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TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS

DENIS CHETVERIKOV

Abstract. Monotonicity is a key qualitative prediction of a wide array of economic models

derived via robust comparative statics. It is therefore important to design effective and practical

econometric methods for testing this prediction in empirical analysis. This paper develops a

general nonparametric framework for testing monotonicity of a regression function. Using this

framework, a broad class of new tests is introduced, which gives an empirical researcher a lot

of flexibility to incorporate ex ante information she might have. The paper also develops new

methods for simulating critical values, which are based on the combination of a bootstrap proce-

dure and new selection algorithms. These methods yield tests that have correct asymptotic size

and are asymptotically nonconservative. It is also shown how to obtain an adaptive rate optimal

test that has the best attainable rate of uniform consistency against models whose regression

function has Lipschitz-continuous first-order derivatives and that automatically adapts to the

unknown smoothness of the regression function. Simulations show that the power of the new

tests in many cases significantly exceeds that of some prior tests, e.g. that of Ghosal, Sen, and

Van der Vaart (2000). An application of the developed procedures to the dataset of Ellison and

Ellison (2011) shows that there is some evidence of strategic entry deterrence in pharmaceutical

industry where incumbents may use strategic investment to prevent generic entries when their

patents expire.

1. Introduction

The concept of monotonicity often appears in economics research. For example, monotone

comparative statics has been a popular research topic in economic theory for many years. See,

in particular, the seminal work on this topic by Milgrom and Shannon (1994) and Athey (2002).

Given the great deal of effort put into deriving conditions that are necessary and sufficient for

monotonicity in theoretical models, the natural question is whether we observe monotonicity in

the data. This paper provides a general nonparametric framework for testing monotonicity of

a regression function. Tests of monotonicity developed in this paper can be used to evaluate

assumptions and implications of economic theory concerning monotonicity. In addition, as was

recently noticed by Ellison and Ellison (2011), these tests can also be used to provide evidence of

Date: First version: March 2012. This version: November 7, 2012. Email: dchetver@mit.edu. I thank Victor

Chernozhukov for encouragement and guidance. I am also grateful to Anna Mikusheva, Isaiah Andrews, Glenn

Ellison, Jose Montiel, and Whitney Newey for valuable comments. The first version of the paper was presented at

the Econometrics lunch at MIT in April, 2012.
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2 CHETVERIKOV

existence of certain phenomena related to strategic behavior of economic agents that are difficult

to detect otherwise. Several motivating examples are presented in the next section.

I start with the model

Yi = f(Xi) + εi, i = 1, 2, 3, ... (1)

where Yi is a scalar random variable, {Xi} ⊂ R is a sequence of nonstochastic design points,

f is an unknown function, and {εi} is a sequence of independent zero-mean unobserved scalar

random variables. Later on in the paper, I extend the analysis to cover models with multivariate

Xi’s. I am interested in testing the null hypothesis, H0, that f(x) is nondecreasing against the

alternative, Ha, that there are x1 and x2 such that x1 < x2 but f(x1) > f(x2). The decision

is to be made based on the sample of size n, {Xi, Yi}16i6n. I assume that f is smooth but do

not impose any parametric structure on it. I derive a theory that yields tests with the correct

asymptotic size. I also show how to obtain consistent tests and how to obtain a test with

the optimal rate of uniform consistency against classes of functions with Lipschitz first order

derivatives. Moreover, the rate optimal test constructed in this paper is adaptive in the sense

that it automatically adapts to the unknown smoothness of f .

This paper makes several contributions. First, I introduce a general framework for testing

monotonicity. This framework allows me to develop a broad class of new tests, which also includes

some existing tests as special cases. This gives a researcher a lot of flexibility to incorporate ex

ante information she might have. Second, I develop new methods to simulate the critical values

for these tests that in many cases yield higher power than that of existing methods. Third, I

consider the problem of testing for monotonicity in models with multiple covariates for the first

time in the literature. As will be explained in the paper, these models are more difficult to

analyze and require rather different treatment in comparison with the case of univariate Xi’s.

Constructing a critical value is an important and difficult problem in nonparametric testing.

The problem arises because most test statistics studied in the literature have some asymptotic

distribution when f is constant but diverge if f is strictly increasing. This discontinuity implies

that for some sequences of models f = fn, the limit distribution depends on the local slope

function, which is an unknown infinite-dimensional nuisance parameter that can not be estimated

consistently from the data. A common approach in the literature to solve this problem is to

calibrate the critical value using the case when the type I error is maximized (the least favorable

model), i.e. the model with constant f .1 In contrast, I develop two selection procedures that

estimate the set where f is not strictly increasing, and then adjust the critical value to account

for this set. The estimation is conducted so that no violation of the asymptotic size occurs. The

critical values obtained using these selection procedures yield valuable power improvements in

1The exception is Wang and Meyer (2011) who use the model with an isotone estimate of f to simulate the

critical value. They do not prove whether their test maintains the required size, however.
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comparison with other tests if f is strictly increasing over some subsets of its domain. The first

selection procedure, which is based on the one-step approach, is related to those developed in

Chernozhukov, Lee, and Rosen (2009), Andrews and Shi (2010), and Chetverikov (2012), all of

which deal with the problem of testing conditional moment inequalities. The second selection

procedure is based on the stepdown approach. It is related to methods developed in Romano

and Wolf (2005b) and Romano and Shaikh (2010). The details, however, are rather different.

Another important issue in nonparametric testing is how to choose a smoothing parameter. In

theory, the optimal smoothing parameter can be derived for many smoothness classes of functions

f . In practice, however, the smoothness class that f belongs to is usually unknown. I deal with

this problem by employing the adaptive testing approach. This allows me to obtain tests with

good power properties when the information about smoothness of the function f possessed by the

researcher is absent or limited. More precisely, I construct a test statistic using many different

weighting functions that correspond to many different values of the smoothing parameter so that

the distribution of the test statistic is mainly determined by the optimal weighting function.

I provide a basic set of weighting functions that yields a rate optimal test and show how the

researcher can change this set in order to incorporate ex ante information.

The literature on testing monotonicity of a nonparametric regression function is quite large.

The tests of Gijbels, Hall, Jones, and Koch (2000) and Ghosal, Sen, and van der Vaart (2000)

(from now on, GHJK and GSV, respectively) are based on the signs of (Yi+k − Yi)(Xi+k −Xi).

Hall and Heckman (2000) (from now on, HH) developed a test based on the slopes of local linear

estimates of f . The list of other papers includes Schlee (1982), Bowman, Jones, and Gijbels

(1998), Dumbgen and Spokoiny (2001), Durot (2003), Beraud, Huet, and Laurent (2005), and

Wang and Meyer (2011). Lee, Linton, and Whang (2009) and Delgado and Escanciano (2010)

derived tests of stochastic monotonicity, which means that the conditional cdf of Y given X,

FY |X(y, x), is (weakly) decreasing in x for any fixed y.

As an empirical application of the results developed in this paper, I consider the problem of

detecting strategic entry deterrence in the pharmaceutical industry. In that industry, incumbents

whose drug patents are about to expire can change their investment behavior in order to prevent

generic entries after the expiration of the patent. Although there are many theoretically com-

pelling arguments as to how and why incumbents should change their investment behavior (see,

for example, Tirole (1988)), the empirical evidence is rather limited. Ellison and Ellison (2011)

showed that, under certain conditions, the dependence of investment on market size should be

monotone if no strategic entry deterrence is present. In addition, they noted that the entry

deterrence motive should be important in intermediate-sized markets and less important in small

and large markets. Therefore, strategic entry deterrence might result in the nonmonotonicity of
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the relation between market size and investment. Hence, rejecting the null hypothesis of mono-

tonicity provides the evidence in favor of the existence of strategic entry deterrence. I apply

the tests developed in this paper to Ellison and Ellison’s dataset and show that there is some

evidence of nonmonotonicity in the data. The evidence is rather weak, though.

The rest of the paper is organized as follows. Section 2 provides motivating examples. Section 3

describes the general test statistic and gives several methods to simulate the critical value. Section

4 contains the main results under high-level conditions. Section 5 is devoted to the verification

of high-level conditions under primitive assumptions. Since in most practically relevant cases,

the model also contains some additional covariates, Section 6 studies the cases of partially linear

and fully nonparametric models with multiple covariates. Section 7 presents a small Monte Carlo

simulation study. Section 8 describes the empirical application. Section 9 concludes. All proofs

are contained in the Appendix.

Notation. Throughout this paper, let {εi} denote a sequence of independent N(0, 1) random

variables that are independent of the data. The sequence {εi} will be used in bootstraping

critical values. The notation i = 1, n is shorthand for i ∈ {1, ..., n}. For any set S, I denote the

number of elements in this set by |S|. The notation an . bn means that there exists a constant

C independent of n such that an 6 Cbn. I use symbol C to denote a generic constant the value

of which may vary from line to line, and I use symbol Cj for an integer j to denote a constant

the value of which is fixed throughout the paper.

2. Motivating Examples

There are many interesting examples where testing for monotonicity can be fruitfully used in

economics. Several examples are provided in this section.

1. Testing implications of economic theory. Many testable implications of economic

theory are concerned with comparative statics analysis. These implications most often take

the form of qualitative statements like “Increasing factor X will positively (negatively) affect

response variable Y ”. The common approach to test such results on the data is to look at

the corresponding coefficient in the linear (or other parametric) regression. It is said that the

theory is confirmed if the coefficient is significant and has the expected sign. More precisely, one

should say that the theory is “confirmed on average” because the linear regression gives average

coefficients. This approach can be complemented by testing monotonicity. If the hypothesis of

monotonicity is rejected, it means that the theory is lacking some empirically important features.

For example, a classical paper Holmstrom and Milgrom (1994) on the theory of the firm is built

around the observation that in multitask problems different incentive instruments are expected

to be complementary to each other. Indeed, increasing an incentive for one task may lead the

agent to spend too much time on that task ignoring other responsibilities. This can be avoided
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if incentives on different tasks are balanced with each other. To derive testable implications of

the theory, Holmstrom and Milgrom study a model of industrial selling introduced in Anderson

and Schmittlein (1984) where a firm chooses between an in-house agent and an independent

representative who divide their time into four tasks: (i) direct sales, (ii) investing in future sales

to customers, (iii) nonsale activities, such as helping other agents, and (iv) selling the products

of other manufacturers. Proposition 4 in their paper states that under certain conditions, the

conditional probability of having an in-house agent is a (weakly) increasing function of the mar-

ginal cost of evaluating performance and is a (weakly) increasing function of the importance of

nonselling activities. These are hypotheses that can be directly tested on the data by procedures

developed in this paper. This would be an important extension of linear regression analysis

performed, for example, in Anderson and Schmittlein (1984) and Poppo and Zenger (1998).

2. Testing assumptions of economic theory. Monotonicity is also a key assumption

in many economic models, especially in those concerning equilibrium analysis. For example, in

the theory of global games it is often assumed that the profit function of an individual given

that she chooses a particular action is nondecreasing in the proportion of her opponents who

also choose this action, or/and that this function is nondecreasing in an exogenous parameter.

See, for example, Morris and Shin (1998), Morris and Shin (2001), and Angeletos and Werning

(2006).

3. Detecting strategic effects. Certain strategic effects, the existence of which is difficult

to prove otherwise, can be detected by testing for monotonicity. An example on strategic entry

deterrence in the pharmaceutical industry is described in the Introduction and is analyzed in

Section 8. Below I provide another example concerned with the problem of debt pricing. Consider

a model where investors hold a collateralized debt. The debt will yield a fixed payment in

the future if it is rolled over and an underlying project is successful. Otherwise the debt will

yield nothing. Alternatively, all investors have an option of not rolling over and getting the

value of the collateral immediately. The probability that the project turns out to be successful

depends on the fundamentals and on how many investors roll over. Each investor possesses

some information on the fundamentals. If this information is common knowledge, the price of

the debt is clearly an increasing function of the value of the collateral. Morris and Shin (2004)

show, however, that in the absence of common knowledge, high value of the collateral leads

investors to believe that many other investors will not roll over, and the project will not be

successful. This strategic effect implies that the price of the debt might decrease as the collateral

becomes more valuable, thus causing nonmonotonicity. They argue that this effect is important

for understanding anomalies in empirical implementation of the standard debt pricing theory

of Merton (1974). A natural question is how to prove existence of this effect in the data. One

possible strategy is to test whether conditional mean of the price of the debt given the value of the
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collateral is a monotonically increasing function. Rejecting the null hypothesis of monotonicity

provides evidence in favor of the existence of the strategic effect.

4. Testing assumptions of econometric models. Monotonicity is often assumed in the

econometrics literature on estimating treatment effects. A widely used econometric model in

this literature is as follows. Suppose that we observe a sample of individuals, i = 1, n. Each

individual has a random response function yi(t) that gives her response for each level of treatment

t ∈ T . Let zi and yi = yi(zi) denote the realized level of the treatment and the realized response

correspondingly (both of them are observable). The problem is how to derive inference on

E[yi(t)]. Manski and Pepper (2000) introduced assumptions of monotone treatment response,

which imposes that yi(t2) > yi(t1) whenever t2 > t1, and monotone treatment selection, which

imposes that E[yi(t)|zi = v] is increasing in v for all t ∈ T . The combination of these assumptions

yields a testable prediction. Indeed, for all v2 > v1,

E[yi|zi = v2] = E[yi(v2)|zi = v2]

> E[yi(v1)|zi = v2]

> E[yi(v1)|zi = v1]

= E[yi|zi = v1].

Since all variables on both the left and right hand sides of this chain of inequalities are observable,

this prediction can be tested by the procedures developed in this paper.

5. Classification problems. Some concepts in economics are defined using monotonicity.

For example, a good is called normal (inferior) if demand for this good is an increasing (decreas-

ing) function of income. A good is called luxury (necessity) if the share of income spent on this

good is an increasing (decreasing) function of income. Monotonicity testing can be fruitfully

used to classify different goods using this standard terminology. A related problem arises in the

Ramsey-Cass-Koopman growth model where one of the most important questions is whether

current savings is a nondecreasing function of current level of capital. See, for example, Milgrom

and Shannon (1994).

3. The Test

3.1. The General Test Statistic. Recall that I consider a model given in equation (1), and

the test should be based on the sample {Xi, Yi}ni=1 of n observations where Xi and Yi are a

nonstochastic design point and a scalar dependent random variable, respectively. In this Section

and in Sections 4 and 5, I assume that Xi ∈ R. The case where Xi ∈ Rd for d > 1 is considered

in Section 6.
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Let Q(·, ·) : R × R → R be some weighting function satisfying Q(x1, x2) = Q(x2, x1) and

Q(x1, x2) > 0 for all x1, x2 ∈ R, and let

b = b({Xi, Yi}) = (1/2)
∑

16i,j6n

(Yi − Yj)sign(Xj −Xi)Q(Xi, Xj)

be a test function. Since Q(Xi, Xj) > 0 and E[Yi] = f(Xi), it is easy to see that under H0, that

is, when the function f is non-decreasing, E[b] 6 0. On the other hand, if H0 is violated, there

exists a function Q(·, ·) such that E[b] > 0. Therefore, b can be used to form a test statistic

if I can find an appropriate function Q(·, ·). For this purpose, I will use the adaptive testing

approach developed in statistics literature. Even though this approach has attractive features, it

is almost never used in econometrics. An exception is Horowitz and Spokoiny (2001), who used

it for specification testing.

The idea behind the adaptive testing approach is to choose Q(·, ·) from a large set of potentially

useful weighting functions that maximizes the studentized version of b. Formally, let Sn be some

general set that depends on n, and for s ∈ Sn, let Q(·, ·, s) : R × R → R be some function

satisfying Q(x1, x2, s) = Q(x2, x1, s) and Q(x1, x2, s) > 0 for all x1, x2 ∈ R. In addition, let

b(s) = b({Xi, Yi}, s) = (1/2)
∑

16i,j6n

(Yi − Yj)sign(Xj −Xi)Q(Xi, Xj , s)

be a test function. Since Xi are nonstochastic, the variance of b(s) is given by

V (s) = V ({Xi}, {σi}, s) =
∑

16i6n

σ2
i

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2

where σi = (E[ε2
i ])

1/2. In general, σi are unknown, and should be estimated from the data. Let

σ̂i denote some (not necessarily consistent) estimator of σi. Available estimators are discussed

later in this Section. Then the estimated variance of b(s) is

V̂ (s) = V ({Xi}, {σ̂i}, s) =
∑

16i6n

σ̂2
i

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2

.

