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Abstract

The primary concern of this article is the provision of definitions and tests
for exogeneity appropriate for models defined through sets of conditional moment
restrictions. These forms of exogeneity are expressed as additional conditional
moment constraints and may be equivalently formulated as a countably infinite
number of unconditional restrictions. Consequently, tests of exogeneity may be
seen as tests for an additional set of infinite moment conditions. A number of test
statistics are suggested based on GMM and generalized empirical likelihood. The
asymptotic properties of the statistics are described under both null hypothesis and
a suitable sequence of local alternatives. An extensive set of simulation experiments
explores the relative practical efficacy of the various test statistics in terms of
empirical size and size-adjusted power.
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1 Introduction

The primary focus of this article is issues of exogeneity appropriate for models defined by a
set of semiparametric conditional moment restrictions in the cross-sectional data context.
More specifically its particular concerns are to provide definitions of and to propose tests
for exogeneity in this setting. A second contribution of the paper is to detail practically
efficacious GMM and generalised empirical likelihood (GEL) test statistics for additional
conditional moment restrictions which include the exogeneity hypotheses considered here
as special cases.

Numerous definitions of exogeneity have been provided in the literature; see, e.g., the
discussion in section 2 of Deaton (2010). Engle, Hendry and Richard (1983), henceforth
EHR, consider classical parametric maximum likelihood estimation. Consider the random
vectors y and = and suppose that y is the target variate of interest. The random vector
x is said to be (weakly) exogenous for the parameters characterising the conditional
distribution of y given x if no loss of information results by disregarding the marginal
distribution of z, i.e., conditional maximum likelihood is asymptotically efficient.! From
a policy perspective, the exogeneity of x assumes a central importance in this context. If
in addition the conditional distribution of y given = describes the behavioural relationship
for y in terms of x and if z is also a vector of control variables for the policy maker then
knowledge of the conditional distribution of y given z enables the policy maker to predict
accurately the effect of a change in policy effected through = without knowledge of the
joint distribution of y and x, or, more precisely, the marginal distribution of z.2

Other definitions of exogeneity have been formulated that are primarily concerned
with the consistency of a particular parameter estimator. Hausman (1978, Section 2,

pp.1252-1261) discusses exogeneity for a linear regression model in terms of a two equation

1See EHR, Definition 2.5, p.282. Technically this definition of exogeneity is that of statistical partial
or S-ancillarity; see Basu (1977, Definition 8, p.357, and Case V, p.358).

2For the dynamic linear simultaneous equations model with normally distributed errors, EHR, Theo-
rem 4.3 (a) and (b), p.298, provides sufficient conditions for exogeneity expressed in terms of the uncor-
relatedness of particular structural error terms. More specifically, for classical normal linear regression,
the exogeneity assumption is equivalent to the uncorrelatedness of regression error and covariates, i.e.,
the assumption commonly made when the objective is to estimate the best linear predictor.
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triangular system. The definition of exogeneity provided there, however, is in fact more
widely applicable for models defined via unconditional moment restrictions. Consider a
linear regression model with scalar dependent variable y, covariate vector x and error term
u uncorrelated with instrument vector w. Then z is exogenous if it is also uncorrelated
with u. This particular definition of exogeneity is useful if interest centres on consistent
estimation of the best linear predictor of y in terms of x. Moreover, it implies that the
instrument vector w plays no role in the best linear predictor of y expressed in terms of
x and w. However, for the policy maker, the best linear predictor may be difficult to
interpret and thus its practical relevance difficult to justify. From this perspective the
conditional mean of y rather than the best linear predictor may be of more importance
and interest. Consequently the central concern of this paper when considering notions
of exogeneity is with particular conditional expectations in the semiparametric moment
condition setting.

More recently, Blundell and Horowitz (2007), hereafter BH, discuss exogeneity when
the nonparametric estimation of a structural function g(z) of the dependent variable y
defined in terms of the covariate vector x is of interest. The conditional expectation of
the structural error term y — g(z) given a set of identifying instruments w is maintained
to be zero. In this setting = is exogenous if the conditional expectation of y given x
almost surely coincides with g(x), i.e., the conditional expectation of the structural error
term given x is zero. This definition has the advantage that standard nonparametric
regression of y on z is then appropriate for consistent estimation of g(x) and thus may
be regarded as being a natural counterpart of the exogeneity definition concerned with
estimator consistency in the parametric framework considered in, e.g., Hausman (1978).
Because the maintained instruments w are now ignored this definition may be charac-
terised as a partial form of exogeneity which we term as marginal exogeneity in mean
below. Importantly, however, this definition of exogeneity may be inadequate in particu-
lar circumstances since, for the policy maker, if the instruments w are control variables,
the effect of changes in the instruments w given x on y will in general be unknown without

further knowledge of the conditional distribution of w given z. Of course, if the covariate
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vector z is itself under the control of the policy maker, then the effect of changes in x on
y would be perfectly predictable.?

Therefore, the first concern of the paper is to clarify and provide an alternative
definition of exogeneity to that of BH for general nonlinear models specified by conditional
moment restrictions. A covariate vector x is said to be conditionally exogenous in mean if
the expectation of the conditional moment indicator vector given both = and maintained
instruments w is zero. In particular, if regression covariates = are conditionally exogenous
then the instruments w are necessarily redundant as additional explanators. From the
viewpoint of the policy maker such information is useful since to effect a change in the
conditional mean of y given z and w, only x need now be varied. The constraints imposed
by this definition of exogeneity are of course stricter than those arising through that
of BH. Consequently, estimators which efficiently incorporate this information should
dominate those which only make use of the marginal exogeneity restriction.

The paper also provides tests for additional moment restrictions in the conditional
moment framework. These tests are then adapted for both marginal and conditional ex-
ogeneity in mean hypotheses. Most tests for exogeneity proposed in the literature focus
on the best linear predictor since their primary concern is with linear regression settings.

The most popular of these tests is probably the Durbin-Wu-Hausman test [Durbin (1954),

3Similar concerns and considerations to these apply more generally in separable nonlinear (latent
variable) models such as the instrumental variable quantile regression model defined by P{y < g(z)|w} =
0, where w is a vector of instruments, i.e., the conditional #-quantile Qp(y|w) of y given w is g(z); see
Chernozhukov and Hong (2003) and Honore and Hu (2003). Let I(-) be the indicator function. Hence
the §-quantile constraint Qg (y|w) = g(x) is equivalent to the moment condition E[f—I(y < g(z))|w] = 0.
Marginal exogeneity in mean corresponds to E[0—I(y < g(x))|z] = 0, i.e., the conditional #-quantile of y
Qo(y|z) given z is also g(z). If w is a vector of controls, policy interest would concern the conditional 6-
quantile Qp(y|w, x) of y given w and z, i.e., whether given = changes in w affect Qg (y|w, x). In particular,
if the conditional exogeneity in mean hypothesis Qg (y|w, z) = g(z) holds, then, given x, instruments w
play no role in determining Qg (y|w, x).

4White and Chalak (2010), see also Chalak and White (2011), provides another definition of condi-
tional exogeneity for the nonseparable model framework y = r(x, u), where () is an unknown structural
function and y,  and excluded w are observable but u is not. Let « = (z},, z})’. Here interest centres on
the effect of z, on y. White and Chalak (2010) defines z, to be conditionally exogenous if =, and u are
conditionally independent given w and z3. In separable models y = g(z) 4 u, the less restrictive condi-
tional exogeneity or conditional mean independence constraint Ely — g(z)|z, w] = Ely — g(x)|zp, w] =0
discussed here allows identification of the effect of z, on y given w and x;; see also Chalak and White
(2006).



Wu (1973), Hausman (1978)] which contrasts instrumental variable estimators obtained
assuming orthogonality conditions between errors and instruments and errors and covari-
ates (and instruments) respectively.® These types of tests, however, are inappropriate for
models defined by conditional moment constraints. As noted by Bierens (1990), such
orthogonality tests are generally inconsistent against some alternatives implied by condi-
tional moment conditions as only a finite number of unconditional restrictions are used
to formulate these tests.

The particular approach for test formulation taken here is based on an infinite number
of unconditional moment restrictions that are designed to overcome the aforementioned
test inconsistency difficulty. While tests of exogeneity have received relatively little atten-
tion in models defined by conditional moment restrictions, there is a vast related literature
on tests of goodness of fit in regression models. See, for example, Eubank and Spiegelman
(1990) in the nonlinear regression context. Other tests have also been proposed for this
set-up by inter alia De Jong and Bierens (1994), Hong and White (1995) and Jayasuriya
(1996). Donald, Imbens and Newey (2003), henceforth DIN, extends these ideas to the
conditional moment restriction setting for GMM [Hansen (1982)] and GEL [Newey and
Smith (2004), Smith (1997, 2011)]. This paper adapts these methods to formulate tests
for additional moment restrictions in the conditional moment model framework and then
specialises them for conditional and marginal exogeneity in mean hypotheses.® The basic
underlying idea is to approximate conditional moment restrictions by a finite set of un-
conditional moment restrictions, the number of which is then allowed to grow with but
at a slower rate than sample size. Both marginal and conditional exogeneity in mean
hypotheses involve two sets of conditional moment restrictions with the second set imply-
ing the first. These sets of conditional moment conditions are replaced by corresponding

sets of unconditional moment restrictions with the first set a subset of the second, cf.

Lagrange multiplier or score tests are suggested in Engle (1982). Smith (1994) proposes efficient
limited information classical test statistics for the sufficient exogeneity conditions in the dynamic simul-
taneous equations model discussed in EHR, Section 4, pp. 294-300.

6 Alternative tests for exogeneity could also be based inter alia on the approaches of Bierens (1982,
1990), Wooldridge (1992), Yatchew (1992), Hardle and Mammen (1993), Fan and Li (1996), Zheng
(1996,1998), Lavergne and Vuong (2000), Ellison and Ellison (2000) and Dominguez and Lobato (2004).
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DIN. As a consequence, these exogeneity tests may be interpreted as tests for additional
moment restrictions similar to those proposed by Newey (1985b) and Tauchen (1985) in
the classical parametric setting, by Newey (1985a), Eichenbaum, Hansen and Singleton
(1988) and Ruud (2000) for GMM and by Smith (1997, 2011) for GEL. After appropriate
standardization, the test statistics converge in distribution to a standard normal variate
rather than the usual chi-square distributed variate, intuitively, since, from an asymp-
totic standpoint, the statistics are based on an infinite number of unconditional moments.
Furthermore, unlike orthogonality test statistics, efficient parameter estimators are not
required for the formulation of these tests.”

The paper is organized as follows. Section 2 provides a detailed discussion of ex-
ogeneity appropriate for models defined by conditional moment restrictions. The test
problem is then specified in section 3 together with some additional notation and requi-
site assumptions; GMM and GEL test statistics for marginal and conditional exogeneity
in mean are also detailed there. Section 4 details the limiting distribution of these
statistics under the null hypothesis of exogeneity whereas section 5 considers their as-
ymptotic distribution under a suitable sequence of local alternatives. Section 6 discusses
some issues concerning the computation of the test statistics. Section 7 presents a set
of simulation results on the size and power of the test statistics. Section 8 concludes.
Proofs of the results in the text and certain subsidiary lemmata are given in Appendix

A. Tables associated with the simulation experiments are collected in Appendices B and
C.

2 Exogeneity

2.1 Some Preliminaries

The standard definition of exogeneity in the classical linear regression setting is that of

an absence of correlation between a covariate and the model error term. This definition,

"The succeeding theoretical analysis may in principle be straightforwardly adapted and extended
for models defined by nonsmooth moment conditions that include nonparametric components, e.g.,
semiparametric single index ordered choice models. See, e.g., Chen and Pouzo (2009, 2012) and Parente
and Smith (2011).
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however, may be rather restrictive if purposes other than estimation of the best linear
predictor are of primary interest.

More generally, the conditional mean of the dependent variable is likely to be of more
relevance for exogeneity considerations. Recently, BH proposes a definition for exogeneity

in nonparametric regression. BH consider the model

y=g(z)+u, (2.1)

where ¢(-) is an unknown structural function of inferential interest and x is a vector
of covariates. BH maintain the identifying conditional moment restriction E[u|w]| = 0
where w is a vector of instruments and define the covariate vector x to be exogenous if
the conditional moment restriction E[u|z] = 0 holds. Therefore, E[y|z] = g(x).
Examples 2.1 and 2.2 below demonstrate the well-known result that even though
structural errors may be uncorrelated with instruments and covariates covariates are not

necessarily exogenous in the BH sense.

ExXAMPLE 2.1: Consider the linear regression model
y = Pox +u, (2.2)

where [ is an unknown parameter, the covariate © = w + vy, u = y/—21n (vy) cos (27v;)
and the instrument w and v, v, are independent uniform random variables on the unit
interval [0, 1]; hence, u is standard normal being defined by the Box-Miiller transforma-
tion. In this example, it is easily shown that instrument and covariate are uncorrelated
—3/2

with the structural error term u, i.e., E[wu] = 0, E[zu] = 0, although E[z?*u] = (27)
Therefore Eful|x] # 0.

EXAMPLE 2.2: [Stock and Watson, 2007, Exercise 2.23, p.63.] Suppose now that
r=w+zand u = 2% — 1 in (2.2) hold where w and z are independent standard normal
random variates. In this case u is a centered chi-squared random variable with 1 degree

of freedom. As in Example 2.1, E[wu] = 0 and E[zu] = 0, but E[z?u] = 2 and thus

[6]



The next example is constructed to illustrate a potential limitation of the BH de-
finition of exogeneity and forms the basis of the simulation experiments considered in

section 7.

EXAMPLE 2.3: Consider the following revision to regression model (2.2)
y = Boz + f(w7$> + v, (23)

where v is standard normal and statistically independent of x and w. In this example the
parameter [y may no longer be of sole interest but the form of f(w,z) may be relevant
too. Assume that w and z are jointly normally distributed each with mean zero, unit

variance and correlation coefficient p where p € (—1,1) and p # 0. Suppose
1+ p?
p

If f(w,z) is erroneously omitted from (2.3) and the regression model (2.2) again

flw,r) = 2° + w* — ( Jwr — (1 — p?).

estimated but with u = f(w,x) 4+ v, By may be consistently estimated by instrumental
variables (IV) using w as instrument since E[u|w] = 0. Although the omitted variable
f(w, z) depends on x the covariate z is in fact exogenous in the BH sense as E[u|z| = 0.
Consequently [y can also be consistently estimated using least squares (LS). In particular,
under the BH exogeneity hypothesis F[u|x] = 0, the effect of changes of = on y are
predictable since E[y|z] = Poz.

In general, however, regression model (2.3) is of relevance rather than (2.2); in
particular, f(w,x) is of importance if the instrument w is a control variable for the
policy maker. The impact of altering w requires additional information concerning
the conditional distribution of z given w, namely p here. To see this, from (2.3),
Ely|w] = poEx|w] + E[f(w, z)|w], i.e., Bopw under the above assumptions. Moreover, if
x is also a control variable for the policy maker, since F[u|w, z] # 0, the effect of changing

w while keeping z unaltered requires examination of E[y|w, x| = Sox + f(w,x).



Therefore, more generally, an appropriate but more restrictive definition of exogeneity
than that of BH requires Efu|w, z] = 0 implying, for model (2.1), that E[y|w,z] = g(x).

Hence, when x is unaltered, changes of w have no effect on the conditional mean Ey|w, x].

