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Abstract

The primary concern of this article is the provision of de�nitions and tests
for exogeneity appropriate for models de�ned through sets of conditional moment
restrictions. These forms of exogeneity are expressed as additional conditional
moment constraints and may be equivalently formulated as a countably in�nite
number of unconditional restrictions. Consequently, tests of exogeneity may be
seen as tests for an additional set of in�nite moment conditions. A number of test
statistics are suggested based on GMM and generalized empirical likelihood. The
asymptotic properties of the statistics are described under both null hypothesis and
a suitable sequence of local alternatives. An extensive set of simulation experiments
explores the relative practical e�cacy of the various test statistics in terms of
empirical size and size-adjusted power.
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1 Introduction

The primary focus of this article is issues of exogeneity appropriate for models de�ned by a

set of semiparametric conditional moment restrictions in the cross-sectional data context.

More speci�cally its particular concerns are to provide de�nitions of and to propose tests

for exogeneity in this setting. A second contribution of the paper is to detail practically

e�cacious GMM and generalised empirical likelihood (GEL) test statistics for additional

conditional moment restrictions which include the exogeneity hypotheses considered here

as special cases.

Numerous de�nitions of exogeneity have been provided in the literature; see, e.g., the

discussion in section 2 of Deaton (2010). Engle, Hendry and Richard (1983), henceforth

EHR, consider classical parametric maximum likelihood estimation. Consider the random

vectors y and x and suppose that y is the target variate of interest. The random vector

x is said to be (weakly) exogenous for the parameters characterising the conditional

distribution of y given x if no loss of information results by disregarding the marginal

distribution of x, i.e., conditional maximum likelihood is asymptotically e�cient.1 From

a policy perspective, the exogeneity of x assumes a central importance in this context. If

in addition the conditional distribution of y given x describes the behavioural relationship

for y in terms of x and if x is also a vector of control variables for the policy maker then

knowledge of the conditional distribution of y given x enables the policy maker to predict

accurately the e�ect of a change in policy e�ected through x without knowledge of the

joint distribution of y and x, or, more precisely, the marginal distribution of x.2

Other de�nitions of exogeneity have been formulated that are primarily concerned

with the consistency of a particular parameter estimator. Hausman (1978, Section 2,

pp.1252-1261) discusses exogeneity for a linear regression model in terms of a two equation

1See EHR, De�nition 2.5, p.282. Technically this de�nition of exogeneity is that of statistical partial
or S-ancillarity; see Basu (1977, De�nition 8, p.357, and Case V, p.358).

2For the dynamic linear simultaneous equations model with normally distributed errors, EHR, Theo-
rem 4.3 (a) and (b), p.298, provides su�cient conditions for exogeneity expressed in terms of the uncor-
relatedness of particular structural error terms. More speci�cally, for classical normal linear regression,
the exogeneity assumption is equivalent to the uncorrelatedness of regression error and covariates, i.e.,
the assumption commonly made when the objective is to estimate the best linear predictor.
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triangular system. The de�nition of exogeneity provided there, however, is in fact more

widely applicable for models de�ned via unconditional moment restrictions. Consider a

linear regression model with scalar dependent variable y, covariate vector x and error term

u uncorrelated with instrument vector w. Then x is exogenous if it is also uncorrelated

with u. This particular de�nition of exogeneity is useful if interest centres on consistent

estimation of the best linear predictor of y in terms of x. Moreover, it implies that the

instrument vector w plays no role in the best linear predictor of y expressed in terms of

x and w. However, for the policy maker, the best linear predictor may be di�cult to

interpret and thus its practical relevance di�cult to justify. From this perspective the

conditional mean of y rather than the best linear predictor may be of more importance

and interest. Consequently the central concern of this paper when considering notions

of exogeneity is with particular conditional expectations in the semiparametric moment

condition setting.

More recently, Blundell and Horowitz (2007), hereafter BH, discuss exogeneity when

the nonparametric estimation of a structural function g(x) of the dependent variable y

de�ned in terms of the covariate vector x is of interest. The conditional expectation of

the structural error term y� g(x) given a set of identifying instruments w is maintained

to be zero. In this setting x is exogenous if the conditional expectation of y given x

almost surely coincides with g(x), i.e., the conditional expectation of the structural error

term given x is zero. This de�nition has the advantage that standard nonparametric

regression of y on x is then appropriate for consistent estimation of g(x) and thus may

be regarded as being a natural counterpart of the exogeneity de�nition concerned with

estimator consistency in the parametric framework considered in, e.g., Hausman (1978).

Because the maintained instruments w are now ignored this de�nition may be charac-

terised as a partial form of exogeneity which we term as marginal exogeneity in mean

below. Importantly, however, this de�nition of exogeneity may be inadequate in particu-

lar circumstances since, for the policy maker, if the instruments w are control variables,

the e�ect of changes in the instruments w given x on y will in general be unknown without

further knowledge of the conditional distribution of w given x. Of course, if the covariate

[2]



vector x is itself under the control of the policy maker, then the e�ect of changes in x on

y would be perfectly predictable.3;4

Therefore, the �rst concern of the paper is to clarify and provide an alternative

de�nition of exogeneity to that of BH for general nonlinear models speci�ed by conditional

moment restrictions. A covariate vector x is said to be conditionally exogenous in mean if

the expectation of the conditional moment indicator vector given both x and maintained

instruments w is zero. In particular, if regression covariates x are conditionally exogenous

then the instruments w are necessarily redundant as additional explanators. From the

viewpoint of the policy maker such information is useful since to e�ect a change in the

conditional mean of y given x and w, only x need now be varied. The constraints imposed

by this de�nition of exogeneity are of course stricter than those arising through that

of BH. Consequently, estimators which e�ciently incorporate this information should

dominate those which only make use of the marginal exogeneity restriction.

The paper also provides tests for additional moment restrictions in the conditional

moment framework. These tests are then adapted for both marginal and conditional ex-

ogeneity in mean hypotheses. Most tests for exogeneity proposed in the literature focus

on the best linear predictor since their primary concern is with linear regression settings.

The most popular of these tests is probably the Durbin-Wu-Hausman test [Durbin (1954),

3Similar concerns and considerations to these apply more generally in separable nonlinear (latent
variable) models such as the instrumental variable quantile regression model de�ned by Pfy � g(x)jwg =
�, where w is a vector of instruments, i.e., the conditional �-quantile Q�(yjw) of y given w is g(x); see
Chernozhukov and Hong (2003) and Honore and Hu (2003). Let I(�) be the indicator function. Hence
the �-quantile constraint Q�(yjw) = g(x) is equivalent to the moment condition E[��I(y � g(x))jw] = 0.
Marginal exogeneity in mean corresponds to E[��I(y � g(x))jx] = 0, i.e., the conditional �-quantile of y
Q�(yjx) given x is also g(x). If w is a vector of controls, policy interest would concern the conditional �-
quantile Q�(yjw; x) of y given w and x, i.e., whether given x changes in w a�ect Q�(yjw; x). In particular,
if the conditional exogeneity in mean hypothesis Q�(yjw; x) = g(x) holds, then, given x, instruments w
play no role in determining Q�(yjw; x).

4White and Chalak (2010), see also Chalak and White (2011), provides another de�nition of condi-
tional exogeneity for the nonseparable model framework y = r(x; u), where r(�) is an unknown structural
function and y, x and excluded w are observable but u is not. Let x = (x0a; x

0
b)
0. Here interest centres on

the e�ect of xa on y. White and Chalak (2010) de�nes xa to be conditionally exogenous if xa and u are
conditionally independent given w and xb. In separable models y = g(x) + u, the less restrictive condi-
tional exogeneity or conditional mean independence constraint E[y � g(x)jx;w] = E[y � g(x)jxb; w] = 0
discussed here allows identi�cation of the e�ect of xa on y given w and xb; see also Chalak and White
(2006).

[3]



Wu (1973), Hausman (1978)] which contrasts instrumental variable estimators obtained

assuming orthogonality conditions between errors and instruments and errors and covari-

ates (and instruments) respectively.5 These types of tests, however, are inappropriate for

models de�ned by conditional moment constraints. As noted by Bierens (1990), such

orthogonality tests are generally inconsistent against some alternatives implied by condi-

tional moment conditions as only a �nite number of unconditional restrictions are used

to formulate these tests.

The particular approach for test formulation taken here is based on an in�nite number

of unconditional moment restrictions that are designed to overcome the aforementioned

test inconsistency di�culty. While tests of exogeneity have received relatively little atten-

tion in models de�ned by conditional moment restrictions, there is a vast related literature

on tests of goodness of �t in regression models. See, for example, Eubank and Spiegelman

(1990) in the nonlinear regression context. Other tests have also been proposed for this

set-up by inter alia De Jong and Bierens (1994), Hong and White (1995) and Jayasuriya

(1996). Donald, Imbens and Newey (2003), henceforth DIN, extends these ideas to the

conditional moment restriction setting for GMM [Hansen (1982)] and GEL [Newey and

Smith (2004), Smith (1997, 2011)]. This paper adapts these methods to formulate tests

for additional moment restrictions in the conditional moment model framework and then

specialises them for conditional and marginal exogeneity in mean hypotheses.6 The basic

underlying idea is to approximate conditional moment restrictions by a �nite set of un-

conditional moment restrictions, the number of which is then allowed to grow with but

at a slower rate than sample size. Both marginal and conditional exogeneity in mean

hypotheses involve two sets of conditional moment restrictions with the second set imply-

ing the �rst. These sets of conditional moment conditions are replaced by corresponding

sets of unconditional moment restrictions with the �rst set a subset of the second, cf.

5Lagrange multiplier or score tests are suggested in Engle (1982). Smith (1994) proposes e�cient
limited information classical test statistics for the su�cient exogeneity conditions in the dynamic simul-
taneous equations model discussed in EHR, Section 4, pp. 294-300.

6Alternative tests for exogeneity could also be based inter alia on the approaches of Bierens (1982,
1990), Wooldridge (1992), Yatchew (1992), H�ardle and Mammen (1993), Fan and Li (1996), Zheng
(1996,1998), Lavergne and Vuong (2000), Ellison and Ellison (2000) and Dom��nguez and Lobato (2004).

[4]



DIN. As a consequence, these exogeneity tests may be interpreted as tests for additional

moment restrictions similar to those proposed by Newey (1985b) and Tauchen (1985) in

the classical parametric setting, by Newey (1985a), Eichenbaum, Hansen and Singleton

(1988) and Ruud (2000) for GMM and by Smith (1997, 2011) for GEL. After appropriate

standardization, the test statistics converge in distribution to a standard normal variate

rather than the usual chi-square distributed variate, intuitively, since, from an asymp-

totic standpoint, the statistics are based on an in�nite number of unconditional moments.

Furthermore, unlike orthogonality test statistics, e�cient parameter estimators are not

required for the formulation of these tests.7

The paper is organized as follows. Section 2 provides a detailed discussion of ex-

ogeneity appropriate for models de�ned by conditional moment restrictions. The test

problem is then speci�ed in section 3 together with some additional notation and requi-

site assumptions; GMM and GEL test statistics for marginal and conditional exogeneity

in mean are also detailed there. Section 4 details the limiting distribution of these

statistics under the null hypothesis of exogeneity whereas section 5 considers their as-

ymptotic distribution under a suitable sequence of local alternatives. Section 6 discusses

some issues concerning the computation of the test statistics. Section 7 presents a set

of simulation results on the size and power of the test statistics. Section 8 concludes.

Proofs of the results in the text and certain subsidiary lemmata are given in Appendix

A. Tables associated with the simulation experiments are collected in Appendices B and

C.

2 Exogeneity

2.1 Some Preliminaries

The standard de�nition of exogeneity in the classical linear regression setting is that of

an absence of correlation between a covariate and the model error term. This de�nition,

7The succeeding theoretical analysis may in principle be straightforwardly adapted and extended
for models de�ned by nonsmooth moment conditions that include nonparametric components, e.g.,
semiparametric single index ordered choice models. See, e.g., Chen and Pouzo (2009, 2012) and Parente
and Smith (2011).
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however, may be rather restrictive if purposes other than estimation of the best linear

predictor are of primary interest.

More generally, the conditional mean of the dependent variable is likely to be of more

relevance for exogeneity considerations. Recently, BH proposes a de�nition for exogeneity

in nonparametric regression. BH consider the model

y = g (x) + u; (2.1)

where g(�) is an unknown structural function of inferential interest and x is a vector

of covariates. BH maintain the identifying conditional moment restriction E[ujw] = 0

where w is a vector of instruments and de�ne the covariate vector x to be exogenous if

the conditional moment restriction E[ujx] = 0 holds. Therefore, E[yjx] = g(x).

Examples 2.1 and 2.2 below demonstrate the well-known result that even though

structural errors may be uncorrelated with instruments and covariates covariates are not

necessarily exogenous in the BH sense.

Example 2.1: Consider the linear regression model

y = �0x+ u; (2.2)

where �0 is an unknown parameter, the covariate x = w+ v1, u =
q
�2 ln (v2) cos (2�v1)

and the instrument w and v1, v2 are independent uniform random variables on the unit

interval [0; 1]; hence, u is standard normal being de�ned by the Box-M�uller transforma-

tion. In this example, it is easily shown that instrument and covariate are uncorrelated

with the structural error term u, i.e., E[wu] = 0, E[xu] = 0, although E[x2u] = (2�)�3=2.

Therefore E[ujx] 6= 0.

Example 2.2: [Stock and Watson, 2007, Exercise 2.23, p.63.] Suppose now that

x = w+ z and u = z2 � 1 in (2.2) hold where w and z are independent standard normal

random variates. In this case u is a centered chi-squared random variable with 1 degree

of freedom. As in Example 2.1, E[wu] = 0 and E[xu] = 0, but E[x2u] = 2 and thus

[6]



E[ujx] 6= 0.

The next example is constructed to illustrate a potential limitation of the BH de-

�nition of exogeneity and forms the basis of the simulation experiments considered in

section 7.

Example 2.3: Consider the following revision to regression model (2.2)

y = �0x+ f(w; x) + �; (2.3)

where � is standard normal and statistically independent of x and w. In this example the

parameter �0 may no longer be of sole interest but the form of f(w; x) may be relevant

too. Assume that w and x are jointly normally distributed each with mean zero, unit

variance and correlation coe�cient � where � 2 (�1; 1) and � 6= 0. Suppose

f(w; x) = x2 + w2 � (1 + �
2

�
)wx� (1� �2):

If f(w; x) is erroneously omitted from (2.3) and the regression model (2.2) again

estimated but with u = f(w; x) + �, �0 may be consistently estimated by instrumental

variables (IV) using w as instrument since E[ujw] = 0. Although the omitted variable

f(w; x) depends on x the covariate x is in fact exogenous in the BH sense as E[ujx] = 0.

Consequently �0 can also be consistently estimated using least squares (LS). In particular,

under the BH exogeneity hypothesis E[ujx] = 0, the e�ect of changes of x on y are

predictable since E[yjx] = �0x.

In general, however, regression model (2.3) is of relevance rather than (2.2); in

particular, f(w; x) is of importance if the instrument w is a control variable for the

policy maker. The impact of altering w requires additional information concerning

the conditional distribution of x given w, namely � here. To see this, from (2.3),

E[yjw] = �0E[xjw] +E[f(w; x)jw], i.e., �0�w under the above assumptions. Moreover, if

x is also a control variable for the policy maker, since E[ujw; x] 6= 0, the e�ect of changing

w while keeping x unaltered requires examination of E[yjw; x] = �0x+ f(w; x).

[7]



Therefore, more generally, an appropriate but more restrictive de�nition of exogeneity

than that of BH requires E[ujw; x] = 0 implying, for model (2.1), that E[yjw; x] = g(x).

Hence, when x is unaltered, changes of w have no e�ect on the conditional mean E[yjw; x].

2.2 De�nitions

We consider the more general conditional moment context with error vector de�ned by

u = u(z; �0), where u(z; �) is a known J-vector of functions of the random vector of

observables z and the unknown p-vector of parameters �0 which constitute the object of

inferential interest.

Like BH we assume that there exists an observable vector of instruments w such that

E[u(z; �0)jw] = 0: (2.4)

Since the BH de�nition does not involve the maintained instrument vector w we view it

as a partial or marginal form of exogeneity; viz.

De�nition 2.1 (Marginal Exogeneity in Mean.) The random vector x is marginally

exogenous in mean (mem) for �0 if

E[u(z; �0)jx] = 0: (2.5)

Example 2.3 (cont.): Here u(z; �0) = y��0x and x mem for �0 implies that �0 may

be consistently estimated by LS. LS is in general ine�cient not only because it neglects

the maintained constraint E[u(z; �0)jw] = 0 (2.4) but also because the conditional nature

of mem (2.5) is ignored. An IV estimator for �0 based on the joint conditional moment

conditions (2.4) and (2.5) should be at least as e�cient as LS or IV using only (2.4).

Thus, although E[yjx] is correctly speci�ed as �0x, a more e�cient estimator for �0 than

LS is possible.

