
Schennach, Susanne

Working Paper

Regressions with Berkson errors in covariates: A
nonparametric approach

cemmap working paper, No. CWP22/13

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Schennach, Susanne (2013) : Regressions with Berkson errors in covariates: A
nonparametric approach, cemmap working paper, No. CWP22/13, Centre for Microdata Methods
and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2013.2213

This Version is available at:
https://hdl.handle.net/10419/79544

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2013.2213%0A
https://hdl.handle.net/10419/79544
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Regressions with Berkson 
errors in covariates- a 
nonparametric approach 

Susanne Schennach 

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP22/13 



Regressions with Berkson errors in

covariates – A nonparametric approach

Susanne M. Schennach∗

Brown University

April 13, 2013

Abstract

This paper establishes that so-called instrumental variables enable the identification

and the estimation of a fully nonparametric regression model with Berkson-type mea-

surement error in the regressors. An estimator is proposed and proven to be consistent.

Its practical performance and feasibility are investigated via Monte Carlo simulations

as well as through an epidemiological application investigating the effect of particulate

air pollution on respiratory health. These examples illustrate that Berkson errors can

clearly not be neglected in nonlinear regression models and that the proposed method

represents an effective remedy.

1 Introduction

Many statistical data sets involve covariates  that are error-contaminated versions of their

true unobserved counterpart ∗. However, the measurement error often does not fit the clas-
sical error structure  = ∗ +∆ with ∆ independent from ∗. A common occurrence
is, in fact, the opposite situation, in which ∗ =  +∆∗ with ∆∗ independent from ,

a situation often referred to as Berkson measurement error (Berkson (1950), Wang (2004),

Carroll, Ruppert, Stefanski, and Crainiceanu (2006)). A typical example is an epidemiolog-

ical study in which an individual’s true exposure ∗ to some contaminant is not observed,
but instead, what is available is the average concentration  of this contaminant in the

region where the individual lives. The individual-specific ∗ randomly fluctuate around the
region average , resulting in Berkson errors.

Existing approaches to handle data with Berkson measurement error (e.g. Delaigle, Hall,

and Qiu (2006), Carroll, Delaigle, and Hall (2007)) unfortunately require the distribution

of the measurement error to be known, or to be estimated via validation data, which can

be costly, difficult or impossible to collect. (In classical measurement error problems, the

distribution of the error can be identified from repeated measurements via a Kotlarski-type

∗This work was made possible in part through financial support from the National Science Foundation via
grants SES-0752699 and SES-1156347, and through TeraGrid computer resources provided by the University

of Texas under grant SES-070003.
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equality (Schennach (2004), Li and Vuong (1998)). However, such results do not yet exist

for Berkson-type measurement error.) A popular approach to relax the assumption of a fully

known distribution of the measurement error is to allow for some adjustable parameters

in the distributions of the variables and their relationships, and solve for the parameter

values that best reproduce various conditional moments of the observed variables, under

the assumption that this solution is unique. This approach has been used, in particular, for

polynomial specifications (Huwang and Huang (2000)) and, more recently, for a very wide

range of parametric models (Wang (2004), Wang (2007)).

The present paper goes beyond this and provides a formal identification result and a

general nonparametric regression method that is consistent in the presence of Berkson errors,

without requiring the distribution of the measurement error to be known a priori. Instead,

the method relies on the availability of a so- called instrumental variable (e.g., see Chapter 6

in Carroll, Ruppert, Stefanski, and Crainiceanu (2006)) to recover the relationship of interest.

For instance, in the epidemiological study of the effect of particulate matter pollution on

respiratory health we consider in this paper, suitable instruments could include (i) individual-

level measurement of contaminant levels that can even be biased and error-contaminated or

(ii) incidence rates of diseases other than the one of interest that are known to be affected

by the contaminant in question.

Our estimation method essentially proceeds by representing each of the unknown func-

tions in the model by a truncated series (or a flexible functional form) and by numerically

solving for the parameter values that best fits the observable data. Although such an ap-

proach is easy to suggest and implement, it is a challenging task to formally establish that

such a method is guaranteed to work in general. First, there is no guarantee that the solution

(i.e. parameter values that best match the distribution of the observable data) is unique.

Second, estimation in the presence of a number of unknown parameters going to infinity

with sample size is fraught with convergence questions. Can the postulated series represent

the solution asymptotically? Is the parameter space too large to obtain consistency? Is the

noise associated with estimating an increasing number of parameters kept under control?

Our solution to these problems is two-fold. First, we target the most difficult obstacle

by formally establishing identification conditions under which the regression function and

the distribution of all the unobserved variables of the model are uniquely determined by

the distribution of the observable variables. A second important aspect of our solution

to the Berkson measurement error problem is to exploit the extensive and well-developed

literature on nonparametric sieve estimation (e.g., Grenander (1981), Gallant and Nychka

(1987), Shen (1997)) to formally address the potential convergence issues that arise when

nonparametric unknowns are represented via truncated series with a number of terms that

increases with sample size. These theoretical findings are supported by a simulation study

and the usefulness of the method is illustrated with an epidemiological application to the

effect of particulate matter pollution on respiratory health.
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2 Model and Framework

We consider a regression model of the general form

 =  (∗) +∆ (2.1)

∗ =  +∆∗ (2.2)

 =  (∗) +∆ (2.3)

where the function  (·) is the (unknown) relationship of interest between  , the observed

outcome variable and ∗, the unobserved true regressor, while ∆ is a disturbance. Infor-

mation regarding ∗ is only available in the form of an observable proxy  contaminated by

an error ∆∗. Equation (2.3) assumes the availability of an instrument , related to ∗ via
an unknown function  (·) and a disturbance ∆. Our goal is to estimate the function  (·)
in (2.1) nonparametrically and without assuming that the distribution of the measurement

error ∆∗ is known. (As by-products, we will also obtain  (·) and the joint distribution
of all the unobserved variables.) To this effect, we require the following assumptions, which

are very common in the literature focusing on nonlinear models with measurement error

(e.g. Carroll, Ruppert, Stefanski, and Crainiceanu (2006), Wang (2004), Hausman, Newey,

Ichimura, and Powell (1991), Fan and Truong (1993), Li (2002), Lewbel (1996)).

Assumption 2.1. The random variables , ∆∗, ∆ , ∆ are mutually independent.

Note that Assumption 2.1 implies the commonly-made “surrogate assumption”

 |∗ (| ∗) =  |∗ (|∗), as can be seen by the following sequence of equalities:
 |∗ (| ∗) = ∆ |∗ ( −  (∗) | ∗) = ∆ |∆∗ ( −  (∗) |∗ −  ) =

∆ ( −  (∗)) = ∆ |∗ ( −  (∗) |∗) =  |∗ (|∗).
Assumption 2.2. The random variables ∆∗, ∆ , ∆ are centered (i.e. the model’s

restrictions preclude replacing ∆∗ by ∆∗ +  for some nonzero constant , and similarly

for ∆ and ∆; this includes either zero mean, zero mode or zero median, for instance).

As our approach relies on the availability of an instrument  to achieve identification,

it is instructive to provide practical examples of suitable instruments in common settings.

Although the use of instrumental variables has historically been more prevalent in the econo-

metrics measurement error literature (Hausman, Newey, Ichimura, and Powell (1991); Haus-

man, Newey, and Powell (1995); Newey (2001); Schennach (2007)), instruments are gathering

increasing interest in the statistics literature, especially in the context of measurement error

problems (see Chapter 6 entitled “Instrumental Variables” in Carroll, Ruppert, Stefanski,

and Crainiceanu (2006) and the numerous references therein).

Note that the instrument Equation (2.3) is entirely analogous to (2.1), the equation

generating the main dependent variable. Hence, the instrument is nothing but another

observable “effect” caused by ∗ via a general nonlinear relationship  (·). Let us consider
a few examples, which were inspired by some of the case studies found in Carroll, Ruppert,

Stefanski, and Crainiceanu (2006), Wang (2004) and Hyslop and Imbens (2001).

Example 2.1. Epidemiological studies.
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In these studies, the dependent variable  is typically a measure of the severity of a

disease or condition, while the true regressor ∗ is someone’s true but unobserved exposure
to some contaminant. The average concentration  of this contaminant in the region where

the individual lives is, however, observed. The error on is Berkson-type because individual-

specific ∗ typically randomly fluctuate around the region average . In this setup, multiple
plausible instruments are available:

1. A measurement of contaminant concentration in the individual’s house (these would be

error-contaminated by classical errors, since the concentration at a given time randomly

fluctuates around the time-averaged concentration which would be relevant for the

impact on health). Thanks to the flexibility introduced by the function  (·) in (2.3),
these measurements can even be biased. They can therefore be made with a inexpensive

method (that can be noisy and not even well-calibrated), making it practical to use

at the individual level. Hence, it is possible to combine (i) accurate, but expensive,

region averages that are not individual-specific () and (ii) inexpensive, inaccurate

individual-specific measurements () to obtain consistent estimates.

2. Another plausible instrument could be a measure of the severity of another disease or

condition that is known to be caused by the contaminant. The fact that it is caused

by the contaminant, introduces an error structure which is consistent with Equation

(2.3). Other measurable effects due to the contaminant (e.g., the results of saliva or

urine tests for the presence of contaminants, could also serve as instruments. Clearly

these measurements are not units of exposure, but the function  (·) can account for
this.

Example 2.2. Experimental studies

Researchers may wish to study how an effect  (e.g. the production of some chemical)

is related to some imposed external conditions  (e.g., oven or reactor temperature), but

the true conditions ∗ experienced by the sample of interest may deviate randomly from
the imposed conditions (e.g., temperature may not be completely uniform). In this case, an

instrument  could be (i) another “effect” (e.g., the amount of another chemical) that is

known to be caused by∗ or (ii) a measurement of∗ that is specific to the sample of interest
but that may be very noisy or even biased (e.g. it could be an easier-to-take temperature

measurement after the experiment is completed and the sample has partly cooled down.)

Example 2.3. Self-reported data

Hyslop and Imbens (2001) have argued that individuals reporting data (e.g. their food

intake, or exercise habits) are sometimes aware of the uncertainty in their estimates of

∗ and, as a result, try to report an average  over all plausible estimates consistent

with the information available to them, thus leading to Berkson-type errors, because the

individuals try to make their prediction error independent from their report. In this setting,

an instrument  could be another observable outcome variable  that is also related to ∗.
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3 Identification

We now formally state conditions under which the Berkson measurement error model can

be identified with the help of an instrument. Let Y, X , X ∗ and Z denote the supports

of the distributions of the random variables  , , ∗ and , respectively. We consider

∗ and  to be jointly continuously distributed (with Y ⊂ R , X ⊂ R , X ∗ ⊂ R

and Z ⊂ R with  ≥ ). Accordingly, we assume the following.