2.2 Definitions

We consider the more general conditional moment context with error vector defined by
u = u(z, ), where u(z, ) is a known J-vector of functions of the random vector of
observables z and the unknown p-vector of parameters (3, which constitute the object of
inferential interest.

Like BH we assume that there exists an observable vector of instruments w such that
Elu(z, Bo)|w] = 0. (2.4)

Since the BH definition does not involve the maintained instrument vector w we view it

as a partial or marginal form of exogeneity; viz.

Definition 2.1 (Marginal Ezogeneity in Mean.) The random wvector x is marginally

exogenous in mean (MEM) for 3y if
Elu(z, Bo)|z] = 0. (2.5)

EXAMPLE 2.3 (cont.): Here u(z, fy) = y— fox and z MEM for /3, implies that 5, may
be consistently estimated by LS. LS is in general inefficient not only because it neglects
the maintained constraint E|u(z, fy)|w] = 0 (2.4) but also because the conditional nature
of MEM (2.5) is ignored. An IV estimator for §y based on the joint conditional moment
conditions (2.4) and (2.5) should be at least as efficient as LS or IV using only (2.4).
Thus, although E[y|z] is correctly specified as oz, a more efficient estimator for 5y than
LS is possible.

If  MEM for [y and if = is a control variable, the average effect of changes in x by
the policy maker on y is predictable. In contrast, if w is also a policy control variable,

the likely impact on y occasioned by changes in w cannot be determined without further
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knowledge of the conditional distribution of x given w, namely p, i.e., x MEM for [ is
uninformative. Moreover, x MEM for 3y is unhelpful in determining the effect of changes
in w on y while keeping x unaltered which requires knowledge of the conditional mean
Elylw,z] = fox + f(w,z).

In Example 2.1 f(w,z) = 0. However, because instrument w is excluded,  MEM for
Bo implies Ely|w, z] = E[y|x] = oz, i.e., y is conditionally mean independent of w given
x. Therefore, if x is kept unchanged, alterations in w have no effect on y, i.e., instru-
ments w contribute no information in addition to that provided by z to the conditional

expectation of y.

In general, therefore, MEM (2.5) may represent an incomplete definition of exogeneity
from a practical perspective in the conditional moment context. To deal with this issue,
the following definition of exogeneity revises that of BH incorporating the maintained

instruments w and necessarily taking a conditional form.

Definition 2.2 (Conditional Exogeneity in Mean.) The random vector x is conditionally

exogenous in mean (CEM) for [y given w if
Eu(z po) |w,z] = 0. (2.6)

CEM (2.6) not only implies the maintained conditional moment restriction (2.4) but
also MEM (2.5). Thus, CEM is a more stringent requirement than MEM. Therefore,
estimators using CEM are in general more efficient than those solely exploiting (2.4) and
MEM. Note, however, that in Example 2.3 the marginal effect of w on y remains the same
under both CEM and MEM, i.e., E[y|w] = Bypw.

The next sections develop tests for both MEM and CEM and analyse their large sample

properties.



3 GMM and GEL Test Statistics
3.1 Test Problem

The conditional moment constraints E[u(z, 5y)|w] = 0 (2.4) are maintained throughout.

The null hypothesis is

Hy : Elu(z, Bo)|s| = 0, E[u(z, Bo)|w] =0 (3.1)
with the alternative hypothesis

Hy : Elu(z, fo)|s] # 0, E[u(z, Bo)|w] = 0. (3.2)

The use of the generic random vector s permits circumstances in which w may or may
not be strictly included as a conditioning variate. Indeed the null hypothesis (3.1) allows
both the definitions of exogeneity given in section 2.1 as special cases with s = x and
s = (w',2') as MEM (2.5) and CEM (2.6) respectively. The definition of s will be made

explicit in each particular instance.

3.2 Approximating Conditional Moment Restrictions

Conditional moment conditions of the form given in (3.1) and (2.4) are equivalent to
a countable number of unconditional moment restrictions under certain regularity con-
ditions; see Chamberlain (1987). The following assumption, DIN Assumption 1, p.58,
provides precise conditions.

For each positive integer K, let ¢(s) = (qix(s), ..., qxx(s)) denote a K-vector of

approximating functions.
Assumption 3.1 For all K, E[q"(s)q¢®(s)] is finite and for any a(s) with Ela(s)?] < oo
there are K -vectors yix such that as K — oo,

El(a(s) = ¢"(s)7x)*] — 0.

Possible approximating functions which satisfy Assumption 3.1 are splines, power
series and Fourier series. See inter alia DIN, Newey (1997) and Powell (1981) for further

discussion.

[10]



The next result, DIN Lemma 2.1, p.58, shows formally the equivalence between con-

ditional moment restrictions and a sequence of unconditional moment restrictions.

Lemma 3.1 Suppose that Assumption 3.1 is satisfied and Eu(z, By) u(z, Bo)| is finite. If
Eu(z,Bo)|s] =0, then Elu(z, Bo)®q¢" (s)] = 0 for all K. Furthermore, if E [u (2, ) |s] #
0, then Elu(z, ) ® ¢*(s)] # 0 for all K large enough.

DIN defines the unconditional moment indicator vector as g(z, 3) = u(z, 3) ® ¢% (s).
By considering the moment conditions E[g(z, 5y)] = 0, if K approaches infinity at an
appropriate rate, dependent on the sample size n and the estimation method, EL, IV,
GMM or GEL, DIN demonstrates these estimators are consistent and achieve the semi-
parametric efficiency lower bound. To do so, however, requires the imposition of a nor-
malization condition on the approximating functions, DIN Assumption 2, p.59, as now
follows.

Let S denote the support of the random vector s.

Assumption 3.2 For each K there is a constant scalar ((K) and matriz Bk such that
% (s) = Brq"(s) for all s € S, sup,cs HQK(S)H < ((K), E[G®(s)G*(s)'] has smallest

eigenvalue bounded away from zero uniformly in K and VK < ¢ (K).

Hence the null hypothesis (3.1) may be re-interpreted in terms of a sequence of ad-
ditional unconditional moment restrictions. In particular, to test either MEM (2.5) and
CEM (2.6) requires that their constituent conditional moment constraints and the main-
tained (2.4) are replaced by suitably defined unconditional moment restrictions based on
Assumptions 3.1 and 3.2.

The maintained conditional moment restrictions (2.4) are consequently re-expressed

as the sequence of unconditional moment restrictions
Elu(z, Bo) ® gy (w)] = 0, K — oo, (3.3)

for approximating functions ¢X, (-) satisfying Assumptions 3.1 and 3.2 with s = w.

[11]



Let f(K) be a function of K that yields positive integer numbers and satisfies f(K) =
O(K); for simplicity we set f(K) = MK, where M is a positive integer.® Also let ¢ (s)
be a f(K)-vector of approximating functions that depends on s, with s=M or ¢ and
s =z or s = (w',2')" corresponding to MEM or CEM respectively. Additionally define

(

w,r) = (g5, (w),¢X(s)). Therefore, if Assumptions 3.1 and 3.2 are satisfied for
(w, ), the null hypothesis (3.1) is equivalent to the sequence of unconditional moments

7
S
Elu(z, Bo) ® ¢ (w,x)] =0, K — oo. (3.4)

For MEM (2.5), ¢/(s) depends only on functions of z whereas for CEM (2.6) it involves

additional functions of both w and z.

3.3 Basic Assumptions and Notation

We impose the following standard conditions to derive the asymptotic distributions of

the test statistics discussed below.

Assumption 3.3 (a) The data are i.i.d.; (b) there exists By € int(B) such that Elu(z, By)|s] =
0; (¢) /(B — fo) = Op(1); (d) Elsupses lu(z, 8)||s] is bounded.

Unlike DIN Assumption 6(b), it is unnecessary to impose E [Hsupﬁeg |u (2, 6)||7‘H <
oo for some v > 2 for GEL. As noted in Guggenberger and Smith (2005), if the sample
data are i.i.d. only v = 2 as in Assumption 3.3(d) is required; see Lemma 3 in Owen
(1990). Indeed, Lemma A.1 in Appendix A may be substituted for Lemma A10 in
DIN. Therefore, v may be set as 2 in the succeeding Lemmata and Theorems in DIN
concerned with GEL. Note that only root-n consistency rather than efficiency is required
for the estimator 3. Moreover, since under the null hypothesis (3.1) Efu(z, 8o)|s] =
Elu(z, fo)|w] =0, for s = x or s = (w',2’)’, only a single estimator is needed for /3.

Define ug(z, 8) = du(z, 8)/98', D(s) = Elug(z, B)|s] and u;ss(z, ) = 0*u;(z, 3)/9808,
j=1,...,J. Also let N denote a neighbourhood of f3.

8The requirement that f(K) = O(K) arises because of local power considerations; see section 5.
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Assumption 3.4 (a)u(z,[3) is twice continuously differentiable in N, E[supgens |lus(2, 3) 1% |]
and Ellluss;(z, 80)IP1s], (7 = 1, ), are bounded; (b) % (s) = Elu(z, fo)ulz, Go)'ls

has smallest eigenvalue bounded away from zero; (c) E[supgey ||u(z, A" |s] is bounded;

(d) for all B € N, |lu(z,B) —u(z,Bo)|| < 6(2) |8 — Boll and E[5(2)?|s] is bounded; (e)
E[D(s)' D(s)] is nonsingular.

3.4 Test Statistics

Let g;(8) = u(z, B) ® qly, (wi) and hi(B) = u(z;, 8) @ ¢" (wi, z;), (i = 1,...,n). Also let
§(B) = Xy gi(B8)/n and h(B) = L1, hi(B)/n.

Conditional GMM statistics appropriate for tests of maintained and null hypotheses
take the standard form

T = ng(B) Q2 9(B) (3.5)

and

~

T = nh(B)E7h(B) (3.6)

where Q = 3", 6:(3)g;(8)/n and 2 = ¥, hi(3)hi(8)' /n. See for example DIN, section
4, pp.63-64.

In the remainder of the paper tests that incorporate the information contained in the
maintained hypothesis (3.2) are referred to as restricted tests whereas those that ignore
it are unrestricted tests.

A restricted GMM statistic appropriate for testing the null hypothesis (3.1) compris-
ing either MEM (2.5) or CEM (2.6) hypotheses against the maintained hypothesis (3.2)
may be based on the difference of GMM criterion function statistics (3.6) and (3.5) for the
revised hypotheses (3.4) and (3.3) respectively. For fixed and finite K, standard asymp-
totic theory for tests of the validity of additional moment restrictions [Newey (1985a)]
yields test statistics that are chi-square distributed with JM K degrees of freedom. It
is well known, however, that when the number of degrees of freedom is very large a

chi-square random variable can be approximated, after standardization by subtraction of

[13]



its mean and division by its standard deviation, by a standard normal random variable.

The resultant GMM statistic is therefore defined as

T = T — T — JMK'

(3.7)
2JMK

A number of alternative test statistics to GMM-based procedures for a finite number
of additional moment restrictions using GEL [Smith (1997, 2011)] may be adapted for
the framework considered here. As in DIN and Newey and Smith (2004) let p(v) denote
a function of a scalar v that is concave on its domain, an open interval V containing zero.

Define the respective GEL criteria

P(Bn) = o brh(8) = ml/n
BN = Slp(Xal®) - pal/n (5:5)

under null and alternative hypotheses where n and A\ are the corresponding J(M -+
1)K- and JK-vectors of Lagrange multipliers associated with the unconditional moment
constraints (3.4) and (3.3). Let p;(v) = &/p(v)/0v’ and p; = p;(0), (j =0,1,2,...) where,
without loss of generality, we impose the normalisation p; = ps = —1.

Let A (B8) = {\: Ng;(B) € V,i=1,..n} and A,(B) = {n: /hi(B) € V,i=1,..,n}.

Given 3, the respective Lagrange multiplier estimators for A and n are given by

~

A(B) = arg max P,(B,\),7(8) = arg max P,(3,7).
Aehn(5) nEAn ()

Suppose that B is a root-n consistent estimator for Jy under either null or alternative
hypothesis. The corresponding respective Lagrange multiplier estimators for A and 7 are
then defined as A = A(5) and 77 = 7(3).

Let n = S where Sy, = I; ® (I, Opx) isa J(M +1)K x JMK selection matrix.
Additionally let s(z, 8) = Sih(z, 5) where S = I; ® (0, [yk) isa J(M+1)K x JMK
selection matrix. Hence, s(z, 8) = u(z, 8)®q¢X (w, z). Write s;(8) = s(zi, 8), (i = 1,...,n).

Similarly to the restricted GMM statistic 7, a restricted form of GEL likelihood

ratio (LR) statistic for testing either MEM (2.5) or CEM (2.6) hypotheses against the

[14]



maintained hypothesis (3.2) may be based on the difference of GEL criterion function

(3.8) statistics; viz.

N

2n[F,(8,7) — Pa(B, )] — IMK
2IMK |

LR =

(3.9)

Restricted Lagrange multiplier, score and Wald-type statistics are defined respectively as

7 — 02— i) — IMK
2JMK
g Zin pr(Ngi(B))s:(B) SESs Yoy p1(Ngi(B))si(B)/n — IMK
and
~/ r=—1 —1qrs
W i Ss(SLE71Ss) S, JMK. (3.12)

2JMK

An additional assumption on p(v) is required for statistics based on GEL as in DIN,

Assumption 6, p.67.

Assumption 3.5 p(-) is a twice continuously differentiable concave function with Lip-

schitz second derivative in a neighborhood of 0.

4 Asymptotic Null Distribution

The following theorem provides a statement of the limiting distribution of the restricted

GMM statistic J (3.7) under the null hypothesis (3.1).

Theorem 4.1 If Assumptions 3.1, 3.2, 3.3 and 3.4 hold for s = w and s = (w', 2')" and
if K — oo and ¢ (K)*K2/n — 0, then J % N(0,1).

Although this result is stated for a restricted GMM-based test of MEM or CEM it has a
wider significance. It is also relevant and may be straightforwardly adapted with little
alteration for constructing a test for the comparison of two sets of conditional moment

restrictions where one set is nested within the other.
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The next result details the limiting properties of the restricted GEL-based statistics
for the exogeneity hypotheses (2.5) and (2.6) and their relationship to that of the GMM
statistic J (3.7).

Theorem 4.2 Let Assumptions 3.1, 3.2, 8.8, 3.4 and 3.5 hold for s = w and s = (w', z")’
and in addition K — oo and ((K)?*K?®/n — 0. Then LR, LM, S and W converge in
distribution to a standard normal random variate. Moreover all of these statistics are

asymptotically equivalent to J .

Similarly to the GMM statistic J (3.7) the GEL statistics LR, LM, S and W may be
applied with little alteration to the general problem of testing nested conditional moment
restrictions.

Alternative unrestricted statistics for testing MEM (2.5) and CEM (2.6) hypotheses
may be also defined which ignore the information contained in the maintained hypothesis
(3.2); wiz. the unrestricted GEL-based statistics

P, (3,7) — J(M + 1)K nif'Zn — J(M + 1)K

LR" = LM = (4.1)
2J(M+ 1)K 2J(M + 1)K
and the unrestricted GMM statistic based on 7%,,,, which takes the score form
h(BYE"'h(B) — J(M + 1)K

2J(M + 1)K

It is straightforward to show from the analysis used to establish Theorems 4.1 and 4.2
similarly to DIN that these unrestricted statistics also each converge in distribution to a
standard normal random variate and are mutually asymptotically equivalent but not to
the restricted J, LR, LM, S and W. The statistics LR" and S" are forms of GMM
and GEL statistics suggested in DIN, section 6, pp.67-71, adapted for testing the null
hypothesis (3.1).