If x mem for �0 and if x is a control variable, the average e�ect of changes in x by

the policy maker on y is predictable. In contrast, if w is also a policy control variable,

the likely impact on y occasioned by changes in w cannot be determined without further

[8]



knowledge of the conditional distribution of x given w, namely �, i.e., x mem for �0 is

uninformative. Moreover, x mem for �0 is unhelpful in determining the e�ect of changes

in w on y while keeping x unaltered which requires knowledge of the conditional mean

E[yjw; x] = �0x+ f(w; x).

In Example 2.1 f(w; x) = 0. However, because instrument w is excluded, x mem for

�0 implies E[yjw; x] = E[yjx] = �0x, i.e., y is conditionally mean independent of w given

x. Therefore, if x is kept unchanged, alterations in w have no e�ect on y, i.e., instru-

ments w contribute no information in addition to that provided by x to the conditional

expectation of y.

In general, therefore, mem (2.5) may represent an incomplete de�nition of exogeneity

from a practical perspective in the conditional moment context. To deal with this issue,

the following de�nition of exogeneity revises that of BH incorporating the maintained

instruments w and necessarily taking a conditional form.

De�nition 2.2 (Conditional Exogeneity in Mean.) The random vector x is conditionally

exogenous in mean (cem) for �0 given w if

E [u (z; �0) jw; x] = 0: (2.6)

cem (2.6) not only implies the maintained conditional moment restriction (2.4) but

also mem (2.5). Thus, cem is a more stringent requirement than mem. Therefore,

estimators using cem are in general more e�cient than those solely exploiting (2.4) and

mem. Note, however, that in Example 2.3 the marginal e�ect of w on y remains the same

under both cem and mem, i.e., E[yjw] = �0�w.

The next sections develop tests for both mem and cem and analyse their large sample

properties.

[9]



3 GMM and GEL Test Statistics

3.1 Test Problem

The conditional moment constraints E[u(z; �0)jw] = 0 (2.4) are maintained throughout.

The null hypothesis is

H0 : E[u(z; �0)js] = 0; E[u(z; �0)jw] = 0 (3.1)

with the alternative hypothesis

H1 : E[u(z; �0)js] 6= 0; E[u(z; �0)jw] = 0: (3.2)

The use of the generic random vector s permits circumstances in which w may or may

not be strictly included as a conditioning variate. Indeed the null hypothesis (3.1) allows

both the de�nitions of exogeneity given in section 2.1 as special cases with s = x and

s = (w0; x0)0 as mem (2.5) and cem (2.6) respectively. The de�nition of s will be made

explicit in each particular instance.

3.2 Approximating Conditional Moment Restrictions

Conditional moment conditions of the form given in (3.1) and (2.4) are equivalent to

a countable number of unconditional moment restrictions under certain regularity con-

ditions; see Chamberlain (1987). The following assumption, DIN Assumption 1, p.58,

provides precise conditions.

For each positive integer K, let qK(s) = (q1K(s); :::; qKK(s))
0 denote a K-vector of

approximating functions.

Assumption 3.1 For all K, E[qK(s)0qK(s)] is �nite and for any a(s) with E[a(s)2] <1

there are K-vectors 
K such that as K !1,

E[(a(s)� qK(s)0
K)2]! 0:

Possible approximating functions which satisfy Assumption 3.1 are splines, power

series and Fourier series. See inter alia DIN, Newey (1997) and Powell (1981) for further

discussion.

[10]



The next result, DIN Lemma 2.1, p.58, shows formally the equivalence between con-

ditional moment restrictions and a sequence of unconditional moment restrictions.

Lemma 3.1 Suppose that Assumption 3.1 is satis�ed and E[u(z; �0)
0u(z; �0)] is �nite. If

E [u (z; �0) js] = 0, then E[u(z; �0)
qK(s)] = 0 for allK. Furthermore, if E [u (z; �0) js] 6=

0, then E[u(z; �0)
 qK(s)] 6= 0 for all K large enough.

DIN de�nes the unconditional moment indicator vector as g(z; �) = u(z; �)
 qK(s).

By considering the moment conditions E[g(z; �0)] = 0, if K approaches in�nity at an

appropriate rate, dependent on the sample size n and the estimation method, EL, IV,

GMM or GEL, DIN demonstrates these estimators are consistent and achieve the semi-

parametric e�ciency lower bound. To do so, however, requires the imposition of a nor-

malization condition on the approximating functions, DIN Assumption 2, p.59, as now

follows.

Let S denote the support of the random vector s.

Assumption 3.2 For each K there is a constant scalar �(K) and matrix BK such that

~qK(s) = BKq
K(s) for all s 2 S, sups2S




~qK(s)


 � �(K), E[~qK(s)~qK(s)0] has smallest

eigenvalue bounded away from zero uniformly in K and
p
K � � (K).

Hence the null hypothesis (3.1) may be re-interpreted in terms of a sequence of ad-

ditional unconditional moment restrictions. In particular, to test either mem (2.5) and

cem (2.6) requires that their constituent conditional moment constraints and the main-

tained (2.4) are replaced by suitably de�ned unconditional moment restrictions based on

Assumptions 3.1 and 3.2.

The maintained conditional moment restrictions (2.4) are consequently re-expressed

as the sequence of unconditional moment restrictions

E[u(z; �0)
 qKma(w)] = 0; K !1; (3.3)

for approximating functions qKma(�) satisfying Assumptions 3.1 and 3.2 with s = w.

[11]



Let f(K) be a function of K that yields positive integer numbers and satis�es f(K) =

O(K); for simplicity we set f(K) =MK, where M is a positive integer.8 Also let qKs (s)

be a f(K)-vector of approximating functions that depends on s, with s=m or c and

s = x or s = (w0; x0)0 corresponding to mem or cem respectively. Additionally de�ne

qK(w; x) = (qKma(w)
0; qKs (s)

0)0. Therefore, if Assumptions 3.1 and 3.2 are satis�ed for

qK(w; x), the null hypothesis (3.1) is equivalent to the sequence of unconditional moments

E[u(z; �0)
 qK(w; x)] = 0; K !1: (3.4)

For mem (2.5), qKs (s) depends only on functions of x whereas for cem (2.6) it involves

additional functions of both w and x.

3.3 Basic Assumptions and Notation

We impose the following standard conditions to derive the asymptotic distributions of

the test statistics discussed below.

Assumption 3.3 (a) The data are i.i.d.; (b) there exists �0 2 int(B) such that E[u(z; �0)js] =

0; (c)
p
n(�̂ � �0) = Op(1); (d) E[sup�2B ku(z; �)k

2 js] is bounded.

Unlike DIN Assumption 6(b), it is unnecessary to impose E
h


sup�2B ku (z; �)k



i <

1 for some 
 > 2 for GEL. As noted in Guggenberger and Smith (2005), if the sample

data are i.i.d. only 
 = 2 as in Assumption 3.3(d) is required; see Lemma 3 in Owen

(1990). Indeed, Lemma A.1 in Appendix A may be substituted for Lemma A10 in

DIN. Therefore, 
 may be set as 2 in the succeeding Lemmata and Theorems in DIN

concerned with GEL. Note that only root-n consistency rather than e�ciency is required

for the estimator �̂. Moreover, since under the null hypothesis (3.1) E[u(z; �0)js] =

E[u(z; �0)jw] = 0, for s = x or s = (w0; x0)0, only a single estimator is needed for �0.

De�ne u�(z; �) = @u(z; �)=@�
0,D(s) = E[u�(z; �)js] and uj��(z; �) = @2uj(z; �)=@�@�0,

j = 1; :::; J . Also let N denote a neighbourhood of �0.

8The requirement that f(K) = O(K) arises because of local power considerations; see section 5.
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Assumption 3.4 (a) u(z; �) is twice continuously di�erentiable in N , E[sup�2N ku�(z; �)k
2 js]

and E[ku��j(z; �0)k2 js], (j = 1; :::; J), are bounded; (b) � (s) = E[u(z; �0)u(z; �0)
0js]

has smallest eigenvalue bounded away from zero; (c) E[sup�2N ku(z; �)k
4 js] is bounded;

(d) for all � 2 N , ku(z; �)� u(z; �0)k � �(z) k� � �0k and E[�(z)2js] is bounded; (e)

E[D(s)0D(s)] is nonsingular.

3.4 Test Statistics

Let gi(�) = u(zi; �) 
 qKma(wi) and hi(�) = u(zi; �) 
 qK(wi; xi), (i = 1; :::; n). Also let

ĝ(�) =
Pn
i=1 gi(�)=n and ĥ(�) =

Pn
i=1 hi(�)=n.

Conditional GMM statistics appropriate for tests of maintained and null hypotheses

take the standard form

T g
GMM = nĝ(�̂)0
̂�1ĝ(�̂) (3.5)

and

T h
GMM = nĥ(�̂)0�̂�1ĥ(�̂) (3.6)

where 
̂ =
Pn
i=1 gi(�̂)gi(�̂)

0=n and �̂ =
Pn
i=1 hi(�̂)hi(�̂)

0=n. See for example DIN, section

4, pp.63-64.

In the remainder of the paper tests that incorporate the information contained in the

maintained hypothesis (3.2) are referred to as restricted tests whereas those that ignore

it are unrestricted tests.

A restricted GMM statistic appropriate for testing the null hypothesis (3.1) compris-

ing either mem (2.5) or cem (2.6) hypotheses against the maintained hypothesis (3.2)

may be based on the di�erence of GMM criterion function statistics (3.6) and (3.5) for the

revised hypotheses (3.4) and (3.3) respectively. For �xed and �nite K, standard asymp-

totic theory for tests of the validity of additional moment restrictions [Newey (1985a)]

yields test statistics that are chi-square distributed with JMK degrees of freedom. It

is well known, however, that when the number of degrees of freedom is very large a

chi-square random variable can be approximated, after standardization by subtraction of
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its mean and division by its standard deviation, by a standard normal random variable.

The resultant GMM statistic is therefore de�ned as

J =
T h
GMM � T

g
GMM � JMKp
2JMK

: (3.7)

A number of alternative test statistics to GMM-based procedures for a �nite number

of additional moment restrictions using GEL [Smith (1997, 2011)] may be adapted for

the framework considered here. As in DIN and Newey and Smith (2004) let �(v) denote

a function of a scalar v that is concave on its domain, an open interval V containing zero.

De�ne the respective GEL criteria

~Pn(�; �) =
nX
i=1

[� (�0hi(�))� �0]=n;

P̂n(�; �) =
nX
i=1

[� (�0gi(�))� �0]=n (3.8)

under null and alternative hypotheses where � and � are the corresponding J(M +

1)K- and JK-vectors of Lagrange multipliers associated with the unconditional moment

constraints (3.4) and (3.3). Let �j(v) = @
j�(v)=@vj and �j = �j(0), (j = 0; 1; 2; :::) where,

without loss of generality, we impose the normalisation �1 = �2 = �1.

Let �̂n(�) = f� : �0gi(�) 2 V , i = 1; :::; ng and ~�n(�) = f� : �0hi(�) 2 V , i = 1; :::; ng.

Given �, the respective Lagrange multiplier estimators for � and � are given by

�̂(�) = arg max
�2�̂n(�)

P̂n(�; �); ~�(�) = arg max
�2~�n(�)

~Pn(�; �):

Suppose that �̂ is a root-n consistent estimator for �0 under either null or alternative

hypothesis. The corresponding respective Lagrange multiplier estimators for � and � are

then de�ned as �̂ = �̂(�̂) and ~� = ~�(�̂).

Let �̂ = Sma�̂ where Sma = IJ 
 (IK ; 0MK)
0 is a J(M +1)K�JMK selection matrix.

Additionally let s(z; �) = S 0sh(z; �) where Ss = IJ 
 (0K ; IMK)
0 is a J(M +1)K � JMK

selection matrix. Hence, s(z; �) = u(z; �)
qKs (w; x). Write si(�) = s(zi; �), (i = 1; :::; n).

Similarly to the restricted GMM statistic J , a restricted form of GEL likelihood

ratio (LR) statistic for testing either mem (2.5) or cem (2.6) hypotheses against the
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maintained hypothesis (3.2) may be based on the di�erence of GEL criterion function

(3.8) statistics; viz.

LR =
2n[ ~Pn(�̂; ~�)� P̂n(�̂; �̂)]� JMKp

2JMK
: (3.9)

Restricted Lagrange multiplier, score and Wald-type statistics are de�ned respectively as

LM =
n(~� � �̂)0�̂(~� � �̂)� JMKp

2JMK
; (3.10)

S =
Pn
i=1 �1(�̂

0gi(�̂))si(�̂)
0S 0s�̂

�1Ss
Pn
i=1 �1(�̂

0gi(�̂))si(�̂)=n� JMKp
2JMK (3.11)

and

W =
n~�0Ss(S

0
s�̂
�1Ss)

�1S 0s~� � JMKp
2JMK

: (3.12)

An additional assumption on �(v) is required for statistics based on GEL as in DIN,

Assumption 6, p.67.

Assumption 3.5 �(�) is a twice continuously di�erentiable concave function with Lip-

schitz second derivative in a neighborhood of 0.

4 Asymptotic Null Distribution

The following theorem provides a statement of the limiting distribution of the restricted

GMM statistic J (3.7) under the null hypothesis (3.1).

Theorem 4.1 If Assumptions 3.1, 3.2, 3.3 and 3.4 hold for s = w and s = (w0; x0)0 and

if K !1 and � (K)2K2=n! 0, then J d! N(0; 1).

Although this result is stated for a restricted GMM-based test of mem or cem it has a

wider signi�cance. It is also relevant and may be straightforwardly adapted with little

alteration for constructing a test for the comparison of two sets of conditional moment

restrictions where one set is nested within the other.
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The next result details the limiting properties of the restricted GEL-based statistics

for the exogeneity hypotheses (2.5) and (2.6) and their relationship to that of the GMM

statistic J (3.7).

Theorem 4.2 Let Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 hold for s = w and s = (w0; x0)0

and in addition K ! 1 and �(K)2K3=n ! 0. Then LR, LM, S and W converge in

distribution to a standard normal random variate. Moreover all of these statistics are

asymptotically equivalent to J .

Similarly to the GMM statistic J (3.7) the GEL statistics LR, LM, S and W may be

applied with little alteration to the general problem of testing nested conditional moment

restrictions.

Alternative unrestricted statistics for testing mem (2.5) and cem (2.6) hypotheses

may be also de�ned which ignore the information contained in the maintained hypothesis

(3.2); viz. the unrestricted GEL-based statistics

LRh =
2n ~Pn(�̂; ~�)� J(M + 1)Kq

2J(M + 1)K
;LMh =

n~�0�̂~� � J(M + 1)Kq
2J(M + 1)K

(4.1)

and the unrestricted GMM statistic based on T h
GMM which takes the score form

Sh = nĥ(�̂)0�̂�1ĥ(�̂)� J(M + 1)Kq
2J(M + 1)K

: (4.2)

It is straightforward to show from the analysis used to establish Theorems 4.1 and 4.2

similarly to DIN that these unrestricted statistics also each converge in distribution to a

standard normal random variate and are mutually asymptotically equivalent but not to

the restricted J , LR, LM, S and W . The statistics LRh and Sh are forms of GMM

and GEL statistics suggested in DIN, section 6, pp.67-71, adapted for testing the null

hypothesis (3.1).

This section concludes with an asymptotic independence result between the restricted

GMM statistic J for testing (3.1) and the corresponding statistic J g for testing the

maintained hypothesis (2.4) given by

J g =
T g
GMM � JKp

2JK
; (4.3)
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viz.

Theorem 4.3 If Assumptions 3.1, 3.2, 3.3 and 3.4 hold for s = w and s = (w0; x0)0 and

if K !1 and � (K)2K2=n! 0, then J is asymptotically independent of J g d! N(0; 1).

A similar result holds for the associated restricted GEL statistics LR, LM, S and W

and their counterparts for testing (2.4) with the additional constraint �(K)2K3=n! 0.

The practical import of Theorem 4.3 is that the overall asymptotic size of the test se-

quence may be controlled, e.g., (a) test (2.4) using J g; (b) given (2.4), test E[u(z; �0)js] =

0 using J , with overall size 1 � (1 � �a)(1 � �b), where �a and �b are the asymptotic

sizes of the individual tests in (a) and (b) respectively.

5 Asymptotic Local Power

This section considers the asymptotic distribution of the above statistics under a suitable

sequence of local alternatives. Recall that the dimension f(K) of approximating functions

qKs (s) satis�es f(K) = O(K) which for simplicity is assumed to be linear in K, i.e.,

f(K) = MK; see below (3.3). Essentially, the import of this restriction is that it

ensures a di�erence in local power between the restricted statistics of section 3.4 and

the unrestricted statistics of section 4 that ignore the maintained conditional moment

information (2.4).

We follow the set-up in Eubank and Spielgeman (1990) and Hong and White (1995),

see also Tripathi and Kitamura (2003), which utilise local alternatives to the null hy-

pothesis (3.1) of the form

H1n : E[u(z; �n;0)jw; x] =
4
p
JMKp
n

�(w; x); (5.1)

where �n;0 2 B is a non-stochastic sequence such that �n;0 ! �0. We also assume that

E[�(w; x)jw] = 0 to ensure that the maintained hypothesis E[u(z; �0)jw] = 0 in (3.2) is

not violated.