Assumption 3.1. The random variables ∗  admit a bounded joint density with

respect to the Lebesgue measure on Y ×X ×X ∗×Z. All marginal and conditional densities
are also defined and bounded.

We use the notation  () and | (|) to denote the density of the random variable 
and the density of  conditional on , respectively. Lower case letters denote specific values

of the corresponding upper case random variables. Next, as in many treatments of errors-

in-variables models (Carroll, Ruppert, Stefanski, and Crainiceanu (2006), Fan and Truong

(1993), Li and Vuong (1998), Li (2002), Schennach (2004), Schennach (2007)), we require

various characteristic functions to be nonvanishing. We also place regularity constraints on

the two regression functions of the model.

Assumption 3.2. For all  ∈ R ,  [exp (i ·∆)] 6= 0 and for all  ∈ R,  [exp (i ·∆∗)] 6=
0 (where i =

√−1).
Assumption 3.3.  : X ∗ 7→ Y and  : X ∗ 7→ Z are one-to-one (but not necessarily onto).

Assumption 3.4.  is continuous.

Assumption 3.3 is somewhat restrictive when ∗ has a dimension larger or equal to the
ones of  (or ). Fortunately, it is often possible to eliminate this problem by re-defining 

(and ) to be a vector containing auxiliary variables in addition to the outcome of interest,

in order to allow for enough variation in  (and ) to satisfy Assumption 3.3. Each of these

additional variables need not be part of the relationship of interest per se, but does need to

be affected by ∗ is some way. In that sense, such auxiliary variables would also be a type
of “instrument”. Our main identification result can then be stated as follows. (Note that

the theorem also holds upon conditioning on an observed variable  , so that additional,

correctly measured, regressors can be straightforwardly included.)

Theorem 3.1. Under Assumptions 2.1-3.4, given the true observed conditional density

|, the solution (  ∆  ∆  ∆∗) to the functional equation

| ( |) =
Z

∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (
∗ − ) ∗ (3.1)

for all  ∈ Y,  ∈ X ,  ∈ Z is unique (up to differences on sets of null probability measure).
A similar uniqueness result holds for the solution (  ∆  ∆  ∆∗ ) to

 (  ) =  ()

Z
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗ (3.2)
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Establishing this result demands techniques radically different from existing treatment of

Berkson error models, such as the spectral decomposition of linear operators (see Carrasco,

Florens, and Renault (2005) for a review), which are emerging as powerful alternatives to

the ubiquitous deconvolution techniques that are typically applied in classical measurement

error problems. The proof can be found in Appendix A and can be outlined as follows.

Assumption 2.1 lets us obtain the following integral equation relating the joint densities of

the observable variables to the joint densities of the unobservable variables:

| ( |) =
Z

|∗ (|∗)  |∗ (|∗) ∗| (∗|) ∗ (3.3)

from which Equation (3.1) follows directly. Uniqueness of the solution is then shown as

follows. Equation (3.3) defines the following operator equivalence relationship:

;| = |∗;∗∗|  (3.4)

where we have introduced the following operators:£
;|

¤
() =

R
| ( |)  () 

£
|∗

¤
() =

R
|∗ (|∗)  (∗) ∗£

|
¤
() =

R
| (|)  ()  [;∗] (

∗) =  |∗ (|∗)  (∗)£
∗|

¤
(∗) =

R
∗| (∗|)  () 

(3.5)

for some sufficiently regular but otherwise arbitrary function . Note that, in the above

definitions,  is viewed as a parameter (the operators do not act on it) and that ;∗ is

the operator equivalent of a diagonal matrix. Next, we note that the equivalence | =

|∗∗| also holds (e.g., by integration of (3.4) over all  ∈ Y). We can then isolate
∗|

∗| = −1
|∗| (3.6)

and substitute the result into (3.4) to yield, after rearrangements:

;|
−1
| = |∗;∗

−1
|∗  (3.7)

where all inverses can be shown to exist over suitable domains under our assumptions.

Equation (3.7) states that the operator ;|
−1
| admits a spectral decomposition. The

operator to be “diagonalized” is defined in terms of observable densities, while the resulting

eigenvalues  |∗ (|∗) (contained in ;∗) and eigenfunctions |∗ (·|∗) (contained in
|∗) provide the unobserved densities of interest.
A few more steps are required to ensure uniqueness of this decomposition, which we

now briefly outline. One needs to (i) invoke a powerful uniqueness result regarding spectral

decompositions (Theorem XV 4.5 in Dunford and Schwartz (1971)), (ii) exploit the fact

that densities integrate to one to fix the scale of the eigenfunctions, (iii) handle degenerate

eigenvalues and (iv) uniquely determine the ordering and indexing of the eigenvalues and

eigenfunctions. This last, and perhaps most difficult, step, addresses the issue that both

|∗ (·|∗) and |∗ (·| (∗)), for some one-to-one function , are equally valid ways to

state the eigenfunctions that nevertheless result in different operators |∗). To resolve this
ambiguity, we note that for any possible operator |∗ satisfying (3.7), there exist a unique
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corresponding operator ∗| , via Equation (3.6). However, only one choice of |∗ leads to
an operator ∗| whose kernel ∗| (∗|) satisfies Assumption 2.2. Hence, ∗| (∗|),
 |∗ (|∗) and |∗ (|∗) are identified, from which the functions ∆ , ∆ , ∆∗,  and

 can be recovered by exploiting the centering restrictions on ∆∗, ∆ and ∆.

An operator approach has recently been proposed to address certain types of nonclassical

measurement error problems (Hu and Schennach (2008)), but under assumptions that rule

out Berkson-type measurement errors: It should be emphasized that, despite the use of oper-

ator decomposition techniques similar to the ones found in Hu and Schennach (2008) (here-

after HS), it is impossible to simply use their results to identify the Berkson measurement

error model considered here, for a number of reasons. First, the key condition (Assumption

5 in HS) that the distribution of the mismeasured regressor  given the true regressor ∗

is “centered” around ∗ does not hold for Berkson errors. Consider the simple case where
the Berkson measurement error is normally distributed and so are the true and mismeasured

regressors. The distribution of  given ∗ = ∗ is a normal centered at ∗2 (
2
 + 2∆∗).

Hence, there is absolutely no reasonable measure of location (mean, mode, median, etc.)

that would yield the appropriate centering at ∗ that is needed in Assumption 5 of HS.
In addition, one cannot simply replace the assumption of centering of  given ∗ (as in
HS) by a centering of ∗ given  (as would be required for Berkson errors) and hope that

Theorem 1 in HS remains valid. HS exploit the fact that, in a conditional density, there is

no Jacobian term associated with a change of variable in a conditioning variable (here ∗).
However, with Berkson errors, the corresponding change of variable would not take place in

the conditional variables, and a Jacobian term would necessarily appear, which makes the

approach used in HS fundamentally inapplicable to the Berkson case. Solving this problem

involves (i) using a different operator decomposition than in HS and (ii) using a completely

different approach for “centering” the mismeasured variable.

A referee suggested an alternative argument (formalized in the Appendix) that makes

a more direct connection with Theorem 1 in HS but under the additional assumption that

 and ∗ have the same dimension. Such an assumption is rather restrictive because it
will often result in the assumption that  (·) is one-to-one (Assumption 3.3) being violated.
For instance, if ∗ is scalar and we have access to two instruments 1 and 2 such that

neither  [1|∗] nor  [2|∗] are strictly monotone, then  (·) is not one-to-one for either
instrument used in isolation. However, the mapping ∗ 7→ ( [1|∗]   [2|∗]) will typi-
cally be one-to-one, except for really exceptional cases. Hence, allowing for the dimensions

of ∗ and  to differ is important. Nevertheless, even assuming away this problem, such

an approach still requires a different technique for centering ∗ than the one used in HS.
That said, both HS and the current paper rely on operator spectral decomposition as an

alternative to conventional convolution/deconvolution techniques, and it appears likely that

these new techniques will find applications in a number of other measurement error models.

Observe that our identification result is also useful in a parametric and semi-parametric

context, as it provides the confidence that, under simple conditions, the model is identified.

Rank conditions that would need to be verified on a case-by-case basis in any given parametric

model are automatically implied by our identification results in a wide class of models. Also,

although is allowed to be random throughout, considering to be fixed poses no particular

difficulty, since Equation (3.1) provides a valid conditional likelihood function in that case.

As discussed in Appendices D and E, a number of extensions of the method are possible:
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(i) Relaxing the independence between and∆∗ to allow for some heteroskedasticity in the
measurement error and (ii) combining classical and Berkson errors, a possibility considered

in, e.g., Mallick, Hoffman, and Carroll (2002), Carroll, Delaigle, and Hall (2007), Stram,

Huberman, and Wu (2002) and Hyslop and Imbens (2001). It can also be shown that some

extensions are not plausible, such as assuming that both the measurement equation (2.2)

and the instrument equation (2.3) have a Berkson error structure (see Appendix D).

4 Estimation

A natural way to obtain a nonparametric estimator of the model is to substitute truncated

series approximations into (3.1) or (3.2) for each of the unknown functions and construct

a log likelihood function to be maximized numerically with respect to all coefficients of

the series (e.g. Shen (1997)). Such sieve-based estimators have recently found applications

in a variety of measurement error problems (e.g., Newey (2001), Mahajan (2006), Hu and

Schennach (2008), Carroll, Chen, and Hu (2010), among others). Below we first define our

estimator before establishing its consistency.

We represent the regression functions  (·) and  (·) as

̂()
¡
∗ ()



¢
=
X

=1

()

 
()

 (∗) for  =   (4.1)

where 
()

 (∗) is some sequence (indexed by the truncation parameters ) of progres-

sively larger sets of basis functions indexed by  = 1     while 
()
 =

³

()
1      

()



´
is a vector of coefficients to be determined. The 

()

 (∗) could be some power series,
trigonometric series, orthogonal polynomials, wavelets or splines, for instance. The double

indexing by  and  is useful to allow for splines, where changing the number of knots

modifies all the basis functions.