This section concludes with an asymptotic independence result between the restricted
GMM statistic J for testing (3.1) and the corresponding statistic J9 for testing the

maintained hypothesis (2.4) given by

T 2JK (43)
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VIZ.

Theorem 4.3 If Assumptions 3.1, 3.2, 3.3 and 3.4 hold for s = w and s = (w',2')" and
if K — 00 and ¢ (K)2 K2/n — 0, then J is asymptotically independent of J9 % N(0,1).

A similar result holds for the associated restricted GEL statistics LR, LM, S and W
and their counterparts for testing (2.4) with the additional constraint ((K)*K?3/n — 0.

The practical import of Theorem 4.3 is that the overall asymptotic size of the test se-
quence may be controlled, e.g., (a) test (2.4) using J7; (b) given (2.4), test Elu(z, Bo)|s] =
0 using J, with overall size 1 — (1 — ay,)(1 — o), where a, and o are the asymptotic

sizes of the individual tests in (a) and (b) respectively.

5 Asymptotic Local Power

This section considers the asymptotic distribution of the above statistics under a suitable
sequence of local alternatives. Recall that the dimension f(K) of approximating functions
qX(s) satisfies f(K) = O(K) which for simplicity is assumed to be linear in K, i.e.,
f(K) = MK; see below (3.3). Essentially, the import of this restriction is that it
ensures a difference in local power between the restricted statistics of section 3.4 and
the unrestricted statistics of section 4 that ignore the maintained conditional moment
information (2.4).

We follow the set-up in Eubank and Spielgeman (1990) and Hong and White (1995),
see also Tripathi and Kitamura (2003), which utilise local alternatives to the null hy-
pothesis (3.1) of the form
VJMK

vn

where 3,0 € B is a non-stochastic sequence such that 3,y — ;. We also assume that

Hy, : Elu(z, Buo)|w, x] = &(w, x), (5.1)

El¢(w, z)|w] = 0 to ensure that the maintained hypothesis Elu(z, fy)|w] = 0 in (3.2) is
not violated.
This sequence of local alternatives (5.1) is particularly apposite for CEM. It is also ap-

propriate as a description of local alternatives to the MEM hypothesis Efu(z, fy)|z] = 0 in
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which case local alternatives may be described by taking expectation of (5.1) conditional

on z, i.e.,
vV JMK
Vn

To obtain the asymptotic distribution of the statistics proposed in section 3.4 under

Elu(z, Bno)lz] = El(w, z)lz].

local alternatives (5.1) we invoke the following assumption.

Assumption 5.1 (a) (3,0 is a non-stochastic sequence such that (5.1) holds and (3,9 —
50; (b) \/E(B - ﬂn,[)) = Op(1)7 (C) fOT’ all 5 € N: Z(waxaﬂ) = E[u(27ﬁ)u(275),‘wax]
has smallest eigenvalue bounded away from zero; (d) ||&(w, x)|| is bounded; (e) X(w, x; 5)

and D(w,x; B) = Elug(z, B)|w, x| are continuous functions on a compact closure of N'.

The next result summarises the limiting distribution of the restricted statistics 7, LR,

LM, S and W under the sequence of local alternatives (5.1). Let X(w, z) = X(w, z; 8y).°

Theorem 5.1 Let Assumptions 3.1, 3.2, 3.3, 3.4 and 5.1 hold for s = w or s = (w',2'),
K — oo and ((K)?K?/n — 0. Then J converges in distribution to a N(u/v/2,1) random
variate, where

M= E[g(w7 :L‘)/Z(w, x)_lg(w, ZE)]

If additionally Assumption 3.5 is satisfied and ((K)?*K3/n — 0, then LR, LM, S and
W are asymptotically equivalent to J .

Theorem 5.1 reveals that tests based on these statistics should be one-sided. Although

not discussed here, a similar analysis to that underpinning Lemma 6.5, p.71, in DIN

demonstrates the consistency of tests based on the statistics 7, LR, LM, S and W.
The following corollary to Theorem 5.1 details the limiting distribution of the unre-

stricted statistics LR", LM" and S" under the same local alternative (5.1).

9The function & (w, z) is required to satisfy Assumption 3.1. Tests for MEM use approximating func-
tions that depend solely on = or on w but not both requiring some restrictions to be placed on the form of
& (w, z). Close inspection of the Proof of Theorem 5.1 reveals that £ (w, z) = X (z, w, Bo) (¢ (x) + ¢ (w))
satisfies Assumption 3.1 for arbitrary functions ¢ (z) and ¢ (w). In this case it can be shown that

uw=~F [w (z)' 2 (z, Bo) ¥ (x)] - F [<p (w)" S (w, Bo) @ (w)], where X (s,59) = E [u (s,B0)u (s, Bo) |s]
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Corollary 5.1 Let Assumptions 3.1, 3.2, 3.8, 3.4 and 5.1 hold for s = (w',2') and
C(K)?K?/n — 0. Then 8" converges in distribution to a N(uy/\/2,1) random variate,

where
M
M+1

If additionally Assumption 8.5 is satisfied and ((K)?K?/n — 0, then LR", LM" are

Mn = 28

asymptotically equivalent to S".

This corollary provides a justification for restricting the number of elements in ¢& (s) to
depend linearly on K. If M was permitted to approach infinity with K, p; would then
differ little from g with the consequence that unrestricted tests would have a similar
discriminatory power as that of restricted tests to detect local departures from the null
hypothesis Hy. Indeed, Corollary 5.1 indicates that M should be chosen as small as
possible.

6 Some Computational Issues

This section describes how the vectors of approximating functions ¢X (s) and ¢, (w) may
be constructed using Bernstein polynomials. For expositional simplicity suppose that
there is a single instrument w and a single covariate x each with unit interval [0, 1]
support; the univariate approach described below may straightforwardly be adapted for
0

the vector instrument and covariate case.!

For the instrument w Bernstein polynomials of degree p are defined by

p!
~il(p—)!

Bernstein polynomials have the following properties: (a) >-7_ B; ,(w) = 1; (b) B; p—1(w) =
%Biyp(w)+%8i+1,p(w). See, e.g., section 2 of Qian, Riedel and Rosenberg (2011). These

Bivp(w) wz(]' - w)p_i7i = 07 ey D (61)

properties have important consequences for the construction of the vectors of approxi-

mating functions.

10Bernstein polynomials for a variate a with unbounded support on the real line and sample a;,
(1 =1,...,n), may be obtained by substitution of the transformed variates ®((a; — @) /s,), (i =1,...,n),
where ®(+) is the standard normal cumulative distribution function and a and s, are the sample mean
and sample standard deviation respectively.
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For the maintained hypothesis (2.4) consider the vector

s (w) = (Box—1(w), By x—1(w), ..., Bx_1, k-1 (w))',

where K > 2.

For tests of CEM recall that ¢ (w, z) is the vector of additional approximating func-
tions. Let K¢ = [(AcK)'/?], where A, is a positive real constant, [] denotes the integer
part of - and K¢ < K; hence A, approximates M defined in section 3.2. The elements

of ¢X (w, z) are defined as the cross products of each the elements of the vector

¢ (w) = (Bo,xe—1(w), By ge—1(w), Bo,gee_1(w), ..., Be_1,e_1(w))’

with each element of the vector

QKC(x) = (BO,KL1($)7 BI,K071<I>7 Bz,ch(ﬂ?); "'7BK072,KC71(:E))17 (6-2)

where the Bernstein polynomials in terms of the covariate x are defined as in (6.1) with
w replaced by z. Thus ¢%(w,z) = (¢f,(w)', ¢5 (w,z)")’. Note that Bge_1xe_1(z) is
excluded from ¢"“(z) to avoid perfect multicollinearity between the elements of ¢X, (w)
and ¢& (w,r).1

To define a test of MEM (2.5) let K™ = [A,, K], where A, is a positive real number

and K < K. Now ¢%(w,z) = (¢, (w)', gl ()Y, where ¢/ (x) = " () and ¢*" () is

HTo see this ‘
K°—1

Zi:() B re—1(2)Bj ke 1 (w) = Bj ge—1(w), (j = 0,..., K — 1),

by the Bernstein polynomial Property (a) above. Now by Property (b), as K¢ < K, Bj xo—1(w) is a
linear function of Bernstein polynomials of order K — 1, i.e.,

K-1 1 K
S, Buke1(@)Bjke(w) = ajgf (w)
for some vector a;, (j =0, ..., K¢ —1). Dropping Bxc_1 xe_1(z) from ¢"" (z) solves the perfect multi-
collinearity problem as

K°—2 K°—1

Zi:o Bi,Kc_l(l’)Bj,KC_l(w) Zi:o Bi7Kr_1(ZE)Bj7Kc:_1(w) — BKC—l,KC—l(‘T)Bj7KC_1(’LU)
= Bj1KC*1(w) - Bchl,chl(w)Bj,chl(w)

= CL;(JK(’UJ) 7BKC_17KC_1(m)Bj7KC_1(w).
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defined as in (6.2). The Bernstein polynomial By 1 su_1(z) is excluded from ¢%" (z) to
avoid perfect multicollinearity between the elements of ¢* (w,z). As for A, above, Ay

approximates M for tests of MEM.!?

7 Simulation Evidence

This section reports abbreviated results from an extensive set of simulation experiments
undertaken to evaluate the behaviour and performance of the restricted tests of MEM
(2.5) Elu(z,B)|z] = 0 and CEM (2.6) Elu(z, fo)|w,x] = 0 based on various GMM and
GEL statistics given in section 3.4. Results are also presented for the unrestricted test

statistics discussed in section 4 that ignore the maintained hypothesis (2.4).

7.1 Experimental Design

All experiments concern the regression model
y = Box + u, (7.1)

where x is a scalar covariate and uw an error term. For simplicity, the value of the
parameter 3y is set as 0. Consideration is restricted to the single parameter [y to ease
the computation burden associated with GEL estimation. Cf. Example 2.3.

The data generating processes for the covariate x, instrument w and error term u are
as follows. Let z, and z,, be jointly normally distributed with mean zero, unit variance
and correlation coefficient p, where p € (—1,1) and p # 0; in all experiments we set
p = 0.7. The covariate z and instrument w are generated according to x = ®(z,) and
w = D(z,), where ®(-) denotes the standard normal cumulative distribution function;

hence, x and w are marginally distributed as uniform random variates on the unit interval

120ther classes of approximating functions such as B-Splines are also possible choices but severe if not
perfect multicollinearity between the elements of the approximating functions used to approximate the
null and maintained hypotheses is likely to occur. To ascertain the collinearity properties of B-Spline
approximating functions in this setting is difficult because the positioning of the knots depends on K,
K™ and K°. The use of a generalised inverse in computations in the place of the inverse would avoid
these collinearity difficulties.



[0,1]. Let v be defined by

1+ p?
p

v=al22+ 22— ( V2wze — (1 — p*)] + 7(20 — pzw) + v,

where v is standard normally distributed and independent of z, and z,. The error term
u=uv/ \/W in (7.1) is by definition restricted to have unit variance again for reasons of
simplicity and ease of comparison. Note that var[v] = a?(1+p*)(p~' —p)2+72(1—p?) +1.

This model is characterised by the following properties: (a) the maintained hypothesis
(2.4) is satisfied, i.e., E[u|w] = 0; (b) for the MEM (2.5) hypothesis

Elulz] = 7(1 — p*)® ! (z) Jvar[v].

Thus Flu|z] =0 if 7 = 0 and Efulz] # 0 if 7 # 0; (c¢) for the CEM (2.6) hypothesis,

1+ p?
p
+7[®@ N (2) — p@Hw)]) fvar(v].

Blulw,z] = (a[® ' (2)* + &7 (w)* — ( )@ (@)@ (w) — (1= p%)]

Hence Elujw,z] =0if a = 7 =0 and Flu|w,z] #0if a # 0 or 7 # 0.

Clearly, under the maintained hypothesis (2.4) cov[u,w] = 0 whereas under MEM
(2.5) cov[u, xz] = 0 if 7 = 0 for all values of a.

Sample sizes n = 200, 500, 1000 and 3000 are used in the experiments concerned with
empirical size; nominal size is 0.05. Sample sizes of n = 200 and 500 only are considered
for simplicity in the experiments examining empirical power. These experiments examine
two designs, i.e., a varies and 7 = 0, i.e., MEM holds but CEM does not unless a = 0;
a = 0 and 7 varies, i.e., both MEM and CEM do not hold unless 7 = 0. Each experiment

employs 5000 replications.

7.1.1 Estimators

Assumption 3.3(c) requires /n-consistent although not necessarily efficient estimation
of By. We consider two stage least squares estimation (2SLQ) computed using the single
instrument w, GMM (GMM), continuous updating (CUE), empirical likelihood (EL) and

exponential tilting (ET) estimators computed under various hypotheses; GMM here refers
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to efficient two-step GMM where the weighting matrix is computed using 2SL.Q. The sub-
scripts MA, M and C indicate computation incorporating restrictions of the maintained,
MEM and CEM hypotheses respectively.

GMM and GEL were computed using the simplex search algorithm of MATLAB to ensure
a local optima is located. EL and ET require evaluation of 5\(6) to construct the requisite
profile GEL objective function; since the GEL objective function is twice continuously
differentiable in A the Newton method was used to locate 5\(5) for given 3. The compu-
tation of EL requires some care since the EL criterion involves the logarithm function and
is undefined for negative arguments; this difficulty is avoided by employing the MATLAB
code due to Owen in which logarithms are replaced by a function that is logarithmic for

arguments larger than a small positive constant and quadratic below that threshold.!3

7.1.2 Test Statistics

Tests for MEM (2.5) Efu|z] = 0 and CEM (2.6) F[u|w, x] = 0 based on unrestricted statis-
tics that ignore the maintained hypothesis (2.4) are denoted respectively in the following
by the superscripts DIN-M and DIN-C. Where relevant the test statistic subscripts CUE, EL
and ET refer to the GEL criterion used to construct the test statistic with the argument
of the statistic denoting the estimator at which it is evaluated whose subscript indi-
cates the moment conditions MA (3.3), M or ¢ (3.4) employed, viz. Z'(j) (3.7) where
i = DIN-M, DIN-C and j = 2SLQ, GMM;, (k = MA, M); LR(j) and LM(j) (4.1) where
i = DIN-M, DIN-C, j = 2SLQ, ELg, ET} (k = MA, M, C) and [ =EL, ET; S*(j) (4.2) where
i = DIN-M, DIN-C and j =2SLQ, CUEy, ELy, ETy (k =MA, M, C).!* Note that J°™"(2s5LQ)
and SHEM(2sLQ) are identical statistics as are J°™°(2sLQ) and Soiy ©(2SLQ).

