not necessarily realistic. For example, changing the
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dynamic speci�cation of the technology process in a real business cycle model from an AR(1)

process to an MA(2) process changes the appropriate lag order speci�cation of the implied

VAR.

As a partial response to these concerns, the chapter concluded by listing recent contributions

to the literature that advocate moving beyond a dogmatic belief in the DSGEmodel speci�cation

and restrictions, and drawing instead on the vast and better understood experience of �tting the

data with atheoretical models. Examples are the idea of combining the DSGE model and its

reduced form VAR model as a way of relaxing all theoretical restrictions in the DSGE model

(Del Negro and Schorfheide, 2004, 2006); the idea of relaxing only some theoretical restrictions

and letting the data "speak" about some features of the model such as trends (Canova, 2012)

or short-run dynamics (Pesaran and Smith, 2011); the idea of starting from a DSGE model and

adding information from econometric models to capture missing channels (Caldara et al., 2012)

or the idea of starting from an atheoretical model that �ts the data well and forcing it to satisfy

some of the the equilibrium conditions implied by theory (Giacomini and Ragusa, 2012).
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