This sequence of local alternatives (5.1) is particularly apposite for cem. It is also ap-

propriate as a description of local alternatives to the mem hypothesis E[u(z; �0)jx] = 0 in
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which case local alternatives may be described by taking expectation of (5.1) conditional

on x, i.e.,

E[u(z; �n;0)jx] =
4
p
JMKp
n

E[�(w; x)jx]:

To obtain the asymptotic distribution of the statistics proposed in section 3.4 under

local alternatives (5.1) we invoke the following assumption.

Assumption 5.1 (a) �n;0 is a non-stochastic sequence such that (5.1) holds and �n;0 !

�0; (b)
p
n(�̂ � �n;0) = Op(1); (c) for all � 2 N , �(w; x; �) = E[u(z; �)u(z; �)0jw; x]

has smallest eigenvalue bounded away from zero; (d) k�(w; x)k is bounded; (e) �(w; x; �)

and D(w; x; �) = E[u�(z; �)jw; x] are continuous functions on a compact closure of N .

The next result summarises the limiting distribution of the restricted statistics J , LR,

LM, S andW under the sequence of local alternatives (5.1). Let �(w; x) = �(w; x; �0).
9

Theorem 5.1 Let Assumptions 3.1, 3.2, 3.3, 3.4 and 5.1 hold for s = w or s = (w0; x0)0,

K !1 and �(K)2K2=n! 0. Then J converges in distribution to a N(�=
p
2; 1) random

variate, where

� = E[�(w; x)0�(w; x)�1�(w; x)]:

If additionally Assumption 3.5 is satis�ed and �(K)2K3=n ! 0, then LR, LM, S and

W are asymptotically equivalent to J .

Theorem 5.1 reveals that tests based on these statistics should be one-sided. Although

not discussed here, a similar analysis to that underpinning Lemma 6.5, p.71, in DIN

demonstrates the consistency of tests based on the statistics J , LR, LM, S and W .

The following corollary to Theorem 5.1 details the limiting distribution of the unre-

stricted statistics LRh, LMh and Sh under the same local alternative (5.1).
9The function � (w; x) is required to satisfy Assumption 3.1. Tests for mem use approximating func-

tions that depend solely on x or on w but not both requiring some restrictions to be placed on the form of
� (w; x). Close inspection of the Proof of Theorem 5.1 reveals that � (w; x) = � (x;w; �0) ( (x) + ' (w))
satis�es Assumption 3.1 for arbitrary functions  (x) and ' (w). In this case it can be shown that
� = E

�
 (x)

0
� (x; �0) (x)

�
� E

�
' (w)

0
� (w; �0)' (w)

�
, where � (s; �0) = E

�
u (s; �0)u (s; �0)

0 js
�
.
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Corollary 5.1 Let Assumptions 3.1, 3.2, 3.3, 3.4 and 5.1 hold for s = (w0; x0)0 and

�(K)2K2=n ! 0. Then Sh converges in distribution to a N(�h=
p
2; 1) random variate,

where

�h =

s
M

M + 1
�:

If additionally Assumption 3.5 is satis�ed and �(K)2K3=n ! 0, then LRh, LMh are

asymptotically equivalent to Sh:

This corollary provides a justi�cation for restricting the number of elements in qK0 (s) to

depend linearly on K. If M was permitted to approach in�nity with K, �h would then

di�er little from � with the consequence that unrestricted tests would have a similar

discriminatory power as that of restricted tests to detect local departures from the null

hypothesis H0. Indeed, Corollary 5.1 indicates that M should be chosen as small as

possible.

6 Some Computational Issues

This section describes how the vectors of approximating functions qKs (s) and q
K
ma(w) may

be constructed using Bernstein polynomials. For expositional simplicity suppose that

there is a single instrument w and a single covariate x each with unit interval [0; 1]

support; the univariate approach described below may straightforwardly be adapted for

the vector instrument and covariate case.10

For the instrument w Bernstein polynomials of degree p are de�ned by

Bi;p(w) =
p!

i!(p� i)!w
i(1� w)p�i; i = 0; :::; p: (6.1)

Bernstein polynomials have the following properties: (a)
Pp
i=0 Bi;p(w) = 1; (b) Bi;p�1(w) =

p�i
p
Bi;p(w)+ i+1

p
Bi+1;p(w). See, e.g., section 2 of Qian, Riedel and Rosenberg (2011). These

properties have important consequences for the construction of the vectors of approxi-

mating functions.

10Bernstein polynomials for a variate a with unbounded support on the real line and sample ai,
(i = 1; :::; n), may be obtained by substitution of the transformed variates �((ai � �a) =sa), (i = 1; :::; n),
where �(�) is the standard normal cumulative distribution function and �a and sa are the sample mean
and sample standard deviation respectively.
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For the maintained hypothesis (2.4) consider the vector

qKma(w) = (B0;K�1(w);B1;K�1(w); :::;BK�1;K�1(w))0;

where K � 2.

For tests of cem recall that qKc (w; x) is the vector of additional approximating func-

tions. Let Kc = [(AcK)
1=2], where Ac is a positive real constant, [�] denotes the integer

part of � and Kc < K; hence Ac approximates M de�ned in section 3.2. The elements

of qKc (w; x) are de�ned as the cross products of each the elements of the vector

qK
c

(w) = (B0;Kc�1(w);B1;Kc�1(w);B2;Kc�1(w); :::;BKc�1;Kc�1(w))
0

with each element of the vector

qK
c

(x) = (B0;Kc�1(x);B1;Kc�1(x);B2;Kc�1(x); :::;BKc�2;Kc�1(x))
0; (6.2)

where the Bernstein polynomials in terms of the covariate x are de�ned as in (6.1) with

w replaced by x. Thus qK(w; x) = (qKma(w)
0; qKc (w; x)

0)0. Note that BKc�1;Kc�1(x) is

excluded from qK
c
(x) to avoid perfect multicollinearity between the elements of qKma(w)

and qKc (w; x).
11

To de�ne a test of mem (2.5) let Km = [AmK], where Am is a positive real number

and Km < K. Now qK(w; x) = (qKma(w)
0; qKm (x)

0)0, where qKm (x) = q
Km
(x) and qK

m
(x) is

11To see this XKc�1

i=0
Bi;Kc�1(x)Bj;Kc�1(w) = Bj;Kc�1(w); (j = 0; :::;K

c � 1);

by the Bernstein polynomial Property (a) above. Now by Property (b), as Kc < K, Bj;Kc�1(w) is a
linear function of Bernstein polynomials of order K � 1, i.e.,XKc�1

i=0
Bi;Kc�1(x)Bj;Kc�1(w) = a0jq

K
1 (w)

for some vector aj , (j = 0; :::;K
c � 1). Dropping BKc�1;Kc�1(x) from qK

c

(x) solves the perfect multi-
collinearity problem asXKc�2

i=0
Bi;Kc�1(x)Bj;Kc�1(w) =

XKc�1

i=0
Bi;Kc�1(x)Bj;Kc�1(w)� BKc�1;Kc�1(x)Bj;Kc�1(w)

= Bj;Kc�1(w)� BKc�1;Kc�1(x)Bj;Kc�1(w)

= a0jqK(w)� BKc�1;Kc�1(x)Bj;Kc�1(w):
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de�ned as in (6.2). The Bernstein polynomial BKm�1;Km�1(x) is excluded from qK
m
(x) to

avoid perfect multicollinearity between the elements of qK(w; x). As for Ac above, Am

approximates M for tests of mem.12

7 Simulation Evidence

This section reports abbreviated results from an extensive set of simulation experiments

undertaken to evaluate the behaviour and performance of the restricted tests of mem

(2.5) E[u(z; �0)jx] = 0 and cem (2.6) E[u(z; �0)jw; x] = 0 based on various GMM and

GEL statistics given in section 3.4. Results are also presented for the unrestricted test

statistics discussed in section 4 that ignore the maintained hypothesis (2.4).

7.1 Experimental Design

All experiments concern the regression model

y = �0x+ u; (7.1)

where x is a scalar covariate and u an error term. For simplicity, the value of the

parameter �0 is set as 0. Consideration is restricted to the single parameter �0 to ease

the computation burden associated with GEL estimation. Cf. Example 2.3.

The data generating processes for the covariate x, instrument w and error term u are

as follows. Let zx and zw be jointly normally distributed with mean zero, unit variance

and correlation coe�cient �, where � 2 (�1; 1) and � 6= 0; in all experiments we set

� = 0:7. The covariate x and instrument w are generated according to x = �(zx) and

w = �(zw), where �(�) denotes the standard normal cumulative distribution function;

hence, x and w are marginally distributed as uniform random variates on the unit interval

12Other classes of approximating functions such as B-Splines are also possible choices but severe if not
perfect multicollinearity between the elements of the approximating functions used to approximate the
null and maintained hypotheses is likely to occur. To ascertain the collinearity properties of B-Spline
approximating functions in this setting is di�cult because the positioning of the knots depends on K,
Km and Kc. The use of a generalised inverse in computations in the place of the inverse would avoid
these collinearity di�culties.
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[0; 1]. Let v be de�ned by

v = a[z2x + z
2
w � (

1 + �2

�
)zwzx � (1� �2)] + �(zx � �zw) + �;

where � is standard normally distributed and independent of zx and zw. The error term

u = v=
q
var[v] in (7.1) is by de�nition restricted to have unit variance again for reasons of

simplicity and ease of comparison. Note that var[v] = a2(1+�2)(��1��)2+� 2(1��2)+1.

This model is characterised by the following properties: (a) the maintained hypothesis

(2.4) is satis�ed, i.e., E[ujw] = 0; (b) for the mem (2.5) hypothesis

E[ujx] = �(1� �2)��1(x)=var[v]:

Thus E[ujx] = 0 if � = 0 and E[ujx] 6= 0 if � 6= 0; (c) for the cem (2.6) hypothesis,

E[ujw; x] = (a[��1(x)2 + ��1(w)2 � (1 + �
2

�
)��1(x)��1(w)� (1� �2)]

+� [��1(x)� ���1(w)])=var[v]:

Hence E[ujw; x] = 0 if a = � = 0 and E[ujw; x] 6= 0 if a 6= 0 or � 6= 0.

Clearly, under the maintained hypothesis (2.4) cov[u;w] = 0 whereas under mem

(2.5) cov[u; x] = 0 if � = 0 for all values of a.

Sample sizes n = 200, 500, 1000 and 3000 are used in the experiments concerned with

empirical size; nominal size is 0:05. Sample sizes of n = 200 and 500 only are considered

for simplicity in the experiments examining empirical power. These experiments examine

two designs, i.e., a varies and � = 0, i.e., mem holds but cem does not unless a = 0;

a = 0 and � varies, i.e., both mem and cem do not hold unless � = 0. Each experiment

employs 5000 replications.

7.1.1 Estimators

Assumption 3.3(c) requires
p
n-consistent although not necessarily e�cient estimation

of �0. We consider two stage least squares estimation (2slq) computed using the single

instrument w, GMM (gmm), continuous updating (cue), empirical likelihood (el) and

exponential tilting (et) estimators computed under various hypotheses; gmm here refers
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to e�cient two-step GMM where the weighting matrix is computed using 2slq. The sub-

scripts ma, m and c indicate computation incorporating restrictions of the maintained,

mem and cem hypotheses respectively.

gmm and gel were computed using the simplex search algorithm of MATLAB to ensure

a local optima is located. el and et require evaluation of �̂(�) to construct the requisite

pro�le GEL objective function; since the GEL objective function is twice continuously

di�erentiable in � the Newton method was used to locate �̂(�) for given �. The compu-

tation of el requires some care since the EL criterion involves the logarithm function and

is unde�ned for negative arguments; this di�culty is avoided by employing the MATLAB

code due to Owen in which logarithms are replaced by a function that is logarithmic for

arguments larger than a small positive constant and quadratic below that threshold.13

7.1.2 Test Statistics

Tests for mem (2.5) E[ujx] = 0 and cem (2.6) E[ujw; x] = 0 based on unrestricted statis-

tics that ignore the maintained hypothesis (2.4) are denoted respectively in the following

by the superscripts din-m and din-c. Where relevant the test statistic subscripts cue, el

and et refer to the GEL criterion used to construct the test statistic with the argument

of the statistic denoting the estimator at which it is evaluated whose subscript indi-

cates the moment conditions ma (3.3), m or c (3.4) employed, viz. I i(j) (3.7) where

i = din-m, din-c and j = 2slq, gmmk (k = ma, m); LRi
l(j) and LMi

l(j) (4.1) where

i = din-m, din-c, j = 2slq, elk, etk (k = ma, m, c) and l =el, et; S i(j) (4.2) where

i = din-m, din-c and j =2slq, cuek, elk, etk (k =ma, m, c).
14 Note that J din-m(2slq)

and Sdin-mcue (2slq) are identical statistics as are J din-c(2slq) and Sdin-ccue (2slq).

Restricted tests for mem (2.5) E[ujx] = 0 and cem (2.6) E[ujw; x] = 0 that incorpo-
13See Owen (2001, (12.3), p.235). The code is available at

http://www-stat.stanford.edu/~owen/empirical/
14A number of asymptotically equivalent test statistics for the maintained hypothesis were also investi-

gated, viz. J g(j) (4.3) where j =2slq, gmmma; LRg
l (j) and LM

g
l (j) (4.1) where j = 2slq, elma, etma

and l =el, et; Sgl (j) (4.2) where j = 2slq, cuema, elma, etma and l =cue, el, et. The expressions for
the latter statistics adapt (4.1) and (4.2) for the maintained hypothesis. The Hausman test based on an
auxiliary regression as described in Davidson and Mackinnon (1993, section 7.9, p.237) or Wooldridge
(2002, section 6.2.1, p.118) was also considered. Results are available on request from the authors.
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rate the maintained hypothesis (2.4) E[ujw] = 0 were also investigated. The following

notation is adopted. Let

J i(j; k) = nĥ(�̂j)
0�̂�1ĥ(�̂j)� nĝ(�̂k)0
̂�1ĝ(�̂k);

where 
̂ =
Pn
i=1 gi(�̂2slq)gi(�̂2slq)

0=n and �̂ =
Pn
i=1 hi(�̂2slq)hi(�̂2slq)

0=n; the indices i, j

and k are de�ned below. Also let

LRi
l(j; k) = 2n[ ~Pn(�̂j; ~�j)� P̂n(�̂k; �̂k)]

where ~�j = argmax�2 ~�n(�̂j)
~Pn(�̂j; �) and �̂k = argmax�2�̂n(�̂k) P̂n(�̂k; �). Corresponding

Lagrange multiplier, score and Wald-type statistics are de�ned respectively as

LMi
l(j; k) = n(~�j � �̂k)0�̂(~�j � �̂k);

S il (k) =
Xn

i=1
�1(�̂

0
kgi(�̂k))si(�̂k)

0S 0s�̂
�1Ss

nX
i=1

�1(�̂
0
kgi(�̂k))si(�̂k)=n;

W i
l (j) = n~�0jSs(S

0
s�̂
�1Ss)

�1S 0s~�j;

where �̂k = Sma�̂k and Sma = IJ 
 (IK ; 0MK)
0 and Ss = IJ 
 (0K ; IMK)

0 are J(M +1)K�

JMK selection matrices; cf. section 3.4. Note that J m(2slq;2slq) and LRm
cue(2slq;2slq)

are identical statistics as are J c(2slq;2slq) and LRc
cue(2slq;2slq).

The various indices are de�ned similarly to those of the unrestricted statistics, viz.

the superscript i =m, c where m and c refer respectively to the mem (2.5) E[ujx] = 0 or

cem (2.6) E[ujw; x] = 0 hypothesis under test, the arguments j; k =2slq, cuem, elm,

etm (m =ma, m, c) to the estimators employed and the subscript l =cue,el, et to

which member of the GEL class was used to construct the test.

The statistics J i(j; k), LRi
l(j; k), LMi

l(j; k), S il (j) and W i
l (j) are calibrated against

a chi-square distribution with JMK degrees of freedom and are referred to as non-

standardised statistics. Standardized versions are de�ned as in (3.7), (3.9), (3.10), (3.11)

and (3.12), e.g., [J i(j; k)�JMK]=
p
2JMK, and are calibrated against a standard normal

distribution. Recall from section 5 that tests should be one sided.

We also consider the behaviour of restricted statistics that are robust to estimation
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e�ects suggested in Smith (1997, section II.2); see also Smith (2011, section 5). Let

	̂ =

 
0 Ĥ 0

Ĥ �̂

!
;

where Ĥ = �Pn
i=1 xi
qK(wi; xi)=n. De�ne the selection matrix S such that S 0 (�0; �0)0 =

S 0s�. The corresponding non-standardised GEL score and Wald statistics are then de�ned

by

�S il (k) =
Xn

i=1
�1(�̂

0
kgi(�̂k))si(�̂k)

0S 0 	̂
�1S 

Xn

i=1
�1(�̂

0
kgi(�̂k))si(�̂k)=n;

�W i
l (j) = n~�0jSs(S

0
 	̂

�1S )
�1S 0s~�j;

with their standardized counterparts given by [ �S il (k) � JMK]=
p
2JMK and [ �W i

l (k) �

JMK]=
p
2JMK.