A similar expansion in terms of basis functions 
( )

 () (with truncation parameter  )

is used for the density of each disturbance  = ∆∆∆∗:

̂
( )



³
 

( )



´
=

1


()

0

0

³


()

0

´ X
=1


( )

 
( )

 ()  (4.2)

where 
( )

 =
³

( )

0      
( )



´
is a vector of coefficients to be determined and 0 (·)

is a user-specified “baseline” function. The “baseline” function is convenient to reduce the

number of terms needed in the expansion, when the approximate general shape of the density

is known. It is not strictly needed, however, and can be set to 1. Either way, the method

is fully nonparametric. A convenient choice of basis (see Gallant and Nychka (1987)) is to

take 0 (·) to be a Gaussian and 
( )

 () = −1 for any  .

An important distinction with the functions  (·) and  (·) is that some constraints have
to be imposed on the densities One constraint is needed to ensure centering (Assumption

2.2): X

=1

( )

 
( )

 = 0
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where, for some user-specified function  (), we define


( )

 =

Z
 ()

1


()

0

0

Ã



()

0

!

( )

 () 

For instance, to impose zero mean on the disturbance  , let  () = . To impose zero

median, let  () = 1 ( ≤ 0) − 12, where 1 (·) denotes an indicator function, while to
impose zero mode, let  () = −(1) () (a delta function derivative, in a slight abuse of
notation). Another constraint is needed to ensure unit total probability:

P

=1 
( )

 
( )

1 =

1. Note that both types of constraints exhibit the computationally convenient property of

being linear in the unknown coefficients.

Given the above definitions, we can define an estimator of all unknown functions based

on a sample (  )


=1 and Equation (3.1) (a corresponding estimator based on Equation

(3.2) can be derived analogously). Let ̂
()
  ̂

()

  ̂
( )

∆∗  ̂
( )

∆  ̂
( )

∆ denote the minimizer

of the sample log likelihood

1



X
=1

ln ̂| ( |) (4.3)

where

̂| ( |) =

Z
̂
(∆)

∆

³
 − ̂()

³
∗ ()



´
 
(∆)

∆

´
×

̂
(∆ )

∆

³
 − ̂()

¡
∗ ()



¢
 
(∆ )

∆

´
̂
(∆∗)
∆∗

³
∗ −  

(∆∗)
∆∗

´
∗

subject to X

=1

( )

 
( )

1 = 1 and
X

=1

( )

 
( )

 = 0 (4.4)

for  = ∆∆∆∗ and subject to technical regularity constraints to be defined below.
Estimators are then given by

̂ (∗) = ̂()
³
∗; ̂()



´
 ̂ (∗) = ̂()

³
∗; ̂()



´
(4.5)

̂ () = ̂
( )



³
 ̂

( )



´
for  = ∆∗∆∆

This type of estimator falls within the very general class of sieve nonparametric maximum

likelihood estimators (MLE), whose asymptotic theory has received considerable attention

over the last few decades (e.g. Grenander (1981), Gallant and Nychka (1987), Shen (1997)).

Here, we parallel the treatment of Gallant and Nychka (1987) and Newey and Powell (2003)

to establish the consistency of the above procedure. Although the consistency of sieve-type

estimator has been previously established in very general settings under some high-level

assumptions, our contribution is to provide very primitive sufficient conditions for consistency

for the class of models considered here.

We first need to define the set in which the densities of interest reside. The formal proof

of consistency of the estimator requires this set to be compact, although this requirement

appears to have little impact in practice. In essence, compactness is helpful to rule out very
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extreme but rare events associated with very poor estimates. It is a standard regularity

condition (see, e.g. Gallant and Nychka (1987), Newey and Powell (2003), Newey (2001)). A

well-known type of infinite-dimensional but compact sets are those generated via bounded-

ness and Lipschitz constraints in an L∞ space. Here, we use a weighted Lipschitz constraint
in order to allow for densities supported on an unbounded set, while still maintaining com-

pactness (our treatment can be straightforwardly adapted to cover the simpler case where

the variables are supported on finite intervals). Following Gallant and Nychka (1987), we

enforce restrictions that avoid too rapid divergences in the log likelihood.

Definition 4.1. Let kk = sup∈R | ()|. Let  be finite and strictly positive. Let  0+ () be
strictly positive and bounded function that is decreasing in ||, symmetric about  = 0 and
such that

R∞
−∞  0+ ()  ∞. Let S = { : R 7→ [−] such that

¯̄
 () 

¯̄
≤  0+ ()}.

Let − () and + () be strictly positive and bounded functions with − () decreasing in ||
and

R∞
−∞ + ()  ∞. Let F = { ∈ S : − () ≤  () ≤ + ()}.

We also define suitable norms and sets for the regression functions. Here, we need to

allow for functions that diverge to infinity at controlled rates towards infinite values of their

argument. In analogy with any existing global measure of expected error, we also use a

norm that downweights errors in the tails, which is consistent with the fact that the tails of

a nonparametric regression function are always estimated with more noise, since there are

fewer datapoints there.

Definition 4.2. Let  : R 7→ R+ be some given strictly positive, bounded and differentiable
weighting function. For any function  : R 7→ R, let kk = kk where  () ≡  () ().

Let G = { :  ∈ S and | ()| ≤ + ()} where + () is a given positive function that is

increasing in || and symmetric about  = 0.
We can now state the regularity conditions needed.

Assumption 4.1. The observed data (  ) are independent and identically distributed

across  = 1 2   

Assumption 4.2. We have ∆∗ ∆  ∆ ∈ F and   ∈ G.
Assumption 4.3. The set of functions representable as series (4.2) and (4.1) are, respec-

tively, dense in F (in the norm k·k) and G (in the norm k·k).
Denseness results for numerous types of series are readily available in the literature (e.g.

Newey (1997), Gallant and Nychka (1987)). Although such results are sometimes phrased

in a mean square-type norm rather than the sup norm used here, Lemma 4.1 below (proven

in Appendix B) establishes that, within the sets F and G, denseness in a mean square norm
implies denseness in the norms we use.

Lemma 4.1. Let {} be a sequence in F . Then
R | ()|2  → 0 implies kk → 0 (for

F and k·k as in Definition 4.1).
We also need standard boundedness and dominance conditions.
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Assumption 4.4. For any  ∈ R, R ( (∗))−1 + (∗ − ) ∗  ∞ for  and + as in

Definitions 4.2 and 4.1, respectively.

Assumption 4.5. There exists   0 such that  [|ln (− ( ))|] ∞, where
− (  ) ≡ 2− () − (||+ (+ (||+ ))) − (||+ (+ (||+ )))

for − and + as in Definitions 4.1 and 4.2, respectively.

We can then state our consistency result (proven in Appendix B):

Theorem 4.1. Under Assumptions 3.1-4.5, if 
→∞, for  =  ∆∗∆∆, the es-

timators given by (4.5) evaluated at the minimizer of (4.3) subject to (4.4), ̂∆∗  ̂∆  ̂∆ ∈
F , and ̂ ̂ ∈ G and satisfying Assumption 4.4 are such that k̂ − ∗k

→ 0,
°°°̂− ∗

°°°


→ 0,°°°̂∆∗ − ∗∆∗

°°° → 0,
°°°̂∆ − ∗∆

°°° → 0,
°°°̂∆ − ∗∆

°°° → 0, where the stared quantities de-

note the true values (i.e. the unique solution to (3.1)).

The practical implementation of the above approach necessitates the selection of the

number of terms  in each of the approximating series. Theorem 4.1 allows for a data-

driven selection of the  , since  is allowed to be random. To select the  , one can

employ the bootstrap cross-validation model selection method based on the Kullback-Leibler

(KL) criterion, shown by van der Laan, Dudoit, and Keles (2004) to be consistent even when

the number of candidate models grows to infinity with sample size (as it is here). In this

method, a fraction  of the sample is excluded at random and the remaining 1−  fraction

is used to estimate the model parameters with given numbers (∆∗ ∆ ∆  ) of

terms in the corresponding series. The likelihood (or KL criterion) is then evaluated using

the excluded fraction  at the value of the estimated parameters found in the previous step.

The process is repeated many times with different random partitions of the sample into

fractions  and (1− ), to obtain an average KL criterion with a sufficiently small variance

(which can be estimated from the KL criterion of each random partitions). This procedure is

carried out for various trial choices of (∆∗ ∆ ∆  ) and the choice that yields

the largest likelihood is selected. This method is consistent asymptotically (as sample size

→∞) as →∞ and → 0 and under some mild technical regularity conditions stated

in van der Laan, Dudoit, and Keles (2004).

Our nonparametric approach nests parametric and semiparametric models. These sub-

cases can be easily implemented by replacing some, or all, of the nonparametric series ap-

proximations by suitable parametric models. It is possible to obtain convergence rates and

limiting distribution results, along the lines of Shen (1997) or Hu and Schennach (2008),

although we do not do so here due to space limitations (stating suitable regularity condi-

tions, even in high-level form, is rather involved, as seen in the Supplementary material of

Hu and Schennach (2008), which covers a related but different measurement error model).

It is, however, important to point out one important property. Sieve nonparametric MLE

is optimal in the following sense: Under suitable regularity conditions, any sufficiently reg-

ular semiparametric functional of the nonparametric sieve MLE estimates is asymptotically

normal and root  consistent and reaches the semiparametric efficiency bound for that func-

tional (see Theorem 4 in Shen (1997)). This notion of optimality is a natural nonparametric

generalization of the well-known efficiency of parametric maximum likelihood.
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5 Simulations Study

We now investigate the practical performance and feasibility of the proposed estimator via a

simulation example purposely chosen to be a difficult case. The data is generated as follows.