The general form of the test statistic that I consider in this paper is

T = T ({Xi, Yi}, {σ̂i},Sn) = max
s∈Sn

b({Xi, Yi}, s)√
V̂ ({Xi}, {σ̂i}, s)

.

Large values of T indicate that the null hypothesis is violated. Later on in this section, I will

provide methods for estimating quantiles of T under H0 and for choosing a critical value for the

test based on the statistic T .

The set Sn determines adaptivity properties of the test, that is the ability of the test to detect

many different types of deviations from H0. Indeed, each weighting function Q(·, ·, s) is useful

for detecting a particular type of deviations, and so the larger the set of weighting functions
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Sn is, the more types of deviations can be detected, and the higher is adaptivity of the test.

In this paper, I allow for exponentially large (in the sample size n) sets Sn. This implies that

the researcher can choose a huge set of weighting functions, which allows her to detect large

set of different deviations from H0. The downside of the adaptivity, however, is that expanding

the set Sn increases the critical value, and thus decreases the power of the test against those

alternatives that can be detected by weighting functions already included in Sn. Fortunately, in

many cases the loss of power is relatively small; see, in particular, discussion after Theorem 2 on

the dependence of critical values on the size of the set Sn.

3.2. Typical Weighting Functions. Let me now describe typical weighting functions. Con-

sider some positive compactly supported kernel function K : R → R.2 For convenience, I will

assume that the support of K is [−1, 1]. In addition, let s = (x, h) where x is a location point

and h is a bandwidth value. Finally, define

Q(x1, x2, (x, h)) = |x1 − x2|kK((x1 − x)/h)K((x2 − x)/h) (2)

for some k > 0. I refer to this Q as a kernel weighting function.

Assume that a test is based on kernel weighting functions and Sn consists of pairs s = (x, h)

with many different values of x and h. To explain why this test has good adaptivity properties,

consider figure 1 that plots two regression functions. Both f1 and f2 violate H0 but locations

where H0 is violated are different. In particular, f1 violates H0 on the interval [x1, x2] while the

corresponding interval for f2 is [x3, x4]. In addition, f1 is relatively less smooth than f2, and

[x1, x2] is shorter than [x3, x4]. To have good power against f1, Sn should contain a pair (x, h)

such that [x−h, x+h] ⊂ [x1, x2]. Indeed, if [x−h, x+h] is not contained in [x1, x2], then positive

and negative values of the summand of b will cancel out yielding a low value of b. In particular, it

should be the case that x ∈ [x1, x2]. Similarly, to have good power against f2, Sn should contain

a pair (x, h) such that x ∈ [x3, x4]. Therefore, using many different values of x yields a test that

adapts to the location of the deviation from H0. This is spatial adaptivity. Further, note that

larger values of h yield smaller variance of b. So, given that [x3, x4] is longer than [x1, x2], the

optimal pair (x, h) to test against f2 has larger value of h than that to test against f1. Therefore,

using many different values of h results in adaptivity with respect to smoothness of the function,

which, in turn, determines how fast its first derivative is varying and how long the interval of

nonmonotonicity is.

The general framework considered here gives the researcher a lot of flexibility in determining

what weighting functions to use. In particular, if the researcher expects that any deviations from

H0, if present, are concentrated around some particular point Xi, then she can restrict the set Sn
and consider only pairs with x = Xi. Note that this will increase the power of the test because

2The kernel function is called positive if it is positive on its support.
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Figure 1. Regression Functions Illustrating Different Deviations from H0

smaller sets Sn yield lower critical values. In addition, if it is expected that the function f is

rather smooth, then the researcher can restrict the set Sn by considering only pairs (x, h) with

large values of h since in this case deviations from H0, if present, are more likely to happen on

long intervals.

Another interesting choice of the weighting functions is

Q(x1, x2, s) =
∑

16r6m

|x1 − x2|kK((x1 − xr)/h)K((x2 − xr)/h)

where s = (x1, ..., xm, h). These weighting functions are useful if the researcher expects multiple

deviations from H0.

If no ex ante information is available, I recommend using kernel weighting functions with

Sn = {(x, h) : x ∈ {X1, ..., Xn}, h ∈ Hn} where Hn = {h = hmaxu
l : h > hmin, l = 0, 1, 2, ...} and

hmax = max16i,j6n |Xi − Xj |/2. I refer to this Sn as a basic set of weighting functions. I also

recommend setting u = 0.5, hmin = hmax(0.3/n0.95)1/3, and k = 0 or 1. This choice of parameters

is consistent with the theory presented in sections 4 and 5 and has worked well in simulations.



10 CHETVERIKOV

The value of hmin is selected so that the test function b(s) for any given s uses no less than

approximately 15 observations when n = 100.

3.3. Comparison with Other Known Tests. I will now show that the general framework

described above includes the HH test statistic and a slightly modified version of the GSV test

statistic as special cases that correspond to different values of k in the definition of kernel weight-

ing functions.

GSV use the following test function:

b(s) = (1/2)
∑

16i,j6n

sign(Yi − Yj)sign(Xj −Xi)K((Xi − x)/h)K((Xj − x)/h),

whereas setting k = 0 in equation (2) yields

b(s) = (1/2)
∑

16i,j6n

(Yi − Yj)sign(Xj −Xi)K((Xi − x)/h)K((Xj − x)/h),

and so the only difference is that I include the term (Yi − Yj) whereas they use sign(Yi − Yj). It

will be shown in the next section that my test is consistent. On the other hand, I claim that GSV

test is not consistent under the presence of conditional heteroscedasticity. Indeed, assume that

f(Xi) = −Xi, and that εi is −2Xi or 2Xi with equal probabilities. Then (Yi− Yj)(Xj −Xi) > 0

if and only if (εi − εj)(Xj −Xi) > 0, and so the probability of rejecting H0 for the GSV test is

numerically equal to that in the model with f(Xi) = 0 for i = 1, n. But the latter probability

does not exceed the size of the test. This implies that the GSV test is not consistent since

it maintains the required size asymptotically. Moreover, they consider a unique nonstochastic

value of h, which means that the GSV test is nonadaptive with respect to the smoothness of the

function f .

Let me now consider the HH test. The idea of this test is to make use of local linear estimates

of the slope of the function f . Using well-known formulas for the OLS regression, it is easy to

show that the slope estimate of the function f given the data (Xi, Yi)
s2
i=s1

with s1 < s2 where

{Xi}ni=1 is an increasing sequence is given by

b(s) =

∑
s1<i6s2 Yi

∑
s1<j6s2(Xi −Xj)

(s2 − s1)
∑

s1<i6s2 X
2
i − (

∑
s1<i6s2 Xi)2

, (3)

where s = (s1, s2). Note that the denominator of (3) is nonstochastic, and so it disappears after

studentization. In addition, simple rearrangements show that the numerator in (3) is

(1/2)
∑

16i,j6n

(Yi − Yj)(Xj −Xi)1{x− h 6 Xi 6 x+ h}1{x− h 6 Xj 6 x+ h} (4)

for some x and h. On the other hand, setting k = 1 in equation (2) yields

b(s) = (1/2)
∑

16i,j6n

(Yi − Yj)(Xj −Xi)K((Xi − x)/h)K((Xj − x)/h). (5)
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Noting that expression in (4) is proportional to that on the right hand side in (5) with K(·) =

1{[−1,+1]}(·) implies that the HH test statistic is a special case of those studied in this paper.

3.4. Estimating σi. In practice, σi is usually unknown, and, hence, should be estimated from

the data. Let σ̂i denote some estimator of σi. I provide results for two types of estimators. The

first type of estimators is easier to implement but the second worked better in simulations.

First, σi can be estimated by the residual ε̂i. More precisely, let f̂ be some uniformly consistent

estimator of f with at least a polynomial rate of consistency in probability, i.e. f̂(Xi)− f(Xi) =

op(n
−κ1) uniformly over i = 1, n for some κ1 > 0, and let σ̂i = ε̂i where ε̂i = Yi−f̂(Xi). Note that

σ̂i can be negative. Clearly, σ̂i is not a consistent estimator of σi. Nevertheless, as I will show in

Section 4, this estimator leads to valid inference. Intuitively, it works because the test statistic

contains the weighted average sum of σ2
i , i = 1, n, and the estimation error averages out. To

obtain a uniformly consistent estimator f̂ of f , one can use a series method (see Newey (1997),

theorem 1) or local polynomial regression (see Tsybakov (2009), theorem 1.8). If one prefers

kernel methods, it is important to use generalized kernels in order to deal with boundary effects

when higher order kernels are used; see, for example, Muller (1991). Alternatively, one can choose

Sn so that boundary points are excluded from the test statistic. In addition, if the researcher

decides to impose some parametric structure on the set of potentially possible functions, then

parametric methods like OLS will typically give uniform consistency with κ1 arbitrarily close to

1/2.

The second way of estimating σi is to use a parametric or nonparametric estimator σ̂i satisfying

σ̂i − σi = op(n
−κ1) uniformly over i = 1, n for some κ1 > 0. Many estimators of σi satisfy this

condition. Assume that the data {Xi, Yi}ni=1 are arranged so that Xi 6 Xj whenever i 6 j. Then

the estimator of Rice (1984), given by

σ̂ =

(
1

2n

n−1∑
i=1

(Yi+1 − Yi)2

)1/2

, (6)

is
√
n-consistent if σi = σ for all i = 1, n and f is piecewise Lipschitz-continuous.

The Rice estimator can be easily modified to allow for conditional heteroscedasticity. Choose

a bandwidth value bn > 0. For i = 1, n, let J(i) = {j = 1, n : |Xj −Xi| 6 bn}. Let |J(i)| denote

the number of elements in J(i). Then σi can be estimated by

σ̂i =

 1

2|J(i)|
∑

j∈J(i):j+1∈J(i)

(Yj+1 − Yj)2

1/2

. (7)

I refer to (7) as a local version of Rice’s estimator. An advantage of this estimator is that it

is adaptive with respect to the smoothness of the function f . Lemma 2 in Section 5 provides

conditions that are sufficient for uniform consistency of this estimator with at least a polynomial
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rate. The key condition there is that |σj+1 − σj | 6 C|Xj+1 − Xj | for some C > 0 and all

j = 1, n− 1. The intuition for consistency is as follows. Note that Xj+1 is close to Xj . So, if the

function f is continuous, then

Yj+1 − Yj = f(Xj+1)− f(Xj) + εj+1 − εj ≈ εj+1 − εj ,

so that

E[(Yj+1 − Yj)2] ≈ σ2
j+1 + σ2

j

since εj+1 is independent of εj . Further, if bn is sufficiently small, then σ2
j+1 + σ2

j ≈ 2σ2
i since

|Xj+1 − Xi| 6 bn and |Xj − Xi| 6 bn, and so σ̂2
i is close to σi. Other available estimators are

presented, for example, in Muller and Stadtmuller (1987), Fan and Yao (1998), Horowitz and

Spokoiny (2001), and Hardle and Tsybakov (1997).

3.5. Simulating the Critical Value. In this subsection, I provide three different methods for

estimating quantiles of the null distribution of the test statistic T . These are plug-in, one-step,

and stepdown methods. All of these methods are based on the procedure known as the Wild

bootstrap. The Wild bootstrap was introduced in Wu (1986) and used by Liu (1988), Mammen

(1993), Hardle and Mammen (1993), Horowitz and Spokoiny (2001), and Chetverikov (2012). See

also Chernozhukov, Chetverikov, and Kato (2012). The three methods are arranged in terms of

increasing power and computational complexity. The validity of all three methods is established

in theorem 1. Recall that {εi} denotes a sequence of independent N(0, 1) random variables that

are independent of the data.

Plug-in Approach. Suppose that we want to obtain a test of size α. The plug-in approach is

based on two observations. First, under H0,

b(s) = (1/2)
∑

16i,j6n

(f(Xi)− f(Xj) + εi − εj)sign(Xj −Xi)Q(Xi, Xj , s) (8)

6 (1/2)
∑

16i,j6n

(εi − εj)sign(Xj −Xi)Q(Xi, Xj , s) (9)

since Q(Xi, Xj) > 0 and f(Xi) > f(Xj) whenever Xi > Xj under H0, and so the (1 − α)

quantile of T is bounded from above by the (1 − α) quantile of T in the model with f(x) = 0

for all x ∈ R, which is the least favorable model under H0. Second, it will be shown that the

distribution of T asymptotically depends on the distribution of noise {εi} only through {σ2
i }.

These two observations suggest that the critical value for the test can be obtained by simulating

the conditional (1 − α) quantile of T ? = T ({Xi, Yi
?}, {σ̂i},Sn) given {σ̂} where Y ?

i = σ̂iεi for

i = 1, n. This is called the plug-in critical value cPI1−α. See section A of the Appendix for detailed

step-by-step instructions.
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One-Step Approach. The test with the plug-in critical value is computationally rather simple.

It has, however, poor power properties. Indeed, the distribution of T in general depends on f but

the plug-in approach is based on the least favorable regression function f = 0, and so it is too con-

servative when f is strictly increasing. More formally, suppose for example that a kernel weighting

function is used, and that f is strictly increasing in h-neighborhood of Xi but is constant in h-

neighborhood of Xj . Let s1 = s(Xi, h) and s2 = s(Xj , h). Then b(s1)/(V̂ (s1))1/2 is no greater

than b(s2)/(V̂ (s2))1/2 with probability approaching one. On the other hand, b(s1)/(V̂ (s1))1/2

is greater than b(s2)/(V̂ (s2))1/2 with nontrivial probability in the model with f(x) = 0 for all

x ∈ R, which is used to obtain cPI1−α. Therefore, cPI1−α overestimates the corresponding quantile

of T . The natural idea to overcome the conservativeness of the plug-in approach is to simulate a

critical value using not all elements of Sn but only those that are relevant for the given sample.

Two selection procedures developed in this paper are used to decide what elements of Sn should

be used in the simulation. The main difficulty here is to make sure that the selection procedures

do not distort the size of the test. The simpler of these two procedures is the one-step approach.

Let {γn} be a sequence of positive numbers converging to zero, and let cPI1−γn be the (1− γn)

plug-in critical value. In addition, denote

SOSn = SOSn ({Xi, Yi}, {σ̂i},Sn) = {s ∈ Sn : b(s)/(V̂ (s))1/2 > −2cPI1−γn}.

Then the one-step critical value cOS1−α is the conditional (1−α) quantile of the simulated statistic

T ? = T ({Xi, Yi
?}, {σ̂i},SOSn ) given {σ̂i} and SOSn where Y ?

i = σ̂iεi for i = 1, n.3 Intuitively, the

one-step critical value works because the weighting functions corresponding to elements of the set

Sn\SOSn have an asymptotically negligible influence on the distribution of T under H0. Indeed,

the probability that at least one element s of Sn such that

(1/2)
∑

16i,j6n

(f(Xi)− f(Xj))sign(Xj −Xi)Q(Xi, Xj , s)/(V̂ (s))1/2 > −cPI1−γn (10)

belongs to the set Sn\SOSn is at most γn+o(1). On the other hand, the probability that at least one

element s of Sn such that inequality (10) does not hold for this element gives b(s)/(V̂ (s))1/2 > 0

is again at most γn + o(1). Since γn converges to zero, this suggests that the critical value can

be simulated using only elements of SOSn . In practice, one can set γn as a small fraction of α.

For example, the Monte Carlo simulations presented in this paper use γn = 0.01 with α = 0.1.

Stepdown Approach. The one-step approach, as the name suggests, uses only one step to cut

out those elements of Sn that have negligible influence on the distribution of T . It turns out that

this step can be iterated using the stepdown procedure and yielding second-order improvements

in the power. The stepdown procedures were developed in the literature on multiple hypothesis

testing; see, in particular, Holm (1979), Romano and Wolf (2005a), Romano and Wolf (2005b),

3As usual, I define the maximum over the empty set as +∞, and so cOS1−α = +∞ if SOSn is empty.
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and Romano and Shaikh (2010), and Lehmann and Romano (2005) for a textbook introduction.

The use of stepdown method in this paper, however, is rather different.

To explain the stepdown approach, let me define the sequences (cl1−γn)∞l=1 and (S ln)∞l=1. Set

c1
1−γn = cOS1−γn and S1

n = SOSn . Then for l > 1, let cl1−γn be the conditional (1 − γn) quantile of

T ? = T ({Xi, Y
?
i }, {σ̂i},S ln) given {σ̂i} and S ln where Y ?

i = σ̂iεi for i = 1, n and

S ln = S ln({Xi, Yi}, {σ̂i},Sn) = {s ∈ Sn : b(s)/(V̂ (s))1/2 > −cPI1−γn − c
l−1
1−γn}.