7.2 Choice of the Number of Instruments

To implement the above tests requires a choice of the number of instruments to employ

under the maintained hypothesis. The results in DIN, Table 1, p.71, apply for the choice

of O(K). Accordingly, K must satisfy K4=n ! 0, e.g., K = [Cn1=5] for some C > 0

but then a choice of C is necessary. The use of the method described in Donald, Imbens

and Newey (2009) for empirically determining K predominantly resulted in the choice

K = 2. Consequently, to explore the robustness of the results to the choice of K, the

additional alternatives K = 3 or 5 are also examined.15

To test the mem (2.5) E[ujx] = 0 or cem (2.6) E[ujw; x] = 0 hypotheses Km = [AmK]

and Kc = [(AcK)
1=2] are required dependent on the ad hoc constants Am and Ac; see

section 6. The choices Am = 1 or 1:5 and Ac = 2 or 4:5 are considered. Recall from

section 6 thatAm andAc approximateM of section 3.2 and by Theorem 5.1 and Corollary

5.1 should be chosen as small as possible.

Tables 1 and 2 summarise the numbers of instruments used.

15Alternative possible criteria for the choice of K are information criteria such as AIC or BIC.
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Am = 1 Am = 1:5
Total Number Total Number

K Km of Instruments Km of Instruments

2 2 3 3 4
3 3 5 4 6
5 5 9 7 11

Table 1: mem Intruments

Ac = 2 Ac = 4:5
Total Number Total Number

K Kc of Instruments Kc of Instruments

2 2 4 3 8
3 2 5 3 9
5 3 11 4 17

Table 2: cem Intruments

7.3 Empirical Size

The results on empirical size reported in Appendix B and discussed below are a sub-

stantially reduced subset of the simulation experiments undertaken. Overall these exper-

iments revealed that nominal size is approximated relatively more closely by the empirical

size of (a) the non-standardised tests; (b) tests based on e�cient estimators, cf. Tripathi

and Kitamura (2003); (c) the score-type statistic �S il (k) robust to estimation e�ects.

Consequently results for these forms of statistics only are presented. Both Wald versions

W i
l (j) (3.12) and

�W i
l (j) of test are also excluded as their empirical size properties are

generally unsatisfactory. Results are presented for K = 2, 5; those for K = 3 closely

resemble those for K = 2 and are therefore omitted.

The full set of simulation results are available from the authors upon request.

7.3.1 MEM

Tables B.1-B.2 in Appendix B present the rejection frequencies for K = 2, 5 and Am = 1,

1:5 for unrestricted DIN tests for mem (2.5) E[ujx] = 0 that ignore the maintained

hypothesis moment restrictions (2.4) E[ujw] = 0 whereas Tables B.3-B.4 report the

corresponding results for restricted tests that incorporate these moment constraints.

[26]



In general, the empirical size of the non-standardised versions of the unrestricted

LRdin-m
el (elm), LRdin-m

et (etm) and LMdin-m
el (elm), LMdin-m

et (etm) tests su�er from size dis-

tortions for moderate sample sizes n = 200 and 500. Of the remaining statistics, the non-

standardised GMM statistic J din-m(gmmm) (4.3) and GEL score statistics Sdin-mcue (cuem),

Sdin-mel (elm), Sdin-met (etm) (4.2) display satisfactory empirical size properties for most sam-

ple sizes. For a given sample size n there is a deterioration in performance to a lesser

or greater degree for all statistics as K increases from 2 to 5 for �xed Am and as Am in-

creases from 1 to 1:5 for �xed K, i.e., as the number of unconditional moments under test

increases. In summary, the non-standardised GMM and GEL score forms of DIN-type

test statistic for mem appear to be the most reliable in terms of empirical size.

The overall conclusions for the restricted test statistics that incorporate the main-

tained moment restrictions (2.4) are similar. The performances of the non-standardised

LR (3.9) and Lagrange multiplier (3.10) forms of test are more unsatisfactory at the

smallest sample size n = 200; there is again a substantial deterioration for the larger

K = 5 and to a lesser degree forAm = 1:5. To summarise, in general the non-standardised

GMM J m(gmmm;gmmma) (3.7) and CUE LR LRm
cue(cuem;cuema) (3.9) forms of re-

stricted test statistic for mem appear to display the most satisfactory empirical size

behaviour as do the robust score statistics �Smel(elm), �Smet(etm).

7.3.2 CEM

Tables B.5-B.6 in Appendix B present the rejection frequencies for K = 2, 5 and Ac = 2,

4:5 for unrestricted DIN tests of the cem null hypothesis (2.6) E[ujw; x] = 0 whereas

Tables B.7-B.8 report the corresponding results for the restricted tests.

The general conclusions are quite similar to those for the tests of mem. Overall

performance worsens for the larger K = 5 and Am = 4:5 for all test versions. Of

the DIN-type non-standardised tests the empirical size properties of the GMM statistic

J din-c(gmmc) (4.3) and GEL score statistics Sdin-ccue (cuec), Sdin-cel (elc), Sdin-cet (etc) (4.2)

appear to be satisfactory for most sample sizes. For the non-standardised restricted tests,

the GMM J c(gmmc;gmmma) (3.7) and CUE LR LRc
cue(cuec;cuema) (3.9) forms and
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the robust versions of score statistic �Scel(elma), �Scet(etma) (3.11) display empirical size

closest to the nominal 0:05.

7.4 Empirical Size-Adjusted Power

The reported results on empirical size-adjusted power in Appendix C like those for em-

pirical size are a substantially reduced subset of the simulation experiments undertaken.

Results are also only presented for K = 2 as ceteris paribus size-adjusted power tends

to decline relatively and sometimes substantially for the larger K = 5. Typically power

increases substantially as sample size n increases from 200 to 500. Full simulation results

are available from the authors upon request.

7.4.1 � = 0

MEM

Recall that in this case the mem hypothesis (2.5) E[ujx] = 0 holds but the cem

hypothesis (2.6) E[ujw; x] = 0 is violated unless a = 0. Unsurprisingly, results for

tests of mem, not reported here, indicate that size-adjusted power closely approximates

nominal size.

CEM

Tables C.1-C.2 in Appendix C present the size-adjusted powers for K = 2 and di�erent

values of a and Ac for tests based on unrestricted DIN-type statistics of cem (2.6)

E[ujw; x] = 0 that ignore the maintained hypothesis moment restrictions (2.4) E[ujw] = 0

whereas Tables C.3-C.4 report the corresponding results for the restricted tests that

incorporate these moment constraints.

At small values of a the unrestricted DIN-type GEL statistics LMdin-c
el (elc) and

LMdin-c
et (etc) have maximum size-adjusted power with the DIN-type GEL statistics

LRdin-c
el (elc) and LRdin-c

et (etc) slightly less powerful. These �ndings are lessened for

larger a and for the larger sample size n = 500. However, these tests are precisely those

that displayed the least satisfactory correspondence between empirical and nominal size.
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The powers of the remaining statistics are broadly similar with the GEL score statistics

Sdin-cel (elc) and Sdin-cet (etc) marginally superior. The e�ect of increasing Ac is to increase

power contrary to the large sample theoretical prediction of section 5 for K = 2 with this

�nding reversed for the larger K = 5.

For the restricted tests, GEL Lagrange multiplier LMc
el(elc;elma), LMc

et(etc;etma)

and LR LRc
el(elc;elma), LRc

et(etc;etma) tests dominate for small a but this result is

ameliorated for larger values of a and sample size n. Again, as above, empirical and

nominal size di�erences can be quite large for these statistics especially at the smaller

sample size n = 200. Of the other tests, there is relatively little di�erence in power

among the statistics but both GEL robusti�ed score statistics �Scel(elma), �Scet(etma) ap-

pear marginally superior. Again the e�ect of increasing Ac on power when K = 2 runs

counter to the theoretical prediction of section 5 but holds if K = 5.

Overall, incorporation of the maintained moment conditions leads to improvements

in power as expected from the theoretical results of section 5 with the di�erence in power

between DIN-type and restricted tests for the cem hypothesis (2.6) E[ujw; x] = 0 larger

when Ac is smaller.

7.4.2 a = 0

MEM

Tables C.5-C.6 in Appendix C present the size-adjusted powers for di�erent values of �

and Am for unrestricted DIN-type tests of mem (2.5) E[ujx] = 0 whereas Tables C.7-C.8

report the corresponding results for the restricted tests.

In general, and in line with the theoretical prediction of section 5, power decreases

with increased Am.

For small � and sample size n = 200 the di�erences in power between the various

DIN-type tests are relatively small although the power associated with the GEL LM

LMdin-m
el (elm), LMdin-m

et (etm) tests is somewhat less.

All restricted tests except those based on the GEL LM statistics LMm
el(elm;elma),

LMm
et(etm;etma) appear to provide similar empirical power.
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As discussed previously the power di�erences among tests are lessened for larger

values of � and sample size n. Likewise, restricted tests again appear more powerful

than the unrestricted DIN-type tests that ignore the moment restrictions arising from

the maintained hypothesis.

CEM

Tables C.9-C.10 in Appendix C present the size-adjusted powers for di�erent values

of � and Ac for unrestricted DIN-type tests of cem (2.6) E[ujw; x] = 0 whereas Tables

C.11-C.12 report the corresponding results for the restricted tests.

In general similarly to the tests of mem power decreases with increases in Ac as

expected from section 5.

Size-adjusted power is mostly similar except for the unrestricted GEL LM LMdin-c
el (elc),

LMdin-c
et (etc) tests especially for smaller values of � and the smaller sample size n = 200.

Among the restricted tests the GMM statistics J c(gmmc;gmmma) (3.7), the GEL sta-

tistic LRc
cue(cuec;cuema) (3.9) and the robust GEL score statistics �Scel(elma), �Scet(etma)

dominate in terms of size-adjusted power.

Again the restricted test statistics that incorporate the maintained alternative hy-

pothesis display higher power than the unrestricted DIN-type tests. Interestingly both

unrestricted and restricted tests for cem appear more powerful than the corresponding

tests for mem when the mem hypothesis is violated.

7.5 Summary

The empirical size of non-standardised tests more closely approximates nominal size than

that of standardised tests. Restricted tests dominate those de�ned by unrestricted DIN-

type statistics in terms of size-adjusted power. Power typically declines for increases in

the constants Am and Ac for tests of mem and cem respectively.

The mem (2.5) E[ujx] = 0 empirical sizes of tests based on the restricted GMM form

J m(gmmm;gmmma), the GEL statistic LRm
cue(cuem;cuema) and the robust GEL score

versions �Smel(elm) and �Smet(etm) most closely approximate nominal size. However, when
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testing against deviations from mem restricted cem tests dominate mem tests in terms

of size-adjusted power.

Of the restricted tests for the cem null hypothesis (2.6) E[ujw; x] = 0 those employing

the GMM form J c(gmmc;gmmma) (3.7), the GEL statistic LRc
cue(cuec;cuema) (3.9),

and the robust GEL score statistics �Scel(elma) and �Scet(etma) have empirical size closest

to the nominal 0:05. The robust GEL score-based, �Scel(elma) and �Scet(etma), forms of

test appear marginally superior to the GMM form J c(gmmc;gmmma) (3.7) and the GEL

statistic LRc
cue(cuec;cuema) (3.9) in terms of size-adjusted power against deviations

from the mem or cem hypotheses.

8 Conclusions

The primary focus of this article has concerned de�nitions of and tests for exogeneity

appropriate for models de�ned by a set of semiparametric conditional moment restrictions

where a �nite dimensional parameter vector is the object of inferential interest. The paper

argues that a de�nition of (marginal) exogeneity (in mean) (mem) proposed in Blundell

and Horowitz (2004) may not be adequate for particular circumstances. An alternative

de�nition of (conditional) exogeneity (in mean) (cem) is provided. The latter de�nition

is quite closely related to that for classical parametric models.

A second contribution is to propose GMM- and GEL-based test statistics for addi-

tional conditional moment restrictions that include both mem and cem hypotheses as

special cases. By reinterpreting the respective hypotheses as an in�nite number of un-

conditional moment restrictions the corresponding tests may therefore be formulated as

tests for additional sets of in�nite numbers of unconditional moment restrictions. The

limiting distributions of these test statistics are derived under the null hypotheses of

marginal and conditional exogeneity and suitable sequences of local alternatives to these

hypotheses. These results suggest that restricted tests that incorporate maintained mo-

ment constraints should dominate in terms of power unrestricted tests that ignore such

information.
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The simulation experiments undertaken to explore the e�cacy of the various tests

proposed in the paper indicate a number of tests possess both su�ciently satisfactory

size and power characteristics to allow their recommendation for econometric practice.
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Appendix A: Proofs

Throughout the Appendix, C will denote a generic positive constant that may be di�erent

in di�erent uses, and CS, J, M, T and cr Cauchy-Schwarz, Jensen, Markov, triangle

and Lo�eve cr inequalities respectively.
16 Also we write w.p.a.1 for \with probability

approaching 1".

A.1 Useful Lemmata

The following Lemma allows the relaxation of Assumption 6 in DIN for the GEL class

of estimators.

Lemma A.1 Let �n = o(n
�1=2� (K)�1) and �n = f� : k�k � �ng. Then if Assumption

3.3(d) is satis�ed, max�2B;�2�n;1�i�n j�0gi (�)j
p! 0 and w.p.a.1 �n � �̂ (�) for all � 2 B.

Proof: Write bi = sup�2B ku (zi; �)k
2. By iterated expectations and 3.3(d), E[bi] =

E[E[bijw]] <1 for 1 � i � n. Hence, it follows from Owen (1990, Lemma 3, p.98) that

max1�i�n bi = op(n
1=2). Therefore, by CS

max
�2B;�2�n;1�i�n

j�0gi (�)j � �n� (K) max
1�i�n

bi
p! 0

Thus w.p.a.1 �0gi (�) 2 V for all � 2 B and � 2 �n giving the second conclusion.

The next two Lemmata are used in the proofs for asymptotic normality of test statis-

tics under both null and local alternative hypotheses and the asymptotic independence

of test statistics under the null hypothesis.

Lemma A.2 Let k = tr (
nCn) where Cn and 
n � E[g(z; �0;n)g(z; �0;n)
0] are a sym-

metric and a positive de�nite matrix respectively. If E[g(z; �0;n)] = 0, k !1, E[(g(z; �0;n)0

�Cng(z; �0;n))2]=k
p
n! 0 and Cn
nCn = Cn, then

T =
nĝ (�0;n)

0Cnĝ (�0;n)� kp
2k

d! N (0; 1) :

16We use the general version of the Lo�eve cr inequality as stated in Davidson (1994, p.140).
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Proof: Let gz;n = g(z; �0;n) and write T = T1 + T2 where

T1 =
X
i;j:i<j

s
2

n2k
g0zi;nCngzj ;n

T2 =

P
i g
0
zi;n
Cngzi;n=n� kp
2k

Since E[T2] = 0 and var[T2] � E[(g0i;nCngi;n)2]=2kn! 0, T2
p! 0:

To prove the asymptotic normality of T1 we verify the hypotheses of Hall (1984,

Theorem 1, pp.3-4). De�ne

Hn(u; v) �
s
2

n2k
g0u;nCngv;n:

Then

Gn(u; v) � E[Hn(z1; u)Hn(z1; v)]

=
2

n2k
E[g0u;nCngz1;ng

0
z1;n
Cngv;n]

=
2

n2k
g0u;nCn
nCngv;n

=

s
2

n2k
Hn(u; v):

Now E[Hn(z1; z2)jz1] =
q

2
n2k
g0z1;nCnE[gz2;n] = 0 and

E[Hn(z1; z2)
2] =

2

n2k
E[(g0z1;nCngz2;n)

2]

=
2

n2k
E[g0z1;nCn
nCngz1;n] =

2

n2
:

On the other hand
E[Hn(z1; z2)

4]

nE[Hn(z1; z2)2]2
=

1

nk2
E[(g0z1;nCngz2;n)

4]:

As Cn = Cn
nCn, by CS

1

nk2
E[(g0z1;nCngz2;n)

4] � 1

nk2
E[(g0z1;nCngz1;n)

2(g0z2;nCngz2;n)
2]

= (
1

k
p
n
E[(g0z1;nCngz1;n)

2])2 ! 0:

Since E[Gn(z1; z2)
2]=E[Hn(z1; z2)

2]2 = 1=k ! 0, T1
d! N (0; 1) as required.
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Lemma A.3 If (a) E[g(z; �0)] = 0, (b) tr(Q
) = ak for some �nite a 2 Rnf0g, (c)

tr[(Q
)2] = vk for some �nite v > 0, (d) tr[(Q
)4] = o(k2), (e) E[(g(z; �0)
0Qg(z; �0))

2] =

o(nk) and (f) E[(g(z; �0)
0Q
Qg(z; �0))

2]E[(g(z; �0)
0
�1g(z; �0))

2] = o(nk2) are satis�ed,

then

T = nĝ (�0)
0Qĝ (�0)� akp
2k

d! N (0; v) :

as k !1 and n!1.