The distribution of  is a uniform distribution over [−1 1] (implying a standard deviation
of 058). We consider a thick-tailed  distribution with 6 degrees of freedom scaled by 05

as the distribution of ∆∗. The standard deviation of the error ∆∗ is almost identical to
the one of the “signal” , thus making this estimation problem exceedingly difficult. The

distribution of ∆ is a logistic scaled by 0125 while the distribution of ∆ is a  distribution

with 6 degrees of freedom scaled by 025. The regression function has the form

 (∗) = |∗|∗ (5.1)

which is only finitely many times differentiable, thus limiting the convergence rate of its

series estimator in the measurement-error-robust estimator (the naive estimator would be

less affected since it would “see” a smoothed version of this function). The instrument

equation has a specification that is strictly convex and therefore tends to exacerbate the bias

in many nonparametric estimators:

 (∗) = ln (1 + exp (2∗)) 

A total of 100 independent samples, each containing 500 observations, were generated as

above and fed into our estimator. For estimation purposes, the functions  (·) and  (·) are
both represented by polynomials while the densities of ∆∗, ∆ and ∆ are represented by

a Gaussian multiplied by a polynomial (following Gallant and Nychka (1987), who establish

that these choices satisfy a suitable denseness condition). The Gaussian is centered at the

origin but its width is left as a parameter to be estimated. Note that the functional forms

considered are not trivially nested within the space spanned by the truncated sieve approxi-

mation. This was an intentional choice aimed at properly accounting for the nonparametric

nature of the problem (in which the researcher never has the fortune of selecting a truncated

sieve fitting the true model exactly).

The integral in Equation (3.1) is evaluated numerically by discretizing the integral as

a sum over the range [−3 3] in intervals of 005. Naive least-squares estimators ignoring
measurement error (i.e. least-squares regressions of  on  and of  on ) were used as

a starting point for the numerical sieve optimization of the  and  functions, while the

variances of the corresponding residuals were used to construct an initial Gaussian guess for

the optimization of all the error distributions. The simplex method due to Nelder and Mead

(1965) (also known as “amoeba”) was used to carry out the numerical optimization of the log

likelihood (4.3) with respect to all the parameters 
( )

 for  = ∆∗∆∆ and 
()


for  =   simultaneously. The constraints that the estimated densities and regression

functions lie, respectively, in the sets F and G of the form given in Definitions 4.1 and 4.2

are implied by bounds on the magnitude of the sieve coefficients 
( )

 and 
()

 in (4.2)

and (4.1). Such constraints are easy to impose within the simplex optimization method:

parameter changes that would yield violations of the bounds are simply rejected (effectively

assigned an “infinite” value) – the simplex optimization method easily accommodates such

extreme behavior in the objective function, since it does not rely on derivatives. However,
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we found that these constraints are rarely binding in practice, unless the number of terms

 in the expansions is large (Gallant and Nychka (1987) reports a similar observation).

Such large values of  tend to be naturally ruled out via our data-driven selection method

of the number of terms.

To select the number of terms in the approximating series for a given sample, we use the

“bootstrap cross-validation” method described in Section 4 with a fraction  = 18 and 100

bootstrap replications. Trial values of the number of free parameters (not counting parame-

ters uniquely determined by zero mean and unit area constraints) in the series representing

∆∗ ∆  ∆ each span the set {1 2 3 4} while for , each span the set {4 5 6 7}. The
optimal numbers of parameters (kept constant during the replications) were found to be

∆∗ : 3; ∆ : 3; ∆ : 3;  : 6;  : 6.

Figure 1 summarizes the result of these simulations, where a naive nonparametric series

least-squares estimator ignoring measurement error (i.e. least-square regressions of  on 

and of  on ) with the same number of sieve terms is also shown for comparison. The reli-

ability of the method can be appreciated by noting how closely the median of the replicated

measurement-error-robust estimates matches the true model, while the naive estimator ig-

noring the presence of measurement error is considerably more biased, even missing the fact

that the true regression function is nearly flat in the middle section and instead producing

a very misleading linear shape despite the strong nonlinearity of the true model. In fact,

unlike the proposed estimator, the naive estimator is so significantly biased that any type

of hypothesis test based on it would exhibit completely misleading confidence levels: The

true model curves (for  and ) almost always lies beyond the 95% or 5% percentiles of the

estimator distribution.

Overall, the proposed measurement-error-robust estimator exhibits low variability and

low bias at the reasonable sample size of 500. The bias is not exactly zero in a finite sample

because our estimator is a nonlinear functional of sample averages and because the sieve

approximation necessarily has a limited accuracy in a finite sample. Nevertheless, the fact

that our estimator performs so well in the presence of measurement error of such large

magnitude is a strong indication of its practical usefulness. This behavior is not specific to

this model – we have tested the method in other simulation settings (see Appendix C).

6 Application

Numerous studies have sought to quantify the effect of air pollution on respiratory health

(e.g. Dockery, Pope, Xu, et al. (1993)). Specifically, there is a growing concern regarding the

effect of small particulate matter (Pope, Thun, Namboodiri, et al. (1995), Samet, Dominici,

Curriero, et al. (2000)). A key difficulty with such studies is that air quality monitors are

not necessarily located near the subjects being affected by air pollution, implying that the

main regressor of interest is mismeasured.

Our approach to this question relies on very comprehensive country-wide data collected

by Environment Protection Agency (EPA) and the Center for Disease Control (CDC) in

the United States. Pollution levels are taken from EPA’s Monitor Values Report - Criteria

Air Pollutants database for year 2005. EPA’s data provides point measurements of the

particulate matter levels (we focus on so-called 95th percentile level of PM2.5 particles, those
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Figure 1: Simulation study of the practical performance of the proposed measurement-error-

robust estimator in comparison with a “naive” nonparametric polynomial series least-square

estimator that ignores the presence of measurement error. In each plot, the pointwise 90%

confidence band of the estimator simulated over 100 replications is shown as error bars.
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having less than 2.5 micrometers in diameter) at various monitoring stations throughout the

United States, from which we construct state-averaged pollution levels (our  variable,

measured in g of particles per m3). We do so because pollution data is only available for

a small fraction of counties and even where it is available, the nature of its measurement

error is complex (it could be a mixture of classical and Berkson errors). By constructing

state-level averages, we average out the randomness in monitor measurements while leaving

the randomness in the individual exposure untouched, thus obtaining a valid Berkson error-

contaminated estimate of the pollution level experienced by individuals from each state,

whether they live in a county with a monitoring station or not. Each individual faces an

exposure equal to the state average plus an unknown random noise due to his/her precise

geographic whereabouts and lifestyle.

Health data is obtained from the publicly available “CDC Wonder” database entitled

“Mortality - underlying cause of death ” for year 2005. To measure respiratory health, we

use data on causes of death, which offers the advantage that it is very comprehensive and

accurate (medical professionals are required to collect it and there is no reliance on voluntary

surveys). One limit to the completeness of the data is that, for some counties, the data is

“suppressed” (for privacy reasons) or labelled as “unreliable” by the CDC and were therefore

omitted from our sample. Our dependent variable of interest ( ) is the rate (per 10,000)

of death due to “chronic lower respiratory diseases” (e.g. asthma, bronchitis, emphysema),

while our instrument () is the rate (per 10,000) of death resulting from “lung diseases

due to external agents” (e.g. pneumoconiosis due to organic or inorganic dust, coalworker’s

pneumoconiosis). The rationale is to use, as an instrument, a variable that is clearly expected

to be affected by pollution levels. This variable indirectly provides information regarding the

true level of pollution, so that the effect of pollution (if any) on the variable of interest can be

more accurately assessed. We employ county-level data on causes of death because they are

readily available without concerns for patient privacy issues. Moreover, the CDC provides

age-corrected death rates, thus correcting for demographic differences between counties. We

construct our sample by matching mortality data via counties and matching pollution data

via states, resulting in 1305 observations over as many counties and covering all 51 states.

A limitation of our approach is that it does not control for other possible confounding

effects, e.g., if the proportion of smokers differs between industrial and non-industrial cities.

However, such a limitation is common in studies of this kind (as noted in Dockery, Pope,

Xu, et al. (1993)).

We use the same types of sieves and computational methods as in the simulation example

and select the number of terms using the “bootstrap cross-validation” method described in

Section 4 with a fraction  = 18 and 100 bootstrap replications. Trials values of the number

of free parameters in the series representing ∆∗ ∆  ∆ span the range {1 2 3} while
trial values of the number of terms in the series representing  and  span the range {2 3 4}
(increasing any one of the  beyond that range resulted in clearly worse performances).

The optimal numbers of free parameters (not counting parameters uniquely determined by

zero mean and unit area constraints) were found to be ∆∗ : 2; ∆ : 3; ∆ : 1;  : 4;  : 3.

Pointwise 90% confidence bands around the nonparametric estimates were obtained using

the standard bootstrap (see, e.g., Gine and Zinn (1990) for general conditions justifying its

use) with 100 replications.

Results are shown in Figure 2. A few observations are in order. First, our measurement
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error-robust estimator is perfectly able to detect a clear monotone relationship between 

and ∗ and between  and ∗ with useful confidence bands, despite the use of a fully
nonparametric approach. Second, although the distribution of the measurement error is

difficult to estimate (as reflected by the wide confidence bands), the impact of this uncertainty

on the main function of interest ( (∗)) is fortunately very limited. The 90% confidence

bands indicate that the presence of substantial measurement error is consistent with the

data: The measurement error is of the order of 10 g/m3, whereas the observed  roughly

ranges from 10 to 40 g/m3. Third, the distribution of∆ exhibits nonnegligible asymmetry,

thus illustrating the drawbacks of methods merely assuming normality of all the error terms.

In contrast, the distributions of ∆∗ and ∆ are apparently very close to symmetric (this

is a conclusion of the formal model selection procedure, not an assumption).
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Figure 2: Application of the proposed estimator to an epidemiologic example (see text for

a description of the variables and the estimated functions). In each plot, the estimator is

shown as a solid line while the error bars indicate the pointwise 90% confidence bands. In

b), the “naive” estimator is a nonparametric polynomial series least-square estimator that

ignores the presence of measurement error. The estimator in a) is shown on the plot b) for

comparison.

For comparison purposes, we also naively regress the dependent variables ( or ) on the

mismeasured regressor using a conventional least squares (thereby neglecting measurement

error) with a polynomial specification with the same number of terms as our Berkson model.

A first troubling observation from this exercise (see Figure 2b)) is that the naive estimate

of  (∗) is not monotone, although in the region where it is unexpectedly decreasing, the
confidence bands do not rule out a constant response. Second, it is perhaps counter-intuitive

that the confidence bands for the naive estimator are sometimes larger than the corresponding

bands for the measurement error-robust estimator. This is a consequence of the fact that

correcting for Berkson errors amounts to an operation akin to convolution (rather than
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deconvolution, as in classical measurement errors). Unlike deconvolution, convolution is a

noise-reducing operation, effectively averaging observations of  over a wide range of values of

 to yield an estimate the expected value of  given a specific value of . This phenomenon

is probably also responsible for the more reasonable (i.e. increasing) behavior of the response

for the measurement error-robust estimate. Finally, the measurement error-robust regression

function often lies at or beyond the 95% or 5% percentiles of the naive estimator distribution

(see Figure 2b)). This implies that the level of any statistical test would be severely biased.