It is easy to see that (cl1−γn)∞l=1 is a decreasing sequence, and so S ln ⊇ S l+1
n for all l > 1.

Since S1
n is a finite set, S l(0)

n = S l(0)+1
n for some l(0) > 1 and S ln = S l+1

n for all l > l(0).

Let SSDn = S l(0)
n . Then the stepdown critical value cSD1−α is the conditional (1 − α) quantile of

T ? = T ({Xi, Y
?
i }, {σ̂i},SSDn ) given {σ̂i} and SSDn where Y ?

i = σ̂iεi for i = 1, n.

Note that SSDn ⊂ SOSn ⊂ Sn, and so cSDη 6 cOSη 6 cPIη for any η ∈ (0, 1). This explains that

the three methods for simulating the critical values are arranged in terms of increasing power.

4. Theory under High-Level Conditions

This section describes the high-level assumptions used in this paper and presents the main

results under these assumptions.

Let C1, C2, φ, κ1, κ2, and κ3 be some strictly positive constants. The size properties of the

test will be obtained under the following assumptions.

A1. E[|εi|4+φ] 6 C1 and σi > C2 for all i = 1, n.

This is a mild assumption on the moments of disturbances. The condition σi > C2 for all i = 1, n

precludes the existence of super-efficient estimators.

Recall that the results in this paper are obtained for two types of estimators of σi. When

σ̂i = ε̂i = Yi − f̂(Xi) for some estimator f̂ of f , I will assume

A2. (i) σ̂i = Yi− f̂(Xi) for all i = 1, n and (ii) f̂(Xi)−f(Xi) = op(n
−κ1) uniformly over i = 1, n.

This assumption is satisfied for many parametric and nonparametric estimators of f , see, in

particular, subsection 3.4. When σ̂i is some consistent estimator of σi, I will assume

A3. σ̂i − σi = op(n
−κ2) uniformly over i = 1, n.

See subsection 3.4 for different available estimators. See also Section 5 and Lemma 2 in particular

where Assumption A3 is proven for the local version of Rice’s estimator.

A4. (V̂ (s)/V (s))1/2 − 1 = op(n
−κ3) and (V (s)/V̂ (s))1/2 − 1 = op(n

−κ2) uniformly over s ∈ Sn.
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This is a high-level assumption that will be verified for particular choices of the weighting func-

tions under more primitive conditions in the next section (Lemma 3).

Let

An = max
s∈Sn

max
16i6n

∣∣∣∣∣∣
∑

16j6n

sign(Xj −Xi)Q(Xi, Xj , s)/(V (s))1/2

∣∣∣∣∣∣ .
I refer to An as a sensitivity parameter. It provides an upper bound on how much any test

function depends on a particular observation. Intuitively, approximation of the distribution of

the test statistic is possible only if An is sufficiently small.

A5. nA3
n(log p)7/2 = o(1) where p = |Sn|, the number of elements in the set Sn. In addition, if A2

holds, then for some −2 < φ1 < φ, (i) (log p)2/n(2+φ)/(4+φ1) = o(1), (ii) A2
nn

2/(4+φ1)(log p)3 =

o(1), (iii) A2
n(log p)5 = o(1), and (iv) log p/nκ1∧κ3 = o(1). Finally, if A3 is satisfied, then

log p/nκ2∧κ3 = o(1).

This is a key growth assumption that restricts the choice of the weighting functions and, hence,

the set Sn. Note that this condition includes p only through log p, and so it allows an exponen-

tially large (in the sample size n) number of weighting functions. Lemma 3 in the next section

provides an upper bound on An for some choices of weighting functions, allowing me to verify

this Assumption.

Let M be a class of models given by equation (1), regression function f , design points {Xi},
distribution of {εi}, weighting functions Q(·, ·, s) for s ∈ Sn, and estimators {σ̂i} such that

uniformly over this class, (i) Assumptions A1, A4, and A5 are satisfied, and (ii) either Assumption

A2 or A3 holds.4 For M ∈ M, let PM (·) denote the probability under the distributions in the

model M . Then

Theorem 1. Let P = PI, OS, or SD. Let M0 denote the set of all models M ∈ M satisfying

H0. Then

inf
M∈M0

PM (T 6 cP1−α) > 1− α+ o(1) as n→∞.

In addition, let M00 denote the set of all models M ∈ M0 such that f ≡ C for some constant

C. Then

sup
M∈M00

P(T 6 cP1−α) = 1− α+ o(1) as n→∞.

Comment 1. (i) This Theorem states that the Wild Bootstrap combined with the selection

procedures developed in this paper yields valid critical values. Moreover, critical values are valid

4Assumptions A2, A3, and A4 contain statements of the form Z = op(n
−κ) for some random variable Z and

κ > 0. I say that these assumptions hold uniformly over a class of models if for any C > 0, P(|Z| > Cn−κ) = o(1)

uniformly over this class. Note that this notion of uniformity is weaker than uniform convergence in probability.

In addition, it applies to random variables defined on different probability spaces.
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uniformly over the class of models M0. The second part of the Theorem states that the test is

nonconservative in the sense that its level converges to the nominal level α.

(ii) The proof technique used in this theorem is based on finite sample approximations that

are built on the results of Chatterjee (2005) and Chernozhukov, Chetverikov, and Kato (2011).

In particular, the validity of the bootstrap is established without refering to the asymptotic

distribution of the test statistic.

(iii) Note that T has a form of U-statistic. The analysis of such statistics typically requires a

preliminary Hoeffding projection. An advantage of the approximation method developed in this

paper is that it applies directly to the test statistic with no need for the Hoeffding projection,

which simplifies the analysis a lot.

(iv) To obtain a particular application of the general result presented in this theorem, consider a

basic set of weighting functions introduced in subsection 3.2. Assume that (log n)7/2/(nh3
min)1/2 →

0 as n → 0. Then the number of weighting functions in the set Sn is bounded from above by

some polynomial in n, and so log p . log n. Lemma 3 in the next Section then implies that

Assumptions 4 and A5 hold with φ1 = 0 (under mild conditions on K(·) stated in Lemma 3),

and so the result of Theorem 1 applies for this Sn. Therefore, the basic set of weighting functions

yields a test with the correct asymptotic size, and so it can be used for testing monotonicity.

An advantage of this set is that, as will follow from Theorems 4 and 5, it gives a test with the

best attainable rate of uniform consistency in the minimax sense against alternatives with re-

gression functions that have Lipschitz-continuous first order derivatives provided that hmin → 0

sufficiently fast.

Let sl = inf16i6∞Xi and sr = sup16i6∞Xi. To prove consistency of the test and to derive

the rate of consistency against one-dimensional alternatives, I will also incorporate the following

assumptions.

A6. For any interval [x, x+ ∆x] ⊂ [sl, sr] there exists an integer N and a constant C > 0 such

that for any n > N , |{i = 1, n : Xi ∈ [x, x+ ∆x]}| > Cn.

This Assumption often appears in the literature. Lemma 1 in the next section shows that it

holds almost surely if {Xi} is an i.i.d. sequence from some distribution satisfying mild regularity

conditions.

A7. For any interval [x, x+∆x] ⊂ [sl, sr] there exists an integer N and a constant C > 0 such that

for any n > N , there exists s ∈ Sn satisfying (i) the support of Q(·, ·, s) is contained in [x, x+∆x]2,

(ii) Q(·, ·, s) is bounded from above uniformly over n = 1,∞, (iii) there exist nonintersecting

subintervals [xl, xl + ∆x,l] and [xr, xr + ∆x,r] of [x, x+ ∆x] such that Q(x1, x2, s) > C whenever

x1 ∈ [xl, xl + ∆x,l] and x2 ∈ [xr, xr + ∆x,r].
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Let M1 be a subset of M consisting of all models satisfying Assumptions A6 and A7. Then

Theorem 2. Let P = PI, OS, or SD. Then for any model M from the class M1 such that f

is continuously differentiable and there exist x1, x2 ∈ [sl, sr] such that x1 < x2 and f(x1) > f(x2)

(H0 is false),

PM (T 6 cP1−α)→ 0 as n→∞.

Comment 2. (i) This Theorem shows that the test is consistent against any fixed continuously

differentiable alternative.

(ii) To compare the critical values based on the selection procedures developed in this paper

with the plug-in approach (no selection procedure), assume that f is continuously differentiable

and strictly increasing (H0 holds). Then an argument like that used in the proof of Theorem

2 shows that SOSn and SSDn will be empty w.p.a.1, which means that P{cOS1−α = 0} → 1 and

P{cSD1−α = 0} → 1. On the other hand, P(cPI1−α > C) → 1 for some C > 0 since each test

statistic contains at least one weighting function. Moreover, under Assumption A7, it follows

from the Sudakov-Chevet Theorem (see, for example, Theorem 2.3.5 in Dudley (1999)) that

P(cPI1−α > C)→ 1 for all C > 0. Finally, under Assumption A9, which is stated below, it follows

from the proof of lemma 2.3.15 in Dudley (1999) that P{cPI1−α > C
√

log n} → 1 for some C > 0.

This explains the power improvements of one-step and stepdown approaches in comparison with

the plug-in critical value.

Theorem 3. Let P = PI, OS, or SD. Consider any model M from the class M1 such that f

is continuously differentiable and there exist x1, x2 ∈ [sl, sr] such that x1 < x2 and f(x1) > f(x2)

(H0 is false). Assume that for every sample size n, the true model Mn coincides with M except

that the regression function has the form fn(·) = lnf(·) for some sequence {ln} of positive numbers

converging to zero. Then

PMn(T 6 cP1−α)→ 0 as n→∞

as long as log p = o(l2nn).

Comment 3. (i) This Theorem establishes the consistency of the test against one-dimensional

local alternatives, which are often used in the literature to investigate the power of the test;

see, for example, Andrews and Shi (2010), Lee, Song, and Whang (2011), and the discussion in

Horowitz and Spokoiny (2001).

(ii) Suppose that Sn consists of a basic set of weighting functions and hmin → 0 polynomially

fast. Then log p . C log n, and so the test is consistent against one-dimensional local alternatives

if (log n/n)1/2 = o(ln).

(iii) Now suppose that Sn is a maximal subset of a basic set such that for any x1, x2, h satisfying

(x1, h) ∈ Sn and (x2, h) ∈ Sn, |x2 − x1| > 2h. In addition, assume that hmin → 0 arbitrarily
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slowly. Then the test is consistent against one-dimensional local alternatives if n−1/2 = o(ln).

In words, this test is
√
n-consistent against such alternatives. I note however, that the practical

value of this
√
n-consistency is limited because there is no guarantee that for any given sample

size n and given deviation from H0, weighting functions suitable for detecting this deviation are

already included in the test statistic. In contrast, it will follow from Theorem 4 that the test

based on a basic set of weighting functions does provide this guarantee.

Let {Cj : j = 3, ..., 8} be a set of strictly positive constants such that C3 < C4, C5 < C6,

and C7 < C8. Let L > 0, β ∈ (0, 1], k > 0, and hn = (log p/n)1/(2β+3). To derive the uniform

consistency rate against the classes of alternatives with Lipschitz derivatives, conditions A6 and

A7 will be replaced by the following assumptions.

A8. There exists an integer N such that for any n > N and any interval [x1, x2] ⊂ [sl, sr]

satisfying |x2 − x1| > C3n
−1/3, C5n|x2 − x1| 6 |{i = 1, n : Xi ∈ [x1, x2]}| 6 C6n|x2 − x1|.

This Assumption is stronger than A6 but is still often imposed in the literature; see Lemma 1

for sufficient primitive conditions.

A9. There exists an integer N such that for any n > N and any x ∈ [sl, sr − C4hn], there

exists s ∈ Sn satisfying (i) the support of Q(·, ·, s) is contained in [x, x+ C4hn]2, (ii) Q(·, ·, s) is

bounded from above by C8h
k
n, (iii) there exist xl, xr ∈ [x, x + C4hn] such that |xr − xl| > 2C3hn

and Q(x1, x2, s) > C7h
k
n whenever x1 ∈ [xl, xl + C3hn] and x2 ∈ [xr, xr + C3hn].

This Assumption is satisfied for the basic set of weighting functions if hmin satisfies hmin =

o(log p/n)1/(2β+3). Let f (1)(·) denote the first derivative of f(·).

A10. For any x1, x2 ∈ [sl, sr], |f (1)(x1)− f (1)(x2)| 6 L|x1 − x2|β.

This is a smoothness condition that requires that the regression function is sufficiently well-

behaved.

LetM2 be the subset ofM consisting of all models satisfying Assumptions A8, A9, and A10.

Then

Theorem 4. Let P = PI, OS, or SD. Consider any sequence of positive numbers {ln} such that

ln → ∞, and let M2n denote the subset of M2 consisting of all models such that the regression

function f satisfies infx∈[sl,sr] f
(1)(x) < −ln(log p/n)β/(2β+3). Then

sup
M∈M2n

PM (T 6 cP1−α)→ 0 as n→∞.

Comment 4. (i) Theorem 4 gives the rate of uniform consistency of the test against Holder

smoothness classes with parameters (β + 1, L). Importance of uniform consistency against suffi-

ciently large classes of alternatives such as Holder smoothness classes was previously emphasized
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in Horowitz and Spokoiny (2001). Intuitively, it guarantees that there are no reasonable alter-

natives against which the test has low power if the sample size is sufficiently large.

(ii) Suppose that Sn consists of a basic set of weighting functions, K(·) is continuous and strictly

positive on (−1,+1), and hmin satisfies hmin = o(log n/n)1/(2β+3) and (log n)7/2/(nh3
min)1/2 =

o(1). Then Assumption A9 holds. In addition, it follows from Lemma 3 that Assumptions

A4 and A5 are satisfied (under mild conditions on K(·) stated in Lemma 3), and so Theorem 4

implies that the test with this Sn is consistent whenever infx∈[sl,sr] f
(1)
n (x) < −ln(log n/n)β/(2β+3)

for some ln →∞. On the other hand, it will be shown in Theorem 5 that no test can be consistent

if infx∈[sl,sr] f
(1)
n (x) > −C(log n/n)β/(2β+3) for some sufficiently large C > 0. Therefore, the test

is rate optimal in the minimax sense.

To conclude this Section, I present a Theorem that gives a lower bound on the possible rate

of uniform consistency against the class M2 so that no test that maintains asymptotic size can

have a higher rate of uniform consistency. Let ψ = ψ(Y1, ..., Yn) be a generic test. In other words,

ψ(Y1, ..., Yn) is the probability that the test rejects upon observing the data Yi, i = 1, n. Note

that for any deterministic test ψ = 0 or 1.

Theorem 5. For any test ψ satisfying EM [ψ] 6 α + o(1) as n → ∞ for all models M ∈ M
such that H0 holds, there exists a sequence of models M = Mn belonging to the class M2 such

that f = fn satisfies infx∈[sl,sr] f
(1)
n (x) < −C(log n/n)β/(2β+3) for some sufficiently large constant

C > 0 and EMn [ψ] 6 α + o(1) as n → ∞. Here EMn [·] denotes the expectation under the

distributions of the model Mn.

Comment 5. Combining the result of this Theorem with Comment 4-ii shows that the test based

on a basic set of weighting functions and satisfying conditions of Comment 4-ii is rate optimal. In

other words, no test that maintains asymptotic size can have a higher uniform consistency rate

against the models with the regression function possessing the Lipschitz-continuous first order

derivative.

5. Verification of High-Level Conditions

This section provides conditions that are sufficient for the Assumptions used in Section 4.

First, I discuss Assumptions A6 and A8 concerning the configuration of design points {Xi}.
Then I consider Assumption A3, which concerns the uniform consistency of the estimator σ̂i

of σi over i = 1, n. Finally, I give an upper bound on the sensitivity parameter An and prove

Assumption A4 for the case when Sn consists of kernel weighting functions.

Recall that the analysis in Section 4 is for nonstochastic {Xi}. Alternatively, it can be viewed

as conditional on {Xi}. Suppose that {Xi} is an i.i.d. sample from some distribution. The
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Lemma below provides sufficient conditions so that Assumptions A6 and A8 hold for almost all

realizations {Xi}.