Proof: Let gzi = g(zi; �0) and write T = T1 + T2 where

T1 =
X
i;j:i<j

s
2

n2k
g0ziQgzj

T2 =

P
i g
0
zi
Qgzi=n� akp
2k

Since E[T2] = 0 and var[T2] � E[(g0ziQgzi)
2]=2kn! 0 by (e), T2

p! 0.

To prove the asymptotic normality of T1, as in the proof of Lemma A.2, we verify the

hypotheses of Hall (1984, Theorem 1, pp.3-4). De�ne

Hn(u; v) �
s
2

n2k
g0uQgv:

Then

Gn(u; v) � E[Hn(z1; u)Hn(z1; v)]

=
2

n2k
E[g0uQgz1g

0
z1
Qgv]

=
2

n2k
g0uQ
Qgv:

Now E[Hn(z1; z2)jz1] =
q

2
n2k
g0ziQE[gz2 ] = 0 and, by (c),

E[Hn(z1; z2)
2] =

2

n2k
E[(g0z1Qgz2)

2]

=
2

n2k
E[g0z1Q
Qgz1 ] =

2

n2k
tr([Q
]2) =

2v

n2
:

Also
E[Hn(z1; z2)

4]

nE[Hn(z1; z2)2]2
=

1

nv2k2
E[(g0z1Qgz2)

4]:
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Now, as 
 is positive de�nite, by CS

E[(g0z1Qgz2)
4] = E[(g0z1Q



�1gz2)
4]

� E[(g0z1Q
Qgz1;n)
2(g0z2


�1gz2)
2]

= E
h
(g0z1Q
Qgz1)

2
i
E
h
(g0z2


�1gz2)
2
i
:

Hence, by (f),

E[Hn(z1; z2)
4]

nE[Hn(z1; z2)2]2
� 1

nv2k2
E
h
(g0z1Q
Qgz1)

2
i
E
h
(g0z2


�1gz2)
2
i

= o (1) :

Moreover, by (d),

E[Gn(z1; z2)
2] =

4

n4k2
E[(g0z1Q
Qgz2)

2]

=
4

n4k2
E[g0z1Q
Q
Q
Qgz1 ] =

4

n4k2
tr([Q
]4) = o(n�4):

Since E[Gn(z1; z2)
2]=E[Hn(z1; z2)

2]2 = o (1), T1 d! N (0; v) as required.

The next Lemma mirrors DIN Lemma A.3. Let qi = q(si), where q(�) is a K-

dimensional vector of functions of s.

Lemma A.4 Let ai;n = an(zi), �ai;n = E[ai;njsi], ai = a(zi), �ai = E[aijsi], Ui;n = Un(si)

and Ui = U(si). If q(�) satis�es Assumption 3.1, (a) E[kai;nk2 jsi] is bounded for large

enough n, (b) Ui;n is a r � r p.d. matrix that is bounded and has smallest eigenvalue

bounded away from zero for large enough n, (c) Ui is r � r p.d. matrix that is bounded

and has smallest eigenvalue bounded away from zero, (d) E[



U�1i;n � U�1i 


2] ! 0, (e)

E[k�ai;n � �aik2]! 0, (f) K !1 and K=n! 0, then

X
i

a0i;n 
 q0i
 X

i

Ui;n 
 qiq0i
!�X

i

ai;n 
 qi=n� E[�a0iU�1i �ai]
p! 0:

Proof: The proof is similar to that of DIN Lemma A.3. Let Fi;n be a symmet-

ric square root of Ui;n, Pi;n = Fi;n 
 q0i, Pn = (P 01;n; :::; P
0
n;n)

0, Ai;n = F�1i;n ai;n, An =

[41]



(A01;n; :::; A
0
n;n)

0, �Ai;n = E[Ai;njxi] = F�1i;n �ai;n and �An = ( �A01;n; :::; �A0n;n)0. Note that P 0nPn =P
i Ui;n 
 qiq0i and

X
i

a0i;n 
 q0i
 X

i

Ui;n 
 qiq0i
!�X

i

ai;n 
 qi=n = A0nQnAn

where Qn = Pn(P
0
nPn)

�P 0n.

Let s = (s1; :::; sn). As the data are i.i.d., by (a) and (b)

E[
�
An � �An

� �
An � �An

�0
js] = diag(F�11;nvar[a1;njs1]F�11;n ; :::; F�1n;nvar[an;njsn]F�1n;n)

� CI

for n large enough. Let TA = (An � �An)
0Qn

�
An � �An

�
=n. Then,

E[TA] = E[tr(QnE[(An � �An)
�
An � �An

�0
=n)js]]

� CE[tr(Qn)]=n � CK=n! 0

as tr(
n) � CK, using (b) and (f). Thus TA
p! 0 by M.

From Assumption 3.1, there exists a �K such that E[



U�1i �ai � �Kqi




2] ! 0. Let

~
K = vec (�
0
K). Now




 �An � Pn~
K


2 =n =
X
i




F�1i;n �ai � (Fi;n 
 q0i)~
K


2 =n
=

X
i

kFi;nk2



U�1i;n �ai � (Ir 
 q0i)~
K


2 =n

=
X
i

kFi;nk2



U�1i;n �ai � �kqi


2 =n

� C
X
i




U�1i;n �ai � �kqi


2 =n:
By cr,

E[



U�1i;n �ai;n � �Kqi


2] = E[




(U�1i;n � U�1i )�ai;n + U�1i (�ai;n � �ai) + U�1i �ai � �Kqi



2]

� 3
�
E[



(U�1i;n � U�1i )�ai;n


2] + E[


U�1i (�ai;n � �ai)


2]

+E[



U�1i �ai � �Kqi




2]� :

[42]



For the �rst term, by CS, E[



(U�1i;n � U�1i )�ai;n


2] � E[




(U�1i;n � U�1i )


2]E[k�ai;nk2] ! 0

using (a) and (d). Secondly, E[



U�1i (�ai;n � �ai)


2] � CE[k�ai;n � �aik2] ! 0 by (e) as U�1i

is bounded by (c). Then, by M




 �An � Pn~
K


2 =n p! 0:

By T and CS

���A0nQnAn=n� �A0n
�An=n

��� =
���(An � �An)

0Qn(An � �An)=n

+2 �A0nQn(An � �An)=n� �A0n(I �Qn) �An=n
���

� TA + 2
q
TA
q
�A0 �A=n+ �TA;

where �TA � �A0n(I �Qn) �An=n. Now

�TA =
�
�An � Pn~
K

�0
(I �Qn)

�
�An � Pn~
K

�
=n

�



 �An � Pn~
K


2 =n p! 0:

Also, by M using (a) and (b), �A0n �An=n = Op (1). Therefore,

���A0nQnAn=n� �A0n �An=n
��� p! 0:

To examine the large sample behaviour of �A0n �An=n =
P
i �ai;nU

�1
i;n �ai;n=n, in particular,

to show that �A0n �An=n
p! E[�a0iU

�1
i �ai], since �ai;n and Ui;n depend on n, we need to resort

to a LLN for triangular arrays such as Feller (1971, Theorem 1, p.316). Speci�cally, �rst

we need to prove that, for each � > 0, nPf
����a0i;nU�1i;n �ai;n��� =n > �g ! 0. By M

nPf
����a0i;nU�1i;n �ai;n��� =n > �g � E[����a0i;nU�1i;n �ai;n���2]= �n�2� :

For large enough n, by (a) and (b), E[
����a0i;nU�1i;n �ai;n���2] is bounded. Therefore nPf����a0i;nU�1i;n �ai;n��� =n >

�g ! 0. Secondly, for arbitrary " > 0,

nvar[

����a0i;nU�1i;n �ai;n���
n

1(
����a0i;nU�1i;n �ai;n��� < n")] � nE[

����a0i;nU�1i;n �ai;n���
n2

2

1(
����a0i;nU�1i;n �ai;n��� < n")]

� E[
����a0i;nU�1i;n �ai;n���2]=n! 0:

[43]



Finally, E[�a0i;nU
�1
i;n �ai;n � �aiU�1i �ai] = E[(�ai;n � �ai)0U�1i;n (�ai;n � �ai) + 2(�ai;n � �ai)0U�1i;n �ai +

�a0i(U
�1
i;n � U�1i )�ai]. Therefore, using T and CS, by (a), (b), (d) and (e),

E[�a0i;nU
�1
i;n �ai;n � �aiU�1i �ai] � E[




U�1i;n 


 k�ai;n � �aik2]
+2E[




U�1i;n 


 k�ai;n � �aik k�aik] + E[


U�1i;n � U�1i 


 k�aik2]
� C(E[k(�ai;n � �ai)k2] + 2E[k(�ai;n � �ai)k] + E[




U�1i;n � U�1i 


])
! 0:

The following Lemma is similar to DIN Lemma A.4.

Lemma A.5 If q(�) satis�es Assumption 3.1, (a) "i;n and Yi are r � 1 random vectors

with E["i;njsi] = 0 and E[k"i;nk4 jsi] � C for large enough n and E[kYik2 jsi] � C, (b)

Ui;n = Un(si) is r�r p.d. matrix that is bounded and has the smallest eigenvalue bounded

away from zero for n large enough, (c) Ui = U(si) is r � r p.d. matrix that is bounded

and has the smallest eigenvalue bounded away from zero, (d) E[



U�1i;n � U�1i 


2]! 0 and

(e) K !1 and K2=n! 0, then

X
i

Y 0i 
 q0i
 X

i

Ui;n 
 qiq0i
!�1X

i

"i;n 
 qi=
p
n = Op (1) :

Proof: We prove the result by �rst showing that

X
i

Y 0i 
 q0i
 X

i

Ui;n 
 qiq0i
!�1X

i

"i;n 
 qi=
p
n�

X
i

E[Yijsi]0U�1i;n "i;n=
p
n

p! 0

and secondly that X
i

E[Yijsi]0U�1i;n "i;n=
p
n = Op (1) : (A.1)

The proof structure of the �rst part is similar to that of DIN Lemma A.4. Let

Fi;n, Pn and thus Qn be speci�ed as in the proof of Lemma A.4, Ai;n = F�1i;n Yi, �Ai;n =

E[Ai;njsi] = F�1i;nE[Yijsi], An = (A01;n; :::; A0n;n)0, �An = ( �A01;n; :::; �A0n;n)0, Bi;n = F�1i;n "i;n and

Bn = (B
0
1;n; :::; B

0
n;n)

0. By assumption E [Bi;njsi] = 0 and, consequently,

X
i

Y 0i 
 q0i
 X

i

Ui;n 
 qiq0i
!�1X

i

"i;n 
 qi=
p
n� E [Yijsi]0 U�1i;n "i;n=

p
n

= A0nQnBn=
p
n� �A0nBn=

p
n = (An � �An)

0QnBn=
p
n� �A0n(I �Qn)Bn=

p
n:
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From the proof of Lemma A.4 (An� �An)
0Qn(An� �An) = Op(K) and B

0
nQnBn = Op(K),

the latter holding by (a) as E[k"i;nk2 jsi] � C for large enough n. Thus, for large enough

n, by CS,

���(An � �An)
0QnBn=

p
n
��� � q

(An � �An)0Qn(An � �An)
q
B0nQnBn=

p
n = Op(K=

p
n)

p! 0:

Also, as in the proof of Lemma A.4, E[ �A0n(I �Qn) �An=n]! 0. Thus, by iterated expec-

tations,

E[



 �A0n(I �Qn)Bn=

p
n



2] = E[ �A0n(I �Qn)E[BnB

0
njs](I �Qn) �An]=n

� CE[ �A0n(I �Qn) �An]=n! 0

since E [BnB
0
njx] is bounded for large enough n by (a) and (b). The �rst part then follows

by T and M.

It remains to prove the second part (A.1). We use Ser
ing (2002, Corollary, p:32) to

prove this result. We only need show that

lim
n!1

E[(E[Yijsi]0U�1in "i;n)4]
n2b4n

= 0; (A.2)

where b2n = var[E[Yijsi]0U�1in "i;n]. Now, by CS, for large enough n,

E[(E[Yijsi]0U�1in "i;n)4] � E[kE[Yijsi]k
4



U�1in 


4 k"i;nk4]

= E[kE[Yijsi]k4



U�1in 


4E[k"i;nk4 jsi]]

� C

from (a) and (b). Also, by J,

b2n � E[(E[Yijsi]0U�1in "i;n)2]

� E[(E[Yijxi]0U�1in "i;n)4]1=2 � C

from which (A.2) follows.

The following Lemmata are needed to prove the asymptotic normality of the test

statistics under local alternatives.
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Let ui(�) = u(zi; �), gi(�) = ui(�) 
 qi, ĝi = gi(�̂) and gi;n = gi(�0;n). Also let

ui;n = ui(�0;n), �i;n (si) = E[ui;nu
0
i;njsi] and


̂ =
X
i

ĝiĝ
0
i=n; ~
n =

X
i

gi;ng
0
i;n=n;

�
n =
X
i

�i;n (si)
 qiq0i=n;
n = E[gi;ng0i;n]:

Lemma A.6 If q(�) satis�es Assumptions 3.2, 3.3 and 3.4 hold and �̂ � �0;n = Op(�n)

with �n ! 0, then




̂� ~
n


 = Op (�nK), 


~
n � �
n


 = Op(�(K)qK=n) and 


�
n � 
n


 =

Op(�(K)
q
K=n). If Assumption 5.1 (c) is satis�ed then 1=C � �min (
n) � �max (
n) �

C and, if �nK + �(K)
q
K=n ! 0, w.p.a.1 1=C � �min

�

̂
�
� �max

�

̂
�
� C, 1=C �

�min
�
�
n
�
� �max

�
�
n
�
� C.

Proof: The proof of these results are similar to that of Lemma A.6 of DIN. A major

di�erence here is that some expectations are bounded for n large enough n rather than

merely bounded as in DIN.

Using the same arguments as in DIN we have





̂� ~
n


 � C



�̂ � �0;n


X

i

Mi;n kqik2 =n

= Op(�nE[Mi;n kqik2])

= Op(�nK);

whereMi;n = �
2
i +2�i kui;nk and �i = �(zi). The �nal equality follows as E[ku(z; �0;n)k

2] is

bounded since E[�(z)2jx] is bounded and E[sup�2B ku(z; �)k
2] is bounded by Assumption

(3.3).

Now

E[



~
n � �
n


2] = E[






X
i

(ui;nu
0
i;n � �i;n(si))
 qiq0i=n







2

]:

Since �0;n ! �0 and �i(si; �) is bounded for all � 2 N it follows that for n large enough

�i;n (si) is also bounded. Thus using similar arguments to those of DIN

E[



~
n � �
n


2] � E[E[kui;nk4 jxi] kqik4]=n � C�(K)2K=n

[46]



as E[kui;nk4 jxi] is bounded for n large enough. Therefore the second conclusion follows

by M.

For the third conclusion as in DIN

E[



�
n � 
n


2] = E[






X
i

�i;n(si)
 qiq0i=n� 
n






2

]

� tr(E[�i;n(si)
2 
 (qiq0i)2]=n) � CE[kqik

4]=n � C�(K)2K=n

where the second inequality holds for n large enough.

For the fourth conclusion, since, for all � 2 N , �(s; �) = E[u(z; �)u(z; �)0js] has

smallest eigenvalue bounded away from zero and E[sup�2B ku (z; �)k
2] is bounded, it

follows that C�1IJ � �i;n(si) � CIJ and therefore

C�1IJK = C
�1E [IJ 
 qiq0i] � 
n � CE [IJ 
 qiq0i] = CIJK :

Hence C�1 � �min (
n) � �min (
n) � C. Note also that, if �nK + � (K)
q
K=n! 0, we

have




̂� ~
n


 = op (1) and 


~
n � 
n


 = op (1). Thus, by T 



̂� 
n


 = op (1). Since

j� (A)� � (B)j � kA�Bk, where �(�) denotes the minimum or maximum eigenvalue,����min �
̂�� �min (
n)��� = op (1) and ����max �
̂�� �max (
n)��� = op (1). The �nal conclusion
follows similarly.

Let u�i(�) = @u(zi; �)=@�
0, D (si; �) = E[u�i(�)jsi], Di;n = D(si; �0;n),

Ĝ =
X
i

u�i(�)
 qi=n; �Gn =
X
i

Di;n 
 qi=n;Gn = E[Di;n 
 qi]:

Lemma A.7 If q(�) satis�es Assumptions 3.2 and 3.4 holds and �̂ � �0;n = O (�n) with

�n ! 0, then



Ĝ� �Gn




 = Op(�npK +
q
K=n) and




 �Gn �Gn




 = Op(qK=n).
Proof: The proof is as in that for DIN Lemma A.7. In fact the proof requires no

stronger assumptions than those in DIN.