For instance, the confidence bands of the naive estimator would reject our best estimate of

 (∗) obtained with the measurement-error robust procedure.
In summary, this application example serves to illustrate that ignoring Berkson errors can

be seriously misleading in nonlinear settings. Not only is the shape of the estimated response

considerably affected, but statistical inferences based on a measurement error-blind method

would be seriously biased. This application example also shows that our fully nonparametric

and measurement error-robust method works well at sample sizes typically available in real

data sets, without assuming the knowledge of the distribution of the measurement error.

A Identification Proof

Let L
1 (D) with D ⊂ R0 for some 0 denote the set of all bounded functions in L1 (D)

endowed with the usual L1 norm. Also, whenever we state an equality between functions in
L
1 (D), we mean that their difference is zero in the L1 norm.
We provide two proofs of Theorem 1. The first one, suggested by a referee, relies on

the additional assumptions that (i)  and ∗ have the same dimension and (ii)  and
its inverse are differentiable. Assumption (i) makes Assumption 3.3 unlikely to hold, but

enables a somewhat direct application of Theorem 1 in Hu and Schennach (2008). The

second proof relaxes those assumptions. It borrows some of the operator techniques from Hu

and Schennach (2008), yet requires considerable changes in the approach – we focus here

on the aspects of the proof that differ.

Proof Theorem 3.1 (simple special case). Let variables from Hu and Schennach (2008) be

denoted by the corresponding uppercase letter with tildes and make the following assign-

ments:
³
̃∗ ̃ ̃  ̃

´
= ( (∗)   ). We now verify the 5 assumptions of Theorem 1

in Hu and Schennach (2008).

To verify Assumption 1, we observe that the densities of
³
̃∗ ̃ ̃  ̃

´
and (∗  )

are related through:̃∗̃̃ ̃ (̃
∗ ̃ ̃ ̃) = ∗ (

−1 (̃∗)  ̃ ̃ ̃)
|−1 (̃∗)̃∗0| where the density ∗ exists by Assumption 3.1 and −1 (̃∗) exists
by Assumption 3.3. The Jacobian −1 (̃∗) ̃∗0 matrix is only defined if ∗ and  (and

therefore ̃∗) have the same dimension and is finite and nonsingular under the assumption
that  and its inverse are differentiable. A similar argument can be used for marginals and

conditional distributions.

To verify Assumption 2, we note that our model can be written in terms of tilded variables
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as:

̃ =  = 
³
−1

³
̃∗
´´
+∆ (A.1)

̃ =  = −1
³
̃∗
´
−∆∗ (A.2)

̃ =  = ̃∗ +∆ (A.3)

To verify Assumption 2 (i), we write

̃ |̃̃∗̃ (̃|̃ ̃∗ ̃) =  |∗
¡
̃|̃ −1 (̃∗)  ̃¢

= ∆ |∆∆∗
¡
̃ − 

¡
−1 (̃∗)

¢ |̃− ̃∗ −1 (̃∗)− ̃ ̃
¢

= ∆

¡
̃ − 

¡
−1 (̃∗)

¢¢
=  |̃∗ (̃|̃∗) = ̃ |̃∗ (̃|̃∗)

where we have used, in turn, (i) the equality
³
̃∗ ̃ ̃  ̃

´
= ( (∗)   ) and the

fact that changes of variables in the conditioning variables do not introduce Jacobian terms,

(ii) the fact that conditioning on ∗  is equivalent to conditioning on ∆∆∗ (iii)

Assumption 2.1, (iv) the relationship between ∆ and  via (A.1) and (v) the equality

 = ̃ .

To verify Assumption 2 (ii), we similarly write

̃|̃∗̃ (̃|̃∗ ̃) = |∗
¡
̃|−1 (̃∗)  ̃¢

= ∆|∆∗
¡
̃− ̃∗|−1 (̃∗)− ̃ ̃

¢
= ∆ (̃− ̃∗) = |̃∗ (̃|̃∗) = ̃|̃∗ (̃|̃∗) 

Assumption 3 is implied by Assumptions 3.1, 2.1, 3.2, 3.3, 3.4 and Lemma A.1 below.

Assumption 4 requires that ̃ |̃∗ (̃|̃∗1) 6= ̃ |̃∗ (̃|̃∗2) for ̃∗1 6= ̃∗2. This can be verified
as follows:

̃ |̃∗ (̃|̃∗1) = ∆ |̃∗
¡
̃ − 

¡
−1 (̃∗1)

¢ |̃∗1¢
= ∆

¡
̃ − 

¡
−1 (̃∗1)

¢¢
6= ∆

¡
̃ − 

¡
−1 (̃∗2)

¢¢
= ̃ |̃∗ (̃|̃∗2)

by invoking (i) the definition of ∆ , (ii) independence of ∆ from ∗ (and therefore ̃∗),
(iii) the fact that ̃∗1 6= ̃∗2 implies  (

−1 (̃∗1)) 6=  (−1 (̃∗2)) since  (·) and  (·) are one-to-one
by Assumption 3.3 and so is  (−1 (·)).
Assumption 5 is trivially satisfied, by Equation (A.3).

Theorem 1 in Hu and Schennach (2008) then allows us to conclude that the joint dis-

tribution of ( (∗)   ) is identified. However, in order to identify the distribution of

(∗   ), we need to identify  (·). To this effect, we note that, conditional on = , the

fluctuations in ̃∗ are entirely caused by fluctuations in ∆∗, by Equation (A.2). Moreover,
∆∗ is independent from , hence,

̃∗| (̃
∗|) = ∆∗

¡
−1 (̃∗)− 

¢ ¯̄̄̄−1 (̃∗)
̃∗0

¯̄̄̄
 (A.4)
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where the left-hand-side was previously identified and where the Jacobian term is well-

defined by Assumptions 3.3 and the assumed differentiability of −1 (̃∗). The Jacobian can

be identified by integrating (A.4) with respect to ∗ to yield:
R
̃∗| (̃

∗|)  =
¯̄̄
−1(̃∗)

̃∗0

¯̄̄
.

By varying  while keeping ̃∗ fixed in Equation (A.4), we can identify the density ∆∗ up

to a shift of −1 (̃∗). Assumption 2.2, pins down what the shift should be, so that −1 (̃∗)
is identified for any given ̃∗. Since  (·) is one-to-one by Assumption 3.3, −1 (·) uniquely
determines  (·). Hence, the joint distribution of (∗  ) is identified. Finally, noting

that  |∗ (|∗) = ∆ ( −  (∗)) (by Assumption 2.1), then establishes the identification
of  (∗) with the help of Assumption 2.2.

Proof of Theorem 3.1 (general case). This proof borrows some of the operator techniques

from Hu and Schennach (2008) and we focus here on the aspects of the proof that differ.

The definition of marginal and conditional densities in combination with Assumption 2.1

lead to the following sequence of equalities:

| ( |) =

Z
 |∗ (|∗  ) ∗| (∗ |) ∗

=

Z
∆ |∗∆∆∗ ( −  (∗) |∗  −  (∗)  ∗ − ) ∗| (

∗ |) ∗

=

Z
∆ ( −  (∗)) ∗| (

∗ |) ∗

=

Z
∆ ( −  (∗)) |∗ (|∗ ) ∗| (∗|) ∗

=

Z
∆ ( −  (∗)) ∆|∗∆∗ ( −  (∗) |∗ ∗ − ) ∆∗| (

∗ − |) ∗

=

Z
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗

or, equivalently,

| ( |) =
Z

|∗ (|∗)  |∗ (|∗) ∗| (∗|) ∗ (A.5)

As in Hu and Schennach (2008), this integral equation can be written more conveniently as

an operator equivalence relation

;| = |∗;∗∗| (A.6)

by introducing the operators defined in Equation (3.5), which are acting on an arbitrary

 ∈ L
1 (X ) (or  ∈ L

1 (X ∗))
Similarly, one can show that

| (|) =
Z

|∗ (|∗) ∗| (∗|) ∗ (A.7)

and thus | = |∗∗| . By Assumptions 3.1, 2.1, 3.2, 3.3, 3.4 and Lemma A.1 below,
we know that |∗ admits an inverse on the range of |∗ (and therefore the range of
|) and we can write

∗| = −1
|∗|  (A.8)
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Substituting (A.8) into (A.6), we obtain:

;| = |∗;∗
−1
|∗| 

By Assumptions 3.1, 2.1, 3.2, 3.3, 3.4 and Lemma A.1 below again, | admits an inverse.
Moreover, by Lemma 1 in Hu and Schennach (2008), the domain of −1

| is dense in L
1 (Z)

and we can then write

;|
−1
| = |∗;∗

−1
|∗  (A.9)

Equation (A.9) states that the operator ;|
−1
| admits a spectral decomposition, where

the eigenvalues are given by the  |∗ (|∗) for ∗ ∈ X ∗ (for a fixed ) defining the operator
;∗ while the eigenfunctions are the functions |∗ (·|∗) for ∗ ∈ X ∗ defining the kernel of
the operator |∗. As usual, the knowledge of a linear operator (e.g. |) only determines
the value of its kernel (e.g. | (|)) everywhere except on a set of null Lebesgue measure.
The resulting equivalence class exactly matches the usual equivalence class for probability

densities with respect to the Lebesgue measure, so identifiability of the model is not affected.

The operator to be diagonalized is entirely defined in terms of observable densities while

the decomposition provides the unobserved densities of interest. To ensure uniqueness of this

decomposition, we employ four techniques. First, a powerful result from spectral analysis

(Theorem XV 4.5 in Dunford and Schwartz (1971)) ensures uniqueness up to some normal-

izations. Second, the a priori arbitrary scale of the eigenfunctions is fixed by the requirement

that densities must integrate to one. Third, to avoid any ambiguity in the definition of the

eigenfunctions when degenerate eigenvalues are present, we use Assumption 3.3 and the

fact that the eigenfunctions (which do not depend on , unlike the eigenvalues |∗ (|∗))
must be consistent across different values of the dependent variable . These three steps are

described in detail in Hu and Schennach (2008) and are not repeated here.