Lemma 1. Suppose that {Xi}16i6∞ is an i.i.d. sample from the distribution Px on R with

the bounded support [sl, sr]. Then Assumption A6 holds for almost all realizations {Xi}16i6∞.

In addition, if Px is absolutely continuous with respect to Lebesgue measure, and its density is

bounded from above and away from zero on the support, then Assumption A8 holds for almost

all realizations {Xi}16i6∞.5

Note that sufficient conditions provided by Lemma 1 for Assumption A6 allow for point masses,

whereas conditions for Assumption A8 do not.

From now on, I will again assume that {Xi} is nonstochastic. The next Lemma shows uniform

consistency of the local version of Rice’s estimator σ̂i with an explicit rate of convergence in

probability.

Lemma 2. Suppose that σ̂i is the local version of Rice’s estimator of σi given in equation (7).

Suppose also that (i) Assumption A1 holds, (ii) log n = o(nφ/(4+φ)b3n) for some sequence {bn} of

positive numbers converging to zero, (iii) |J(i)| > Cnbn for some C > 0 and all i = 1, n, (iv)

|f(Xi)− f(Xj)| . |Xi −Xj | uniformly over i, j = 1, n, and (v) |σ2
i − σ2

j | . |Xi −Xj | uniformly

over i, j = 1, n. Then max16i6n |σ̂i − σi| = Op(bn).

Note that since φ/(4 + φ) ∈ (0, 1), Assumption (iii) follows from A8, and Assumption (iv)

follows from A10 as long as {Xi} is contained in the bounded set. Lemma 2 implies that

Assumption A3 holds for the local version of Rice’s estimator with any κ2 satisfying κ2 < φ/(12+

3φ).

Next, I consider restrictions on the weighting functions to ensure that Assumption A4 holds

and give an upper bound on the sensitivity parameter An.

Lemma 3. Suppose that Sn consists of kernel weighting functions. In addition, suppose that

(i) Assumptions A1 and A8 hold, (ii) K has the support [−1,+1], is continuous, and strictly

positive on the interior of its support, (iii) x ∈ [sl, sr] for all (x, h) ∈ Sn, (iv) nh3
min → ∞

where hmin = min(x,h)∈Sn h, and (v) hmax 6 (sr − sl)/2 where hmax = max(x,h)∈Sn h. Then

(a) An 6 C/(nhmin)1/2 where C depends only on the kernel K and constants C1, ..., C8; (b) if

Assumption A3 is satisfied, then Assumption A4 holds with κ3 = κ2; (c) if Assumption A2 is

satisfied, then Assumption A4 holds with any κ3 < (2 + φ)/(4 + φ1) for any φ1 ∈ (−2, φ) as long

as log p = o(hminn
1−2κ3) and log p = o(hminn

(2+φ1)/(4+φ1)−κ3).

5Recall that in section 4, sl and sr were defined by sl = inf16i6∞Xi and sr = sup16i6∞Xi. It is easy to show

that the definition given in this Lemma coincides with that definition for almost all realizations {Xi}16i6∞.
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Restrictions on the kernel K imposed in this Lemma are satisfied for most commonly used

kernel functions including uniform, triangular, Epanechnikov, biweight, triweight, and tricube

kernels. Note, however, that these restrictions exclude higher order kernels since those are nec-

essarily negative at some points on their supports.

6. Models with Multivariate Covariates

Most empirical studies contain additional covariates that should be controlled for. In this

section, I extend the results presented in Sections 4 and 5 to allow for this possibility. I consider

cases of both partially linear and nonparametric models. For brevity, I will only consider the

results concerning size properties of the test, and I will assume that σi is estimated by σ̂i = ε̂i

for all i = 1, n. The power properties of the test can be obtained using the arguments closely

related to those used in Theorems 2, 3, and 4.

6.1. Partially Linear Model. In this model, additional covariates enter the regression function

as additively separable linear form. In other words, the model is given by

Yi = f(Xi) + ZTi β + εi, i = 1, 2, 3, ...

where {Yi, Xi, εi} are defined as in the Introduction, {Zi} ⊂ Rd is a sequence of nonstochastic

additional covariates, and β ∈ Rd is a vector of coefficients. As above, the problem is to test

the null hypothesis, H0, that f(x) is nondecreasing against the alternative, Ha, that there are

x1 and x2 such that x1 < x2 but f(x1) > f(x2).

An advantage of the partially linear model outlined above over the fully nonparametric model

is that it does not suffer from the curse of dimensionality, which decreases the power of the test

and may be a severe problem if the researcher has many additional covariates to control for. On

the other hand, the partially linear model does not allow for heterogeneous effects of the factor

X, which might be restrictive in some applications. It should be taken into account that the test

obtained for the partially linear model will be inconsistent if this model is misspecified.

Let me now describe the test. The idea behind the test is to estimate β by β̂ and to apply

the methods described in section 3 for the dataset {Xi, Yi − ZTi β̂}. More precisely, let β̂ be a
√
n-consistent estimator of β. For example, one can take an estimator of Robinson (1988), which

is

β̂ =

(
n∑
i=1

ẐiẐ
T
i

)−1( n∑
i=1

ẐiŶi

)
where Ẑi = Zi − Ê[Z|X = Xi], Ŷi = Yi − Ê[Y |X = Xi], and Ê[Z|X = Xi] and Ê[Y |X = Xi]

are nonparametric estimators of E[Z|X = Xi] and E[Y |X = Xi] respectively; see discussion in

Horowitz (2009) for a set of regularity conditions underlying
√
n-consistency of this estimator.

Define Ỹi = Yi − ZTi β̂, and let the test statistic be T = T ({Xi, Ỹi}, {σ̂i},Sn) where σ̂i = ε̂i =
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Yi − f̂(Xi) − ZTi β̂ and f̂(Xi) is some estimator of f(Xi), which is uniformly consistent over

i = 1, n. The critical value for the test is simulated by one of the methods (plug-in, one-step,

or stepdown) described in Section 3 using the data {Xi, Ỹi}, estimators {σ̂i}, and the set of

weighting functions Sn. As in Section 3, let cPI1−α, cOS1−α, and cSD1−α denote the plug-in, one-step,

and stepdown critical values correspondingly.

Let C9 > 0 be some constant. To obtain results for partially linear models, I will impose the

following condition.

A11. (i) ‖Zi‖ 6 C9 for all i = 1, n, (ii) limC→∞ P(‖β̂ − β‖ > Cn−1/2) → 0 uniformly over all

n, and (iii) maxs∈Sn
∑

16i,j6nQ(Xi, Xj , s)/V (s)1/2 = o(
√
n/ log p).

Let MPL denote any set of models in M such that Assumptions A2 and A11 are satisfied

uniformly over MPL. It follows from the proof of Lemma 3 that Assumption A11-iii is satisfied

if Sn consists of kernel weighting functions as long as hmax satisfies hmax = o(1/ log p). The size

properties of the test are given in the following theorem.

Theorem 6. Let P = PI, OS, or SD. Let MPL,0 denote the set of all models M ∈ MPL,0

satisfying H0. Then

inf
M∈MPL,0

PM (T 6 cP1−α) > 1− α+ o(1) as n→∞.

In addition, let MPL,00 denote the set of all models M ∈ MPL,0 such that f ≡ C for some

constant C. Then

sup
M∈MPL,00

PM (T 6 cP1−α) = 1− α+ o(1) as n→∞.

6.2. Nonparametric Model. In this subsection, I do not assume that the regression function

is separably additive in additional covariates. Instead, I assume that the regression function has

a general nonparametric form, and so the model is given by

Yi = f(Xi, Zi) + εi, i = 1, 2, 3, ...

where {Xi, Zi} is a sequence of 1 + d vectors of nonstochastic covariates, {Yi} is a sequence

of scalar dependent random variables, and {εi} is a sequence of unobservable scalar random

variables satisfying E[εi] = 0 for all i = 1, n.

Let Sz be some subset of Rd. The null hypothesis, H0, to be tested is that for any x1, x2 ∈ R
and z ∈ Sz, f(x1, z) 6 f(x2, z) whenever x1 6 x2. The alternative, Ha, is that there are

x1, x2 ∈ R and z ∈ Sz such that x1 6 x2 but f(x1, z) > f(x2, z).

The choice of the set Sz is up to the researcher and has to be made depending on theoretical

considerations. For example, if Sz = Rd, then H0 means that the function f is increasing in the

first argument for any given value of the second argument. If the researcher is interested in one
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particular value, say, z0, then she can set Sz = z0, which will mean that under H0, the function

f is increasing in the first argument when the second argument equals z0.

The advantage of the nonparametric model studied in this subsection is that it is fully flexible

and, in particular, allows for heterogeneous effects of X on Y . On the other hand, the nonpara-

metric model suffers from the curse of dimensionality and may result in tests with low power if

the researcher has many additional covariates. In this case, it might be better to consider the

partially linear model studied above.

To define the test statistic, let Sn and Q(·, ·, s) be the same as in Section 3. Then define

S̄n = {(s, z) : s ∈ Sn, z = Zi for some i = 1, n such that Zi ∈ Sz},

and for s̄ = (s, z) ∈ S̄n, let

b(s̄) = (1/2)
∑

16i,j6n

(Yi − Yj)sign(Xj −Xi)Q̄(Xi, Zi, Xj , Zj , s̄)

be a test function where

Q̄(Xi, Zi, Xj , Zj , s̄) = Q(Xi, Xj , s)K̄((Zi − z)/h̄(s))K̄((Zj − z)/h̄(s̄)),

K̄ : Rd → R is some positive compactly supported auxiliary kernel function, and h̄(s̄), s̄ ∈ S̄n,

are auxiliary bandwidth values. Intuitively, Q̄ is a local-in-z version of the weighting function Q.

The variance of b(s̄) is given by

V (s̄) =
∑

16i6n

σ2
i

 ∑
16j6n

sign(Xj −Xi)Q̄(Xi, Zi, Xj , Zj , s̄)

2

,

and the estimated variance is

V̂ (s̄) =
∑

16i6n

σ̂2
i

 ∑
16j6n

sign(Xj −Xi)Q̄(Xi, Zi, Xj , Zj , s̄)

2

.

Then the test statistic is

T = max
s̄∈S̄n

b(s̄)√
V̂ (s̄)

Large values of T indicate that H0 is violated. The critical value for the test can be calculated

using any of the methods described in Section 3 with the only difference being that now Q̄, s̄

and S̄n should be used instead of Q, s and Sn, and the selection procedures choose subsets of

S̄n instead of Sn. Let cPI1−α, cOS1−α, and cSD1−α denote the plug-in, one-step, and stepdown critical

values correspondingly. In addition, let

Ān = max
s̄∈S̄n

max
16i6n

∣∣∣∣∣∣
∑

16j6n

sign(Xj −Xi)Q̄(Xi, Xj , s̄)/(V (s̄))1/2

∣∣∣∣∣∣ ,
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be a sensitivity parameter. Finally, let p̄ = |S̄n|, the number of elements in the set S̄n. Clearly,

p̄ 6 pn where p = |Sn|.

Let C10 be some positive constant. To prove results concerning multivariate nonparametric

model, I will impose the following condition.

A12. (i) P(|εi| > u) 6 exp(−u2/C10) for all u > 0 and σi > C2 for all i = 1, n, (ii) Ān(log p̄)7/2 =

o(1), (iii) log p̄/nκ1∧κ3 = o(1), (iv) for some −2 < φ1 < ∞, (log p̄)2/n(2+φ)/(4+φ1) = o(1),

and Ā2
nn

2/(4+φ1)(log p̄)3 = o(1), (v) h̄(s̄)
∑

16i,j6n Q̄(Xi, Zi, Xj , Zj , s̄)/(V (s̄))1/2 = o(1/
√

log p̄)

uniformly over s̄ ∈ S̄n, and (vi) the regression function f has uniformly bounded first order

partial derivatives.

Condition (i) of this Assumption imposes that εi have sub-Gaussian tails, which is stronger than

Assumption A1. Conditions (ii)-(v) are of high level. To give more primitive conditions, as-

sume that Sn consists of kernel weighting functions so that s̄ = (s, z) = ((x, h), z), and that

the number of points {Xi, Zi}16i6n contained in each cube with the center (Xj , Zj), j = 1, n,

and edges h × h̄(s̄)d is bounded from below and from above by Chh̄(s̄)d and Chh̄(s̄)d corre-

spondingly with some constants 0 < C < C < ∞. Then log p̄ . log n. Let S̄n,h = {(h, h̄) :

h̄ = h̄((x, h), z) for some x and z such that ((x, h), z) ∈ S̄n}. Then it follows from the proof of

Lemma 3 that Ān . max(h,h̄)∈S̄n,h 1/(nhh̄d)1/2. Therefore, by setting φ1 sufficiently large, condi-

tions (ii)-(v) hold if nhh̄d →∞ and nhh̄d+2 → 0 polynomially fast uniformly over (h, h̄) ∈ S̄n,h.

The key difference between the multivariate case studied in this section and univariate case

studied in Section 4 is that now it is not necessarily the case that E[b(s̄)] 6 0 under H0. The

reason is that the values f(x1, z1) and f(x2, z2) are noncomparable unless z1 = z2. This yields

nonvanishing bias term in the test statistic. Condition (v) of Assumption 12 ensures that this bias

is asymptotically negligible relative to the concentration rate of the test statistic. The difficulty,

however, is that this condition is inconsistent with nĀ3
n(log p̄)7/2 → 0 imposed in Assumption

A5 (where I replaced An and p by their multivariate analogs Ān and p̄). Indeed, condition

nĀ3
n(log p̄)7/2 → 0 essentially requires nh3h̄3d →∞, and so it contradicts to nhh̄d+2 → 0, which

follows from condition (v) of A12. To deal with this problem, I impose more stringent moment

condition A12-i than that used in Section 4, A1. This allows me to apply more powerful methods

developed in Chernozhukov, Chetverikov, and Kato (2012) and replace nĀ3
n(log p̄)7/2 → 0 by

Ān(log p̄)7/2 = o(1); see Assumption A12-ii.

LetMNP denote any set of models such that Assumptions A2 with f̂(Xi) and f(Xi) replaced

by f̂(Xi, Zi) and f(Xi, Zi), A4 with s and Sn replaced by s̄ and S̄n, and A12 hold uniformly over

MNP . Then
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Theorem 7. Let P = PI, OS, or SD. Let MNP,0 denote the set of all models M ∈ MNP

satisfying H0. Then

inf
M∈MNP,0

PM (T 6 cP1−α) > 1− α+ o(1) as n→∞.

In addition, let MNP,00 denote the set of all models M ∈ MNP,0 such that f ≡ C for some

constant C. Then

sup
M∈MNP,00

PM (T 6 cP1−α) = 1− α+ o(1) as n→∞.

7. Monte Carlo Simulations

In this section, I provide results of a small simulation study. The aim of the simulation study

is to shed some light on the size properties of the test in finite samples and to compare its power

with that of other tests developed in the literature. In particular, I consider the tests of Gijbels,

Hall, Jones, and Koch (2000) (GHJK), Ghosal, Sen, and van der Vaart (2000) (GSV), and Hall

and Heckman (2000) (HH).

I consider samples of size n = 100, 200, and 500 with equidistant nonstochastic Xi’s on the

[−1, 1] interval, and regression functions of the form f = c1x− c2φ(c3x) where c1, c2, c3 > 0 and

φ(·) is the pdf of the standard normal distribution. I assume that {εi} is a sequence of i.i.d.

zero-mean random variables with standard deviation σ. Depending on the experiment, εi has

either normal or continous uniform distribution. Four combinations of parameters are studied:

(1) c1 = c2 = c3 = 0 and σ = 0.05; (2) c1 = c3 = 1, c2 = 4, and σ = 0.05; (3) c1 = 1, c2 = 1.2,

c3 = 5, and σ = 0.05; (4) c1 = 1, c2 = 1.5, c3 = 4, and σ = 0.1. Cases 1 and 2 satisfy H0

whereas cases 3 and 4 do not. In case 1, the regression function is flat corresponding to the

maximum of the type I error. In case 2, the regression function is strictly increasing. Cases 3

and 4 give examples of the regression functions that are mostly increasing but violate H0 in the

small neighborhood near 0. All functions are plotted in figure 2. The parameters were chosen so

that to have nontrivial rejection probability in most cases (that is, bounded from zero and from

one).