CUE CUE

Restricted tests for MEM (2.5) Efu|z] = 0 and CEM (2.6) Elu|w,z] = 0 that incorpo-

13See Owen (2001, (12.3), p.235). The  code is available  at
http://www-stat.stanford.edu/~owen/empirical/

4 A number of asymptotically equivalent test statistics for the maintained hypothesis were also investi-
gated, viz. J9(j) (4.3) where j =2SLQ, GMMya; LR](j) and LMY (j) (4.1) where j = 2SLQ, ELy, ETya
and | =EL, ET; S/ (j) (4.2) where j = 2SLQ, CUEy,, ELya, ETy, and [ =CUE, EL, ET. The expressions for
the latter statistics adapt (4.1) and (4.2) for the maintained hypothesis. The Hausman test based on an
auxiliary regression as described in Davidson and Mackinnon (1993, section 7.9, p.237) or Wooldridge
(2002, section 6.2.1, p.118) was also considered. Results are available on request from the authors.
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rate the maintained hypothesis (2.4) E[u|w] = 0 were also investigated. The following

notation is adopted. Let

T (4. k) = nh(B;)=7"h(B;) — ng(Br) Q" 3(B),
where Q= Z:‘L:1 gi(BQSLQ)gi(BQSLQ)//n and == ?:1 hi(B2SLQ)hi(BQSLQ)//n§ the indices ¢, j
and k are defined below. Also let

LRi(j, k) = 2n[1f’n(5ja ) — BBy )]

where 7); = argmax, .3 5., f%(ﬁj, n) and A, = arg Max,ci (4, P.(Bg, \). Corresponding

Lagrange multiplier, score and Wald-type statistics are defined respectively as

LM k) = n(i; — )= (7 — i),
Sitk) = > pr(Negi(Be))si(Be) SEETSs Y p1 (Mg (Br))si (B) /s
=1

W;(J) = nﬁ}SS(SééflssylSéﬁj;
where A, = Syad, and Sy = I, ® (I, Oyx) and Ss = I; @ (0x, Iy ) are J(M +1)K x
JM K selection matrices; cf. section 3.4. Note that J™(25LQ,2SLQ) and LR, (2SLQ,2SLQ)
are identical statistics as are J°(2SLQ,2SLQ) and LR¢,,(2SLQ,25LQ).

The various indices are defined similarly to those of the unrestricted statistics, wviz.
the superscript i« =M, ¢ where M and C refer respectively to the MEM (2.5) Efu|z] = 0 or
CEM (2.6) Flu|w,x] = 0 hypothesis under test, the arguments j, k =2SLQ, CUE,,, EL,,
ET,, (m =MA, M, C) to the estimators employed and the subscript [ =CUE,EL, ET to
which member of the GEL class was used to construct the test.

The statistics J°(j, k), LR} (j, k), LM;(j, k), Si(j) and W} (j) are calibrated against
a chi-square distribution with JM K degrees of freedom and are referred to as non-
standardised statistics. Standardized versions are defined as in (3.7), (3.9), (3.10), (3.11)
and (3.12), e.g., [T'(j, k)—J M K]/v/2JM K , and are calibrated against a standard normal
distribution. Recall from section 5 that tests should be one sided.

We also consider the behaviour of restricted statistics that are robust to estimation
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effects suggested in Smith (1997, section I1.2); see also Smith (2011, section 5). Let

: 0
=1 - "2
where H = — Y7 | ,0¢" (w;, x;) /n. Define the selection matrix S, such that Sy(B ') =

Sen. The corresponding non-standardised GEL score and Wald statistics are then defined
by

S)(k

~—

> p(Ngi(Be))si(Be) Sy U Sy > (Mg (Bk))si(Be) [,
Wilj) = nif;Ss(SpU"S,) " Sk,

with their standardized counterparts given by [Sf(k) — JMK]/vV2JMK and [Wi(k) —
TMEK]/N2IME.

7.2 Choice of the Number of Instruments

To implement the above tests requires a choice of the number of instruments to employ
under the maintained hypothesis. The results in DIN, Table 1, p.71, apply for the choice
of O(K). Accordingly, K must satisfy K*/n — 0, e.g., K = [Cn'/%] for some C' > 0
but then a choice of C' is necessary. The use of the method described in Donald, Imbens
and Newey (2009) for empirically determining K predominantly resulted in the choice
K = 2. Consequently, to explore the robustness of the results to the choice of K, the
additional alternatives K = 3 or 5 are also examined.!®

To test the MEM (2.5) Efu|z] = 0 or CEM (2.6) Efu|w, z] = 0 hypotheses K™ = [A K]
and K¢ = [(AcK)Y?| are required dependent on the ad hoc constants A, and A.; see
section 6. The choices Ay, = 1 or 1.5 and Ay = 2 or 4.5 are considered. Recall from
section 6 that A, and A approximate M of section 3.2 and by Theorem 5.1 and Corollary
5.1 should be chosen as small as possible.

Tables 1 and 2 summarise the numbers of instruments used.

15 Alternative possible criteria for the choice of K are information criteria such as AIC or BIC.
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A,=1 A,=15
Total Number Total Number
K K™ | of Instruments | K™ | of Instruments
2 2 3 3 4
3 3 5} 4 6
5) 5! 9 7 11
Table 1: MEM Intruments
A, =2 A, =45
Total Number Total Number
K K€ | of Instruments | K€ | of Instruments
2 2 4 3 8
3 2 5 3 9
5 3 11 4 17

Table 2: cEM Intruments

7.3 Empirical Size

The results on empirical size reported in Appendix B and discussed below are a sub-
stantially reduced subset of the simulation experiments undertaken. Overall these exper-
iments revealed that nominal size is approximated relatively more closely by the empirical
size of (a) the non-standardised tests; (b) tests based on efficient estimators, cf. Tripathi
and Kitamura (2003); (c) the score-type statistic Sj(k) robust to estimation effects.
Consequently results for these forms of statistics only are presented. Both Wald versions
Wi(j) (3.12) and W(j) of test are also excluded as their empirical size properties are
generally unsatisfactory. Results are presented for K = 2, 5; those for K = 3 closely
resemble those for K = 2 and are therefore omitted.

The full set of simulation results are available from the authors upon request.

7.3.1 MEM

Tables B.1-B.2 in Appendix B present the rejection frequencies for K = 2,5 and A, = 1,
1.5 for unrestricted DIN tests for MEM (2.5) Flu|z] = 0 that ignore the maintained
hypothesis moment restrictions (2.4) Elu|lw] = 0 whereas Tables B.3-B.4 report the

corresponding results for restricted tests that incorporate these moment constraints.
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In general, the empirical size of the non-standardised versions of the unrestricted
LRINM(ELy), LRpr M(ETy) and LMY ™M(ELy ), LMPT™(ETy) tests suffer from size dis-
tortions for moderate sample sizes n = 200 and 500. Of the remaining statistics, the non-
standardised GMM statistic J"™™(GMMy) (4.3) and GEL score statistics Sonv™(CUEy),
SPNM(ELy ), S M(ETy) (4.2) display satisfactory empirical size properties for most sam-
ple sizes. For a given sample size n there is a deterioration in performance to a lesser
or greater degree for all statistics as K increases from 2 to 5 for fixed A, and as Ay in-
creases from 1 to 1.5 for fixed K, i.e., as the number of unconditional moments under test
increases. In summary, the non-standardised GMM and GEL score forms of DIN-type
test statistic for MEM appear to be the most reliable in terms of empirical size.

The overall conclusions for the restricted test statistics that incorporate the main-
tained moment restrictions (2.4) are similar. The performances of the non-standardised
LR (3.9) and Lagrange multiplier (3.10) forms of test are more unsatisfactory at the
smallest sample size n = 200; there is again a substantial deterioration for the larger
K = 5 and to a lesser degree for A,; = 1.5. To summarise, in general the non-standardised
GMM J"(GMMy,GMMy,) (3.7) and CUE LR LRY,,(CUE,,CUEy,) (3.9) forms of re-
stricted test statistic for MEM appear to display the most satisfactory empirical size

behaviour as do the robust score statistics SM (ELy), SM.(ETy).
7.3.2 CEM

Tables B.5-B.6 in Appendix B present the rejection frequencies for K = 2, 5 and A, = 2,
4.5 for unrestricted DIN tests of the CEM null hypothesis (2.6) Ffu|w,z] = 0 whereas
Tables B.7-B.8 report the corresponding results for the restricted tests.

The general conclusions are quite similar to those for the tests of MEM. Overall
performance worsens for the larger K = 5 and A, = 4.5 for all test versions. Of
the DIN-type non-standardised tests the empirical size properties of the GMM statistic
JPNC(aMMc) (4.3) and GEL score statistics Spiy ©(CUEG), SENC(ELe), Spr?(ET) (4.2)

appear to be satisfactory for most sample sizes. For the non-standardised restricted tests,

the GMM J¢(GMM¢,GMM,,) (3.7) and CUE LR LR, ,(CUE:,CUEy,) (3.9) forms and
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the robust versions of score statistic S (ELy,), S5 (ETya) (3.11) display empirical size

closest to the nominal 0.05.

7.4 Empirical Size-Adjusted Power

The reported results on empirical size-adjusted power in Appendix C like those for em-
pirical size are a substantially reduced subset of the simulation experiments undertaken.
Results are also only presented for K = 2 as ceteris paribus size-adjusted power tends
to decline relatively and sometimes substantially for the larger K = 5. Typically power
increases substantially as sample size n increases from 200 to 500. Full simulation results

are available from the authors upon request.

741 7=0

MEM

Recall that in this case the MEM hypothesis (2.5) Efulz] = 0 holds but the CEM
hypothesis (2.6) Elu|lw,z] = 0 is violated unless a = 0. Unsurprisingly, results for
tests of MEM, not reported here, indicate that size-adjusted power closely approximates

nominal size.

CEM

Tables C.1-C.2 in Appendix C present the size-adjusted powers for K = 2 and different
values of a and A, for tests based on unrestricted DIN-type statistics of CEM (2.6)
Elu|w, z] = 0 that ignore the maintained hypothesis moment restrictions (2.4) Efu|w| =0
whereas Tables C.3-C.4 report the corresponding results for the restricted tests that
incorporate these moment constraints.

At small values of a the unrestricted DIN-type GEL statistics LMUN(EL:) and
LMPYC(ET) have maximum size-adjusted power with the DIN-type GEL statistics
LRINC(EL:) and LRy “(ET.) slightly less powerful. These findings are lessened for
larger a and for the larger sample size n = 500. However, these tests are precisely those

that displayed the least satisfactory correspondence between empirical and nominal size.
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The powers of the remaining statistics are broadly similar with the GEL score statistics
SPNC(ELg) and SN C(ET.) marginally superior. The effect of increasing A is to increase
power contrary to the large sample theoretical prediction of section 5 for K = 2 with this
finding reversed for the larger K = 5.

For the restricted tests, GEL Lagrange multiplier LM, (EL¢,ELy, ), LM (ET¢,ETy,)
and LR LR, (EL¢,ELyy, ), LRy (ETo,ETy,) tests dominate for small a but this result is
ameliorated for larger values of a and sample size n. Again, as above, empirical and
nominal size differences can be quite large for these statistics especially at the smaller
sample size n = 200. Of the other tests, there is relatively little difference in power
among the statistics but both GEL robustified score statistics SS (ELyy), SS.(ETya) ap-
pear marginally superior. Again the effect of increasing A, on power when K = 2 runs
counter to the theoretical prediction of section 5 but holds if K = 5.

Overall, incorporation of the maintained moment conditions leads to improvements
in power as expected from the theoretical results of section 5 with the difference in power
between DIN-type and restricted tests for the CEM hypothesis (2.6) Flu|w,z] = 0 larger

when A, is smaller.

74.2 a=0

MEM

Tables C.5-C.6 in Appendix C present the size-adjusted powers for different values of 7
and A, for unrestricted DIN-type tests of MEM (2.5) E[u|z] = 0 whereas Tables C.7-C.8
report the corresponding results for the restricted tests.

In general, and in line with the theoretical prediction of section 5, power decreases
with increased A,;.

For small 7 and sample size n = 200 the differences in power between the various
DIN-type tests are relatively small although the power associated with the GEL LM
LM M(ELy ), LMINYM(ETy,) tests is somewhat less.

All restricted tests except those based on the GEL LM statistics LM} (ELy,ELy,),

LM (ETy,ETy,) appear to provide similar empirical power.
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As discussed previously the power differences among tests are lessened for larger
values of 7 and sample size n. Likewise, restricted tests again appear more powerful
than the unrestricted DIN-type tests that ignore the moment restrictions arising from

the maintained hypothesis.

CEM
Tables C.9-C.10 in Appendix C present the size-adjusted powers for different values

of 7 and A, for unrestricted DIN-type tests of CEM (2.6) E[u|w, x| = 0 whereas Tables
C.11-C.12 report the corresponding results for the restricted tests.

In general similarly to the tests of MEM power decreases with increases in A, as
expected from section 5.

Size-adjusted power is mostly similar except for the unrestricted GEL LM LM “(ELc),
LM C(ET.) tests especially for smaller values of 7 and the smaller sample size n = 200.

Among the restricted tests the GMM statistics J°(GMM¢, GMMy, ) (3.7), the GEL sta-
tistic LR

¢ s(CUEG, CUEy, ) (3.9) and the robust GEL score statistics S (ELyy ), SS(ETya)

dominate in terms of size-adjusted power.

Again the restricted test statistics that incorporate the maintained alternative hy-
pothesis display higher power than the unrestricted DIN-type tests. Interestingly both
unrestricted and restricted tests for CEM appear more powerful than the corresponding

tests for MEM when the MEM hypothesis is violated.

7.5 Summary

The empirical size of non-standardised tests more closely approximates nominal size than
that of standardised tests. Restricted tests dominate those defined by unrestricted DIN-
type statistics in terms of size-adjusted power. Power typically declines for increases in
the constants A,; and A for tests of MEM and CEM respectively.

The MEM (2.5) Eu|z] = 0 empirical sizes of tests based on the restricted GMM form
JY(GMM,,GMM,, ), the GEL statistic LR,,(CUEy,CUE,,) and the robust GEL score

versions SM (ELy) and S (ETy) most closely approximate nominal size. However, when
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testing against deviations from MEM restricted CEM tests dominate MEM tests in terms
of size-adjusted power.

Of the restricted tests for the CEM null hypothesis (2.6) E[u|w, 2] = 0 those employing
the GMM form J¢(GMM,GMM,,) (3.7), the GEL statistic LR¢,,(CUE¢,CUEy,) (3.9),
and the robust GEL score statistics S (ELy,) and SS,.(ETy,) have empirical size closest
to the nominal 0.05. The robust GEL score-based, SS (ELy,) and SS,.(ETy,), forms of
test appear marginally superior to the GMM form J°(GMM;,GMM,y,) (3.7) and the GEL
statistic LR, (CUEG,CUEy,) (3.9) in terms of size-adjusted power against deviations

from the MEM or CEM hypotheses.

8 Conclusions

The primary focus of this article has concerned definitions of and tests for exogeneity
appropriate for models defined by a set of semiparametric conditional moment restrictions
where a finite dimensional parameter vector is the object of inferential interest. The paper
argues that a definition of (marginal) exogeneity (in mean) (MEM) proposed in Blundell
and Horowitz (2004) may not be adequate for particular circumstances. An alternative
definition of (conditional) exogeneity (in mean) (CEM) is provided. The latter definition
is quite closely related to that for classical parametric models.

A second contribution is to propose GMM- and GEL-based test statistics for addi-
tional conditional moment restrictions that include both MEM and CEM hypotheses as
special cases. By reinterpreting the respective hypotheses as an infinite number of un-
conditional moment restrictions the corresponding tests may therefore be formulated as
tests for additional sets of infinite numbers of unconditional moment restrictions. The
limiting distributions of these test statistics are derived under the null hypotheses of
marginal and conditional exogeneity and suitable sequences of local alternatives to these
hypotheses. These results suggest that restricted tests that incorporate maintained mo-
ment constraints should dominate in terms of power unrestricted tests that ignore such

information.
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The simulation experiments undertaken to explore the efficacy of the various tests
proposed in the paper indicate a number of tests possess both sufficiently satisfactory

size and power characteristics to allow their recommendation for econometric practice.
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Appendix A: Proofs

Throughout the Appendix, C' will denote a generic positive constant that may be different
in different uses, and CS, J, M, T and ¢, Cauchy-Schwarz, Jensen, Markov, triangle

16

and Loeve ¢, inequalities respectively.”® Also we write w.p.a.l for “with probability

approaching 17.