Let u�i;n = u�i(�0;n), �i = � (zi) and ~Gn =
P
i u�i;n 
 qi=n. Then by DIN Lemma A.2

E[



 ~Gn � �Gn




2] = E[






X
i

(u� (zi; �0;n)�Di;n)
 qi=n






2

]

� E[E[ku�i;nk2 jxi] kqik2]=n � CK=n;

[47]



where the last inequality follows for n large enough as �0;n ! �0 andE[sup�2N ku� (z; �)k
2 jx]

is bounded. Hence, by M



 ~Gn � �Gn




2 = Op(qK=n).
By the same arguments as in DIN Proof of Lemma A.7, w.p.a.1




Ĝ� ~Gn




 �
X
i




u�i(�̂)� u�i;n


 kqik =n
�




�̂ � �0;n


X
i

�i kqik =n = Op(�n
p
K):

The �rst conclusion follows by T.

In addition

E[



 �Gn �Gn




2] = E[






X
i

Di;n 
 qi=n�Gn







2

]

� E
h
kDi;nk2 kqik2

i
=n � CK=n;

where the �rst inequality follows fromDi;n bounded for n large enough as E[sup�2N ku� (z; �)k
2 jx]

is bounded from which the second conclusion follows.

The �nal lemma mirrors Lemma 6.1, p.69, of DIN.

Lemma A.8 Let q(�) satisfy Assumptions 3.1 and 3.2 and 3.3, 3.4 and 5.1 hold. If

K !1 and � (K)2K2=n! 0 then

nĝ(�̂)0
̂�1ĝ(�̂)� nĝ(�n;0)0
�1n ĝ(�n;0)p
2JK

p! 0:

Proof: Let gi;n = gi(�n;0), ĝn = ĝ(�n;0) and ĝ = ĝ(�̂). By an expansion of ĝ = ĝ(�̂)

around �0;n

ĝ = ĝn + �Gn(�̂ � �n;0);

where �Gn = @ĝ( ��n)=@�
0 and ��n is a mean value between �̂ and �n;0 which may di�er

from row to row. Thus

nĝ(�̂)0
̂�1ĝ(�̂)� nĝ0n �
�1n ĝnp
2JK

=
nĝ0n(
̂

�1 � 
�1n )ĝnp
2JK

+

2n(�̂ � �n;0)0 �G0n
̂�1ĝnp
2JK

+
n(�̂ � �n;0)0 �G0n
̂�1 �Gn(�̂ � �n;0)p

2JK
:

[48]



To show that each term converges in probability to zero, we need to prove �rst some

preliminary results.

Since �min
�

̂
�
� C and �min

�
�
n
�
� C w.p.a.1, by Lemmata A.6 and A.7





̂�1( �Gn �Gn)



2 = tr(( �Gn �Gn)

0
̂�2( �Gn �Gn))

� Ctr(( �Gn �Gn)
0( �Gn �Gn))

= C



 �Gn �Gn




2 p! 0:

Similarly,




̂�1(
̂� 
n)


 p! 0.

Now G0n

�1
n Gn is bounded for large enough n as �G

0
n
�
�1n �Gn

p! V �1 by Lemma A.4

where V = (E[D(x)0�(x)�1D(x)])�1 which exists from Assumptions 3.4 (d) and (e) as

E[D(x)0�(x)�1D(x)] � CE[D(x)0D(x)]. Thus, k
�1n Gnk is also bounded. Therefore, to

prove that




̂�1Gn




 = Op (1), by T




̂�1 �Gn � 
�1n Gn




 � 



̂�1( �Gn �Gn)



+ 



̂�1(
̂� 
n)
�1n Gn




 :
First, term





̂�1( �Gn �Gn)



 p! 0 by Lemma A.7. Secondly,





̂�1(
̂� 
n)
�1n Gn




 �



̂�1(
̂� 
n)


 k
�1n Gnkby CS and Lemma A.6. Consequently,




̂�1 �Gn




 = Op (1).
Now by independence

E[ĝ0n

�1
n ĝn] = E[g0i;n


�1
n gi;n]=n

= E[tr(
�1n gi;ng
0
i;n)=n] = K=n:

Hence, by M k
�1n ĝnk = Op(
q
K=n). By T and CS




 �G0n
̂�1ĝn �G0n
�1n ĝn


 �



 �G0n
̂�1(
̂� 
n)
�1n ĝn


+ 


( �Gn �Gn)

0
�1n ĝn





� (



 �G0n
̂�1


 



̂� 
n


+ 


 �Gn �Gn




) 



�1n ĝn



� (Op(1)op(1) + op(1))Op(

q
K=n) = op(

q
K=n):

Moreover

E[



G0n
�1n ĝn


2] = E[tr(ĝ0n
�1n GnG

0
n


�1
n ĝn)] = tr(G

0
n


�1
n Gn)=n � C=n:

[49]



Thus, by M, kG0n
�1n ĝnk = Op(1=
p
n) = op(

q
K=n) and, hence, by T




 �G0n
̂�1ĝn


 =
op(
q
K=n). Therefore, by Assumption 3.3(c),

n(�̂ � �n;0)0 �G0n
̂�1ĝnp
2JK

= op (1) :

Next, by CS and T,




 �G0n
̂�1 �Gn �G0n
�1n Gn




 � (



 �G0n
̂�1


+ 



�1n Gn




) 


 �Gn �Gn





+



 �G0n
̂�1


 



̂� 
n


 



�1n Gn




 :
Hence, �G0n
̂

�1 �Gn = Op(1) since G
0
n


�1
n Gn = O (1). Therefore

n(�̂ � �n;0)0 �G0n
̂�1 �Gn(�̂ � �n;0)p
2JK

= Op(1=
p
2JK) = op (1) :

It remains to prove that

nĝ0n(
̂
�1 � 
�1n )ĝnp
2JK

= op (1) :

From Lemma A.6,

���nĝ0n �
̂�1 � 
�1n �
ĝn
��� =p2JK � n





�1n ĝn


2 (



̂� 
n


+ C 



̂� 
n


2)=p2JK
= n(Op(K=n)(Op(

q
K=n) +Op(�(K)

q
K=n)))=

p
2JK

= Op(�(K)K=
p
n) = op (1) :

A.2 Asymptotic Null Distribution

Proof of Theorem 4.1: By DIN Lemma A.6 and � (K)2K2=n! 0,





̂� 



 ; 


�̂� �


 = Op((K3=2=n1=2 + �(K)K=n1=2)=
p
K) = op(1=

p
K);

where 
 = E[g(z; �0)g(z; �0)
0] and � = E[h(z; �0)h(z; �0)

0]. It also follows from Lemma

A.7 of DIN that



@ĝ �~�� =@�0 �G


 p! 0 and




@ĝ �~�� =@�0 �G


 p! 0 for any ~� = �0 +

[50]



Op (1=
p
n). In addition, G0
�1G and H 0��1H are bounded, see the proof of Lemma A.8.

Hence, the conditions of DIN Lemma 6.1 are met. Therefore,

nĝ(�̂)0
̂�1ĝ(�̂)� nĝ(�0)0
�1ĝ(�0)p
2JK

p! 0:

and
nĥ(�̂)0�̂�1ĥ(�̂)� nĥ(�0)0��1ĥ(�0)q

2J(M + 1)K

p! 0:

Now

nĥ(�̂)0�̂�1ĥ(�̂)� nĝ(�̂)0
̂�1ĝ(�̂)� JMKp
2JMK

=
nĥ(�̂)0�̂�1ĥ(�̂)� nĥ(�0)��1ĥ(�0)p

2JMK

� nĝ(�̂)
0
̂�1ĝ(�̂)� nĝ(�0)0
�1ĝ(�0)p

2JMK

+
nĥ(�0)

0��1ĥ(�0)� nĝ(�0)0
�1ĝ(�0)� JMKp
2JMK

=
nĥ(�0)

0��1ĥ(�0)� nĝ(�0)0
�1ĝ(�0)� JMKp
2JMK

+ op(1):

De�ne Sma = IJ
(IK ; 0MK)
0 as a selection matrix such that S 0maĥ(�0) = ĝ(�0). Therefore

nĥ(�0)
0��1ĥ(�0)� nĝ(�0)0
�1ĝ(�0)� JMKp

2JMK
=
nĥ(�0)

0(��1 � Sma
�1S 0ma)ĥ(�0)� JMKp
2JMK

:

We use Lemma A.2 to obtain the conclusion of the theorem. First, tr((��1 �

Sma

�1S 0ma)�) = tr(IJ(M+1)K)� tr(IJK) = JMK. Secondly, (��1�Sma
�1S 0ma)�(��1�

Sma

�1S 0ma) = �

�1 � Sma
�1S 0ma. Thirdly,

E[(h(z; �0)
0(��1 � Sma
�1S 0ma)h(z; �0))2] � CE[kh(z; �0)k4]

� CE[ku(z; �0)k4



qK(w; x)


4]

� CE[



qK(w; x)


4]

� C�(K)2K:

The result follows from Lemma A.2 as �(K)2K=K
p
n = (�(K)2K2=n)=

q
K4=n! 0.

[51]



Proof of Theorem 4.2: First we focus on LR (3.9).

LR =
2n[ ~Pn(�̂; ~�)� P̂n(�̂; �̂)]� JMK

2
p
JMK

(A.3)

=
T h
GMM � T

g
GMM � JMK

2
p
JMK

+
2n ~Pn(�̂; ~�)� T h

GMMp
2JMK

�2nP̂n(�̂; �̂)� T
g
GMMp

2JMK
:

Write ĝi = gi(�̂), (i = 1; :::; n), ĝ = ĝ(�̂) and ĝ0 = ĝ(�0). Using T and CS twice we

have

kĝ � ĝ0k �
Xn

i=1




u(zi; �̂)� u(zi; �0)


 kq(wi)k =n
� (

Xn

i=1
�(zi)

2=n)1=2(
Xn

i=1
kq(wi)k2 =n)1=2




�̂ � �0


 = Op(qK=n)
where the second inequality follows from Assumption 3.4 (d). Thus, from T and DIN

Lemma A.9, kĝk = Op(
q
K=n) and, therefore,




�̂


 = Op(qK=n) by DIN Lemma A.11.
Consequently �̂ 2 �̂n(�̂) w.p.a.1 and the �rst order conditions for � are satis�ed w.p.a.1,

i.e.

@P̂n(�̂; �̂)

@�
=
Xn

i=1
�1(�̂

0ĝi)ĝi=n = 0: (A.4)

Expanding (A.4) around � = 0 gives

�ĝ(�̂)� _
�̂ = 0

where _
 = �Pn
i=1 �2(

_�0ĝi)ĝiĝ
0
i=n and

_� lies between �̂ and zero. Thus, w.p.a.1

�̂ = � _
�1ĝ(�̂): (A.5)

We deal with the third term in (A.3) �rst. Expanding 2nP̂n(�̂; �̂) around � = 0 and

plugging in �̂ from (A.5),

2nP̂n(�̂; �̂) = 2n[�ĝ(�̂)0�̂� �̂0 �
 �̂=2] = nĝ(�̂)0[2 _
�1 � _
�1 �
 _
�1]ĝ(�̂)

[52]



with �
 = �Pn
i=1 �2(

��0ĝi)ĝiĝ
0
i=n and

�� lies between �̂ and zero. Thus it remains to prove

that

2nP̂n(�̂; �̂)� T g
GMMp

2JMK
= nĝ(�̂)0[2 _
�1 � _
�1 �
 _
�1 � 
̂�1]ĝ(�̂)=

p
2JMK

p! 0:

First notice that by DIN Lemma A.6




̂� 



 = Op(�(K)

q
K=n) = op(1=

p
K) and,

thus, by Lemma A.1 we also have



 _
� 



 = op(1=

p
K) and




�
� 



 = op(1=
p
K).

Hence



2 _
� �
� 



 p! 0. Consequently �max[(2 _
� �
)�1] � C w.p.a.1.. Thus, by T, as�

2 _
�1 � _
�1 �
 _
�1
��1

= _
(2 _
� �
)�1 _
,


 _
(2 _
� �
)�1 _
� 
(2 _
� �
)�1



 �



( _
� 
)(2 _
� �
)�1( _
� 
)


+ 2 



(2 _
� �
)�1( _
� 
)




� C(



 _
� 



2 + 


 _
� 



) = op(1=pK):

On the other hand as �max (
) � C



(2 _
� �
)�1
� 



 =




(2 _
� �
)�1 �
� (2 _
� �
)�




� C




� (2 _
� �
)


 = op(1=pK)

yielding



 _
�1(2 _
� �
) _
�1 � 
�1


 = op(1=pK). Therefore, as



̂�1 � 
�1


 = op(1=pK),

2nP̂n(�̂; �̂)� T g
GMMp

2JMK
= nOp(K=n)op(1=

p
K)=

p
2JMK = op (1) :

By the same reasoning the second term in (A.3)

2n ~Pn(�̂; ~�)� T h
GMMp

2JMK

p! 0:

Therefore, it follows from Theorem 3.6 that

LR d! N(0; 1):

We now turn to consider the Lagrange multiplier statistic

LM =
n(~� � �̂)0�̂(~� � �̂)� JMKp

2JMK
:

Write ĥi = hi(�̂), (i = 1; :::; n), ĥ = ĥ(�̂) and ĥ0 = ĥ(�0). By a similar argument to that

which established (A.5)

~� = � _��1ĥ(�̂)

[53]



where _� = �Pn
i=1 �1( _�

0ĥi)ĥiĥ
0
i=n and _� lies between ~� and zero.

Let the ((M + 1)JK)� JK selection matrix Sma = IJ
(IK ; 0MK)
0. Hence, S 0maĥ = ĝ

and S 0ma�Sma = 
. Also write �̂ = Sma�̂. Thus, �̂ = Sma�̂ = �Sma _
�1ĝ = �Sma _
�1S 0maĥ.

Now

n(~� � �̂)0�̂(~� � �̂) = n~�0�̂~� � 2n~�0�̂�̂ + n�̂0�̂�̂

= nĥ0 _��1�̂ _��1ĥ� 2nĥ0 _��1�̂ Sma _
�1S 0maĥ+ nĥ0Sma _
�1S 0ma�̂ Sma _
�1S 0maĥ:

and therefore

LM� T
h
GMM � T

g
GMM � JMKp
2JMK

=
nĥ0( _��1�̂ _��1 � �̂�1)ĥp

2JMK

+
nĥ0(Sma
̂

�1S 0ma � 2 _��1�̂ Sma _
�1S 0maĥ+ Sma _
�1S 0ma�̂ Sma _
�1S 0ma)ĥp
2JMK

:

We now demonstrate in turn that these terms are each op(1).

By CS, the �rst term

nĥ0( _��1�̂ _��1 � �̂�1)ĥ=
p
K = nĥ0 _��1(�̂� _��̂�1 _�) _��1ĥ=

p
K

� n k~�k2



�̂� _��̂�1 _�




 =pK:
By DIN Lemma A.6




�̂� �


 = Op(�(K)
q
K=n) = op(1=

p
K). Thus �max(�̂

�1) � C.

Moreover




 _��̂�1 _�� ��̂�1�


 �



( _�� �)�̂�1( _�� �)


+ 


2��̂�1( _�� �)




� C(



 _�� �


2 + 


 _�� �


)

= Op(�(K)
q
K=n) = op(1=

p
K):

using DIN Lemma A.16. In addition, from CS and DIN Lemma A.6




��̂�1�� �


 =



��̂�1(�� �̂)




�



� �̂�1


 


�� �̂


 = op(1=pK):

Therefore, by T



�̂� _��̂�1 _�




 = op(1=pK). As k~�k = Op(qK=n) by DIN Lemma A.11,
nĥ0( _��1�̂ _��1 � �̂�1)ĥ=

p
K = nOp(K=n)op(1=

p
K)=

p
K = op(1).

[54]



For the second term, by CS

nĥ0(Sma
̂
�1S 0ma � 2 _��1�̂ Sma _
�1S 0ma + Sma _
�1S 0ma�̂ Sma _
�1S 0ma)ĥ=

p
K

� n



ĥ


2 


Sma
̂�1S 0ma � 2 _��1�̂Sma _
�1S 0ma + Sma _
�1S 0ma�̂ Sma _
�1S 0ma


 =pK:

Now by T and DIN Lemma A.6 since �max( _�
�1) � C and �max(�̂�1) � C


Sma
̂�1S 0ma � _��1�̂Sma _


�1S 0ma



 �




Sma _
�1( _
� 
̂)
̂�1S 0ma


+ 


 _��1(�̂� _�)Sma _

�1S 0ma





= op(1=

p
K):

Next by a similar argument




 _��1�̂ Sma _
�1S 0ma � Sma _
�1S 0ma�̂ Sma _
�1S 0ma


 �



Sma _
�1( _
� 
̂) _
�1S 0ma



+



 _��1(�̂� _�)Sma _


�1S 0ma





= op(1=
p
K):

Therefore since



ĥ


 = Op(qK=n) by DIN Lemma A.14 of DIN nĥ0(Sma
̂�1S 0ma � 2 _��1�̂

Sma _

�1S 0ma + Sma

_
�1S 0ma�̂ Sma
_
�1S 0ma)ĥ=

p
K = nOp(K=n)op(1=

p
K)=

p
K = op(1).