Let me describe the tuning parameters for all tests that are used in the simulations. For the

tests of GSV, GHJK, and HH, I tried to follow their instructions as closely as possible. For the

test developed in this paper, I use kernel weighting functions with k = 0, Sn = {(x, h) : x ∈
{X1, ..., Xn}, h ∈ Hn}, and the kernel K(x) = 0.75(1 − x2) for x ∈ (−1; +1) and 0 otherwise.

I use the set of bandwidth values Hn = {hmaxu
l : h > hmin, l = 0, 1, 2, ...}, u = 0.5, hmax = 1,

hmin = (0.3/n0.95)1/3, and the truncation parameter γ = 0.01. For the test of GSV, I use the

same kernel K with the bandwidth value hn = n−1/5, which was suggested in their paper, and

I consider their their sup-statistic. For the test of GHJK, I use their run statistic maximized

over k ∈ {10(j − 1) + 1 : j = 1, 2, ...0.2n} (see the original paper for the explanation of the
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Figure 2. Regression Functions Used in Simulations

notation). For the test of HH, local polynomial estimates are calculated over r ∈ nHn at every

design point Xi. The set nHn is chosen so that to make the results comparable with those for

the test developed in this paper. Finally, I consider two versions of the test developed in this

paper depending on how σi is estimated. More precisely, I consider the test with σi estimated

by the Rice’s method (see equation (6)), which I refer to in the table below as CS (consistent

sigma), and the test with σ̂i = ε̂i where ε̂i is obtained as the residual from estimating f using

the series method with polynomials of order 5, 6 and 8 whenever the sample size n, is 100, 200,

and 500 respectively, which I refer to in the table below as IS (inconsistent sigma).

The rejection probabilities corresponding to nominal size α = 0.1 for all tests are presented

in table 1. The results are based on 1000 simulations with 500 bootstrap repetitions in all cases

excluding the test of GSV where the asymptotic critical value is used.

The results of the simulations can be summarized as follows. First, the results for normal

and uniform disturbances are rather similar. The test developed in this paper with σi estimated

using the Rice’s method maintains the required size quite well (given the nonparametric structure
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Table 1. Results of Monte Carlo Experiments

Noise Case Sample
Proportion of Rejections for

GSV GHJK HH CS-PI CS-OS CS-SD IS-PI IS-OS IS-SD

100 .118 .078 .123 .128 .128 .128 .164 .164 .164

normal 1 200 .091 .051 .108 .114 .114 .114 .149 .149 .149

500 .086 .078 .105 .114 .114 .114 .133 .133 .133

100 0 .001 0 .001 .008 .008 .008 .024 .024

normal 2 200 0 .002 0 .001 .010 .010 .007 .017 .017

500 0 .001 0 .002 .007 .007 .005 .016 .016

100 0 .148 .033 .259 .436 .433 0 0 0

normal 3 200 .010 .284 .169 .665 .855 .861 .308 .633 .650

500 .841 .654 .947 .982 .995 .997 .975 .995 .995

100 .037 .084 .135 .163 .220 .223 .023 .042 .043

normal 4 200 .254 .133 .347 .373 .499 .506 .362 .499 .500

500 .810 .290 .789 .776 .825 .826 .771 .822 .822

100 .109 .079 .121 .122 .122 .122 .201 .201 .201

uniform 1 200 .097 .063 .109 .121 .121 .121 .160 .160 .160

500 .077 .084 .107 .092 .092 .092 .117 .117 .117

100 .001 .001 0 0 .006 .007 .017 .032 .033

uniform 2 200 0 0 0 .001 .010 .010 .012 .022 .024

500 0 .003 0 .003 .011 .011 .011 .021 .021

100 0 .151 .038 .244 .438 .449 0 0 0

uniform 3 200 .009 .233 .140 .637 .822 .839 .290 .607 .617

500 .811 .582 .947 .978 .994 .994 .975 .990 .990

100 .034 .084 .137 .155 .215 .217 .024 .045 .046

uniform 4 200 .197 .116 .326 .357 .473 .478 .323 .452 .456

500 .803 .265 .789 .785 .844 .846 .782 .847 .848

Nominal Size is 0.1. GSV, GHJK, and HH stand for the tests of Ghosal, Sen, and van der Vaart (2000),

Gijbels, Hall, Jones, and Koch (2000), and Hall and Heckman (2000) respectively. CS-PI, CS-OS, and

CS-SD refer to the test developed in this paper with σi estimated using Rice’s formula and plug-in,

one-step, and stepdown critical values respectively. Finally, IS-PI, IS-OS, and IS-SD refer to the test

developed in this paper with σi estimated by σ̂i = ε̂i and plug-in, one-step, and stepdown critical values

respectively.

of the problem) and yields size comparable with that of the GSV, GHJK, and HH tests. On

the other hand, the test with σ̂i = ε̂i does pretty well in terms of size only when the sample

size is as large as 500. When the null hypothesis does not hold, the CS test with the stepdown
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critical value yields the highest proportion of rejections in all cases. Moreover, in case 3 with

the sample size n = 200, this test has much higher power than that of GSV, GHJK, and HH.

The CS test also has higher power than that of the IS test. Finally, the table shows that the

one-step critical value gives a notable improvement in terms of power in comparison with plug-in

critical value. For example, in case 3 with the sample size n = 200, the one-step critical value

gives additional 190 rejections out 1000 simulations in comparison with the plug-in critical value

for the CS test and additional 325 rejections for the IS test. On the other hand, the stepdown

approach gives only minor improvements over the one-step approach. Overall, the results of

the simulations are consistent with the theoretical findings in this paper. In particular, selection

procedures yielding one-step and stepdown critical values improve power with no size distortions.

Additional simulation results are presented in the supplementary Appendix.

8. Empirical Application

In this section, I review the arguments of Ellison and Ellison (2011) on how strategic en-

try deterrence might yield a nonmonotone relation between market size and investment in the

pharmaceutical industry and then apply the testing procedures developed in this paper to their

dataset. I start with describing their theory. Then I provide the details of the dataset. Finally,

I present the results.

In the pharmaceutical industry, incumbents whose patents are about to expire can use in-

vestments strategically to prevent generic entries after the expiration of the patent. In order

to understand how this strategic entry deterrence influences the relation between market size

and investment levels, Ellison and Ellison (2011) developed two models for an incumbent’s in-

vestment. In the first model, potential entrants do not observe the incumbent’s investment but

they do in the second one. So, a strategic entry deterrence motive is absent in the former model

but is present in the latter one. Therefore, the difference in incumbent’s investment between

two models is explained by the strategic entry deterrence. Ellison and Ellison showed that in

the former model, the investment-market size relation is determined by a combination of direct

and competition effects. The direct effect is positive if increasing the market size (holding en-

try probabilities fixed) raises the marginal benefit from the investment more than it raises the

marginal cost of the investment. The competition effect is positive if the marginal benefit of the

investment is larger when the incumbent is engaged in duopoly competition than it is when the

incument is a monopolist. The equilibrium investment is increasing in market size if and only

if the sum of two effects is positive. Therefore, a sufficient condition for the monotonicity of

investment-market size relation is that both effects are of the same sign.6 In the latter model,

there is also a strategic entry deterrence effect. The authors noted that this effect should be

6An interested reader can find a more detailed discussion in the original paper.
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relatively less important in small and large markets than it is in markets of intermediate size.

In small markets, there are not enough profits for potential entrants, and there is no need to

prevent entry. In large markets, profits are so large that no reasonable investment levels will be

enough to prevent entries. As a result, strategic entry deterrence might yield a nonmonotonic

relation between market size and investment no matter whether the relation in the model with

no strategic entry deterrence is increasing or decreasing.

Ellison and Ellison studied three types of investment: detail advertising, journal advertising,

and presentation proliferation. Detail advertising, measured as per-consumer expenditures, refers

to sending representatives to doctors’ offices. Since both revenues and cost of detail advertising

are likely to be linear in the market size, it can be shown that the direct effect for detail advertis-

ing is zero. The competition effect is likely to be negative because detail advertising will benefit

competitors as well. Therefore, it is expected that detail advertising is a decreasing function

of the market size in the absence of strategic distortions. Stategic entry deterrence should de-

crease detail advertising for markets of intermediate size. Journal advertising is the placement of

advertisements in medical journals. Journal advertising is also measured as per-consumer expen-

ditures. The competition effect for journal advertising is expected to be negative for the same

reason as for detail advertising. The direct effect, however, may be positive because the cost

per potential patient is probably a decreasing function of the market size. Opposite directions

of these effects make journal advertising less attractive for detecting strategic entry deterrence

in comparison with detail advertising. Nevertheless, following the original paper, I assume that

journal advertising is a decreasing function of the market size in the absence of strategic distor-

tions. Presentation proliferation is selling a drug in many different forms. Since the benefits of

introducing a new form is approximately proportional to the market size while the costs can be

regarded as fixed, the direct effect for presentation proliferation should be positive. In addition,

the competition effect is also likely to be positive because it creates a monopolistic niche for the

incumbent. Therefore, presentation proliferation should be positively related to market size in

the absence of strategic distortions.

The dataset consists of 63 chemical compounds, sold under 71 different brand names. All of

these drugs lost their patent exclusivity between 1986 and 1992. There are four variables in the

dataset: average revenue for each drug over three years before the patent expiration (this measure

should be regarded as a proxy for market size), average costs of detail and journal advertising

over the same time span as revenues, and a Herfindahl-style measure of the degree to which

revenues are concentrated in a small number of presentations (this measure should be regarded

as the inverse of presentation proliferation meaning that higher values of the measure indicate

lower presentation proliferation).
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Clearly, the results will depend on how I define both dependent and independent variables

for the test. Following the strategy adopted in the original paper, I use log of revenues as

the independent variable in all cases, and the ratio of advertising costs to revenues for detail

and journal advertising and the Herfindahl-style measure for presentation proliferation as the

dependent variable. The null hypothesis is that the corresponding conditional mean function is

decreasing.7

I consider the test with kernel weighting functions with k = 0 or 1 and the kernel K(x) =

0.75(1−x2) for x ∈ (−1, 1) and 0 otherwise. I use the set of bandwidth values Hn = {0.5; 1} and

the set of weighting functions Sn = {(x, h) : x ∈ {X1, ..., Xn}, h ∈ Hn}. Implementing the test

requires estimating σ2
i for all i = 1, ..., n. Since the test based on Rice’s method outperformed that

with σ̂i = ε̂i in the Monte Carlo simulations, I use this method in the benchmark procedure. I also

check robustness of the results using the following two-step procedure. First, I obtain residuals

of the OLS regression of Y on a set of transformations of X. In particular, I use polynomials in

X up to the third degree (cubic polynomial). Second, squared residuals are projected onto the

same polynomial in X using the OLS regression again. The resulting projections are estimators

σ̂2
i of σ2

i , i = 1, ..., n.

The results of the test are presented in table 2. The table shows the p-value of the test for

each type of investment and each method of estimating σ2
i . In the table, method 1 corresponds

to estimating σ2
i using Rice’s formula, and methods 2, 3, and 4 are based on polynomials of

first, second, and third degrees respectively. Note that all methods yield similar numbers, which

reassures the robustness of the results. All the methods with k = 0 reject the null hypothesis

that journal advertising is decreasing in market size with 10% confidence level. This may be

regarded as evidence that pharmaceutical companies use strategic investment in the form of

journal advertising to deter generic entries. On the other hand, recall that direct and competition

effects probably have different signs for journal advertising, and so rejecting the null may also

be due to the fact that the direct effect dominates for some values of market size. In addition,

the test with k = 1 does not reject the null hypothesis that journal advertising is decreasing in

market size at the 10% confidence level, no matter how σi are estimated. No method rejects the

null hypothesis in the case of detail advertising and presentation proliferation. This may be (1)

because firms do not use these types of investment for strategic entry deterrence, (2) because the

7In the original paper, Ellison and Ellison (2011) test the null hypothesis consisting of the union of monoton-

ically increasing and monotonically decreasing regression functions. The motivation for this modification is that

increasing regression functions contradict the theory developed in the paper and, hence, should not be considered

as evidence of the existence of strategic entry deterrence. On the other hand, increasing regression functions

might arise if the strategic entry deterrence effect overweighs direct and competition effects even in small and large

markets, which could be considered as extreme evidence of the existence of strategic entry deterrence.
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Table 2. Incumbent Behavior versus Market Size: Monotonicity Test p-value

Method

Investment Type

Detail Advertising Journal Advertising Presentation Proliferation

k=0 k=1 k=0 k=1 k=0 k=1

1 .120 .111 .056 .120 .557 .661

2 .246 .242 .088 .168 .665 .753

3 .239 .191 .099 .195 .610 .689

4 .301 .238 .098 .194 .596 .695

strategic effect is too weak to yield nonmonotonicity, or (3) because the sample size is not large

enough. Overall, the results are consistent with those presented in Ellison and Ellison (2011).

9. Conclusion

In this paper, I have developed a general framework for testing monotonicity of a nonpara-

metric regression function, and have given a broad class of new tests. A general test statistic

uses many different weighting functions so that an approximately optimal weighting function is

determined automatically. In this sense, the test adapts to the properties of the model. I have

also obtained new methods to simulate the critical values for these tests. These are based on

selection procedures. The procedures are used to estimate what counterparts of the test statistic

should be used in simulating the critical value. They are constructed so that no violation of the

asymptotic size occurs. Finally, I have given tests suitable for models with multiple covariates

for the first time in the literature.

The new methods have numerous applications in economics. In particular, they can be applied

to test qualitative predictions of comparative statics analysis including those derived via robust

comparative statics. In addition, they are useful for evaluating monotonicity assumptions, which

are often imposed in economic and econometric models, and for classifying economic objects in

those cases where classification includes the concept of monotonicity (for example, normal/inferior

and luxury/necessity goods). Finally, these methods can be used to detect strategic behavior of

economic agents that might cause nonmonotonicity in otherwise monotone relations.

The attractive properties of the new tests are demonstrated via Monte Carlo simulations. In

particular, it is shown that the rejection probability of the new tests greatly exceeds that of

other tests for some simulation designs. In addition, I applied the tests developed in this paper

to study entry deterrence effects in the pharmaceutical industry using the dataset of Ellison and

Ellison (2011). I showed that the investment in the form of journal advertising seems to be used

by incumbents in order to prevent generic entries after the expiration of patents. The evidence

is rather weak, though.
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Appendix A. Implementation Details

In this section, I provide detailed step-by-step instructions for implementing plug-in, one-step,

and stepdown critical values. The instructions are given for constructing a test of level α. In all

cases, let B be a large integer denoting the number of bootstrap repetitions, and let {εi,b}n,Bi=1,b=1

be a set of independent N(0, 1) random variables. For one-step and stepdown critical values, let

γ denote the truncation probability, which should be small relative to α.

A.1. Plug-in Approach.

(1) For each b = 1, B and i = 1, n, calculate Y ?
i,b = σ̂iεi,b.

(2) For each b = 1, B, calculate the value T ?b of the test statistic using the sample {Xi, Y
?
i,b}ni=1.

(3) Define the plug-in critical value, cPI1−α, as the (1− α) sample quantile of {T ?b }Bb=1.

A.2. One-Step Approach.

(1) For each b = 1, B and i = 1, n, calculate Y ?
i,b = σ̂iεi,b.

(2) Using the plug-in approach, simulate cPI1−γ .

(3) Define SOSn as the set of values s ∈ Sn such that b(s)/(V̂ (s))1/2 > −2cPI1−γ .

(4) For each b = 1, B, calculate the value T ?b of the test statistic using the sample {Xi, Y
?
i,b}ni=1

and taking maximum only over SOSn instead of Sn.

(5) Define the one-step critical value, cOS1−α, as the (1− α) sample quantile of {T ?b }Bb=1.

A.3. Stepdown Approach.

(1) For each b = 1, B and i = 1, n, calculate Y ?
i,b = σ̂iεi,b.

(2) Using the plug-in and one-step approaches, simulate cPI1−γ and cOS1−γ , respectively.

(3) Denote S0
n = SOSn , c0 = cOS1−γ , and set l = 0.

(4) For given value of l > 0, define S l+1
n as the set of values s ∈ S ln such that b(s)/(V̂ (s))1/2 >

−cPI1−γ − cl.
(5) For each b = 1, B, calculate the value T ?b of the test statistic using the sample {Xi, Y

?
i,b}ni=1

and taking the maximum only over S l+1
n instead of Sn.

(6) Define cl+1, as the (1− γ) sample quantile of {T ?b }Bb=1.

(7) If S l+1
n = S ln, then go to step (8). Otherwise, set l = l + 1 and go to step (4).