A.1 Useful Lemmata

The following Lemma allows the relaxation of Assumption 6 in DIN for the GEL class

of estimators.

Lemma A.1 Let 6, = o(n Y2¢C (K)™") and A, = {\: ||\|| < 6,}. Then if Assumption
3.3(d) is satisfied, maxgepaca, 1<i<n |Ngi (3)| 2 0 and w.p.a.1 A, C A(B) for all B € B.

Proof: Write b; = supgg ||u (i, B)||>. By iterated expectations and 3.3(d), E[b;] =
E[E[b;j|w]] < oo for 1 <i < n. Hence, it follows from Owen (1990, Lemma 3, p.98) that

maxj<i<n b; = op(nl/Q). Therefore, by CS

INg; (B)] < 6,¢ (K) max b; 20

max
BEBAEA,1<i<n i<i<n

Thus w.p.a.1 Ng; (8) € V for all § € B and A € A, giving the second conclusion. W

The next two Lemmata are used in the proofs for asymptotic normality of test statis-
tics under both null and local alternative hypotheses and the asymptotic independence

of test statistics under the null hypothesis.

Lemma A.2 Let k = tr (2,C,,) where C,, and §,, = E[g(2, Bon)g(2, Bon)'] are a sym-
metric and a positive definite matriz respectively. If E[g(z, Bon)] = 0, k — oo, E[(9(z, Bon)
XCng(z, Bon))?]/kv/n — 0 and C,Q,C,, = C,,, then

= ng (50,71),0”@ (Bon) — K
V2k

16We use the general version of the Loeve ¢, inequality as stated in Davidson (1994, p.140).

T <4 N(0,1).
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Proof: Let g., = g(z, fon) and write T' = T} + T where

Tl = Z gzzn ngzjn

1,7:10<g
i gzi,ncngzi,n/n —k

V2k
Since E[T3] = 0 and var[Ty] < E[(g},,Cngin)?]/2kn — 0, Ty 5 0.

T, =

To prove the asymptotic normality of 77 we verify the hypotheses of Hall (1984,

2
H,(u,v) = ‘/% wnCnlon-

Gn(u,v) = E[H,(z1,u)H,(z1,0)]

2
= n2k E[gu ncng?q ngzl ncngv n]

Theorem 1, pp.3-4). Define

Then

: fH

Now E[H, (21, 2)|z1] = \/ 75794 nCnE|gzn] = 0 and

2 /
E[Hn(Z]_,ZQ)z] = %E[(gzhnc’ﬂg'zbn)Q]

2 2
a mE[g;h”O"QnOngan] = ﬁ
On the other hand
E[Hn(21,22)4] 1 / )
= FE Chngonn ).
nE[Hn<21,22)2]2 nk2 [(gzl,n Gz, ) ]

As C, = C,Q2,C,, by CS

1 1
—5El(040Cngzn)’] < kzE[(g,’zl,n0n921,n)z(géz,nCngzz,n)Q]

= ( Cngz1,n)2])2 — 0.

7E /
k\/ﬁ [(gz1,n
Since E[Gy(z1,2)%/E[Hy (21, 2)%)2 = 1/k — 0, Ty % N (0,1) as required. ®
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Lemma A.3 If (a) Elg(z,00)] = 0, (b) tr(Q) = ak for some finite a € R\{0}, (c)
tr[(QN)?] = vk for some finitev > 0, (d) tr[(QQ)*] = o(k?), (e) E[(g(z, 30)'Qq(z, 5))?] =
o(nk) and (f) E[(g(z, 50)'QQQg(2, Bo)*1 E[(9(2, Bo)' 2" g(2, £o))?] = o(nk?) are satisfied,

then
ng (50)/ Qg (Bo) —ak 4

T = NI — N (0,v).

as k — oo and n — oo.

Proof: Let g., = g(z;, fo) and write 7 = 7, + 75 where

o= ), gz,ngj

1,J:4<J
> gzngzi /n — ak
vV 2k

Since E[T5) = 0 and var[T3] < E[(¢. Qg-,)?]/2kn — 0 by (e), T - 0.

T

To prove the asymptotic normality of 77, as in the proof of Lemma A.2, we verify the

hypotheses of Hall (1984, Theorem 1, pp.3-4). Define

2
H,(u,v) = ‘/mgq’ngv.

Gn(u, ’U) = E[Hn(zla U)Hn(zla U)]

Then

2
= %E[QZLQQPJ 9;1 ng]

2
= —4.Q9Qg,.

Now E[H,(z1, 22)|z1] = /-3:9.,QF[g.,] = 0 and, by (c),

ElH, (512 = 3 Fl(0, Q)
2 2 2
= B0, 000Q0.,] = —-tr(IQOP) = .
Also
E[Hn(zl, 22)4] 1

_ / 4
nE[H,(z1, )2 ank;?E[(glegz?) )
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Now, as () is positive definite, by CS

El(¢,,Q9,)"] = El(4.,,Q00 "g.,)"]
< E[(g,/zlQQQgZLn)Q(g;QQingQ)2}
= B[(¢,Q9Q0-)] B [(9,,927"9-)?].

Hence, by (f),

E[Hn(Zl, 22)4] 1
nE[H,(z1, 22)?]? = nv2k?
= o(l).

E (4., Q9Qg-,)"] E (¢, "g,)?]

Moreover, by (d),

4

ElGu(z,2)"] = —5Fl(¢.,09Q0-,)’]
4 4
= 5 Bl6,00000000.,) = —5tr([QY") = o(n™).

Since E[Gn(21,22)%/E[Hy (21, 2)%)2 = 0(1), T; -5 N (0,v) as required. M

The next Lemma mirrors DIN Lemma A.3. Let ¢; = q¢(s;), where ¢(-) is a K-

dimensional vector of functions of s.

Lemma A.4 Let a;,, = an(zi), Gin = Elain|si], @i = a(z), a; = Elai|si], Uin = Uyn(s;)
and U; = U(s;). If q(-) satisfies Assumption 3.1, (a) El||ain||* |si] is bounded for large
enough n, (b) U, is a v X r p.d. matriz that is bounded and has smallest eigenvalue
bounded away from zero for large enough n, (c¢) U; is r X r p.d. matriz that is bounded
Uit = U1 = 0, (e)

and has smallest eigenvalue bounded away from zero, (d) E[’

EGin — @l’] = 0, (f) K — oo and K/n — 0, then

D i @ (Z Uin ® Qiqz‘) > ain @qi/n— ElGU; ai] 5 0.

Proof: The proof is similar to that of DIN Lemma A.3. Let Fj, be a symmet-

: _ ! _ 1 / / _ —1 _
ric square root of Ui, Py = Fin @ q;, Py = (P, .., P,,), Ain = F ain, Ay =

1n -

[41]



(A3

1,TL7 .

. A;L’n),, Ai,n = E[Al,n|x1] = F}Tnla,i’n and An = (121,

1,717 .o

Al ). Note that P, P, =
> Uin ® giqi and

Z a;n ® qz (Z Ui,n ® CM];) Z ai,n ® qz/n = A;QnAn
where Q,, = P,(P.P,)” P..

Let s = (s1,...,$,). As the data are i.i.d., by (a) and (b)

El(Ay— A) (A= A) 18] = diag(Fy varlaylsi)Fi )}, ..., Fy boarlag ol Fy L)

Lns - nn n,n

< COI
for n large enough. Let Ty = (4, — A,)'Qx (An — fln) /n. Then,

BTy = Eftr(QuE[(Ay — Ay) (An = 4,) /n)ls]
< CE[tr(Qu)]/n < CK/n—0

as tr(Q,) < CK, using (b) and (f). Thus T4 % 0 by M.
Ul-_ldi —Fqu 2] — 0. Let

From Assumption 3.1, there exists a I'x such that E [‘

Ak = vec (I'y). Now

|4, - P Fa = (Fiun ® )]/

NEEDY
= Y IIFIP|
= Y IFaIP|

CZ]

U ta — (1, @ )k /n

2/n

Uij?jai — Iy

2/n.

IN

Ui na; — Ty

2

i

| = Bl = Ui + U (@i — @) + Uy 'a — Ticgs

@M 7

1
Uin@in — Uk
2

IA

3| Bl Wit - U as) + B

.

U; @, — @)

)

+E[|[U;a; — Ta

[42]



For the first term, by CS, E[|(U;,! = U ain
using (a) and (d). Secondly, E[’ U; Y@, — a;)
is bounded by (c¢). Then, by M

2 2
] < Bl - v 1ENaa)?) - o0
| < CE[|ai, — al] — 0 by (o) as U

HAW—RﬁﬂfhwﬂO

By T and CS

A QuAnfn = A Ay fn| = |(An = A)Qu(A, — A,)/n
+240,Qu(An — An)/n = AT = Qu) Ay /n]

< T+ 2TuJAA/ 0+ Ta,

where Th = A' (I — Q,)A,/n. Now

TA - (An_Pn:YK)/U_Qn)(An—Pnﬁ/K)/n
SH%—%%WMiO

Also, by M using (a) and (b), A/ A,/n = O, (1). Therefore,
|AL,Qu A n — AL A, fn| B 0.

To examine the large sample behaviour of A’ A, /n = ¥, diynU;nldm /n, in particular,
to show that A’ A, /n RNy [@U;ta;], since a;n and U, ,, depend on n, we need to resort
to a LLN for triangular arrays such as Feller (1971, Theorem 1, p.316). Specifically, first
/n>n} — 0. By M

we need to prove that, for each n > 0, nP{|a;,U;, @i

2
’I’LP{ &;,nUi,_nldiyn /TL > 77} < E[ dg,nUi,_nlai,n ]/ (n7]2) .
2

For large enough n, by (a) and (b), E[|a;,,U;, @i | is bounded. Therefore nP{|a},,U; ;| /n >
n} — 0. Secondly, for arbitrary € > 0,

—y —1= —/ 1= 2

a; nUz n &in 1 a; nUz n @in 1

nvar[——————1(|a; U, ain| < ne)] < nbl——— 1( a; Ui Gin| < ne)
2
< E| a;,nUi;}am |/m — 0.

[43]



Finally, E[a},U;, @, — a;U; '@;] = El(@n — @)U, (G5 — @) + 2(@0 — @)U 0 +

N 1,n

a;(U;, — U7 ")a;]. Therefore, using T and CS, by (a), (b), (d) and (e),

)

E[d,, U d;, — a;U; ') < E[‘

wn = in

Uit | 1in — @)

+2E]|

Ut | 1.0 — @l @l + BVt = U7 )

< C(E((@n — )] + 2B @ — @] + £

Ut = U7

— 0.

The following Lemma is similar to DIN Lemma A 4.

Lemma A.5 If q(-) satisfies Assumption 3.1, (a) €;, and Y; are r x 1 random vectors
with Ele;nls] = 0 and E|||ein|* |s:] < C for large enough n and E[||Y;|*|s:] < C, (b)
Uin = Un(s;) isrxr p.d. matriz that is bounded and has the smallest eigenvalue bounded
away from zero for n large enough, (c) U; = U(s;) is v X r p.d. matriz that is bounded

Uit = U771 0 and

and has the smallest eigenvalue bounded away from zero, (d) E[‘

(e) K — oo and K%/n — 0, then

-1
ZY; ® g; (Z Uin ® q@'qz/) Zei,n @ qi/vn =0, (1).
Proof: We prz)ve the resu;t by first Showin; that
-1
ZYi’ ® q; (Z Uin® qu§> Zéi,n ® qi/v/n — Z E[}/i|3i]/Ui7_n15i,n/\/ﬁ 50
and Secz)ndly that Z Z Z
> ElYilsi] Ui ein/vn =0y (1). (A.1)
The proof structure of tlhe first part is similar to that of DIN Lemma A.4. Let
F, ., P, and thus @), be specified as in the proof of Lemma A .4, A;, = Fi’_nlY;-, flm =

ElAinls] = FLIEYlsi], An = (Ao ALY, Aw = (A4 ooy ALY, Bi = Files and
B, = (B

1ns -
-1
ZYZ ® q; (Z Uin @ C]iQé) Z&n ® qi/v/n — EY;|s; U,_nlfm/\/ﬁ

-, By, ). By assumption E[B;,|s;] = 0 and, consequently,

[44]



From the proof of Lemma A.4 (A, — A,)Q.(A, — A,) = O,(K) and B.,Q, B, = O,(K),
the latter holding by (a) as E[||e;,||*|si] < C for large enough n. Thus, for large enough
n, by CS,

Also, as in the proof of Lemma A.4, E[A! (I — Q,)A,/n] — 0. Thus, by iterated expec-

tations,

E[| A, - Qu)B./Val ] = B~ Q)EB.BLISII — QA /n

< CEJA (I -Q,)A,]/n—0

since E [B,, B! |z] is bounded for large enough n by (a) and (b). The first part then follows
by T and M.

It remains to prove the second part (A.1). We use Serfling (2002, Corollary, p.32) to
prove this result. We only need show that

E[(E[Y:|s;/U e, )4
lim [(E[Yi]si]'Uy, 51,71)}

n—00 n2b:

=0, (A.2)
where b2 = var[E[Y;|s;/'U;, €in]. Now, by CS, for large enough n,

4
E[(E[Yi]siUy'ein)"] < ENEilsilll* |V leinll’]

= BB [zt Ellesnl® 1s:]

<C
from (a) and (b). Also, by J,
b, < E[(E[Yi]si|' Uy, cin)?]
< Bl(ElYi|zi]'Uy ein) ]2 < C©

from which (A.2) follows. H

The following Lemmata are needed to prove the asymptotic normality of the test

statistics under local alternatives.

[45]



Let u;(8) = u(z,6), 9:i(B) = wi(B) ® ¢, G = gz(B) and gin = gi(Bon). Also let

Uiy = u; (Bon), Yin (5:) = E[umu;n|sz] and

Q = Zgzgi/T% Qn = Z'gi,ngz/',n/n7

Q, = sz (5:) ® ¢iq; /1, U = EGing; ]

Lemma A.6 If q(-) satisfies Assumptions 3.2, 3.3 and 3.4 hold and B— Bon = Op(Ty)
with 7, — 0, then HQ — Q”H =0, (1K), ||, — Q"H = Op(C(K)\/Ki/n) and HQ" — Q”H =
Op(C(K)m). If Assumption 5.1 (c¢) is satisfied then 1/C' < Apin (25) < Amax () <
C and, if 7K + ((K)\/K/n = 0, wp.a.1 1/C < Aain (Q) < Muax (2) < €, 1/C <
Amin (2n) < Amax () < C.

Proof: The proof of these results are similar to that of Lemma A.6 of DIN. A major
difference here is that some expectations are bounded for n large enough n rather than
merely bounded as in DIN.

Using the same arguments as in DIN we have

00|

IN

C[18 = o] 3 M llail® /m
= Op(raE[Miy [la:l*])
= O,(m,K),

where M;,, = 62+20; ||u; || and §; = §(z;). The final equality follows as E[||u(z, 8o..)||*] is
bounded since E[d(z)?|x] is bounded and E[supges ||u(z, 3) 1] is bounded by Assumption
(3.3).