The score test statistic

S =
Pn
i=1 �1(�̂

0ĝi)ŝ
0
iS
0
s�̂
�1Ss

Pn
i=1 �1(�̂

0ĝi)ŝi=n� JMKp
2JMK

;

where ŝi = si(�̂), (i = 1; :::; n) and Ss = IJ 
 (0K ; IMK)
0. Expanding the �rst order

conditions
Pn
i=1 �1(ĥ

0
i~�)ĥi=n = 0 of (3.8) around �̂ gives

nX
i=1

�1(ĥ
0
i�̂)ĥi=n� _�(~� � �̂) = 0

w.p.a.1 where _� = �Pn
i=1 �2(ĥ

0
i _�)ĥiĥ

0
i=n and _� lies between ~� and �̂. Since

Pn
i=1 �1(ĥ

0
i�̂)ĥi=n =

Ss
Pn
i=1 �1(ĝ

0
i�̂)ŝi,Xn

i=1
�1(�̂

0ĝi)ŝ
0
iS
0
s�̂
�1Ss

Xn

i=1
�1(�̂

0ĝi)ŝi=n = n (~� � �̂)0 _��̂�1 _� (~� � �̂) :

Thus by CS and T

jS � LMj = n
���(~� � �̂)0 ( _��̂�1 _�� �̂) (~� � �̂)��� =p2JMK

� n



 _��̂�1 _�� �̂


 (k~�k+ k�̂k)2 =p2JMK = op (1)

[55]



as _��̂�1 _�� �̂ = op(1=
p
K) and k~�k, k�̂k are both Op(

q
K=n) by DIN Lemma A.11.

Finally we consider the Wald test statistic. From above, w.p.a.1

~� � �̂ = _��1Ss
nX
i=1

�1(ĝ
0
i�̂)ŝi=n

and thus

S 0s~� = S
0
s
_��1Ss

nX
i=1

�1(ĝ
0
i�̂)ŝi=n:

Therefore, w.p.a.1

jS �Wj = n
���~�0Ss((S 0s _��1Ss)�1S 0s�̂�1Ss(S 0s _��1Ss)�1 � S 0s�̂�1Ss)S 0s~���� =p2JMK

� n kS 0s~�k
2



(S 0s _��1Ss)�1S 0s�̂�1Ss(S 0s _��1Ss)�1 � S 0s�̂�1Ss


 =p2JMK:

Since kS 0s~�k = Op(
q
K=n) by DIN Lemma A.11 and by a similar argument to that

which showed _��̂�1 _� � �̂ = op(1=
p
K), (S 0s

_��1Ss)
�1S 0s�̂

�1Ss(S
0
s
_��1Ss)

�1 � S 0s�̂�1Ss =

op(1=
p
K). Therefore, jS �Wj = op(1).

Proof of Theorem 4.3: The proof uses the Cram�er-Wold device. Consider the

linear combination

J � = 
J+�J g:

where the (arbitrary) scalars 
 and � are such that 
2 + �2 > 0. The desired result is

proven if J � d! N(0; 
2 + �2).

First, by Lemma 6.1 of DIN,

J � nĥ(�0)
0��1ĥ(�0)� nĝ(�0)0
�1ĝ(�0)� JMKp

2JMK

p! 0

and likewise

J g � nĝ(�0)
0
�1ĝ(�0)� JKp
2JK

p! 0:

Therefore,

J � � 1p
M

nĥ(�0)
0Qĥ(�0)� (
M + �

p
M)JKp

2JK

p! 0;

where Q = 
��1 � (
 � �
p
M)Sma


�1S 0ma.

To prove
p
MJ � d! N(0; v), where v = (
2 + �2)M , we verify conditions (a)-(f) of

Lemma A.3.
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Condition (a) is immediate.

For (b),

tr(Q�) = 
tr(IJ(M+1)K)� (
 � �
p
M)tr(IJK)

= 
J(M + 1)K � (
 � �
p
M)JK

= (
M + �
p
M)JK = aJK:

To consider condition (c), note that

(Q�)2 = (
IJ(M+1)K � (
M + �
p
M)Sma


�1S 0ma�)
2

= 
2IJ(M+1)K � (
2 �M�2)Sma
�1S 0ma�:

Hence

tr[(Q�)2] = 
2J(M + 1)K � (
2 �M�2)JK

= (
2 + �2)JMK = vJK:

For (d),

(Q�)4 = (
2IJ(M+1)K � (
2 �M�2)Sma
�1S 0ma�)2

= 
4IJ(M+1)K � (
4 �M2�4)Sma

�1S 0ma�:

Thus

tr[(Q�)4] = 
4J(M + 1)K � (
4 �M2�4)JK

= (
4 +M�4)JMK:

From Lemma A.6 of DIN, 1=C � �min(�) � �max(�) � C and 1=C � �min(
) �

�max(
) � C. Therefore, condition (e) is satis�ed using Assumption 3.2 as

E[(h(z; �0)
0(
��1 � (
 � �

p
M)Sma


�1S 0ma)h(z; �0))
2] � C�(K)2K:

By a similar reasoning as for (e)

E[(h(z; �0)
0��1h(z; �0))

2] � C�(K)2K:
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Also

Q�Q = (
��1 � (
 � �
p
M)Sma


�1S 0ma)�(
�
�1 � (
 � �

p
M)Sma


�1S 0ma)

= 
2(��1 � Sma
�1S 0ma) + �2Sma
�1S 0ma:

Thus, condition (f) holds, as in (e),

E[(h(z; �0)
0Q�Qh(z; �0))

2] � C�(K)2K:

Consequently, by Lemma A.3,
p
MJ � d! N(0; v) which proves the desired result.

A.3 Asymptotic Local Alternative Distribution

Proof of Theorem 5.1: We prove the result for the GMM statistic J . Proofs for GEL

statistics LR, LM, S andW are omitted for brevity but essentially follow the same steps

as in the proof of Theorem 4.2 above that demonstrates their asymptotic equivalence to

the GMM statistic.

Let ĝn = ĝ(�n;0) and ĥn = ĥ(�n;0). Then, by Lemma A.8,

nĥ(�̂)0�̂�1ĥ(�̂)� nĥ0n��1n ĥnp
2JMK

p! 0;
nĝ(�̂)0
̂�1ĝ(�̂)� nĝ0n
�1n ĝnp

2JMK

p! 0:

It then follows that J � (nĥ0n(��1n � Sma
�1n S 0ma)ĥn � JMK)=
p
2JMK

p! 0:

Therefore it remains to prove that

nĥ0n(�
�1
n � Sma
�1n S 0ma)ĥn � JMKp

2JMK

d! N(�=
p
2; 1):

We �rst consider the local alternative distribution under the cem hypothesis when

si = (w
0
i; x

0
i)
0, (i = 1; :::; n).

Let hi;n = hi(�n;0), �hi;n = E[hi;njsi] and ~hi;n = hi;n � �hi;n, (i = 1; :::; n). Also let

�hn =
Pn
i=1
�hi;n=n and ~hn =

Pn
i=1
~hi;n=n. Write Pn = �

�1
n � Sma
�1n S 0ma. Then,

ĥ0nPnĥn =
~h0nPn

~hn + 2�h
0
nPn

~hn + �h
0
nPn

�hn:

First, we show that

�h0nPn
�hn =

p
JMK

n
(�+ op(1)):
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Let �i = �(si) and qi = q
K(si), (i = 1; :::; n). It follows by Lemma A.4 that

�h0n
���1n

�hn =

p
JMK

n

nX
i;j=1

(�i 
 qi)0���1n (�j 
 qj)=n2

=

p
JMK

n
(�+ op(1)):

Next, letting q1i = q
K
1 (wi), (i = 1; :::; n), and, again using Lemma A.4,

�h0nSma �

�1
n S

0
ma
�hn =

p
JMK

n

nX
i;j=1

(�i 
 q1i)0 �
�1n (�j 
 q1j)=n2

=

p
JMK

n
op(1)

as E[�ijwi] = 0 by hypothesis.

It therefore remains to show that

np
2JMK

�h0n(�
�1
n � ���1n )�hn

p! 0;
np

2JMK
�h0nSma(


�1
n � �
�1n )S 0ma�hn

p! 0:

Similarly to the proof of Lemma 6.1 in DIN, from Lemma A.6,

���n�h0n(��1n � ���1n )�hn
��� =p2JMK � n




��1n �hn


2 (


�n � ��n


+ C 


�n � ��n


2)=p2JMK
= n




��1n �hn


2Op(�(K)qK=n)=p2JMK = op(1)

since



��1n �hn


2 = �h0n��2n �hn � C�h0n��1n �hn = Op(pK=n). Likewise ���n�h0nSma(��1n � ���1n )S 0ma�hn

���
=
p
2JMK = op(1). Therefore,

�h0nPn
�hn =

p
JMK

n
(�+ op(1)):

Secondly, we demonstrate that

n�h0nPn
~hn=

p
2JMK = op(1):

Now, k�ik2 is bounded and �i;n(si)�1 is bounded for n large enough. In addition, by

cr,

E[kui;n � E[ui;njsi]k4] � 8[E[kui;nk4] + E[kE[ui;njsi]k4]]

= 8[E[E[kui;nk4 jsi]] + E[
JMK

n2
k�ik4]]

� C
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for n large enough as E[kui;nk4 jsi] � C and K=n2 ! 0. Hence, by Lemma A.5,

�h0n
���1n

~hn =
4
p
JMK

n

nX
i;j=1

(�i 
 qi)0���1n ~hj;n=n
p
n

= Op(
4
p
JMK=n):

Next, by hypothesis,

���n�h0n(��1n � ���1n )~hn
��� =p2JMK � n




��1n �hn


 


��1n ~hn


 (


�n � ��n


+ C 


�n � ��n


2)=p2JMK
= n




��1n �hn


 


��1n ~hn


Op(�(K)qK=n)=p2JMK = op(1)

since



��1n �hn


2 = Op(pK=n) from above and 


��1n ~hn


 � 


��1n ĥn


+


��1n �hn


 = Op(qK=n)+

Op(
4

q
K=n2). A similar analysis yields n�h0nSma


�1
n S

0
ma
~hn=

p
2JMK = op(1).

Finally, we require
n~h0nPn

~hn � JMKp
2JMK

d! N(0; 1):

To prove this, we invoke Lemma A.2. First, tr(�nPn) = JMK. Secondly, we need to

establish

E[(~h0i;nPn
~hi;n)

2] = op(K
p
n):

By cr

E[(~h0i;nPn
~hi;n)

2] � 2E[(~h0i;n��1n ~hi;n)2] + 2E[(~h0i;nSma
�1n S 0ma~hi;n)2]

Again using cr

E[(~h0i;n�
�1
n
~hi;n)

2] � 3E[(h0i;n��1n hi;n)2] + 12E[(h0i;n��1n �hi;n)2] + 3E[(�h0i;n��1n �hi;n)2]:

Now, for n large enough, E[(h0i;n�
�1
n hi;n)

2] � CE[khi;nk4]. Since �n;0 2 N for n large

enough, by Assumption 3.4 (c), similarly to the proof of Theorem 6.3 in DIN,

E[khi;nk4] � E[kqik4E[kui;nk4 jsi]] � CE[kqik4] � C�(K)2K:

Next,

E[(h0i;n�
�1
n
�hi;n)

2] � C(
p
K=n)E[k�ik2 kqik2] � CK

p
K=n:

Lastly,

E[(�h0i;n�
�1
n
�hi;n)

2] � C(K=n2)E[k�ik4 kqik4] � C�(K)2K2=n2:
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Hence, E[(~h0i;n�
�1
n
~hi;n)

2] = op(K
p
n) as required. Likewise, E[(~h0i;nSma


�1
n S

0
ma
~hi;n)

2] =

op(K
p
n). Thirdly, Pn�nPn = Pn. Therefore,

n~h0nPn
~hn � JMKp
2JMK

d! N(0; 1):

The conclusion of the theorem then follows.

[61]



Appendix B: Empirical Size

B.1 MEM

B.1.1 Unrestricted Tests

Table B.1 MEM Hypothesis DIN Test Rejection Frequencies: Am = 1

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J din-m(gmmm) 4:84 4:60 5:06 4:98 4:12 4:14 4:82 4:82
Sdin-mcue (cuem) 4:86 4:62 5:10 4:98 4:00 4:06 4:86 4:82
LRdin-m

el (elm) 5:72 4:86 5:20 4:94 11:80 6:50 6:02 5:26
LMdin-m

el (elm) 6:26 4:84 5:16 4:98 23:92 8:74 6:20 5:24
Sdin-mel (elm) 4:84 4:60 5:06 5:00 4:38 4:16 4:86 4:80
LRdin-m

et (etm) 5:72 4:98 5:28 5:00 10:28 6:44 6:14 5:40
LMdin-m

et (etm) 7:62 5:50 5:58 5:14 25:56 10:72 7:92 6:18
Sdin-met (etm) 4:84 4:60 5:06 5:00 4:18 4:16 4:86 4:80

Table B.2 MEM Hypothesis DIN Test Rejection Frequencies: Am = 1:5

Non-Standardised

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J din-m(gmmm) 4:68 4:56 4:66 4:82 3:64 4:12 4:52 5:26
Sdin-mcue (cuem) 4:70 4:58 4:66 4:82 3:54 4:10 4:52 5:26
LRdin-m

el (elm) 6:30 5:14 4:88 4:84 15:18 7:22 5:98 5:42
LMdin-m

el (elm) 7:06 5:24 4:78 4:78 34:38 11:38 7:02 5:32
Sdin-mel (elm) 4:82 4:56 4:66 4:82 3:90 4:18 4:56 5:26
LRdin-m

et (etm) 6:26 5:14 4:96 4:88 12:26 6:90 6:18 5:58
LMdin-m

et (etm) 8:74 6:32 5:56 5:04 34:18 13:56 9:60 6:48
Sdin-met (etm) 4:76 4:56 4:66 4:82 3:70 4:14 4:54 5:26

[B.1]



B.1.2 Restricted Tests

Table B.3 MEM Hypothesis Test Rejection Frequencies: Am = 1

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J m(gmmm;gmmma) 4:88 4:56 5:52 5:04 4:70 4:46 5:44 4:98
LRm

cue(cuem;cuema) 4:90 4:62 5:48 5:04 4:68 4:44 5:44 4:98
LRm

el(elm;elma) 5:68 4:78 5:50 5:08 11:82 6:42 6:40 5:26
LMm

el(elm;elma) 6:12 4:70 5:48 5:02 18:52 7:48 6:40 5:18
�Smel(elm) 5:14 4:74 5:54 5:06 7:66 5:66 6:00 5:14
LRm

et(etm;etma) 5:70 4:82 5:60 5:10 10:22 6:26 6:52 5:26
LMm

et(etm;etma) 6:74 5:16 5:88 5:18 19:54 9:02 7:54 5:86
�Smet(etm) 5:02 4:64 5:52 5:04 5:80 4:88 5:60 5:00

Table B.4 MEM Hypothesis Test Rejection Frequencies: Am = 1:5

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J m(gmmm;gmmma) 5:16 4:92 4:64 4:86 4:42 4:68 5:18 5:08
LRm

cue(cuem;cuema) 5:20 4:98 4:64 4:86 4:42 4:70 5:14 5:08
LRm

el(elm;elma) 6:22 5:36 4:78 4:98 15:70 7:56 6:70 5:40
LMm

el(elm;elma) 6:70 5:16 4:56 4:96 29:56 10:22 7:58 5:20
�Smel(elm) 5:68 5:12 4:76 4:90 7:52 5:92 5:84 5:26
LRm

et(etm;etma) 6:28 5:38 4:84 4:98 12:26 7:22 6:76 5:44
LMm

et(etm;etma) 8:04 6:16 5:02 5:08 28:44 12:00 9:20 6:00
�Smet(etm) 5:42 5:00 4:66 4:90 5:38 5:26 5:44 5:14

[B.2]



B.2 CEM

B.2.1 Unrestricted Tests

Table B.5 CEM Hypothesis DIN Test Rejection Frequencies: Ac = 2

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J din-c(gmmc) 4:88 4:68 4:80 4:62 3:48 4:14 4:36 4:72
Sdin-ccue (cuec) 4:92 4:66 4:76 4:60 3:38 4:10 4:32 4:78
LRdin-c

el (elc) 6:58 5:34 4:94 4:66 17:14 8:64 6:58 5:36
LMdin-c

el (elc) 7:96 5:52 4:76 4:50 42:82 16:9 9:66 5:94
Sdin-cel (elc) 4:90 4:66 4:80 4:62 3:82 4:20 4:38 4:72
LRdin-c

et (etc) 6:58 5:50 5:10 4:66 12:7 8:02 6:64 5:48
LMdin-c

et (etc) 9:70 6:50 5:84 4:80 39:8 18:64 11:40 7:18
Sdin-cet (etc) 4:88 4:66 4:80 4:62 3:58 4:16 4:36 4:72