(8) For each b = 1, B, calculate the value T ?b of the test statistic using the sample {Xi, Y
?
i,b}ni=1

and taking the maximum only over S ln instead of Sn.

(9) Define cSD1−α, as the (1− α) sample quantile of {T ?b }Bb=1.
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Appendix B. Additional Notation

I will use the following additional notation in Appendices C and D. Recall that {εi} is a

sequence of independent N(0, 1) random variables that are independent of the data. Denote

ei = σiεi and êi = σ̂iεi for i = 1, n. Let

wi(s) =
∑

16j6n

sign(Xj −Xi)Q(Xi, Xj , s),

ai(s) = wi(s)/(V (s))1/2 and âi(s) = wi(s)/(V̂ (s))1/2,

e(s) =
∑

16i6n

ai(s)ei, and ê(s) =
∑

16i6n

âi(s)êi,

ε(s) =
∑

16i6n

ai(s)εi and ε̂(s) =
∑

16i6n

âi(s)εi,

f(s) =
∑

16i6n

ai(s)f(Xi) and f̂(s) =
∑

16i6n

âi(s)f(Xi).

Note that T = maxs∈Sn
∑

16i6n âi(s)Yi = maxs∈Sn(f̂(s) + ε̂(s)). In addition, for any S ⊂ Sn,

which may depend on the data, and all η ∈ (0, 1), let cSη denote the conditional η quantile of

T ? = T ({Xi, Y
?
i }, {σ̂i},S) given {σ̂i} and S where Y ?

i = σ̂iεi for i = 1, n, and let cS,0η denote

the conditional η quantile of T ? = T ({Xi, Y
?
i }, {σi},S) given S where Y ?

i = σiεi for i = 1, n.

Further, for η 6 0, define cSη and cS,0η as −∞, and for η > 1, define cSη and cS,0η as +∞.

Moreover, denote V = maxs∈Sn(V (s)/V̂ (s))1/2. Let {ψn} be a sequence of positive numbers

converging to zero sufficiently slowly so that (i) log p/nκ3 = o(ψn) (recall that by Assumption

A5, log p/nκ3 = o(1), and so such a sequence exists), (ii) uniformly over S ⊂ Sn and η ∈ (0, 1),

P(cS,0η+ψn
< cSη ) = o(1) and P(cSη+ψn

< cS,0η ) = o(1) (Lemma 9 establishes existence of such a

sequence under Assumptions A1, A3, A4, and A5 and Lemma 13 establishes existence under

Assumptions A1, A2, A4, and A5). Let

SRn = {s ∈ Sn : f(s) > −cSn,01−γn−ψn}.

For D = PI,OS, SD,R, let cDη = c
SDn
η and cD,0η = c

SDn ,0
η where SPIn = Sn. Note that cPI,0η and

cR,0η are nonstochastic.

Finally, I denote the space of k-times continuously differentiable functions on R by Ck(R,R).

For g ∈ Ck(R,R), the symbol g(r) for r 6 k denotes the rth derivative of g, and ‖g(r)‖∞ =

supt∈R |g(r)(t)|.

Appendix C. Proofs for section 4

In this Appendix, I first prove a sequence of auxiliary lemmas (subsection C.1). Then I present

the proofs of the theorems stated in section 4 (subsection C.2).



34 CHETVERIKOV

C.1. Auxiliary Lemmas.

Lemma 4. E[maxs∈Sn |e(s)|] . (log p)1/2.

Proof. Note that by construction, e(s) is distributed as a N(0, 1) random variable, and |Sn| = p.

So, the result follows from lemma 2.2.2 in Van der Vaart and Wellner (1996). �

Lemma 5. Uniformly over S ⊂ Sn and ∆ > 0, supt∈R P(maxs∈S e(s) ∈ (t, t+∆)) . ∆(log p)1/2.

In particular, for any (η, δ) ∈ (0, 1)2 and S ⊂ Sn, cS,0η+δ − c
S,0
η > Cδ/(log p)1/2 for some constant

C > 0.

Proof. The first claim follows by combining Lemma 4 in this paper and Theorem 1 in Cher-

nozhukov, Chetverikov, and Kato (2011). The second claim follows from the result in the first

claim. �

Lemma 6. There exists a constant C > 0 such that for all S ⊂ Sn, η ∈ (0, 1), and t ∈ R,

cS,0η−C|t| log p/(1−η) 6 c
S,0
η (1 + t) 6 cS,0η+C|t| log p/(1−η).

Proof. Recall that cS,0η is the η quantile of maxs∈S e(s), and so combining Lemma 4 and Markov

inequality shows that cS,0η . (log p)1/2/(1− η). Therefore, Lemma 5 gives

cS,0η+C|t| log p/(1−η) − c
S,0
η > C|t|(log p)1/2/(1− η) > |t|cS,0η .

The lower bound follows similarly. �

Lemma 7. Under Assumption A1, uniformly over S ⊂ Sn, β > 0, and g ∈ C3(R,R),

|E[g(max
s∈S

ε(s))− g(max
s∈S

e(s))]| . ‖g(1)‖∞ log p/β + nA3
n(‖g(3)‖∞ + β‖g(2)‖∞ + β2‖g(1)‖∞).

Proof. This lemma is closely related to theorem 1.5 in Chatterjee (2005) but improves the bound.

For x = (x1, ..., xn) ∈ Rn, let x(s) =
∑

16i6n ai(s)xi. Let Fβ : Rn → R be given by

Fβ(x) = β−1 log

(∑
s∈S

exp(βx(s))

)
for all x ∈ Rn. Then

max
s∈S

x(s) = β−1 log

(
exp(βmax

s∈S
x(s))

)
6 β−1 log

(∑
s∈S

exp(βx(s))

)

6 β−1 log

(
p exp(βmax

s∈S
x(s))

)
6 β−1 log p+ max

s∈S
x(s),

and so

|max
s∈S

x(s)− Fβ(x)| 6 β−1 log p.
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Therefore,

|E[g(max
s∈S

ε(s))− g(max
s∈S

e(s))]| 6 2‖g(1)‖∞ log p/β + |E[g(Fβ(ε)− g(Fβ(e)]|

where ε = (ε1, ..., εn) and e = (e1, ..., en). For j = 1, n, let xj = (ε1, ..., εj , ej+1, ..., en), and let

x0 = e. Then

|E[g(Fβ(ε)− g(Fβ(e)]| 6
∑

16j6n

|E[g(Fβ(xj))− g(Fβ(xj−1))]|.

Let m : Rn → R be given by m(x) = g(Fβ(x)) for all x ∈ Rn, and let ∂kjm denote the k-th partial

derivative of m with respect to the argument j. Then a Taylor expansion yields

g(Fβ(xj))− g(Fβ(xj−1)) = ∂jm(xj,0)(εj − ej) + ∂2
jm(xj,0)(ε2

j − e2
j )/2

+(∂3
jm(xj,0,ε)ε3

j − ∂3
jm(xj,0,e)e3

j )/6

for some n-vectors xj,0,ε and xj,0,e where xj,0 = (ε1, ..., εj−1, 0, ej+1, ..., en). Since εj and ej

are jointly independent of xj,0 and E[εj ] = E[ej ] = 0, E[∂jm(xj,0)(εj − ej)] = 0. In addition,

E[∂2
jm(xj,0)(ε2

j − e2
j )/2] = 0 because E[ε2

j ] = E[e2
j ] = σ2

j . So, by assumption A1,

|E[g(Fβ(xj))− g(Fβ(xj−1))]| . sup
x∈Rn

|∂3
jm(x)|.

Finally, simple algebra shows that

sup
x∈Rn

|∂3
jm(x)| . A3

n(‖g(3)‖∞ + β‖g(2)‖∞ + β2‖g(1)‖∞).

Combining presented inequalities gives the asserted claim. �

Lemma 8. Under Assumptions A1 and A5, uniformly over S ⊂ Sn and η ∈ (0, 1),

P(max
s∈S

ε(s) 6 cS,0η ) = η + o(1) and P(max
s∈S

(−ε(s)) 6 cS,0η ) = η + o(1).

Proof. By Assumption A5, nA3
n(log p)7/2 → 0. Therefore, I can choose a sequence {ξn} of

positive numbers such that ξn → ∞ and ξ5
nnA

3
n(log p)7/2 → 0. Let g : R → [0, 1] be a function

from the class C3(R,R) satisfying g(x) = 1 for x 6 0 and g(x) = 0 for x > 1. Let gn(x) =

g(ξn(log p)1/2(x− cS,0η )). Finally, let βn = ξ2
n(log p)3/2. Then

‖g(1)
n ‖∞ log p/βn . ξn(log p)3/2/βn → 0.

In addition,

nA3
n(‖g(3)‖∞ + βn‖g(2)‖∞ + β2

n‖g(1)‖∞) . ξ5
nnA

3
n(log p)7/2 → 0.

Therefore, applying Lemma 7 yields

E[gn(max
s∈S

ε(s))− gn(max
s∈S

e(s))]→ 0.
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Finally, Lemma 5 gives

P(max
s∈S

ε(s) 6 cS,0η ) 6 E[gn(max
s∈S

ε(s))] 6 E[gn(max
s∈S

e(s))] + o(1)

6 P(max
s∈S

e(s) 6 cS,0η + 1/(ξn(log p)1/2)) + o(1) 6 η + o(1).

The upper bound follows similarly. Combining the lower and the upper bounds gives the first

result. The second result follows similarly. Note that all convergence statements hold uniformly

over S ⊂ Sn and η ∈ (0, 1). �

Lemma 9. Under Assumptions A1, A3, A4, and A5, there exists a sequence {ψn} of positive

numbers converging to zero such that uniformly over S ⊂ Sn and η ∈ (0, 1), P(cS,0η+ψn
< cSη ) = o(1)

and P(cSη+ψn
< cS,0η ) = o(1).

Proof. Denote

TS = max
s∈S

ê(s) = max
s∈S

∑
16i6n

âi(s)σ̂iεi and TS,0 = max
s∈S

e(s) = max
s∈S

∑
16i6n

ai(s)σiεi.

Note that cSη is the conditional η quantile of TS given {σ̂i} and cS,0η is the unconditional η quantile

of TS,0. In addition, denote

p1 = max
s∈S
|e(s)|max

s∈S
|1− (V (s)/V̂ (s))1/2|,

p2 = max
s∈S
|
∑

16i6n

ai(s)(σ̂i − σi)εi|max
s∈S

(V (s)/V̂ (s))1/2.

Then |TS − TS,0| 6 p1 + p2. Combining Lemma 4 and Assumption A4 gives

p1 = op((log p)1/2n−κ3).

Consider p2. Conditional on {σ̂i}, (σ̂i−σi)εi is distributed as a N(0, (σ̂i−σi)2) random variable,

and so applying the argument like that in Lemma 4 conditional on {σ̂i} and using Assumptions

A1 and A3 gives

max
s∈S
|
∑

16i6n

ai(s)(σ̂i − σi)εi| = op((log p)1/2n−κ2).

Since maxs∈S(V (s)/V̂ (s))1/2 →p 1 by assumption A4, this implies that

p2 = op((log p)1/2n−κ2).

Therefore, TS − TS,0 = op((log p)1/2n−κ2∧κ3), and so there exists a sequence {ψ̃n} of positive

numbers converging to zero such that

P(|TS − TS,0| > (log p)1/2n−κ2∧κ3) = o(ψ̃n).

Hence,

P(P(|TS − TS,0| > (log p)1/2n−κ2∧κ3 |{σ̂i}) > ψ̃n)→ 0.
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Let An denote the event that

P(|TS − TS,0| > (log p)1/2n−κ2∧κ3 |{σ̂i}) 6 ψ̃n.

I will take ψn = ψ̃n +C(log p)n−κ2∧κ3 for a constant C that is larger than that in the statement

of Lemma 5. By assumption A5, ψn → 0. Then note that

P(TS,0 6 cS,0η |{σ̂i}) > η and P(TS 6 cSη |{σ̂i}) > η

for any η ∈ (0, 1). So, on An,

η + ψ̃n 6 P(TS,0 6 cS,0
η+ψ̃n

|{σ̂i})

6 P(TS 6 cS,0
η+ψ̃n

+ (log p)1/2n−κ2∧κ3 |{σ̂i}) + ψ̃n

6 P(TS 6 cS,0η+ψn
|{σ̂i}) + ψ̃n

where the last line uses Lemma 5. Therefore, on An, cSη 6 c
S,0
η+ψn

, i.e. P(cS,0η+ψn
< cSη ) = o(1). The

second claim follows similarly. �

Lemma 10. Let cS,1η denote the conditional η quantile of TS,1 = maxs∈S
∑

16i6n ai(s)εiεi given

{εi}. Let Assumptions A1, A2, and A5 hold. Then there exists a sequence {ψ̃n} of positive

numbers converging to zero such that P(cS,0
η+ψ̃n

< cS,1η ) = o(1) and P(cS,1
η+ψ̃n

< cS,0η ) = o(1)

uniformly over S ⊂ Sn and η ∈ (0, 1).

Proof. I will invoke the following result recently obtained by Chernozhukov, Chetverikov, and

Kato (2012).

Lemma 11. Let Z1 and Z2 be zero-mean Gaussian p-vectors with covariances Σ1 and Σ2 cor-

respondingly. Then for any g ∈ C2(R,R),

|E[g( max
16j6p

Z1
j )− g( max

16j6p
Z2
j )]| 6 ‖g(2)‖∞∆Σ/2 + 2‖g(1)‖∞

√
2∆Σ log p

where ∆Σ = max16j,k6p |Σ1
jk − Σ2

jk|.

Proof. See Theorem 1 in Chernozhukov, Chetverikov, and Kato (2012). �

Let Z1 = {
∑

16i6n ai(s)εiεi}s∈S and Z2 = {
∑

16i6n ai(s)σiεi}s∈S . Conditional on {εi}, these

are zero-mean p-vectors with covariances Σ1 and Σ2 given by

Σ1
s1s2 =

∑
16i6n

ai(s1)ai(s
2)ε2

i and Σ2
s1s2 =

∑
16i6n

ai(s1)ai(s
2)σ2

i

Let ∆Σ = maxs1,s2∈S |Σ1
s1s2 − Σ2

s1s2 |. The following Lemma will be helpful.

Lemma 12. (log p)2∆Σ = op(1).
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Proof. Let u = un = n1/(4+φ1) where φ1 is given in Assumption A5. Let ε̃i = εi1{|εi| 6 u}, and

let σ̃2
i = E[ε̃2

i ]. It follows from assumption A1 that P(max16i6n |ε̃i − εi| = 0)→ 1. In addition,

0 6 σ2
i − σ̃2

i = E[ε2
i 1{|εi| > u}] 6 E[|εi|4+φ1{|εi| > u}/u2+φ] . 1/u2+φ

uniformly over i = 1, n, and so

(log p)2

∣∣∣∣∣ ∑
16i6n

ai(s1)ai(s2)(σ2
i − σ̃2

i )

∣∣∣∣∣ . (log p)2
∑

16i6n

|ai(s1)ai(s2)|/u2+φ

.(1) (log p)2
∑

16i6n

|ai(s1)ai(s2)σ2
i |/u2+φ 6(2) (log p)2

√ ∑
16i6n

ai(s1)2σ2
i

∑
16i6n

ai(s2)2σ2
i /u

2+φ

=(3) (log p)2/u2+φ =(4) o(1)

where (1) is by Assumption A1, (2) is by Holder inequality, (3) is because
∑

16i6n ai(s)
2σ2
i = 1

by construction, and (4) is by Assumption A5. Therefore,

(log p)2∆Σ = (log p)2 max
s1,s2∈S

∣∣∣∣∣ ∑
16i6n

ai(s1)ai(s2)(ε̃2
i − σ̃2

i )

∣∣∣∣∣+ op(1).

Note that |ai(s1)ai(s2)(ε̃2
i − σ̃2

i )| 6 2A2
nu

2. In addition,

E

[ ∑
16i6n

ai(s1)2ai(s2)2(ε̃2
i − σ̃2

i )
2

]
. A2

n

uniformly over s1, s2 ∈ S since E[(ε̃2
i − σ̃2

i )
2] 6 E[ε̃4

i ] 6 E[ε4
i ] . 1 by Assumption A1. Hence,

applying Bernstein inequality (see, for example, Lemma 2.2.9 in Van der Vaart and Wellner

(1996)) gives for some C > 0,

P

(
(log p)2

∣∣∣∣∣ ∑
16i6n

ai(s1)ai(s2)(ε̃2
i − σ̃2

i )

∣∣∣∣∣ > t

)
6 2 exp

(
− t2

C(log p)4A2
n + C(log p)2tA2

nu
2

)
for any t > 0, and so by the union bound,

P

(
max
s1,s2∈S

(log p)2

∣∣∣∣∣ ∑
16i6n

ai(s1)ai(s2)(ε̃2
i − σ̃2

i )

∣∣∣∣∣ > t

)

6 2 exp

(
2 log p− t2

C(log p)4A2
n + C(log p)2tA2

nu
2

)
.