Now
2

Z(ui,nu;,n — Yin(s:)) ® @q;/n

7

].
Since By, — Po and X;(s;, 5) is bounded for all 5 € N it follows that for n large enough

Yin (s;) is also bounded. Thus using similar arguments to those of DIN

B[00 — |1 < EEusall* [« l6]°)/n < CC(K)? K /n

[46]



as E[||uin||* |z;] is bounded for n large enough. Therefore the second conclusion follows
by M.

For the third conclusion as in DIN

2

Bl -1 = £l

< tr(E[Sin(si)? @ (a:4))’]/n) < CE[|lgil|")/n < CC(K)* K /n

where the second inequality holds for n large enough.
For the fourth conclusion, since, for all 5 € N, X(s,0) = Elu(z, f)u(z, 8)'|s] has
smallest eigenvalue bounded away from zero and Efsupscp |u(z, B)|I°] is bounded, it

follows that C~1I; < Yin(s;) < CI; and therefore
C'jxk=C"Fll;®qq¢] <N <CE[l;®qq] =Clk.

Hence C71 < Apin (22) < Amin (2,) < C. Note also that, if 7,K + ¢ (K)/K/n — 0, we
have HQ - Q”H = 0, (1) and ||Q, — Q"H = 0, (1). Thus, by T HQ — Q"H = 0, (1). Since

IA(A) — A (B)| < ||A— B||, where A(-) denotes the minimum or maximum eigenvalue,
‘)\min (Q) — Amin (Qn)‘ =0, (1) and ‘/\maX (Q) — Amax (Qn)‘ = 0p (1). The final conclusion

follows similarly. W
Let ugi(8) = Ou(z, 8)/9B', D (s, 8) = Elugi(B)|si], Din = D(si, Bon),

Lemma A.7 If q(-) satisfies Assumptions 3.2 and 3.4 holds and B— Bon = O (1,,) with
Tn — 0, then H@ — G”H = Op(Tn\/?—i— VK /n) and H(_;n — G”H = O,(y/K/n).

Proof: The proof is as in that for DIN Lemma A.7. In fact the proof requires no
stronger assumptions than those in DIN.
Let ugin = upi(Bon), 0; = 0 (%) and G, = > i ugin @ ¢i/n. Then by DIN Lemma A.2

2

Bl|G. - G.[] = B )

Z (uﬁ (Zia Bﬂ,n) - Dz,n) ® qz/n

i

< E[Bllugiall® [z lall’)/n < CK/n,

[47]



where the last inequality follows for n large enough as 5y, — 8y and Efsupgep [[ug (2, 5) 1 |]
is bounded. Hence, by M Hén - C_}nHZ = 0,(y/K/n).

By the same arguments as in DIN Proof of Lemma A.7, w.p.a.l

G=Gl| < X |un(B) = ugia laill /m

< B Boa| S illail /n = 0, ruVE).

The first conclusion follows by T.

In addition
2

Bl -Gal[1 = |

< E[IDinl* la:l*] /n < CK/n,

where the first inequality follows from D; ,, bounded for n large enough as E[supge s ||lus (2, 3) 1% |]

is bounded from which the second conclusion follows. H
The final lemma mirrors Lemma 6.1, p.69, of DIN.

Lemma A.8 Let q(-) satisfy Assumptions 3.1 and 3.2 and 3.3, 3.4 and 5.1 hold. If
K — oo and ¢ (K)? K?/n — 0 then

ng(BYQG(8) = ng(Bno)' %' 9(Bno) »,
2JK '

N

Proof: Let g, = ¢i(8no), gn = §(Bno) and § = §(F). By an expansion of § = g(B)

around 3,
9= gu + GulB — Buo),
where G,, = 09(5,)/03" and 3, is a mean value between 3 and B0 which may differ

from row to row. Thus

ng(B)Y29(3) — ngton _ ngn( =g

V2JK 2JK
277’(3 - 5n,0>,G{%Q_1gn

S |
—_
S~—
Na)
3




To show that each term converges in probability to zero, we need to prove first some

preliminary results.

Since A\pin <Q> > C and Apin (Qn> > (C w.p.a.l, by Lemmata A.6 and A.7

[0 G =G = (G = GG~ G)
< Ctr((Gy — Gn)'(Gn — Gy))
= c|G.—a.| %o

Similarly, ‘ Q 2,) H — 0.

Now G’ Q- 'G,, is bounded for large enough n as G’ Q. 'G, % V' by Lemma A .4
where V' = (E[D(z)'2(x) ' D(x)])~! which exists from Assumptions 3.4 (d) and (e) as
E[D(z)'S(x)"'D(z)] > CE[D(x)'D(x)]. Thus, ||, 'G,| is also bounded. Therefore, to
prove that Hfl_lGnH =0,(1), by T

[0, - 0,16, < [07G Gl [0 - 00,16,

First, term HQ_l(@n — G”)H % 0 by Lemma A.7. Secondly, HQ‘%Q — Qn)leGnH <
HQ*(Q - Q")H 192,,1G,,||by CS and Lemma A.6. Consequently, HQAG"H =0, (1).

Now by independence

E[g,0'5,) = Elg. Q5 gia)/n
= E[tr(Q,'ging.,)/n) = K/n.

Hence, by M |, g,]| = O,(1/K/n). By T and CS

é;zéilgn - G;legn H

IN

GO — 20, 4] + |G — Gy

< (et oo +|cu - el ol
< (Op(D)op(1) +0,(1))Op(y K /1) = 0, (\/ K /).

Moreover
([€Xs> gnH E[tr(¢,Q.' GoGL 160 = tr(GLQGy) /n < C)n.

[49]



Thus, by M, |G, 0.l = O,(1/4/n) = o0,(}/K/n) and, hence, by T
op(y/K/n). Therefore, by Assumption 3.3(c),

03 =

TL(B - 671,0)/@;1@71.@1
e e

Next, by CS and T,

G;Q—lc‘;n—amglGnH <

00|+ o) | G|

+

a6 oo

Hence, G' Q'G,, = O,(1) since G/, Q;'G,, = O (1). Therefore

n(3 = Bno) G G5 = Buo)
V2JK

It remains to prove that

= 0,(1/V2JK) = 0, (1).

nd, (' — Q.M

TR =0, (1).

From Lemma A.6,

ngly (71— 0.1 | V2TE <m0, (|0 — ] + ]| @ - ) /vRiE
= n(Op(K/n)(Op(/ K/n) + Op(C(K)\ K/n))) /V2TK
= Op(C(K)K/vn) = 0, (1).

A.2 Asymptotic Null Distribution
Proof of Theorem 4.1: By DIN Lemma A.6 and ¢ (K)* K2/n — 0,
|-, |2 - 2| = 0,((K¥2/n'? 4 ((K) K /n'/?) [VE) = 0,(1/VE),
where Q = E[g(z, 50)g(z, Bo)'] and Z = Elh(z, Bo)h(z, Bo)']. It also follows from Lemma

A.7 of DIN that || (58) /08 — G| % 0 and ||0g (B) /08’ — G| £ 0 for any = By +

[50]



O, (1/4/n). In addition, G’Q~'G and H'Z"'H are bounded, see the proof of Lemma A.8.

Hence, the conditions of DIN Lemma 6.1 are met. Therefore,

ng(B)/19(8) — ng(Bo)2'9(50) »

2JK
and o R )
nh(B)YEh(B) — nh(Bo)Z""h(Bo) »,
2J(M + 1)K
Now
nh(B)Z"1h(B) = ng(B)Q'g(B) — IMK _ nh(B)'Z"h(B3) — nh(50)="h(5)
2JMK 20M K
~ ng(BYQ3(B) — ng(Be)' Q" §(5)
V2JMK
N nh(Bo) = 1h(By) — ng(Be)'Q14(By) — IMK
2JMK
_ nh(Bo)="h(Bo) ~ ngl5o) QG (B) ~ IME
V2IMK P

Define Sy, = I; @ (Ix,0px)" as a selection matrix such that S/, h(6o) = §(5). Therefore

nh(B0)Z " h(Bo) — ng(Bo)' 2" 3(Be) — IMK _ nh(5o) (27" = Sy 'S, h(Bo) — IMK
2JMK 2JMK '

We use Lemma A.2 to obtain the conclusion of the theorem. First, tr((Z27' —
SMAQ_ISI(/IA>E) = tT(IJ(M+1)K) —tT(IJK) =JMK. Secondly, (E_l — SMAQ_ISIQ,IA)E(E_I —
Sua2718L,) =27 = 5, Q718! . Thirdly,

CE[||h(z, Bo)][']
CElulz, Bo)ll* ¢ (w, 2)||'
CE[¢*(w, )"

E[(h(Z, 60),<E_1 - SI\'IAQ_ISL[A)h(Za 60))2]

ININ A

IN

CC¢(K)?K.

The result follows from Lemma A.2 as ((K)?K/K\/n = (((K)*K?/n)/\/K*/n — 0. &

[51]



Proof of Theorem 4.2: First we focus on LR (3.9).

2VJMK

TC?MM — TGgMM - JMK

Write §; = gi(B), (t=1,..,n), § = Q(B) and go = §(fp). Using T and CS twice we

have
g = goll < D0 ||ulzi, B) — ulzi, Bo) | llgCws)| /n
< (00 0 ) A HlaCwa)l” n) 2 |3 = o) = Op(/K /)

where the second inequality follows from Assumption 3.4 (d). Thus, from T and DIN

Lemma A.9, [|§]] = O,(y/K/n) and, therefore, O,(y/K/n) by DIN Lemma A.11.
Consequently N e An(ﬁ) w.p.a.l and the first order conditions for A\ are satisfied w.p.a.l,

i.e.

0P, (B, \ .
8(/\) = Zizl p1(N'3:)gi/m = 0. (A.4)

Expanding (A.4) around A = 0 gives
—§(8) = QA =0

where O = — > pg(A’gi)gigg/n and A lies between \ and zero. Thus, w.p.a.l
A=—075(8). (A.5)

We deal with the third term in (A.3) first. Expanding 2nP, (8, \) around A = 0 and
plugging in A from (A.5),

~ ~

2P, (3, ) = 2n[—g(B) A — N A/2] =

A

ng(B) 207" — Q100 14(B)

Q>



with Q = — Y7, po(N§:)§:d,/n and A lies between A and zero. Thus it remains to prove
that

271]571(3, ;\) — Témm

2JMK

First notice that by DIN Lemma A.6 HQ - QH = OP(C(K)m) = 0,(1/VK) and,
thus, by Lemma A.1 we also have HQ — QH = 0,(1/VK) and HQ — QH = 0,(1/VK).
Hence H2Q — 0 - QH 0. Consequently Apax[(2Q — Q)] < C w.p.a.1.. Thus, by T, as
(20— 01001) T = Q@0 - ),

=ng(B)207 — Q00 — O7Y§(8)/V2IME 2 0.

20— -0ea -0 < [©@-2e2-07 Q-9 +2][eee -0 -9)
cjo—of +[o-al) = o,/ VE).

IN

On the other hand as Apmax () < C
oo -9 a-9| = ||e0-9) (2-(20-9))|
< Cljo- - 9Q)| =0,(1/VEK)
yielding [271(20 — )1 — Q71| = 0,(1/VK). Therefore, as|Q 1 — Q1| = 0,(1/VE),

2”]5n<67 5\) - T(?MM N

SIMK ”0p(K/n)0p(1/\/f)/\/m:0p(1),

By the same reasoning the second term in (A.3)
2nﬁn(ﬁa ) — T(?MM »,
2JMK
Therefore, it follows from Theorem 3.6 that

0.

LR % N(0,1).

We now turn to consider the Lagrange multiplier statistic
n(i — )2 — i) — MK
2JMK
Write h; = hi(3), (i = 1,...,n), h = h() and hy = h(5,). By a similar argument to that
which established (A.5)

LM =



where 2 = — >, py (7 h;)h;h}/n and 7 lies between 7 and zero.
Let the (M + 1)JK) x JK selection matrix Sy, = I;® (I, 0 ). Hence, S/, h = §

~

aIld SI(&AE MA — Q AISO erte /f/ - SMA)\' ThUS, "/7 - SMAS\ — _SMAQilA — _SMAQil;S’I/v[AiL-

Now
(i — Y2 — 1) = niSi — 20 Sh + ni S
= nh/E 22T h = 20 ETIE Sy, QS b+ nh Sua QTS E S S .
and therefore
LM — TGhMM - Té]MM —JMK B niL’(EfléE*I _ éfl)ﬁ
20MK S IMK
(S0 S = 27 S0+ S50, E S Sl
2JMK :

We now demonstrate in turn that these terms are each o,(1).

By CS, the first term

k! (222 —2 Y /VE = nhENE-EET'B)E VK
n il |2 - 22712 VK.

IN

By DIN Lemma A6 |Z - Z|| = 0,(C(K)y/K/n) = 0,(1/VE). Thus Apax(E71) < C.

Moreover

1]
1]
L
[1]
1]
]
L

]
IN

|(E-2z'E-9)|+ 222" E-39)
c(z-=[ + HE -=b

= Op(C(K)\K/n) = 0,(1/VK).
using DIN Lemma A.16. In addition, from CS and DIN Lemma A.6

=== -=

IN

-1

[1]
[1]>
[1]

~ ~
—_ N s
= — = = =
= = =

—_—— —

IN

0,(1/VE):.

A

—_—
—

—

Therefore, by T |2 — E2~! EH = 0,(1/VK). As ||7|| = O,(y/K/n) by DIN Lemma A.11,
i/ (ETEET = E7R/VE = n0,(K/n)o,(1/VE) VK = oy(1).

[54]



For the second term, by CS

nh! (S 1S, — 257 S Q7S 4 Sua S B S NS )R VE

< ] IVE.

Sua27LS  — 28 7IES LTS 4+ 5,07 2 S, Q7S

Now by T and DIN Lemma A.6 since Apax(271) < C and )\max(" h<c

N—1 Q1 ——1 N—1 qr
HSMAQ SMA — O ‘:‘SMAQ SMA

< [swot@-0tsy,
= 0,(1/VK).

+ [E7HE - 2) S S,

Next by a similar argument

——1 N—1 N—1lor = N—1
[E7'E Sun 7Sk — SunQ7SLE Sun 7S,

< [Swot@-o0ts),

+ HEfl =— :)SMAQASI(/IA
= 0,(1/VK).

Therefore since ||h|| = O,(,/K/n) by DIN Lemma A.14 of DIN nh!(Sy 218! — 25712
p MA

—
— —

SyaQ 1S 4 Sua1S B S Q1S Y/ VE = nO,(K/n)o,(1/VEK) VK = 0,(1).

The score test statistic

s = Sl m(Ng)SSETS S pu(NGi)Si/n — TMK
2JMK ’

where §z = S(B) ('l = 1,..., ) and S = [J X (OKaIMK)/
conditions S, py(Rl7j)hi/n = 0 of (3.8) around 7 gives

. Expanding the first order

> pr(Bii)hi/n — Z(7 — 7)) = 0
i=1
w.p.a.1 where Z =

— > po(Rl)hihl /n and 7 lies between 7j and 7). Since 7 py (hii)hs/n =
Ss iy p1 (N3,

S m(NG)SSETS Y o (NG)si/m = (- ) E2TE (@ - ).

Thus by CS and T

S —LM| = n|(i-n) (EEE-E) (- n)

2JM
n|Z=71E -] (il + 191)* /V2IME = o, (1)

IN
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e R
as == 2 — =

0,(1/v/K) and ||7i||, ||7]| are both O,(,/K/n) by DIN Lemma A.11.