The fourth step (which differs from the approach taken in Hu and Schennach (2008)) is to

rule out that the eigenvalues ;∗ ( 
∗) and eigenfunctions |∗ (·|∗) could be indexed by

a different variable without affecting the operator ;|
−1
| . (This issue is analogous to the

nonunique ordering of the eigenvalues and eigenvectors in matrix diagonalization.) Suppose

that the eigenfunctions can be indexed by another value, i.e., they are given by |̃∗ (·|̃∗)
where ̃∗ is another variable related to ∗ through ∗ =  (̃∗) for some one-to-one function
.1 Under this alternative indexing, all the assumptions of the original model must still hold

with ∗ replaced by ̃∗, so a relationship similar to (A.7) would still have to hold, for the
same observed | (|):

| (|) =
Z

|̃∗ (|̃∗) ̃∗| (̃∗|) ̃∗ (A.10)

or, in operator notation, | = |̃∗̃∗| 
In order for |̃∗ (|̃∗) to be a valid alternative density, it must satisfy the same assump-

tions (and their implications) as |∗ (|∗). In particular, the fact that |∗ is invertible
(established above via Lemma A.1) must also hold for |̃∗. Hence, for any alternative
|̃∗, there is a unique corresponding ̃∗| , given by ̃∗| = −1

|̃∗| . We can find a

1Note that  (·) is also measurable, for otherwise ∗ ≡ (̃∗) would not be a proper random variable.
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more explicit expression for ̃∗| (̃
∗|) as follows. First note that we trivially have that

|̃∗ (|̃∗) = |∗ (| (̃∗)) since ∗ =  (̃∗) and  is one-to-one. By performing the

change of variable ∗ =  (̃∗) in (A.7), we obtain

| (|) =
Z

|∗ (| (̃∗)) ∗| ( (̃∗) |)  (̃∗)

where the measure  is defined, via  (A) =  (−1 (A)) for any measurable set A, where
 denotes the Lebesgue measure and −1 (A) ≡ {̃∗ ∈ A :  (̃∗) = ∗}. From this we can

conclude the equality between the two following measures

̃∗| (̃
∗|) ̃∗ = ∗| ( (̃

∗) |)  (̃∗) (A.11)

by comparison with Equation (A.10) and the uniqueness of the measure ̃∗| (̃
∗|) ̃∗ due

to the injectivity of the |̃∗ operator, shown in Lemma A.1 in the general case where the
domain of |̃∗ could include finite signed measures. We will now show that ̃∗| (̃

∗|)
necessarily violates Assumption 2.2 (with ∆∗ replaced by ∆̃∗ ≡ ̃∗ −), unless  (·) is
the identity function.2

Since∆∗ = ∗− with∆∗ independent from, we have ∗| (∗|) = ∆∗ (
∗ − )

and by a similar reasoning ̃∗| (̃
∗|) = ∆̃∗ (̃

∗ − ) with ∆̃∗ ≡ ̃∗ − . Equation

(A.11) then becomes:

∆̃∗ (̃
∗ − ) ̃∗ = ∆∗ ( (̃

∗)− )  (̃∗)  (A.12)

Now, for a given , consider Radom-Nikodym derivative of ∆̃∗ (̃
∗ − ) ̃∗ with respect to

the Lebesgue measure ̃∗, which is, by definition, (almost everywhere) equal to ∆̃∗ (̃
∗ − )

, a bounded function by Assumption 3.1. By Equation (A.12), the existence of the Radom-

Nikodym derivative of the left-hand side implies the existence of the same Radom-Nikodym

derivative on the right-hand side and we can write:

∆̃∗ (̃
∗ − ) = ∆∗ ( (̃

∗)− )
 (̃∗)
̃∗

 (A.13)

almost everywhere. Integrating both sides of the equation over all  ∈ X , we obtain (after
noting that points where the equality may fail have null measure and therefore do not

contribute to the integral), 1 = 1
(̃∗)
̃∗ , since densities integrate to 1, which implies that

 (̃∗) ̃∗ = 1, i.e.  is also the Lebesgue measure. It follows from (A.13) that, almost

everywhere

∆̃∗ (̃
∗ − ) = ∆∗ ( (̃

∗)− ) 

In order for Assumption 2.2 to hold for both∆̃∗ and∆∗, we must have that ∆̃∗ (̃
∗ − ),

when viewed as a function of ̃∗ for any given , is centered at ̃∗ =  and we must simul-

taneously have that ∆∗ (
∗ − ) = ∆∗ ( (̃

∗)− ), when viewed as a function of ∗ for
any given , is centered at ∗ = , i.e.  (̃∗) = . The two statements are only compat-

ible if ̃∗ =  (̃∗). Thus, there cannot exist two distinct but observationally equivalent
parametrization of the eigenvalues/eigenfunctions.

2Some of the steps below were inspired by comments from an anonymous referee.
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Hence we have shown, through Equation (A.9), that the unobserved functions  |∗ (|∗)
and |∗ (·|∗) are uniquely determined (up to an equivalence class of functions differing
at most on a set of null Lebesgue measure) by the observed function | ( |). Next,
Equation (A.8) implies that ∗| (∗|) is uniquely determined as well.
Once  |∗ (|∗) and |∗ (|∗) are known, the functions  (∗) and  (∗) can be

identified by exploiting the centering restrictions on ∆ , ∆∗ and ∆, e.g.  (∗) =R
 |∗ (|∗)  if ∆ is assumed to have zero mean. Next, ∆ (∆) can be straightfor-

wardly identified, e.g. ∆ (∆) =  |∗ ( (∗) +∆|∗) for any ∗ ∈ X ∗. Similar argu-
ments yield  (∗) and ∆ (∆) from |∗ (|∗) as well as ∆∗ (∆∗) from ∗| (∗|).
It follows that Equation (3.1) has a unique solution. The second conclusion of the Theo-

rem then follows from the fact that both | ( |) and  () are uniquely determined

(except perhaps on a set of null Lebesgue measure) from  (  ).

The following Lemma is closely related to Proposition 2.4 in d’Haultfoeuille (2011). It is

different in terms of the spaces the operators can act on and more general in terms of the

possible dimensionalities of the random variables involved.

Lemma A.1. Let ∗ and  be generated by Equations (2.2)-(2.3). Let S (T ) be the set of
finite signed measures on a given set T = X X ∗ or Z. (and note that S (T ) includes L

1 (T )
as a special case, in the sense that for any function in  ∈ L

1 (T ), there is a corresponding
measure  ∈ S (T ) whose Radom-Nikodym derivative with respect to the Lebesgue measure

is ). Under Assumptions 2.1, 3.1, 3.2, 3.3 and 3.4, the operators ∗| : S (X ) 7→ L
1 (X ∗),

|∗ : S (X ∗) 7→ L
1 (Z) and | : S (X ) 7→ L

1 (Z), defined in (3.5), are injective map-
pings.

Proof. First, one can verify that  ∈ S (X ) implies that ∗| ∈ L
1 (X ∗) and similarly

for |∗ and | , since the (conditional) densities involving variables ∗ and  are

bounded by Assumption 3.1 and are absolutely integrable. We now verify injectivity of

|∗.
By Assumptions 2.1, 3.1 and Equation (2.3), we have, for any  ∈ S (X ∗),£

|∗
¤
() =

Z
|∗ (|∗)  (∗) =

Z
∆ ( −  (∗))  (∗) 

Next, let ̃ denote the signed measure assigning, to any measurable set A ⊆ R , the

valuẽ (A) = R 1 ( (∗) ∈ A)  (∗) and note that ̃ is a finite signed measure since  (∗)
is. Then, we can express |∗ as£

|∗
¤
() =

Z
∆ ( − ̃∗) ̃ (̃∗)  (A.14)

i.e. a convolution between the probability measure of ∆ (represented by its Lebesgue

density) and the signed measure ̃ (see Chapter 5 in Bhattacharya and Rao (2010)). By

the convolution Theorem for signed measures (Theorem 5.1(iii) in Bhattacharya and Rao

(2010)), one can convert the convolution (A.14) into a product of Fourier transforms:3

 () = ∆ ()  ()

3Note that the Fourier transforms involved are all continuous functions because the original functions

(or measures) are absolutely integrable (or finite), hence “almost everywhere” qualifications do not apply to

them.
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where  () ≡ R £
|∗

¤
() i, ∆ () ≡ 

£
i

¤
and  () ≡ R

ĩ (). Since

∆ (), the characteristic function of ∆, is nonvanishing by Assumption 3.2, we can isolate

 () as

 () =  () ∆ () 

Since there is a one-to-one mapping between finite signed measures and their Fourier trans-

forms (by Theorem 5.1(i) in Bhattacharya and Rao (2010)), ̃ can be recovered as the unique

signed measure whose Fourier transform is  (). We now show that the signed measure ̃

uniquely determines the measure .

LetAB = ∪∗∈B { (∗)} for any measurable B ⊆ R and note thatAB is also measurable
since  is continuous by Assumption 3.4. Then, observe that, by Assumption 3.3,  (∗) ∈ AB
iff ∗ ∈ B and we have:

̃ (AB) =
Z
1 ( (∗) ∈ AB)  (∗) =

Z
1 (∗ ∈ B)  (∗) .

Since B is arbitrary, the knowledge of ̃ (AB) uniquely determines the value assigned to any
measurable set by the signed measure .

Injectivity of ∗| is a special case of the above derivation (with ∗ replaced by
∗ ), in which  is the identity function. Finally, injectivity of | is implied by the

injectivity of |∗ and ∗| , since | = |∗∗| by Assumption 2.1 and Equations
(2.2)-(2.3).

B Consistency Proof

The proof of Theorem 4.1 in the main text relies on the following 4 simple Lemmas.

Lemma B.1. The set S is compact in the norm k·k (see Definition 4.1).
Proof. S is closed by construction, hence compactness follows from showing that S can be
covered by a finite number of k·k-balls of any radius   0. For a given   0, let ̄  0

be such that  ≥ R∞
̄

 0+ () . Such a ̄ can always be found because
R∞
−∞  0+ ()   ∞

by assumption. Then, let  be the smallest integer such that  ≥ 2̄ 0+ (0)  and define the
partition P = ]−∞−̄]  [−̄−̄ (− 2) ]      [̄ (− 2)  ̄]  [̄∞[. This partition is
such that any function  ∈ S cannot vary by more than  over each interval of the partition:
For the two infinite end intervals, this follows from (without loss of generality, consider

2  1  ̄)

| (̃)−  ()| ≤
Z 2

1

| 0 ()|  ≤
Z 2

1

 0+ ()  ≤
Z ∞

̄

 0+ ()  ≤ 

while for each of the  finite intervals, this follows from (without loss of generality, consider

2  1 and 1 2 ∈ [̄ (− 2)  ̄])

| (2)−  (1)| ≤
Z 2

1

| 0 ()|  ≤
Z 2

1

 0+ (0)  = (2 − 1) 
0
+ (0) ≤ 
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since  0+ () is decreasing in || and since (2 − 1) ≤ ̄−̄ (− 2)  = 2̄ = 2̄ ¡2̄ 0+ (0) ¢ =

¡
 0+ (0)

¢
.