Table B.6 CEM Hypothesis DIN Test Rejection Frequencies: Ac = 4:5

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J din-c(gmmc) 3:62 4:24 4:50 4:46 2:58 3:72 4:06 4:14
Sdin-ccue (cuec) 3:62 4:28 4:52 4:48 2:48 3:64 4:06 4:12
LRdin-c

el (elc) 10:92 6:72 5:58 4:72 37:14 16:44 10:24 6:34
LMdin-c

el (elc) 23:42 10:50 6:90 4:82 81:36 45:26 25:04 10:16
Sdin-cel (elc) 3:72 4:30 4:54 4:46 3:28 3:84 4:08 4:14
LRdin-c

et (etc) 9:36 6:46 5:74 4:84 18:70 12:02 8:82 6:16
LMdin-c

et (etc) 23:84 12:02 8:36 5:64 63:28 39:48 24:82 11:40
Sdin-cet (etc) 3:58 4:24 4:52 4:46 2:70 3:76 4:08 4:14

[B.3]



B.2.2 Restricted Tests

Table B.7 CEM Hypothesis Test Rejection Frequencies: Ac = 2

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J c(gmmc;gmmma) 4:88 4:80 4:84 4:90 3:66 4:58 4:42 4:84
LRc

cue(cuec;cuema) 5:06 4:82 4:86 4:90 3:70 4:52 4:44 4:86
LRc

el(elc;elma) 6:38 5:40 5:18 4:98 17:98 9:02 7:10 5:78
LMc

el(elc;elma) 7:58 5:54 5:12 4:90 39:56 16:66 9:90 6:46
�Scel(elma) 5:38 5:02 5:04 4:92 6:98 5:60 4:98 5:06
LRc

et(etc;etma) 6:16 5:50 5:20 4:96 13:48 8:16 6:80 5:70
LMc

et(etc;etma) 8:42 6:30 5:72 5:06 35:72 17:08 11:00 7:42
�Scet(etma) 5:18 4:92 4:90 4:90 4:70 5:08 4:72 4:96

Table B.8 CEM Hypothesis Test Rejection Frequencies: Ac = 4:5

Non-Standardized

K = 2 K = 5
n 200 500 1000 3000 200 500 1000 3000

J c(gmmc;gmmma) 3:76 4:52 4:32 4:70 2:52 3:74 4:68 4:12
LRc

cue(cuec;cuema) 3:82 4:54 4:36 4:76 2:50 3:76 4:66 4:16
LRc

el(elc;elma) 10:96 7:24 5:78 5:00 38:90 16:80 11:56 6:60
LMc

el(elc;elma) 22:96 10:86 6:96 4:98 80:36 45:90 25:90 10:74
�Scel(elma) 4:50 4:74 4:52 4:82 6:54 5:26 5:72 4:56
LRc

et(etc;etma) 9:52 6:84 5:72 5:08 19:30 12:46 9:94 6:42
LMc

et(etc;etma) 23:16 12:34 8:20 5:88 59:02 38:04 24:24 11:56
�Scet(etma) 4:12 4:62 4:40 4:80 3:78 4:34 5:12 4:36

[B.4]



Appendix C: Empirical Size-Adjusted Power

C.1 CEM: � = 0

C.1.1 Unrestricted Tests

Table C.1 CEM Hypothesis DIN Test Size-Corrected Power: � = 0, Ac = 2, K = 2

n 200 500
a 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J din-c(gmmc) 11:04 33:40 59:30 79:34 89:36 26:58 78:84 97:64 99:82 100:00
Sdin-ccue (cuec) 10:92 32:76 58:50 78:66 88:78 26:60 78:74 97:62 99:82 100:00
LRdin-c

el (elc) 12:58 37:90 65:42 84:60 92:88 27:14 80:52 98:14 99:86 100:00
LMdin-c

el (elc) 14:54 42:16 71:26 87:58 94:38 28:88 82:92 98:52 99:90 99:96
Sdin-cel (elc) 11:04 33:44 59:62 80:02 90:02 26:58 78:90 97:68 99:82 100:00
LRdin-c

et (etc) 11:90 35:92 62:74 82:82 92:08 26:88 79:70 98:00 99:84 100:00
LMdin-c

et (etc) 12:88 39:78 68:00 86:42 93:88 27:58 81:22 98:28 99:94 100:00
Sdin-cet (etc) 11:04 33:40 59:36 79:42 89:42 26:60 78:84 97:66 99:82 100:00

Table C.2 CEM Hypothesis DIN Test Size-Corrected Power: � = 0, Ac = 4:5, K = 2

n 200 500
a 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J din-c(gmmc) 23:30 70:96 94:60 98:76 99:60 63:92 99:84 100:00 100:00 100:00
Sdin-ccue (cuec) 22:38 68:66 93:24 98:42 99:30 63:36 99:84 100:00 100:00 100:00
LRdin-c

el (elc) 30:82 84:48 99:20 100:00 100:00 70:82 99:94 100:00 100:00 100:00
LMdin-c

el (elc) 34:40 86:82 99:46 100:00 100:00 73:16 99:92 100:00 100:00 100:00
Sdin-cel (elc) 23:46 72:02 95:30 99:14 99:76 64:04 99:84 100:00 100:00 100:00
LRdin-c

et (etc) 28:24 81:76 98:90 99:96 100:00 69:48 99:92 100:00 100:00 100:00
LMdin-c

et (etc) 33:56 87:34 99:60 100:00 100:00 74:68 99:94 100:00 100:00 100:00
Sdin-cet (etc) 23:58 71:32 94:88 98:82 99:68 63:98 99:84 100:00 100:00 100:00

[C.1]



C.1.2 Restricted Tests

Table C.3 CEM Hypothesis Test Size-Corrected Power: � = 0, Ac = 2, K = 2

n 200 500
a 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J c(gmmc;gmmma) 13:28 38:44 66:84 83:70 92:30 30:64 83:66 98:50 99:90 100:00
LRc

cue(cuec;cuema) 13:04 38:20 66:22 83:00 91:90 30:66 83:62 98:48 99:90 100:00
LRc

el(elc;elma) 14:26 42:12 72:20 88:10 94:70 32:40 85:18 98:86 99:98 100:00
LMc

el(elc;elma) 15:46 46:58 75:98 90:60 95:86 33:70 86:74 99:14 100:00 100:00
�Scel(elma) 13:44 39:66 68:08 85:06 93:28 30:96 84:16 98:58 99:92 100:00
LRc

et(etc;etma) 13:98 41:08 70:98 87:26 94:38 31:84 84:78 98:82 99:92 100:00
LMc

et(etc;etma) 14:80 43:84 73:60 89:28 95:52 32:98 85:84 98:94 99:96 100:00
�Scet(etma) 13:24 39:04 67:58 84:50 92:92 30:86 83:96 98:58 99:92 100:00

Table C.4 CEM Hypothesis Test Size-Corrected Power: � = 0, Ac = 4:5, K = 2

n 200 500
a 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J c(gmmc;gmmma) 24:22 72:78 95:18 98:76 99:46 67:62 99:90 100:00 100:00 100:00
LRc

cue(cuec;cuema) 23:70 71:40 94:36 98:34 99:30 67:22 99:88 100:00 100:00 100:00
LRc

el(elc;elma) 32:46 86:52 99:32 100:00 100:00 73:30 99:94 100:00 100:00 100:00
LMc

el(elc;elma) 35:40 87:78 99:48 100:00 100:00 74:34 99:94 100:00 100:00 100:00
�Scel(elma) 24:94 74:22 96:06 99:18 99:74 67:50 99:90 100:00 100:00 100:00
LRc

et(etc;etma) 29:80 83:82 98:98 99:94 100:00 72:14 99:94 100:00 100:00 100:00
LMc

et(etc;etma) 34:76 88:20 99:64 100:00 100:00 76:12 99:96 100:00 100:00 100:00
�Scet(etma) 24:56 73:60 95:68 99:06 99:66 67:78 99:90 100:00 100:00 100:00

[C.2]



C.2 MEM: a = 0

C.2.1 Unrestricted Tests

Table C.5 MEM Hypothesis DIN Test Size-Corrected Power: a = 0, Am = 1, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J din-m(gmmm) 32:82 88:42 99:84 100:00 100:00 72:82 99:94 100:00 100:00 100:00
Sdin-mcue (cuem) 32:78 88:26 99:84 100:00 100:00 72:74 99:94 100:00 100:00 100:00
LRdin-m

el (elm) 33:54 88:66 99:86 100:00 100:00 72:92 99:94 100:00 100:00 100:00
LMdin-m

el (elm) 32:22 86:44 99:34 99:98 100:00 72:46 99:88 100:00 100:00 100:00
Sdin-mel (elm) 32:84 88:52 99:84 100:00 100:00 72:84 99:94 100:00 100:00 100:00
LRdin-m

et (etm) 33:10 88:80 99:86 100:00 100:00 73:12 99:94 100:00 100:00 100:00
LMdin-m

et (etm) 28:74 86:22 99:62 100:00 100:00 71:04 99:94 100:00 100:00 100:00
Sdin-met (etm) 32:80 88:42 99:84 100:00 100:00 72:84 99:94 100:00 100:00 100:00

Table C.6 MEM Hypotesis DIN Test Size-Corrected Power: a = 0, Am = 1:5, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J din-m(gmmm) 26:80 83:68 99:44 100:00 100:00 66:18 99:94 100:00 100:00 100:00
Sdin-mcue (cuem) 26:64 83:50 99:46 100:00 100:00 66:20 99:92 100:00 100:00 100:00
LRdin-m

el (elm) 27:38 83:70 99:38 100:00 100:00 66:00 99:94 100:00 100:00 100:00
LMdin-m

el (elm) 26:06 80:56 98:86 99:86 100:00 64:28 99:82 100:00 100:00 100:00
Sdin-mel (elm) 26:66 83:44 99:46 100:00 100:00 66:12 99:92 100:00 100:00 100:00
LRdin-m

et (etm) 27:38 83:86 99:44 100:00 100:00 66:16 99:92 100:00 100:00 100:00
LMdin-m

et (etm) 25:40 82:42 99:32 100:00 100:00 64:88 99:92 100:00 100:00 100:00
Sdin-met (etm) 26:82 83:56 99:44 100:00 100:00 66:12 99:92 100:00 100:00 100:00

[C.3]



C.2.2 Restricted Tests

Table C.7 MEM Hypothesis Test Size-Corrected Power: a = 0, Am = 1, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J m(gmmm;gmmma) 42:50 93:54 99:92 100:00 100:00 82:28 100:00 100:00 100:00 100:00
LRm

cue(cuem;cuema) 42:46 93:56 99:92 100:00 100:00 82:36 100:00 100:00 100:00 100:00
LRm

el(elm;elma) 41:60 93:32 99:94 100:00 100:00 82:30 100:00 100:00 100:00 100:00
LMm

el(elm;elma) 40:26 92:10 99:78 100:00 100:00 81:78 100:00 100:00 100:00 100:00
�Smel(elma) 42:34 93:40 99:92 100:00 100:00 82:40 100:00 100:00 100:00 100:00
LRm

et(etm;etma) 42:48 93:56 99:94 100:00 100:00 82:28 100:00 100:00 100:00 100:00
LMm

et(etm;etma) 41:40 93:28 99:96 100:00 100:00 82:30 100:00 100:00 100:00 100:00
�Smet(etma) 42:46 93:46 99:92 100:00 100:00 82:26 100:00 100:00 100:00 100:00

Table C.8 MEM Hypothesis Test Size-Corrected Power: a = 0, Am = 1:5, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J m(gmmm;gmmma) 31:14 87:18 99:82 100:00 100:00 71:46 99:98 100:00 100:00 100:00
LRm

cue(cuem;cuema) 31:24 87:36 99:78 100:00 100:00 71:30 99:98 100:00 100:00 100:00
LRm

el(elm;elma) 31:96 87:74 99:78 100:00 100:00 71:70 99:98 100:00 100:00 100:00
LMm

el(elm;elma) 32:10 86:08 99:36 99:96 100:00 71:12 99:94 100:00 100:00 100:00
�Smel(elma) 30:88 87:12 99:78 100:00 100:00 71:24 99:98 100:00 100:00 100:00
LRm

et(etm;etma) 31:42 87:62 99:80 100:00 100:00 71:90 99:98 100:00 100:00 100:00
LMm

et(etm;etma) 32:30 88:04 99:78 100:00 100:00 71:76 99:98 100:00 100:00 100:00
�Smet(etma) 30:86 87:18 99:80 100:00 100:00 71:64 99:98 100:00 100:00 100:00

[C.4]



C.3 CEM: a = 0

C.3.1 Unrestricted Tests

Table C.9 CEM Hypothesis DIN Test Size-Corrected Power: a = 0, Ac = 2, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J din-c(gmmc) 26:42 83:08 99:40 100:00 100:00 66:40 99:90 100:00 100:00 100:00
Sdin-ccue (cuec) 26:12 82:80 99:38 100:00 100:00 66:52 99:92 100:00 100:00 100:00
LRdin-c

el (elc) 26:78 82:94 99:42 100:00 100:00 65:72 99:90 100:00 100:00 100:00
LMdin-c

el (elc) 25:88 79:82 98:70 99:98 100:00 64:02 99:84 100:00 100:00 100:00
Sdin-cel (elc) 26:44 83:02 99:40 100:00 100:00 66:44 99:90 100:00 100:00 100:00
LRdin-c

et (etc) 26:80 83:14 99:48 100:00 100:00 66:06 99:92 100:00 100:00 100:00
LMdin-c

et (etc) 26:42 82:44 99:34 100:00 100:00 65:70 99:90 100:00 100:00 100:00
Sdin-cet (etc) 26:50 83:08 99:40 100:00 100:00 66:42 99:90 100:00 100:00 100:00

Table C.10 CEM Hypothesis DIN Test Size-Corrected Power: a = 0, Ac = 4:5, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J din-c(gmmc) 18:84 69:58 97:54 99:98 100:00 50:34 99:48 100:00 100:00 100:00
Sdin-ccue (cuec) 18:98 69:52 97:52 99:98 100:00 50:20 99:44 100:00 100:00 100:00
LRdin-c

el (elc) 18:78 68:14 97:34 99:98 100:00 49:26 99:46 100:00 100:00 100:00
LMdin-c

el (elc) 16:78 57:24 92:84 99:62 100:00 44:34 98:92 100:00 100:00 100:00
Sdin-cel (elc) 19:04 69:58 97:54 99:98 100:00 50:28 99:46 100:00 100:00 100:00
LRdin-c

et (etc) 18:62 69:00 97:46 99:98 100:00 50:14 99:46 100:00 100:00 100:00
LMdin-c

et (etc) 17:42 63:56 96:10 99:98 100:00 47:26 99:28 100:00 100:00 100:00
Sdin-cet (etc) 18:96 69:84 97:56 99:98 100:00 50:32 99:48 100:00 100:00 100:00

[C.5]



C.3.2 Restricted Tests

Table C.11 CEM Hypothesis Test Size-Corrected Power: a = 0, Ac = 2, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J c(gmmc;gmmma) 31:52 87:60 99:78 100:00 100:00 72:12 99:98 100:00 100:00 100:00
LRc

cue(cuec;cuema) 31:30 87:60 99:74 100:00 100:00 72:16 99:98 100:00 100:00 100:00
LRc

el(elc;elma) 31:56 87:38 99:78 100:00 100:00 72:42 99:98 100:00 100:00 100:00
LMc

el(elc;elma) 29:94 84:28 99:38 100:00 100:00 70:62 99:98 100:00 100:00 100:00
�Scel(elma) 31:72 87:64 99:80 100:00 100:00 72:26 99:98 100:00 100:00 100:00
LRc

et(etc;etma) 31:92 87:64 99:84 100:00 100:00 72:50 99:98 100:00 100:00 100:00
LMc

et(etc;etma) 31:26 87:06 99:82 100:00 100:00 72:12 99:98 100:00 100:00 100:00
�Scet(etma) 31:60 87:74 99:78 100:00 100:00 72:22 99:98 100:00 100:00 100:00

Table C.12 CEM Hypothesis Test Size-Corrected Power: a = 0, Ac = 4:5, K = 2

n 200 500
� 0:2 0:4 0:6 0:8 1 0:2 0:4 0:6 0:8 1

J c(gmmc;gmmma) 19:48 70:78 97:84 99:98 100:00 53:28 99:64 100:00 100:00 100:00
LRc

cue(cuec;cuema) 20:06 71:44 97:90 99:98 100:00 53:10 99:64 100:00 100:00 100:00
LRc

el(elc;elma) 20:26 70:56 97:66 100:00 100:00 51:68 99:58 100:00 100:00 100:00
LMc

el(elc;elma) 18:14 59:72 93:82 99:72 100:00 45:04 99:16 100:00 100:00 100:00
�Scel(elma) 20:46 71:56 97:86 99:98 100:00 52:94 99:64 100:00 100:00 100:00
LRc

et(etc;etma) 20:16 70:94 97:86 99:98 100:00 51:80 99:54 100:00 100:00 100:00
LMc

et(etc;etma) 18:34 65:62 96:64 99:98 100:00 48:38 99:36 100:00 100:00 100:00
�Scet(etma) 19:90 71:00 97:86 99:98 100:00 53:20 99:68 100:00 100:00 100:00

[C.6]