Finally we consider the Wald test statistic. From above, w.p.a.1

and thus
Siij = SIS Y pu(§A)si/n.
i=1
Therefore, w.p.a.1

IS—W| = n|ifSs((S:E718,)1SIE1S(SLE71S,) ! — SIE71S) S| /V2I MK

IN2IMEK.

IN

n IS5 | (SIE180) T SIETS(SE 180 T - SETS,

Since ||Sin|| = Op(m) by DIN Lemma A.11 and by a similar argument to that
which showed ZZ712 — 2 = 0,(1/VK), (S/2718;) 1 S/Z1S(S/="18,) ! — SLE~1S, =
0,(1/V'K). Therefore, |S —W|=o0,(1). ®

Proof of Theorem 4.3: The proof uses the Cramér-Wold device. Consider the
linear combination

T =T +0J°.

where the (arbitrary) scalars v and ¢ are such that 42 + §% > 0. The desired result is
proven if J* <5 N (0,72 + 62).
First, by Lemma 6.1 of DIN,

~ nh(B)E " h(Bo) — (5o 1 3(Bo) = MK 5

0
J 2JMK
and likewise
T9 ng(Bo)' ¥ g(bo) = JK 5 0.
2JK
Therefore, R R
T 1 nh(Bo)@h(fo) — (WM + 6V M)JK 2,0

VM 2JK
where Q = 7271 — (v — 6v/M)S,, Q7 15.,,.

To prove VMJ* % N(0,v), where v = (7% + 62)M, we verify conditions (a)-(f) of
Lemma A.3.
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Condition (a) is immediate.
For (b),
tr(QE) = vtr(Liariyk) — (v = 0V M)tr(1x)
= yJ(M+1)K — (y—0vVM)JK
= (YM +6VM)JK = aJK.

To consider condition (c), note that

(Q2)? = (Yyminkx — (WM + 6V M) S Q1S E)?

= 72IJ(M+1)K — (v = M§*) S, Q1S E.

Hence
trl(QE)?}] = AYJ(M+ 1)K — (4> — M§?)JK
= (V¥4 6)JMK =vJK.
For (d),
(QE)4 = (’VQIJ(M+1)K - ('72 - M62)SMAQ_1SI</[AE)2
= YLk — (7 = M?6%) 80715, E.
Thus

tr[(Q2)Y] = Y'JI(M + 1)K — (v = M*0YJK

= (v*+ M JMK.

From Lemma A.6 of DIN, 1/C < M\yin(E) < Max(Z) < C and 1/C < A\pyin(2) <

Amax(2) < C. Therefore, condition (e) is satisfied using Assumption 3.2 as
E[(h(z, 50) (V2" = (v = 6V M) Sy Q1S )z, )] < CC(K)’K.
By a similar reasoning as for (e)
E[(h(z, B0)'E (2, £0))?] < CC(K)?K.
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Also
Q=ZQ = (7571 - (’7 — v ]W)SMAQA5114;\)5('7571 - (”Y — v M)SMAQASKAA)
= 72(3_1 — SMAQ_lSI(AA) + 52SI\,IAQ_ISB'AA.

Thus, condition (f) holds, as in (e),

E[(h(z, Bo)'QEQN(z, £o))*] < CL(K)*’K

Consequently, by Lemma A.3, v M J* 4N (0,v) which proves the desired result. W

A.3 Asymptotic Local Alternative Distribution

Proof of Theorem 5.1: We prove the result for the GMM statistic 7. Proofs for GEL
statistics LR, LM, S and W are omitted for brevity but essentially follow the same steps
as in the proof of Theorem 4.2 above that demonstrates their asymptotic equivalence to
the GMM statistic.

Let g, = §(Bnp) and h, = ﬁ(ﬂno) Then, by Lemma A.8,

nh(B)YZ"'h(3) — nhl,=; by, », ng(B)Q9(8) — ng, Q" dn ? g
2IMK 2IMK '

It then follows that J — (nh/ (21 — Syn 0180 Yy, — JMK)/V2JMEK 2 0.
Therefore it remains to prove that

! (=—1 19" Vh —
nh ( SMAQn SMA>th JMK i) N(/L/\/é, 1)
2JMK

We first consider the local alternative distribution under the CEM hypothesis when

si = (wh,zh)', (i=1,... n)

Let hin = hi(Bno), hin = Elhi,|si] and hm = hin — hin, (i = 1,...,n). Also let
by =" hin/n and h, = S 1hm/n Write P, = 2,1 — S,,Q.15/,,. Then,

! Pyhy, = h' Pyhy 4 20 Pyhy, + B Poh,.

First, we show that

B Pl —




Let & = &(s;) and ¢; = ¢% (s;), (i = 1,...,n). It follows by Lemma A.4 that
o JME & _
h=th, = — 2. ¢)'=, (& ® 45)/n?
ij=1
JMK
= VMR o)

Next, letting ¢1; = ¢& (w;), (i = 1,...,n), and, again using Lemma A .4,

JMK &

B Sl Sl = === 30 (6@ 0u) 0§ © a1y)/n?
1,7=1
JMK
= 1
o op(1)

as E[¢;|w;] = 0 by hypothesis.

It therefore remains to show that

1

R Sun (7 — 1) S B B 0.

=
1=

[11

R (=N - EY 0"
2 JMK ™" won "V2IMK

Similarly to the proof of Lemma 6.1 in DIN, from Lemma A.6,
[nfe (270 — S| V2IME < n|8 R ([0 — & + C |0 — &)/ V2T ME
= n[E | 0u(c() K ) VRIME = 0, (1)
since ||=5 || = B,Z5%h, < CHLE5 Ry = O,(VE /). Likewise [0k, Sy (55" — Z7) Sty
/\V2TMK = o0,(1). Therefore,

- K
R Pl = (1 + 0,(1)).

Secondly, we demonstrate that
nhl, Pyhy, /NV2TMK = 0,(1).

Now, ||&||? is bounded and ¥;,(s;)~! is bounded for n large enough. In addition, by

Elluin — Eluinlsi] < SIEuinl] + B[ Efusnlsill']
I e

= SIE[E[[luinll* 5] + EI

IN

C
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for n large enough as E[||u;,||*|s;] < C and K/n? — 0. Hence, by Lemma A.5,

- =17 4JMK n ——17
Bt = = 3 (6 ® ) E By /0

4,j=1

= O,(VJMK /n).

Next, by hypothesis,

[nfty (5t — E | (VRIME < n 8 | [ | ([E — Bu]| + € |B0 — B /v2TM R
= 0|2 h| [E5 n| Op(C (KK /1) [V2ITME = 0,(1)

since HE;lfanz = 0,(VK /n) from above and HE;%RH < HE;liLnH—i—HEglﬁnH =0,(/K/n)+
O,({/K/n?). A similar analysis yields nh! Sy, Q1S hn/V2IMK = 0,(1).

Finally, we require ~ B
h! P.h, — JMK
il < N(0,1).
2JMK
To prove this, we invoke Lemma A.2. First, tr(Z,P,) = JM K. Secondly, we need to

establish
E[(h;,npnﬁi,n)ﬂ = OP(K\/E)-

By ¢,
E[(ﬁg,npnilz,n) } < 2E[(h, H_lhz n) } + 2E[(ﬁ;,nSMAQ7_LISI</IABi7”)2]

T n
Again using c,

E[(h;, B hin)?] < 3E[(h, 27 hin)?] + 12E[(h, 2 hin)?] + 3E[(R, =7 hin)?.

,n —n ,n —n ,n —n N —n

Now, for n large enough, E[(h:, = h;,)?] < CE[||hin||"]. Since Bno € N for n large

,n —n

enough, by Assumption 3.4 (c), similarly to the proof of Theorem 6.3 in DIN,
Elllhial"] < Elllgsl) Elllusal* 5] < CEllla;]|"] < CC(K)°K

Next,

B((h] =5 hin)?) < CVE ) E[|&) 4:]P] < CKVE /n.

Lastly,

&3]
—
D‘I
[1]
o
>l

0B thin)’] < O/ E(I&]" all') < CCUK) K2 n.
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Hence, E[(h}, = hin)?] = 0,(K+\/n) as required. Likewise, E[(h},Sua® S Rin)? =

0p(K+/n). Thirdly, P,Z,P, = P,. Therefore,
nh! Pyh, — JMK 4
H
2JMK

N(0,1).

The conclusion of the theorem then follows. W
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Appendix B: Empirical Size

B.1 MEM
B.1.1 Unrestricted Tests

Table B.1 MEM Hypothesis DIN Test Rejection Frequencies: A, = 1

| Non-Standardized
K=2 K=5

n 200 500 1000 3000 | 200 500 1000 3000
JPNM(eMMy) | 4.84  4.60 5.06 498 | 4.12 4.14 4.82 4.82
SONM(CUEy) | 4.86 4.62 5.10 4.98 | 4.00 4.06 4.86 4.82
LRYM(ELy) | 5.72 4.86 520 4.94 | 11.80 6.50 6.02 5.26
LMY M(ELy) | 6.26 4.84 5.16 4.98 | 23.92 874 6.20 5.24
SPINM(ELY,) 4.84 4.60 506 500 | 438 4.16 4.86 4.80
LR™METY) | 5.72 498 528 5.00 | 1028 6.44 6.14 5.40
LMYM(ETY) | 7.62 550 5.58 5.14 | 25.56 10.72 7.92 6.18
SPNM(ETy) 484 460 5.06 500 | 418 416 4.8 4.80

Table B.2 MEM Hypothesis DIN Test Rejection Frequencies: A, = 1.5

| Non-Standardised
K =2 K=5

n 200 500 1000 3000 | 200 500 1000 3000
jDIN'M(GMMM) 468 456 4.66 482 | 3.64 412 452 5.26
SPNM(CUE,) | 470 458 4.66 4.82 | 354 410 452 5.26
LRUM(EL,) | 630 514 4.8%5 484 |1518 7.22 598 542
LMPM(ELy) | 706 524 478 478 | 3438 1138 7.02 5.32
SPNN(RL,) | 4.82 456 4.66 4.82 | 3.90 418 456 5.26
LRPSM(ET,) | 6.26 514 4.96 4.88 | 1226 6.90 6.18 5.58
LMPNN(ETy) | 874 6.32 556 5.04 | 3418 1356 9.60 6.4
SUNM(ET,) | 476 456 4.66 4.82 | 370 414 454 526




B.1.2 Restricted Tests

Table B.3 MEM Hypothesis Test Rejection Frequencies: Ay =1

| Non-Standardized

n 200 500 1000 3000 | 200 500 1000 3000
JY(GMMy,GMM,,) | 4.88 4.56 552 5.04 | 4.70 446 544 4.98

LRY (CUEy,CUEy,) | 490 4.62 548 504 | 468 444 544 498
LR (ELy,ELy,) 568 4.78 550 5.08 | 11.82 642 6.40 5.26
LM (ELy,ELy,) 6.12 470 548 5.02 | 1852 7.48 6.40 5.18
SY (ELy) 514 4.74 554 5.06 | 7.66 5.66 6.00 5.14

LRY (ETy,ETy) 570 4.82 560 5.10 (1022 626 6.52 5.26
LMY (BT ETy,) | 6.74 516 588 5.18|19.54 9.02 7.54 5.86
S (ETy) 502 4.64 552 5.04| 580 4.88 560 5.00

Table B.4 MEM Hypothesis Test Rejection Frequencies: Ay = 1.5

| Non-Standardized

K =2 K =5

n 200 500 1000 3000 | 200 500 1000 3000
JY(GMMy,GMM,,) | 5.16 492 4.64 4.86 | 442 4.68 5.18 5.08
LR (CUEy,CUEy,) | 520 4.98 4.64 4.86| 442 470 514 5.08

LRY (ELy,ELyy) 6.22 5.36 4.78 4981570 7.56 6.70 5.40
LMY (ELy,ELyy) 6.70 5.16 4.56 4.96 |29.56 1022 7.58 5.20
SM (ELy) 568 5.12 476 4.90| 7.52 592 584 526
LRY (ETy,ETy) 6.28 5.38 4.84 498(1226 7.22 6.76 5.44
LM (ETy,ETy,) 8.04 6.16 5.02 5082844 12.00 9.20 6.00
S (ETy,) 542 5.00 4.66 4.90| 538 526 544 5.14




B.2 CEM
B.2.1 Unrestricted Tests

Table B.5 CEM Hypothesis DIN Test Rejection Frequencies: A, = 2

Non-Standardized

K =2 K=5

n 200 500 1000 3000 | 200 500 1000 3000
TPNC(GMM) | 4.88 4.68 4.80 4.62 | 348 414 436 4.72
SPNC(QUE,) | 4.92 4.66 4.76 4.60 | 3.38 410 4.32 4.78
LRYNC(EL,) | 6.58 5.34 4.94 4.66 | 17.14 864 6.58 5.36
LMPNC(EL) | 7.96 552 4.76 450 | 42.82 169 9.66 5.94
SPNC(EL,) | 4.90 4.66 4.80 4.62 | 3.82 420 4.38 472
LRYNC(ET,) | 658 550 510 4.66 | 12.7 802 6.64 5.48
LMPNC(ET,) | 9.70 650 5.84 4.80 | 39.8 18.64 11.40 7.18
SPNC(gT.) | 4.88 4.66 4.80 4.62 | 3.58 4.16 4.36 4.72

Table B.6 CEM Hypothesis DIN Test Rejection Frequencies: A, = 4.5

Non-Standardized

K =2 K=5

n 200 500 1000 3000 | 200 500 1000 3000
TPNC(GMMG) | 3.62 424 450 4.46 | 258 372  4.06 4.14
SPNC(CUE,) | 3.62 4.28 452 448 | 248 364 4.06 4.12
LRYNC(EL,) | 10.92 6.72 558 4.72 |37.14 1644 1024 6.34
LMPNC(BL) | 2342 1050 6.90 4.82 | 81.36 4526 25.04 10.16
SPIN-C(EL) 372 430 454 446 | 3.28 384 4.08 4.14
LRINC(ET,) | 936 6.46 574 484 [18.70 12.02 882 6.16
LMPNC(ET,) | 23.84 12.02 836 5.64 | 63.28 39.48 24.82 11.40
SPIN-C(ET,) 358 424 452 446 | 270 3.76  4.08 4.14
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B.2.2 Restricted Tests

Table B.7 CEM Hypothesis Test Rejection Frequencies: A, = 2
| Non-Standardized

K=2 K=5

n 200 500 1000 3000 | 200 500 1000 3000
JC(GMM¢,GMM,,) | 4.88 4.80 4.84 4.90 | 3.66 4.58 442 4.84
LRE,(CUEC,CUEy,) | 5.06 4.82 4.86 4.90 | 3.70 4.52 4.44 4.86
LR (EL¢,ELyy) 6.38 540 5.18 4.98|17.98 9.02 7.10 5.78
LM, (BL,ELy,) 7.58 554 512 4.90 | 39.56 16.66 9.90 6.46
SC (ELyw) 538 5.02 504 492 | 698 560 498 5.06
LRE (ET¢,ETy,) 6.16 550 5.20 4.96 1348 816 6.80 5.70
LME (ETe,ETyy) 842 6.30 5.72 5.06 |35.72 17.08 11.00 7.42
SC(ETya) 518 4.92 490 4.90 | 470 508 472 4.96