Next, let  be the smallest integer such that  ≥ 2 and define the finite set
R = {−− (− 2)       (− 2) }

and note that consecutive elements are no further than  apart. It follows that any function

 ∈ S can approximated with an error no larger than  by a function ̃ : R 7→ R that

is piecewise constant on the intervals of the partition P. There are 
+2 such functions,

which is a finite number for any   0 and hence F is compact.

Lemma B.2. The sets F and G are compact in the norms k·k andk·k, respectively.
Proof. Since F ⊆ S and S is compact by Lemma B.1 while F in closed, it follows than F is
compact as well. Let S = { : kk ≤ } and note that G is closed and G ⊆ S. Since the
mapping  7→  from (S k·k) to (S k·k) is an isometry, S is also compact. It follows
that G is compact.
Lemma B.3. If ∆  ∆  ∆∗ ∈ F and   ∈ G, then, for any   0 and any    ∈ R,
we have Z

∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (− ∗) ∗ ≥ − (  )  0

where

− (  ) ≡ 2− () − (||+ (+ (||+ ))) − (||+ (+ (||+ ))) 

Proof. We have, for any   0,Z
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (− ∗) ∗

≥
Z

− ( −  (∗)) − ( −  (∗)) − (− ∗) ∗

≥
Z +

−
− ( −  (∗)) − ( −  (∗)) − (− ∗) ∗

≥ 2− () inf
∗∈[−+]

− ( −  (∗)) − ( −  (∗))

≥ 2− () − (||+ (+ (||+ ))) − (||+ (+ (||+ ))) ≡ − (  )

where we have used the fact that all densities in F are bounded below by − (), that the
integrand is positive, that − () is symmetric and decreasing in || and that | −  (∗)| ≤
||+ | (∗)| ≤ ||+ |+ (∗)| ≤ ||+ |+ (||+ )| for ∗ ∈ [−  + ] (since + (

∗) bounds
| (∗)| and is increasing) and similarly for  −  (∗). Finally − (  )  0 since − () is
strictly positive for  ∈ R.
Lemma B.4. (This restates Lemma A1 in Newey and Powell (2003) for convenient refer-

ence). Suppose (i)  () has a unique maximum on Θ at ∗, (ii) Θ is compact, (iii) ̂ ()

is continuous, (iv) sup∈Θ
¯̄̄
̂ ()− ()

¯̄̄
→ 0, (v)  () is continuous (vi) Θ̂ are compact

subsets of Θ such that for any  ∈ Θ, there exists a sequence
n
̃

o
with ̃ ∈ Θ̂ such that

̃
→ . Then ̂ = argmin∈Θ̂ ̂ ()

→ ∗.
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Proof of Theorem 4.1. We verify the conditions of Lemma B.4 for an objective function

 () = 
£
ln | (|)

¤
with | ( |) given by Equation (3.1) and ̂ () set to

(4.3) with  ≡ (  ∆∗ ∆  ∆) ∈ Θ ≡ G ×G ×F ×F ×F . The set Θ is endowed with
the norm

kk = max {kk  kk  k∆∗k  k∆ k  k∆k}  (B.1)

The sets Θ̂ are the intersection of Θ with the span of the series (4.1) for  =   and

(4.2) for  = ∆∗∆∆ truncated at progressively larger -dependent values of  (for

 =  ∆∗∆∆).

(i)  () is uniquely maximized at ∗. By Theorem 3.1, for a given density of the data

∗| ( |), there exists a unique solution to Equation (3.1), denoted ∗ ≡ (∗ ∗ ∗∆∗ 
∗
∆  

∗
∆).

The expected likelihood  () is therefore uniquely maximized at ∗, by the usual Jensen’s
inequality argument:

 ()− (∗) = 

∙
ln

 ( |)
∗ ( |)

¸
=

Z Z Z
ln

 | ( |)
∗
 | ( |)

∗ | ( |)  () 

≤
Z
ln

ÃZ Z
 | ( |)
∗
 | ( |)

∗ | ( |) 
!
 () 

=

Z
ln (1)  ()  = 0

with equality only if  | ( |) ∗ | ( |) is almost everywhere constant, i.e.  | ( |) =
∗ | ( |). Since all densities are assumed differentiable by Definition 4.1, the equality
actually holds everywhere.

(ii) Θ is compact. As F and G are compact by Lemma B.2, it follows that Θ ≡ G × G ×
F ×F ×F is also compact in the norm (B.1) (finitely repeated cartesian products of finite

coverings of F and G cover Θ as well).

(iii) ̂ () is continuous in . Note that ̂ () = −1
P

=1 (  ) where

 (   ) ≡ ln
Z

∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (
∗ − ) ∗

so it is sufficient to show that  (   ) is continuous in  at all    ∈ R. We ver-
ify continuity with respect to ∆  ∆  ∆∗   in turn, which will imply continuity

jointly in all parameters, by the triangle inequality. Consider the change in  (   ),

denoted  (   )  due to a small change in ∆ (∆), denoted ∆ (∆) and satisfying

k∆ (∆)k ≤ :

 (   )

= ln

Z
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗

− ln
Z

∆ ( −  (∗)) + ∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (
∗ − ) ∗

=

R
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗R
̇∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (∗ − ) ∗
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where ̇∆ denotes a mean value on the segment joining ∆ and ∆ + ∆ . Since the set

F is convex, ̇∆ shares the same inequality constraints as ∆ and ∆+∆ , for instance,

̇∆ (∆) ≥ − (∆). Moreover, all densities in F are assumed bounded by some constant 
and k∆ (∆)k ≤  implies |∆ ( −  (∗))| ≤  while the denominator can be bounded

below via Lemma B.3. We can then write:

| (   )| ≤
R |∆ ( −  (∗))| ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗R
− ( −  (∗)) − ( −  (∗)) − (∗ − ) ∗

≤
R
∆∗ (

∗ − ) ∗R
− ( −  (∗)) − ( −  (∗)) − (∗ − ) ∗

≤ 
R
∆∗ (

∗ − ) ∗

− (  )
=



− (  )
(B.2)

where − (  )  0 by Lemma B.3.
We can bound the effect of changes in ∆ on  (   ) in an entirely analogous way.

We then focus on the effect of changes in ∆∗, which requires a slightly different approach

(because ∆ ( −  (∗)) and ∆ ( −  (∗)) are not necessarily integrable over ∗). As
before, we have

 (   ) =

R
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗R
∆ ( −  (∗)) ∆ ( −  (∗)) ̇∆∗ (∗ − ) ∗

≤ 2
R
∆∗ (

∗ − ) ∗

− (  )


Now, since both ∆∗ and ∆∗ + ∆∗ are in F and therefore bounded by an inte-

grable function +, we have that |∆∗ ()| must be bounded by the integrable func-
tion 2+ (). By Lebesgue’s Dominated Convergence Theorem, it follows that, for any

sequence {∆∗} with k∆∗k → 0 (and therefore ∆∗ () → 0 at each  ∈ R),
lim→∞

R
∆∗ (

∗ − ) ∗ =
R
lim→∞ ∆∗ (

∗ − ) ∗ = 0. Hence  (   ) is
continuous in ∆∗ .

We now bound the effect, on  (   ), of changes in  (∗), denoted by  (∗) and
satisfying kk ≤ . We have

 (   ) =

R
∆ ( −  (∗))  0∆ ( − ̇ (∗))  (∗) ∆∗ (

∗ − ) ∗R
∆ ( −  (∗)) ∆ ( − ̇ (∗)) ∆∗ (∗ − ) ∗

where ̇ (∗) is a mean value on the segment jointing  (∗) and  (∗)+ (∗) which satisfies
the same constraints as any  (∗), by convexity. As before, we have

| (   )|
≤

R
∆ ( −  (∗)) | 0∆ ( − ̇ (∗))| | (∗)| ∆∗ (

∗ − ) ∗R
− ( −  (∗)) − ( − ̇ (∗)) − (∗ − ) ∗

≤
R
 | 0∆ ( − ̇ (∗))| | (∗)| ∆∗ (

∗ − ) ∗

− (  )

≤ 2
R
( (∗))−1 + (∗ − ) ∗

− (  )
= 

2
R
( (∗))−1 + (∗ − ) ∗

− (  )
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where we have used Assumption 4.4 and the facts that kk ≤  =⇒ | (∗)| ≤  (∗)
as well as ∆∗ () ≤ + () and | 0∆ ()| ≤  0+ () ≤ 2 for some 2  ∞. SinceR
( (∗))−1 + (∗ − ) ∗ is finite at each  by Assumption 4.4 and since − (  )  0

by Lemma B.3, it follows that  (   ) is continuous in . A similar reasoning can be

used to show continuity in .

(iv) To show sup∈Θ
¯̄̄
̂ ()− ()

¯̄̄
→ 0, we verify the conditions of Lemma 2.4 in Newey

and McFadden (1994). Θ was already shown to be compact and ̂ () was already shown

to be a sample average of  (  ), where  (   ) is a function everywhere con-

tinuous in . There only remains to show that  (   ) can be bounded by a positive

function  (  ) with 
£
 ()

¤
∞ and that does not depend on :

| (   )| =
¯̄̄̄
ln

Z
∆ ( −  (∗)) ∆ ( −  (∗)) ∆∗ (

∗ − ) ∗
¯̄̄̄

≤ max

½¯̄̄̄
ln

Z
∆∗ (

∗ − ) ∗
¯̄̄̄
¯̄̄̄

ln

Z
− ( −  (∗)) − ( −  (∗)) − (

∗ − ) ∗
¯̄̄̄¾

≤ max
©¯̄
ln2

¯̄
 |ln − (  )|

ª ≡  (  )

where we have used Lemma B.3. 
£
 ()

¤
 ∞ since  is finite and nonzero and

 [|ln − ( )|] ∞ by Assumption 4.5.