The result follows because Assumption A5 implies that log p = o(1/((log p)4A2
n)) and log p =

o(1/((log p)2A2
nu

2)). �

It follows from Lemma 12 that there exists a sequence {ψ̃n} of positive numbers converging to

zero such that

(log p)2∆Σ = op(ψ̃
4
n). (11)
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Let g ∈ C2(R,R) be a function satisfying g(t) = 1 for t 6 0, g(t) = 0 for t > 1, and g(t) ∈ [0, 1]

for t ∈ [0, 1], and let gn(t) = g((t− cS,0
η+ψ̃n/2

)/(cS,0
η+ψ̃n

− cS,0
η+ψ̃n/2

)). Then

‖g(1)
n ‖∞ . 1/(cS,0

η+ψ̃n
− cS,0

η+ψ̃n/2
) . (log p)1/2/ψ̃n,

‖g(2)
n ‖∞ . 1/(cS,0

η+ψ̃n
− cS,0

η+ψ̃n/2
)2 . (log p)/ψ̃2

n.

Applying Lemma 11 gives

Dn = |E[gn(max
s∈S

Z1
s )− gn(max

s∈S
Z2
s )|{εn}]| . (log p)∆Σ/ψ̃

2
n + (log p)(∆Σ)1/2/ψ̃n = op(ψ̃n) (12)

by equation (11). Note that maxs∈S Z
1
j = TS,1 and, using the notation of the proof of Lemma

9, maxs∈S Z
2
s = TS,0. Then

P(TS,1 6 cS,0
η+ψ̃n

|{εi}) >(1) E[gn(TS,1)|{εi}] >(2) E[gn(TS,0)|{εi}]−Dn

>(3) P(TS,0 6 cS,0
η+ψ̃n

|{εi})−Dn =(4) P(TS,0 6 cS,0
η+ψ̃n/2

)−Dn > η + ψ̃n/2−Dn (13)

where (1) and (3) are by construnction of the function gn, (2) is by equation (12), and (4) is

because TS,0 and cS,0
η+ψ̃n/2

are jointly independent of {εi}. Finally, note that the right hand side

of line (13) is bounded from below by η w.p.a.1. This implies that P(cS,0
η+ψ̃n

< cS,1η ) = o(1), which

is the first asserted claim. The second claim of the Lemma follows similarly. �

Lemma 13. Under Assumptions A1, A2, A4, and A5, there exists exists a sequence {ψn} of

positive numbers converging to zero such that uniformly over S ⊂ Sn and η ∈ (0, 1), P(cS,0η+ψn
<

cSη ) = o(1) and P(cSη+ψn
< cS,0η ) = o(1).8

Proof. Lemma 10 established that

P(cS,0
η+ψ̃n

< cS,1η ) = o(1) and P(cS,1
η+ψ̃n

< cS,0η ) = o(1).

Therefore, it suffices to show that

P(cS
η+ψ̂n

< cS,1η ) = o(1) and P(cS,1
η+ψ̂n

< cSη ) = o(1).

for some sequence {ψ̂n} of positive numbers converging to zero. Denote

p1 = max
s∈S
|
∑

16i6n

ai(s)εiεi|max
s∈S
|1− (V (s)/V̂ (s))1/2|,

p2 = max
s∈S
|
∑

16i6n

ai(s)(σ̂i − εi)εi|max
s∈S

(V (s)/V̂ (s))1/2.

Note that |TS − TS,1| 6 p1 + p2 and that by Lemmas 4 and 10, maxs∈S |
∑

16i6n ai(s)εiεi| =

Op((log p)1/2). Therefore, the result follows by the argument similar to that used in the proof of

Lemma 9 since σ̂i − εi = op(n
−κ1) by assumption A2. �

8Note that Lemmas 9 and 13 provide the same results under two different methods for estimating σi.
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Lemma 14. Let Assumptions A1, A4, and A5 hold. In addition, let either Assumption A2 or

A3 hold. Then P(SRn ⊂ SSDn ) > 1− γn + o(1) and P(SRn ⊂ SOSn ) > 1− γn + o(1).

Proof. Suppose that SRn \SSDn 6= ∅. Then there exists the smallest integer l such that SRn \S ln 6= ∅,
and so SRn ⊂ S l−1

n (if l = 1, let S0
n = Sn). Therefore, cR1−γn 6 cl−1

1−γn . It follows that there exists

an element s of SRn such that

f̂(s) + ε̂(s) 6 −cPI1−γn − c
l−1
1−γn 6 −c

PI
1−γn − c

R
1−γn ,

and so

P(SRn \SSDn 6= ∅) 6 P( min
s∈SRn

(f̂(s) + ε̂(s)) 6 −cPI1−γn − c
R
1−γn)

6(1) P(( min
s∈SRn

(f(s) + ε(s))V 6 −cPI1−γn − c
R
1−γn)

6(2) P(( min
s∈SRn

(f(s) + ε(s))V 6 −cPI,01−γn−ψn − c
R,0
1−γn−ψn) + o(1)

6(3) P(( min
s∈SRn

(ε(s)− cPI,01−γn−ψn)V 6 −cPI,01−γn−ψn − c
R,0
1−γn−ψn) + o(1)

=(4) P((max
s∈SRn

(−ε(s)) > cPI,01−γn−ψn(1/V − 1) + cR,01−γn−ψn/V) + o(1)

6(5) P((max
s∈SRn

(−ε(s)) > cR,01−γn−ψn/V − C(log p)1/2n−κ3/(γn + ψn)) + o(1)

6(6) P((max
s∈SRn

(−ε(s)) > cR,0
1−γn−ψn−C(log p)n−κ3/(γn+ψn)

) + o(1)

6(7) γn + ψn + C(log p)n−κ3/(γn + ψn) + o(1) =(8) γn + o(1)

where (1) follows from the definitions of f̂(s) and ε̂(s), (2) is by the definition of ψn, (3) is by the

definition of SRn , (4) is rearrangement, (5) is by Lemma 4 and Assumption A4, (6) is by Lemma

5, (7) is by Lemma 8, and (8) follows from the definition of ψn again. The first asserted claim

follows. The second claim follows from the fact that SSDn ⊂ SOSn . �

Lemma 15. Let Assumptions A1, A4, and A5 hold. In addition, let either Assumption A2 or

A3 hold. Then P(maxs∈Sn\SRn (f̂(s) + ε̂(s)) 6 0) > 1− γn + o(1).

Proof. The result follows from

P( max
s∈Sn\SRn

(f̂(s) + ε̂(s)) 6 0) = P( max
s∈Sn\SRn

(f(s) + ε(s)) 6 0) >(1) P( max
s∈Sn\SRn

ε(s) 6 cPI,01−γn−ψn)

> P(max
s∈Sn

ε(s) 6 cPI,01−γn−ψn) =(2) 1− γn − ψn + o(1) =(3) 1− γn + o(1)

where (1) follows from the definition of SRn , (2) is by Lemma 8, and (3) is by the definition of

ψn. �
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C.2. Proofs of Theorems.

Proof of Theorem 1. Note that

P(T 6 cP1−α) = P(max
s∈Sn

(f̂(s) + ε̂(s)) 6 cP1−α) >(1) P(max
s∈SRn

(f̂(s) + ε̂(s)) 6 cP1−α)− γn + o(1)

>(2) P(max
s∈SRn

(f̂(s) + ε̂(s)) 6 cR1−α)− 2γn + o(1) >(3) P(max
s∈SRn

ε̂(s) 6 cR1−α)− 2γn + o(1)

>(4) P(max
s∈SRn

ε(s)V 6 cR,01−α−ψn)− 2γn + o(1) =(5) P(max
s∈SRn

ε(s) 6 cR,01−α−ψn/V)− 2γn + o(1)

>(6) P(max
s∈SRn

ε(s) 6 cR,01−α−ψn(1− n−κ3))− 2γn + o(1)

>(7) P(max
s∈SRn

ε(s) 6 cR,0
1−α−ψn−C(log p)n−κ3/(α+ψn)

)− 2γn + o(1)

=(8) 1− α− ψn − C(log p)n−κ3/(α+ ψn)− 2γn + o(1) =(9) 1− α+ o(1)

where (1) follows from Lemma 15, (2) is by Lemma 14, (3) is because under H0 f̂(s) 6 0, (4)

follows from the definitions of ε̂(s) and ψn, (5) is rearrangement, (6) is by Assumption A4, (7)

is by Lemma 6, (8) is by Lemma 8, and (9) is by the definitions of ψn and γn. The first asserted

claim follows.

In addition, when f is identically constant,

P(T 6 cP1−α) =(1) P(max
s∈Sn

ε̂(s) 6 cP1−α) 6(2) P(max
s∈Sn

ε̂(s) 6 cPI1−α) + γn + o(1)

6(3) P(max
s∈Sn

ε̂(s) 6 cPI,01−α+ψn
) + γn + o(1) 6(4) P(max

s∈Sn
ε(s) 6 cPI,01−α+ψn

(1 + n−κ3)) + γn + o(1)

6(5) P(max
s∈Sn

ε(s) 6 cPI,0
1−α+ψn+C(log p)n−κ3/(α−ψn)

) + γn + o(1) 6(6) 1− α+ o(1)

where (1) follows from the fact that f̂(s) = 0 whenever f is identically constant, (2) follows from

Lemma 14, (3) is by the definition of ψn, (4) is by Assumption A4, (5) is by Lemma 6, and (6)

is from Lemma 8 and the definitions of γn and ψn. The second asserted claim follows. �

Proof of Theorem 2. Suppose that f(x2) < f(x1) for some x1, x2 ∈ [sl, sr] satisfying x2 > x1. By

the mean value theorem, there exists x0 ∈ (x1, x2) satisfying

f ′(x0)(x2 − x1) = f(x2)− f(x1) < 0.

Therefore, f ′(x0) < 0. Since f ′(·) is continuous, f ′(x) < f ′(x0)/2 for any x ∈ [x0 −∆x, x0 + ∆x]

for some ∆x > 0. Take s = sn ∈ Sn as in Assumption A7 applied to the interval [x0−∆x, x0+∆x].

By Assumptions A1 and A7-(ii), V (s) 6 Cn3. In addition, combining Assumptions A6, A7-(i)

and A7-(iii) gives ∑
16i,j6n

(f(Xi)− f(Xj))sign(Xj −Xi)Q(Xi, Xj , s) > Cn
2 (14)
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for some C > 0. Further, since
∑

16i6n ai(s)
2σ2
i = 1, Assumption A1 implies An > C/n1/2 for

some C > 0, and so Assumption A5 gives log p = o(n). Therefore,

P(T 6 cP1−α) 6(1) P(T 6 cPI1−α) 6(2) P(T 6 cPI,01−α+ψn
) + o(1)

6(3) P(T 6 C(log p)1/2) + o(1) 6(4) P(f̂(s) + ε̂(s) 6 C(log p)1/2) + o(1)

6(5) P(f(s) + ε(s) 6 C(log p)1/2(1 + n−κ3)) + o(1)

6(6) P(f(s) + ε(s) 6 2C(log p)1/2) + o(1)

6(7) P(ε(s) 6 2C(log p)1/2 − Cn1/2) + o(1) 6(8) P(ε(s) 6 −Cn1/2) + o(1)

6(9) P(max
s∈Sn

(−ε(s)) > Cn1/2) + o(1)

6(10) P(max
s∈Sn

(−ε(s)) > cPI,0
1−C(log p/n)1/2

) + o(1) 6(11) C(log p/n)1/2 + o(1) = o(1)

where (1) follows from SPn ⊂ SPIn , (2) is by the definition of ψn, (3) is by Lemma 4, (4) is since

T = maxs∈Sn(f̂(s) + ε̂(s)), (5) is by Assumption A4, (6) is obvious, (7) is by equation (14) and

that V (s) 6 Cn3, (8) follows from log p = o(n), (9) is obvious, (10) is by Lemma 4 and Markov

inequality, and (11) follows by Lemma 8. The result follows. �

Proof of Theorem 3. The proof follows from an argument similar to that used in the proof of

Theorem 2 with equation (14) replaced by∑
16i,j6n

(f(Xi)− f(Xj))sign(Xj −Xi)Q(Xi, Xj , s) > Clnn
2

and condition log p = o(n) replaced by log p = o(l2nn). �

Proof of Theorem 4. Since infx∈[sl,sr] f
(1)(x) < −ln(log p/n)β/(2β+3), for sufficiently large n, there

exists an interval [xn,1, xn,2] ⊂ [sl, sr] such that |xn,2 − xn,1| = C4hn and for all x ∈ [xn,1, xn,2],

f (1)(x) < −ln(log p/n)β/(2β+3)/2. Take s = sn ∈ Sn as in Assumption A9 applied to the interval

[xn,1, xn,2] By Assumptions A1, A8, and A9-(ii), V (s) 6 C(nh)3h2k
n . In addition, combining

Assumptions A8, A9-(i), and A9-(iii),∑
16i,j6n

(f(Xi)− f(Xj))sign(Xj −Xi)Q(Xi, Xj , s) > lnCh
1+β+k
n (nh)2

for some C > 0, and so f(s) > lnh
1+β
n (nh)1/2. From this point, since log p = o(l2nh

2β+3
n n), the

argument like that used in the proof of Theorem 2 yields the result. �

Proof of Theorem 5. Consider any sequence {Xi} satisfying Assumption A8. Let h = hn =

C0(log n/n)1/(2β+3) for sufficiently small C0 > 0. Let L = [(sr − sl)/(4h)] where [x] is the largest

integer smaller or equal than x. For l = 1, L, let xl = 4h(l − 1) and define fl : [sl, sr] → R by

fl(sl) = 0, f
(1)
l (x) = 0 if x 6 xl, f

(1)
l (x) = −L(x−xl)β if x ∈ (xl, xl+h], f

(1)
l (x) = −L(xl+2h−x)β

if x ∈ (xl+h, xl+2h], f
(1)
l (x) = L(x−xl−2h)β if x ∈ (xl+2h, xl+3h], f

(1)
l (x) = L(xl+4h−x)β
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if x ∈ (xl + 3h, xl + 4h] and f
(1)
l (x) = 0 otherwise. In addition, let f0(x) = 0 for all x ∈ [sl, sr].

Finally, let {ε} be a sequence of independent N(0, 1) random variables.

For l = 0, L, consider a model Ml = Mn,l with the sequence of design points {Xi}, the

regression function fl, and the noise {εi}. Note that M0 belongs to M and satisfies H0. In

addition, for l > 1, Ml belongs toM2, does not satisfyH0, and, moreover, has infx∈[sl,sr] f
(1)
l (x) <

−C(log n/n)β/(2β+3).

Consider any test ψ = ψ(Y1, ..., Yn) such that EM0 [ψ] 6 α+o(1). Then following the argument

from Dumbgen and Spokoiny (2001) gives

inf
M∈M2

EM [ψ]− α 6 min
16l6L

EMl
[ψ]− EM0 [ψ] + o(1) 6

∑
16l6L

EMl
[ψ]/L− EM0 [ψ] + o(1)

=
∑

16l6L

EM0 [ψρl]/L− EM0 [ψ] + o(1) =
∑

16l6L

EM0 [ψ(ρl − 1)]/L+ o(1)

6 EM0 [ψ|
∑

16l6L

ρl/L− 1|] + o(1) 6 EM0 [|
∑

16l6L

ρl/L− 1|] + o(1)

where ρl is the likelihood ratio of observing {Yi}16i6n under the models Ml and M0. Further,

ρl = exp

( ∑
16i6n

Yifl(Xi)−
∑

16i6n

fl(Xi)
2/2

)
= exp(ωn,lξn,l − ω2

n,l/2)

where ωn,l = (
∑

16i6n fl(Xi)
2)1/2 and ξn,l =

∑
16i6n Yifl(Xi)/ωn,l. Note that under the model

M0, {ξn,l}16l6L is a sequence of independent N(0, 1) random variables. In addition, by the

construction of the functions fl and since Assumption 8 holds, ωn,l 6 Cn1/2hβ+3/2 = C(log n)1/2

where C can be made arbitrarily small by selecting sufficiently small C0. Therefore,

EM0 [|
∑

16l6L

ρl/L− 1|] 6 (EM0 [(
∑

16l6L

ρl/L− 1)2])1/2 6 (
∑

16l6L

EM0 [ρ2
l /L

2])1/2

6 (
∑

16l6L

EM0 [exp(2ωn,lξn,l − ω2
n,l)/L

2])1/2 6 (
∑

16l6L

exp(ω2
n,l)/L

2)1/2

6 (exp(C2 log n− logL))1/2 = exp((C2 log n− logL)/2) = o(1)

because C is arbitrarily small and log n . logL. Therefore, infM∈M2 EM [ψ] 6 α + o(1), and so

the result follows. �

Appendix D. Proofs for Section 5

Proof of Lemma 1. Let X be a random variable distributed according to the law Px. Then {Xi}
is an i.i.d. sample from the distribution of X. Let Ii = 1{Xi ∈ [x1, x2]} for [x1, x2] ⊂ [sl, sr].