Table B.8 CEM Hypothesis Test Rejection Frequencies: A, = 4.5

| Non-Standardized

K=2 K=5

n 200 500 1000 3000 | 200 500 1000 3000
J€(GMM¢,GMM,, ) 3.76 452 432 470 | 252 374 468 4.12

LRS, (CUEG,CUEy,) | 3.82 454 436 476 | 250 3.76 4.66 4.16
LRE (ELg,ELys ) 1096 7.24 578 500 |38.90 16.80 11.56 6.60
LMC, (ELg,ELy, ) 22.96 10.86 6.96 4.98 | 80.36 45.90 25.90 10.74
SC (ELy,) 450 474 452 4.82| 654 526 572 4.56
LRE, (ETe,ETy,) 952 6.84 572 508 |19.30 1246 994 6.42
LM (ET¢,ETy,) | 23.16 1234 820 588 | 59.02 38.04 24.24 11.56
S (ETya) 412 462 440 480 | 3.78 434 512 436




Appendix C: Empirical Size-Adjusted Power

C.1 CEM: 7=0
C.1.1 Unrestricted Tests

Table C.1 CEM Hypothesis DIN Test Size-Corrected Power: 7 =0, A, =2, K =2

n 200 500

a 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JPNC(GMM) | 11.04 33.40 59.30 79.34 89.36 | 26.58 78.84 97.64 99.82 100.00
SONC(CUEq) | 10.92 3276 58.50 78.66 88.78 | 26.60 78.74 97.62 99.82 100.00
LRNC(EL:) | 12.58 37.90 65.42 84.60 92.88 | 27.14 80.52 98.14 99.86 100.00
LMPNC(EL) | 14.54 4216 71.26 87.58 94.38 | 28.88 82.92 98.52 99.90 99.96
SPNC(EL) 11.04 33.44 59.62 80.02 90.02 | 26.58 78.90 97.68 99.82 100.00
LRINC(ET:) | 11.90 35.92 62.74 82.82 92.08 | 26.88 79.70 98.00 99.84 100.00
LMPYC(ET:) | 12.88 39.78 68.00 86.42 93.88 | 27.58 81.22 98.28 99.94 100.00
SPINC(ET) 11.04 33.40 59.36 79.42 89.42|26.60 78.84 97.66 99.82 100.00

Table C.2 CEM Hypothesis DIN Test Size-Corrected Power: 7 =0, A, = 4.5, K =2

n 200 500

a 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JPNC(GMM) | 23.30 70.96 94.60 98.76 99.60 | 63.92 99.84 100.00 100.00 100.00
SONC(CUE) | 22.38 68.66 93.24 98.42 99.30 | 63.36 99.84 100.00 100.00 100.00
LRYNC(EL:) | 30.82 84.48 99.20 100.00 100.00 | 70.82 99.94 100.00 100.00 100.00
LMPNC(ELe) | 34.40 86.82 99.46 100.00 100.00 | 73.16 99.92 100.00 100.00 100.00
SPINC(EL) 2346 72.02 9530 99.14 99.76 | 64.04 99.84 100.00 100.00 100.00
LRT(ET:) | 2824 81.76 98.90 99.96 100.00 | 69.48 99.92 100.00 100.00 100.00
LMINC(ET,) | 33.56 87.34 99.60 100.00 100.00 | 74.68 99.94 100.00 100.00 100.00
SpNC(ET) 23.58 T71.32 94.88 98.82 99.68 | 63.98 99.84 100.00 100.00 100.00
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C.1.2 Restricted Tests

Table C.3 CEM Hypothesis Test Size-Corrected Power:

TZO,ACZQ,KZQ

n 200 500
a 02 04 06 08 1 | 02 04 06 08 1
JO(GMMg,GMM,,,) | 13.28 38.44 66.84 83.70 92.30 | 30.64 83.66 98.50 99.90 100.00
LRS,(CUE,,CUEy,) | 13.04 38.20 66.22 83.00 91.90 | 30.66 83.62 98.48 99.90 100.00
LRE (ELg,ELys ) 14.26 42.12 7220 88.10 94.70 | 32.40 85.18 98.86 99.98 100.00
LMC (ELg,ELy ) 15.46 46.58 75.98 90.60 95.86 | 33.70 86.74 99.14 100.00 100.00
SC (ELy,) 13.44 39.66 68.03 85.06 93.28 |30.96 84.16 98.58 99.92 100.00
LRE (ETe,ETys) 13.08 41.08 70.98 87.26 94.33 | 31.84 84.78 98.82 99.92 100.00
LME (ETo,ETy,) | 14.80 43.84 73.60 89.28 95.52|32.98 85.84 98.94 99.96 100.00
SC (ETy,) 13.24 39.04 67.58 84.50 92.92|30.86 83.96 98.58 99.92 100.00

Table C.4 CEM Hypothesis Test Size-Corrected Power: 7 =0, A, =4.5, K =2

n 200 500
a 02 04 06 08 1 02 04 06 0.8 1
JO(GMMg,GMM,y,) | 24.22 72.78 9518 98.76 99.46 | 67.62 99.90 100.00 100.00 100.00
LRC,.(CUE;,CUEy,) | 23.70 71.40 94.36 98.34 99.30 | 67.22 99.88 100.00 100.00 100.00
LR (ELg,ELy, ) 32.46 86.52 99.32 100.00 100.00 | 73.30 99.94 100.00 100.00 100.00
LMC, (ELg,ELy ) 35.40 87.78 99.48 100.00 100.00 | 74.34 99.94 100.00 100.00 100.00
SC (ELy,) 2494 7422 96.06 99.18 99.74 | 67.50 99.90 100.00 100.00 100.00
LRC (ETe,ETy) 29.80 83.82 98.98 99.94 100.00 | 72.14 99.94 100.00 100.00 100.00
LME (ETe,ETy,) | 34.76 88.20 99.64 100.00 100.00 | 76.12 99.96 100.00 100.00 100.00
SC (ETys) 2456 73.60 95.68 99.06 99.66 | 67.78 99.90 100.00 100.00 100.00
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C.2 MEM:a=0
C.2.1 Unrestricted Tests

Table C.5 MEM Hypothesis DIN Test Size-Corrected Power: a =0, Ay, =1, K =2

n 200 500

T 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JPNM(aMMy) | 32.82 88.42  99.84 100.00 100.00 | 72.82 99.94 100.00 100.00 100.00
SONM(CUEy) | 32.78 8826 99.84 100.00 100.00 | 72.74 99.94 100.00 100.00 100.00
LRIM(ELy) | 33.54 88.66 99.86 100.00 100.00 | 72.92 99.94 100.00 100.00 100.00
LMNM(ELy) | 32.22 86.44 99.34 99.98 100.00 | 72.46 99.88 100.00 100.00 100.00
SPNM(ELy,) 32.84 88.52 99.84 100.00 100.00 | 72.84 99.94 100.00 100.00 100.00
LRy ™M(ETY) | 33.10 88.80 99.86 100.00 100.00 | 73.12 99.94 100.00 100.00 100.00
LMY M(ETY) | 28.74 86.22 99.62 100.00 100.00 | 71.04 99.94 100.00 100.00 100.00
SPNM(ETy) 32.80 88.42 99.84 100.00 100.00 | 72.84 99.94 100.00 100.00 100.00

Table C.6 MEM Hypotesis DIN Test Size-Corrected Power: a =0, Ay, = 1.5, K =2

n 200 500

7| 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JPNM(GMMy) | 26.80 83.68 99.44 100.00 100.00 | 66.18 99.94 100.00 100.00 100.00
SONM(CUEy) | 26.64 83.50 99.46 100.00 100.00 | 66.20 99.92 100.00 100.00 100.00
LRM(ELy) | 27.38 83.70 99.38 100.00 100.00 | 66.00 99.94 100.00 100.00 100.00
LM (ELy) | 26.06 80.56 98.86 99.86 100.00 | 64.28 99.82 100.00 100.00 100.00
SPNM(ELy,) 26.66 83.44 99.46 100.00 100.00 | 66.12 99.92 100.00 100.00 100.00
LRoM(ETY) | 27.38 83.86 99.44 100.00 100.00 | 66.16 99.92 100.00 100.00 100.00
LMINM(ETY) | 25.40 82.42 99.32 100.00 100.00 | 64.88 99.92 100.00 100.00 100.00
SPINM(ETy,) 26.82 83.56 99.44 100.00 100.00 | 66.12 99.92 100.00 100.00 100.00




C.2.2 Restricted Tests

Table C.7 MEM Hypothesis Test Size-Corrected Power:

a=0Ay=1 K=2

n 200 500

T 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JM(GMMy,GMM,,) | 42.50  93.54  99.92 100.00 100.00 | 82.28 100.00 100.00 100.00 100.0C
LRy (CUEy,CUEy,) | 42.46  93.56 99.92 100.00 100.00 | 82.36 100.00 100.00 100.00 100.0C
LRy (ELy,ELyy ) 41.60 93.32 99.94 100.00 100.00 | 82.30 100.00 100.00 100.00 100.0C
LM (ELy,ELy,) 40.26  92.10 99.78 100.00 100.00 | 81.78 100.00 100.00 100.00 100.0C
SM (ELy,) 42.34 93.40 99.92 100.00 100.00 | 82.40 100.00 100.00 100.00 100.0C
LRy (ETy,ETy,) 42.48 93.56 99.94 100.00 100.00 | 82.28 100.00 100.00 100.00 100.0C
LM (ETy,ETy,) 41.40 93.28 99.96 100.00 100.00 | 82.30 100.00 100.00 100.00 100.0C
SM (ETy) 42.46 93.46 99.92 100.00 100.00 | 82.26 100.00 100.00 100.00 100.0C

Table C.8 MEM Hypothesis Test Size-Corrected Power: a =0, Ay, = 1.5, K =2

n 200 500

T 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JM(GMMy,GMM,,) | 31.14  87.18 99.82 100.00 100.00 | 71.46 99.98 100.00 100.00 100.00
LRy (CUEy,CUEy,) | 31.24 87.36 99.78 100.00 100.00 | 71.30 99.98 100.00 100.00 100.00
LRy (ELy,ELyy ) 31.96 87.74 99.78 100.00 100.00 | 71.70 99.98 100.00 100.00 100.00
LM (ELy,ELy, ) 32.10 86.08 99.36 99.96 100.00 | 71.12 99.94 100.00 100.00 100.00
SM (ELy,) 30.88 87.12 99.78 100.00 100.00 | 71.24 99.98 100.00 100.00 100.00
LRy (ETy,ETy,) 31.42 87.62 99.80 100.00 100.00 | 71.90 99.98 100.00 100.00 100.00
LM (ETy,ETy4) 32.30 88.04 99.78 100.00 100.00 | 71.76 99.98 100.00 100.00 100.00
SM (ETy) 30.86 87.18 99.80 100.00 100.00 | 71.64 99.98 100.00 100.00 100.00

C.4]



C.3 CEM:a=0

C.3.1 Unrestricted Tests

Table C.9 CEM Hypothesis DIN Test Size-Corrected Power: a =0, Ac =2, K =2

n 200 500

T 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
JPNC(aMMc) | 26.42 83.08 99.40 100.00 100.00 | 66.40 99.90 100.00 100.00 100.00
SONVC(CUE:) | 26.12 82.80 99.38 100.00 100.00 | 66.52 99.92 100.00 100.00 100.00
LRINC(ELe) | 26.78 82.94 99.42 100.00 100.00 | 65.72 99.90 100.00 100.00 100.00
LMY C(ELe) | 25.88 79.82 98.70 99.98 100.00 | 64.02 99.84 100.00 100.00 100.00
SPINC(EL) 26.44 83.02 99.40 100.00 100.00 | 66.44 99.90 100.00 100.00 100.00
LRINC(ET:) | 26.80 83.14 99.48 100.00 100.00 | 66.06 99.92 100.00 100.00 100.00
LMY C(ET:) | 26.42 82.44 99.34 100.00 100.00 | 65.70 99.90 100.00 100.00 100.00
SPNC(ET) 26.50 83.08 99.40 100.00 100.00 | 66.42 99.90 100.00 100.00 100.00

Table C.10 CEM Hypothesis DIN Test Size-Corrected Power: a =0, Ac = 4.5, K =2

n 200 500
7 02 04 06 08 1 02 04 06 08 1
JPNC(GMM,) | 18.84 69.58 97.54 99.98 100.00 | 50.34 99.48 100.00 100.00 100.00
SPN-C(CUE,) | 18.98 69.52 97.52 99.98 100.00 | 50.20 99.44 100.00 100.00 100.00
LRPNC(EL,) | 1878 68.14 97.34 99.98 100.00 | 49.26 99.46 100.00 100.00 100.00
LMPNC(EL,) | 16.78 57.24 92.84 99.62 100.00 | 44.34 98.92 100.00 100.00 100.00
SPNC(EL,) | 19.04 69.58 97.54 99.98 100.00 | 50.28 99.46 100.00 100.00 100.00
LRP™NC(ET.) | 18.62 69.00 97.46 99.98 100.00 | 50.14 99.46 100.00 100.00 100.00
LMPNC(BT,) | 17.42 63.56 96.10 99.98 100.00 | 47.26 99.28 100.00 100.00 100.00
SP-c(gr,) | 18.96 69.84 97.56 99.98 100.00 | 50.32 99.48 100.00 100.00 100.00




C.3.2 Restricted Tests

Table C.11 CEM Hypothesis Test Size-Corrected Power:

a=0A.=2 K=2

n 200 500

T 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
J°(GMM¢,GMM,y, ) 31.52 87.60 99.78 100.00 100.00 | 72.12 99.98 100.00 100.00 100.00
LRE,(CUEG,CUEy,) | 31.30 87.60 99.74 100.00 100.00 | 72.16 99.98 100.00 100.00 100.00
LR, (ELg,ELy,) 31.56 87.38 99.78 100.00 100.00 | 72.42 99.98 100.00 100.00 100.00
LM (EL¢,ELy, ) 29.94 84.28 99.38 100.00 100.00 | 70.62 99.98 100.00 100.00 100.00
SC (ELy) 31.72 87.64 99.80 100.00 100.00 | 72.26 99.98 100.00 100.00 100.00
LR, (ETc,ETy,) 31.92 87.64 99.84 100.00 100.00 | 72.50 99.98 100.00 100.00 100.00
LM (ET¢,ETy,) 31.26 87.06 99.82 100.00 100.00 | 72.12 99.98 100.00 100.00 100.00
SC(ETya) 31.60 87.74 99.78 100.00 100.00 | 72.22 99.98 100.00 100.00 100.00

Table C.12 CEM Hypothesis Test Size-Corrected Power: a =0, A = 4.5, K =2

n 200 500

T 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
J°(GMM¢,GMM,y, ) 19.48 70.78 97.84 99.98 100.00 | 53.28 99.64 100.00 100.00 100.00
LRE,(CUEG,CUEy,) | 20.06 71.44 97.90 99.98 100.00 | 53.10 99.64 100.00 100.00 100.00
LR, (ELg,ELy,) 20.26 70.56 97.66 100.00 100.00 | 51.68 99.58 100.00 100.00 100.00
LM (EL¢,ELy, ) 18.14 59.72 93.82 99.72 100.00 | 45.04 99.16 100.00 100.00 100.00
SS (ELy) 20.46 71.56 97.86 99.98 100.00 | 52.94 99.64 100.00 100.00 100.00
LR (ETc,ETy) 20.16 70.94 97.86 99.98 100.00 | 51.80 99.54 100.00 100.00 100.00
LM (ET¢,ETy,) 18.34 65.62 96.64 99.98 100.00 | 48.38 99.36 100.00 100.00 100.00
SC(ETya) 19.90 71.00 97.86 99.98 100.00 | 53.20 99.68 100.00 100.00 100.00