(v) The fact that  () is continuous in  follows from the fact that ̂ () is continuous

(see (iii)) and converges uniformly (see (iv)).

(vi) The fact there exists, for any  ∈ Θ, a sequence
n
̃

o
with ̃ in the compact set

Θ̂ such that ̃
→ , follows directly from Assumption 4.3. Indeed, if the set of functions

representable as series (4.2) is dense in F (in the norm k·k), there exists, for any  ∈ F ,
a deterministic decreasing sequence  → 0 such that k − k ≤ , where  denotes a

partial sum of  terms of the series (4.2). For a given   0, The exists a  guaranteeing

that  ≤  for all  ≥ . Since 
→ ∞ for  = ∆∗∆∆, it follows that all 

will eventually exceed that  with probability approach one. Hence, k
− k → 0 for

 = ∆∗∆∆. A similar reasoning holds for  and  with the series (4.1).

Proof of Lemma 4.1 in the main text. If kk ≡ sup∈R k ()k takes a certain positive value,
there must be at least one point 0 such | (0)| = kk −  ≡  for any   0 sufficiently

small. Away from that point, the function  () cannot decrease faster than  0+ (0), by the
Lipschitz constraint on functions in F . Hence the smallest possible value of R | ()|2 
will be reached for a triangular function 0 () = max {−  | − 0|  0}. Without loss of
generality, 0 = 0 and we then haveZ

| ()|2  ≥
Z  0+(0)

− 0+(0)

¡
−  0+ (0) ||

¢2
 =

2

3 0+ (0)
3

This is true for  arbitrarily close to kk, therefore, kk ≤ (32)  0+ (0)¡R | ()|2 ¢13 and it follows that R | ()|2  → 0 =⇒ kk→ 0.
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C Additional simulations

A second simulation example illustrates performances of our estimator in a different set of

unfavorable circumstances. First, the distribution of the measurement error∆∗ is a mixture
of two normals with standard deviation 14 centered at −15 and 25 and with respective
weights 23 and 13 (so that ∆∗ has zero mean). This is an asymmetric and nearly

bimodal measurement error distribution that is quite challenging to tackle, because a very

flexible sieve is required to model it. In fact, such complex cases have rarely been considered

in benchmarking other methods to correct for measurement error bias in most classical

error models. Second,  is distributed according to a symmetric triangular distribution on

[−1 1]. The standard deviation of this distribution is only 0.41, which is not much bigger
than the standard deviation of the measurement error distribution (0.38), thus making this

estimation problem exceedingly difficult: The observable  contains almost as much noise

as there is signal. Third, the distribution of ∆ is a Student  distribution with 4 degrees of

freedom, divided by 4, which is heavy-tailed distribution that often leads to large estimator

variability. Fourth, the distribution of ∆ is a normal with mean 0 and standard deviation

of 0.25, which is of the same order of magnitude as the standard deviation of  (0.41), thus

making  a relatively uninformative instrument and making the estimation problem more

difficult. Fifth, a commonly used logistic regression function is used to generate the data:

 (∗) = (1 + exp (−4∗))−1  (C.1)

which is highly nonlinear over the range of values of ∗ that are heavily sampled. Finally,
the instrument equation has an exponential specification:

 (∗) =
1

2
exp (∗)  (C.2)

which strictly convex and therefore tends to exacerbate the bias in many nonparametric

estimators. The estimation methodology is as described in Section 5, except that the optimal

numbers of parameters were found to be ∆∗ : 6; ∆ : 5; ∆ : 4;  : 6;  : 3.

Figure 3 summarizes the result of these simulations, where a naive nonparametric series

least-squares estimator ignoring measurement error (i.e. least-square regressions of  on

 and of  on ) with the same number of sieve terms is also shown for comparison.

The reliability of the method can be appreciated by noting how closely the median of the

replicated measurement-error-robust estimates matches the true model. In comparison, the

median of the naive estimator is so significantly biased that any type of hypothesis test based

on it would exhibit completely misleading confidence levels: The true model curves (for  and

) often lies beyond the 95% or 5% percentiles of the naive estimator distribution. Overall,

the proposed measurement-error-robust estimator exhibits low variability and low bias at

the reasonable sample size of 500. It has some difficulty estimating the intricate density of

∆∗, as expected. Nevertheless, the estimates of the function of main interest ( (·)) are
quite reliable, despite the number of “difficult” features we have incorporated into this test

case.
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Figure 3: Simulation study of the practical performance of the proposed measurement-error-

robust estimator in comparison with a “naive” nonparametric polynomial series least-square

estimator that ignores the presence of measurement error. In each plot, the pointwise 90%

confidence band of the estimator simulated over 100 replications is shown as error bars.
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D Miscellaneous extensions

It is possible to relax Assumption 2.1, by only requiring the three quantities ∆ , ∆ and

(∆∗) to be mutually independent, provided that the centering restriction on ∆∗ im-
poses that the median of ∆∗ given  is unique and at a known location ∆∗ = . This

extension is useful to allow for heteroskedasticity in the measurement error. Of course, given

the relaxed independence assumption, the assumption of nonvanishing characteristic func-

tion of ∆∗ has to be converted to an injectivity assumption regarding the operator ∗| ,
as in Hu and Schennach (2008). To handle this extension, one also needs to alter some steps

of the proof of Theorem 3.1 that follow Equation (A.11) as follows (we provide a formal

proof for the case of one-dimensional ∗ – a formal treatment of the multivariate case may

be possible at the risk of further complexities):

Alternate proof of Theorem 3.1. (allowing for heteroskedasticity under median restrictions).

We now show that ̃∗| (̃
∗|) necessarily violates Assumption 2.2 (with ∆∗ replaced by

∆̃∗ ≡ ̃∗ − ), unless  (·) is the identity function. Let 1 (∗ ≤ ) denote an indicator

function of the event ∗ ≤  and write:Z
1 (∗ ≤ + ) ∗| (

∗|) ∗ =

Z
1 (∗ ≤ ) ∆∗| (

∗ − |) ∗

=

Z
1 (∗ −  ≤ ) ∆∗| (

∗ − |) ∗

=

Z
1 ( ≤ ) ∆∗| (|)  (D.1)

and by Assumption 2.2 (for a median restriction on ∆∗), this integral must be equal to
12 for all  for a given known  and for any other value of  this integral differs from 12.

Similarly, if the alternative model is valid we should also have (with ̃∗ such that ∗ =
 (̃∗)), Z

1 (̃∗ ≤ + ) ̃∗| (̃
∗|) ̃∗ = 12 (D.2)

independent of . Note that under this reparametrization of ∗, the function  (·) in the
alternative model (denoted ̃ (̃∗)), becomes ̃ (̃∗) =  ( (̃∗)). Since  (∗) is continuous
and not constant on any interval by Assumption 3.4 (and therefore so must ̃ (̃∗) be if it
is to be a valid alternative model), if follows that  (̃∗) cannot be discontinuous. Since ∗

and ̃∗ are one-dimensional and  (·) is one-to-one (by Assumption 3.3) and continuous, it
follows that  (·) must be strictly monotone.
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Since ̃∗ = −1 (∗), the left-hand side of Equation (D.2) can be written asZ
1
¡
−1 (∗) ≤ + 

¢
∗| (

∗|) ∗

=

Z
1 (∗ ≤  (+ )) ∗| (

∗|) ∗

=

Z
1 (∗ ≤  (+ )) ∆∗| (

∗ − |) ∗

=

Z
1 (∗ −  ≤  (+ )− ) ∆∗| (

∗ − |) ∗

=

Z
1 ( ≤  (+ )− ) ∆∗| (|) 

where we have assumed that  (·) is strictly monotone increasing (a similar treatment holds
for  (·) monotone decreasing, reversing the direction of the inequality and noting that 1−
12 = 12). By comparison with Equation (D.1), this integral is equal to 12 for any  only

if  (+ ) −  =  for any . This implies that  (·) is the identity function, i.e. the two
observationally equivalent models are in fact the same model.

Our results cover the case where the measurement equation has a Berkson structure while

the instrument equation, though nonlinear, maintains a more classical structure (with the

error being independent of the true regressor ∗). It is then natural to wonder whether one
could also handle the case where the instrument equation exhibits Berkson-type errors as

well, i.e.:

∗ =  +∆∗

∗ = ̃ () +∆

However, it is difficult to find reasonable settings where such a system of equations would be

relevant. The two separate “causes”  and  would have to happen to result in the same

“effect” ∗ through two different channels with different error terms. In fact, this system
of equation implies that the four variables ∆∗, ∆, , and  are functionally related

through  +∆∗ = ̃ () +∆, i.e., one of the four variables is redundant. As a result,

this does not constitute a very useful scenario.

E Combination of classical and Berkson errors.

It may also be of interest to consider a combination of a classical and Berkson error resulting

in a regression model of the form:

 =  (∗) +∆

∗ =  ∗ +∆∗

 =  ∗ +∆

where  and  are observed while the other variables are not and where  ∗∆∗, ∆

and ∆ are mutually independent. Here,  ∗ is a Berkson-contaminated measurement of
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∗ that is not observed directly. Instead, we observe , a noisy measure of  ∗ exhibiting
classical errors. Since there are two separate error problems, it is to be expected that we may

need two additional pieces of information to identify this model. We could use an observed

instrument 

 =  (∗) +∆

to address the Berkson aspect of the problem and an observed repeated measurement ̃

̃ = ∗ +∆̃

to address the classical component of the error. More specifically, using the techniques found

in Schennach (2004), it is possible to identify the joint distribution of ( ∗  ) from the

joint distribution of ( ̃  ) provided 
h
∆̃| ∗∆

i
= 0. The key step is to relate

the joint characteristic function  (  ) of  ∗ to expectations involving only the
observable variables   ̃:

 (  ) ≡  [exp (i ) exp (i) exp (i ∗)]

=
 [exp (i ) exp (i) exp (i)]

 [exp (i)]
exp

⎛⎝Z 

0

i
h
̃ exp (i)

i
 [exp (i)]



⎞⎠ 

where i =
√−1. Once the joint distribution of ( ∗  ) is known (by taking the inverse

Fourier transform of  (  )), the techniques introduced in the present paper can be di-

rectly used to identify  (∗),  (∗) and the densities of ∗∆∗∆∆. In practice,

estimation could be accomplished as before, by writing a suitable likelihood function, inte-

grated over the latent variables, in which the unknown functions are represented by sieve

approximations.
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