Then E[Ii] = p = Px([x1, x2]) > 0. By Hoeffding inequality (see, for example, Appendix B in
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Pollard (1984)),

P(
∑

16i6n

Ii < pn/2) = P(
∑

16i6n

(Ii − E[Ii]) < −pn/2) 6 exp(−p2n2/(8n)) = exp(−p2n/8).

Since
∑

16n6∞ exp(−p2n/8) <∞, the first asserted claim follows by the Borel-Cantelli Lemma.

To prove the second claim, let Un = [1/(C3n
−1/3)]+1 where [·] denotes the largest integer that

is smaller or equal than the quantity inside the brackets. Let sl = xn,0 < xn,1 < ... < xn,Un = sr

where xn,u−xn,u−1 = (sr−sl)/Un = hn0. It clearly suffices to show that for almost all realizations

{Xi} there exists an integer N such that for any n > N ,

C5nhn0 6 |{i = 1, n : Xi ∈ [xn,u−1, xn,u]}| 6 C6nhn0

for all u = 1, Un. Let pn,u = Px([xn,u−1, xn,u]). Then by Assumption, there exist constants C and

C such that Chn0 6 pn,u 6 Chn0. Let Ii,n,u = 1{Xi ∈ [xn,u−1, xn,u]}. Then E[Ii,n,u] = E[I2
i,n,u] =

pn,u, and so Bernstein inequality gives

P(
∑

16i6n

Ii,n,u > 2Cnhn0) 6 P(
∑

16i6n

(Ii,n,u − E[Ii,n,u]) > Cnhn0)

6 exp(−C2
n2h2

n0/(2Cnhn0 + 4Cnhn0/3)) 6 exp(−Cnhn0)

for some C > 0. Then by the union bound,

P( max
16u6Un

∑
16i6n

Ii,n,u − 2Cnhn0 > 0) 6
∑

16u6Un

P(
∑

16i6n

Ii,n,u > 2Cnhn0)

6 exp(C(log(1/hn0)− nhn0)) 6 exp(−Cn1/2).

Since
∑

16n6∞ exp(−Cn1/2) <∞, Borel-Cantelli Lemma implies that for almost all realizations

{Xi} there exists N such that for any n > N , |{i = 1, n : Xi ∈ [xn,u−1, xn,u]}| 6 C6nhn0 for all

u = 1, Un as long as C6 > 2C. The lower bound follows similarly. Combining these bounds gives

the second asserted claim. �

Proof of Lemma 2. For B > 0, let un,B = Bn1/(4+φ). In addition, define An,B as the event

that {max16i6n |εi| 6 un,B}. Note that P(An,B) → 1 as B → ∞ uniformly over n = 1,∞ by

Assumption A1. Further,

E[|σ̂2
i − σ2

i ||An,B] 6(1) E[|σ̂2
i − σ2

i |]/P(An,B) 6(2) (E[(σ̂2
i − σ2

i )
2])1/2/P(An,B)

6(3)

E[(
∑

j∈J(i):j+1∈J(i)

(Yj+1 − Yj)2/(2|J(i)|)− σ2
i )

2]

1/2

/P(An,B)

.(4) (1/|J(i)|1/2 + bn)/P(An,B) .(5) (1/(nbn)1/2 + bn)/P(An,B) .(6) bn/P(An,B)

where (1) follows from the definition of conditional expectation, (2) is by Jensen inequality, (3)

is by the definition of the local version of Rice’s estimator, (4) is by Assumptions (iv) and (v),

(5) follows from Assumption (iii), and (6) is from Assumption (ii). In addition, exponential
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concentration inequality for functions with bounded differences (see, for example, Theorem 12 in

Boucheron, Bousquet, and Lugosi (2004)) gives for any t > 0,

P(||σ̂2
i − σ2

i | − E[|σ̂2
i − σ2

i ||An,B]| > t|An,B) 6 2 exp(−C|J(i)|t2/u4
n,B)

for some C > 0, and so using the fact that |J(i)| > Cnbn, the union bound with t = bn yields

P( max
16i6n

|σ̂2
i − σ2

i | > Cbn(1 + 1/P(An,B))|An,B) . exp(log n− nφ/(4+φ)b3n) = o(1)

for any given B > 0 where the last equality follows by Assumption (ii). Therefore, max16i6n |σ̂2
i −

σ2
i | = Op(bn). Finally, since σi is bounded from above and away from zero uniformly over i by

Assumption A1, it follows that max16i6n |σ̂i − σi| = Op(bn), which is the asserted claim. �

Proof of Lemma 3. Let s = (x, h) ∈ Sn. Since h 6 (sr − sl)/2, I have either sl + h 6 x or

x+ h 6 sr. I will consider the former case. The result for the latter case follows from the same

argument. Let C̄1 ∈ (0, 1). Since the kernel K is continuous and strictly positive on its support,

mint∈[0,C̄1]K(t) > 0. In addition, since K is bounded, I can find a constant C̄2 ∈ (0, 1) such that

2C6(1− C̄2)k+1 max
t∈[−1,−C̄2]

K(t) 6 C5C̄
k
2 C̄1 min

t∈[0,C̄1]
K(t) (15)

where the constant k appears in the definition of kernel weighting functions.

Then for Xi ∈ [x− (1 + C̄2)h/2, x− C̄2h],∑
16j6n

sign(Xj −Xi)|Xj −Xi|kK((Xj − x)/h)

>(1)

∑
16j6n:Xj>x

(C̄2h)kK((Xj − x)/h)−
∑

16j6n:Xj6x−C̄2h

((1− C̄2)h)kK((Xj − x)/h)

>(2) (C̄2h)kC5C̄1nh min
t∈[0,C̄1]

K(t)− ((1− C̄2)h)kC6(1− C̄2)nh max
t∈[−1,−C̄2]

K(t)

>(3) (C̄2h)kC5C̄1nh min
t∈[0,C̄1]

K(t)/2 >(4) Cnh
k+1

for some C > 0 that depends only on {Cj : j = 3, 8}, C̄1, C̄2, and the kernel K where (1) follows

from the fact that Xi 6 x − C̄2h, (2) is by Assumption A8, (3) is by equation (15), and (4) is

because mint∈[0,C̄1]K(t) > 0. Then for Mn(x, h) = {i = 1, n : Xi ∈ [x− (1 + C̄2)h/2, x− C̄2h]},

V (s) =
∑

16i6n

σ2
i

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2

=
∑

16i6n

σ2
iK((Xi − x)/h)2

 ∑
16j6n

sign(Xj −Xi)|Xj −Xi|kK((Xj − x)/h)

2

>
∑

i∈Mn(x,h)

σ2
iK((Xi − x)/h)2

 ∑
16j6n

sign(Xj −Xi)|Xj −Xi|kK((Xj − x)/h)

2

,



46 CHETVERIKOV

and so V (s) > C(nh)3h2k by Assumptions A1 and A8 where C > 0 does not depend on (x, h).

Therefore, claim (a) follows since∣∣∣∣∣∣
∑

16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

∣∣∣∣∣∣ 6 Cnhk+1.

Further, under Assumption A3,

|V̂ (s)− V (s)|

6
∑

16i6n

|σ̂2
i − σ2

i |K((Xi − x)/h)2

 ∑
16j6n

sign(Xj −Xi)|Xj −Xi|kK((Xj − x)/h)

2

6 max
16i6n

|σ̂2
i − σ2

i |
∑

16i6n

K((Xi − x)/h)2

 ∑
16j6n

sign(Xj −Xi)|Xj −Xi|kK((Xj − x)/h)

2

,

and so |V̂ (s) − V (s)| 6 C(nh)3h2kop(n
−κ2). Combining this bound with the lower bound for

V (s) established above shows that under Assumption A3, |V̂ (s)/V (s)− 1| = op(n
−κ2), and so

|(V̂ (s)/V (s))1/2 − 1| = op(n
−κ2),

|(V (s)/V̂ (s))1/2 − 1| = op(n
−κ2)

uniformly over Sn, which is the asserted claim (b).

To prove the last claim, note that

|V̂ (s)− V (s)| 6 I1(s) + I2(s)

where

I1(s) =

∣∣∣∣∣∣
∑

16i6n

(ε2
i − σ2

i )

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2∣∣∣∣∣∣ ,
I2(s) =

∣∣∣∣∣∣
∑

16i6n

(σ̂2
i − ε2

i )

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2∣∣∣∣∣∣ .
Consider I1(s). As in the proof of Lemma 12, let u = un = n1/(4+φ1) where φ1 ∈ (−2, φ). Let

ε̃i = εi1{|εi| 6 u} and σ̃2
i = E[ε̃2

i ]. It follows from Assumption A1 that P(max16i6n |ε̃i − εi| =

0)→ 1, and 0 6 σ2
i − σ̃2

i . 1/u2+φ uniformly over i = 1, n. Then I1(s) . I11(s) + (nh)3h2k/u2+φ

w.p.a.1 where

I11(s) =

∣∣∣∣∣∣
∑

16i6n

(ε̃2
i − σ̃2

i )

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2∣∣∣∣∣∣ .
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Applying Bernstein inequality and using the union bound yields

P(max
s∈Sn

I11(s)/V (s) > t) 6 2 exp(log p− C(nhmin)t2/(1 + u2t)),

and so

P(max
s∈Sn

I11(s)/V (s) > Cn−κ3)→ 0

for any C > 0 as long as conditions of the Lemma hold.

Consider I2(s). Clearly,

I2(s) 6
∑

16i6n

((σ̂i − εi)2 + 2|εi||σ̂i − εi|)

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2

6 op(n
−κ1)

∑
16i6n

(op(n
−κ1) + |εi|)

 ∑
16j6n

sign(Xj −Xi)Q(Xi, Xj , s)

2

,

and so I2(s)/V (s) = op(1) uniformly over s ∈ Sn by arguments similar to those used above.

Combining presented results gives the asserted claim (c). �

Appendix E. Proofs for Section 6

Proof of Theorem 6. Denote Y 0
i = f(Xi) + εi. Then Yi = Y 0

i + ZTi β and Ỹi = Y 0
i − ZTi (β̂ − β).

Therefore, |Ỹi − Y 0
i | 6 ‖Zi‖‖β̂ − β‖ = Op(1/

√
n) uniformly over i = 1, ..., n and all models in

MPL. So,

T = max
s∈Sn

∑
16i6n

âi(s)Ỹi = max
s∈Sn

∑
16i6n

âi(s)Y
0
i + op(1/

√
log p)

since

max
s∈Sn

∑
16i6n

|âi(s)(Ỹi − Y 0
i )| = max

s∈Sn

∑
16i6n

|ai(s)(Ỹi − Y 0
i )|Op(1)

= max
s∈Sn

∑
16i6n

|ai(s)|Op(1/
√
n)Op(1) = o(

√
n/ log p)Op(1/

√
n)Op(1) = op(1/

√
log p).

The result follows by the argument similar to that used in the proof of Theorem 1. �

Proof of Theorem 7. The proof relies on the same notation as introduced in Section B of the

Appendix with f(x, z), Q̄(x1, z1, x2, z2, s̄), s̄, S̄n, and p̄ substituting f(x), Q(x1, x2, s), s, Sn, and

p.

For S ⊂ S̄n and η ∈ (0, 1), let cS,1η be the conditional η quantile of maxs̄∈S
∑

16i6n ai(s̄)εiεi

given {εi}. Since Ān(log p̄)7/2 → 0, applying Corollary 6 (SC-d) of Chernozhukov, Chetverikov,

and Kato (2012) shows that

P(max
s̄∈S

ε(s̄) 6 cS,1η ) = η + o(1)
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uniformly over all S ⊂ S̄n and η ∈ (0, 1), and so maxs̄∈S̄n |ε(s̄)| = Op(
√

log p̄). In addition, the

result of Lemma 10 holds under the conditions (i)-(iv) of Assumption A12, and so

P(max
s̄∈S

ε(s̄) 6 cS,0η ) = η + o(1)

uniformly over all S ⊂ S̄n and η ∈ (0, 1), which gives the result analogous to that in Lemma 8.

Further,

T = max
s̄∈S̄n

∑
16i6n

âi(s̄)Yi = max
(s,z)∈S̄n

∑
16i6n

âi(s̄)(f(Xi, z) + εi) + op(1/
√

log p̄)

by conditions (v) and (vi) of Assumption A12. Therefore, the result follows by the argument

similar to that used in the proof of Theorem 1.

�
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Supplementary Appendix

This supplementary Appendix contains additional simulation results. In particular, I consider

the test developed in this paper with weighting functions of the form given in equation (2) with

k = 1. The simulation design is the same as in Section 7. The results are presented in table 2.

For ease of comparison, I also repeat the results for the tests of GSV, GHJK, and HH in this

table. Overall, the simulation results in table 2 are similar to those in table 1, which confirms

the robustness of the findings in this paper.
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Table 3. Results of Monte Carlo Experiments

Noise Case Sample
Proportion of Rejections for

GSV GHJK HH CS-PI CS-OS CS-SD IS-PI IS-OS IS-SD

100 .118 .078 .123 .129 .129 .129 .166 .166 .166

normal 1 200 .091 .051 .108 .120 .120 .120 .144 .144 .144

500 .086 .078 .105 .121 .121 .121 .134 .134 .134

100 0 .001 0 .002 .009 .009 .006 .024 .024

normal 2 200 0 .002 0 .001 .012 .012 .007 .016 .016

500 0 .001 0 .002 .005 .005 .005 .016 .016

100 0 .148 .033 .238 .423 .432 0 0 0

normal 3 200 .010 .284 .169 .639 .846 .851 .274 .615 .626

500 .841 .654 .947 .977 .995 .996 .966 .994 .994

100 .037 .084 .135 .159 .228 .231 .020 .040 .040

normal 4 200 .254 .133 .347 .384 .513 .515 .372 .507 .514

500 .810 .290 .789 .785 .833 .833 .782 .835 .836

100 .109 .079 .121 .120 .120 .120 .200 .200 .200

uniform 1 200 .097 .063 .109 .111 .111 .111 .154 .154 .154

500 .077 .084 .107 .102 .102 .102 .125 .125 .125

100 .001 .001 0 0 .006 .006 .015 .031 .031

uniform 2 200 0 0 0 .001 .009 .009 .013 .021 .024

500 0 .003 0 .003 .012 .012 .011 .021 .021

100 0 .151 .038 .225 .423 .433 0 0 0

uniform 3 200 .009 .233 .140 .606 .802 .823 .261 .575 .590

500 .811 .582 .947 .976 .993 .994 .971 .990 .991

100 .034 .084 .137 .150 .216 .219 .020 .046 .046

uniform 4 200 .197 .116 .326 .355 .483 .488 .328 .466 .472

500 .803 .265 .789 .803 .852 .855 .796 .859 .861

Nominal Size is 0.1. GSV, GHJK, and HH stand for the tests of Ghosal, Sen, and van der Vaart (2000),

Gijbels, Hall, Jones, and Koch (2000), and Hall and Heckman (2000) respectively. CS-PI, CS-OS, and

CS-SD refer to the test developed in this paper with σi estimated using Rice’s formula and plug-in,

one-step, and stepdown critical values respectively. Finally, IS-PI, IS-OS, and IS-SD refer to the test

developed in this paper with σi estimated by σ̂i = ε̂i and plug-in, one-step, and stepdown critical values

respectively.
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