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Abstract

Many time-series data are known to exhibit “long memory”, that is, they have an

autocorrelation function that decays very slowly with lag. This behavior has tradi-

tionally been attributed to either aggregation of heterogenous processes, nonlinearity,

learning dynamics, regime switching, structural breaks, unit roots or fractional Brow-

nian motion. This paper identifies an entirely different mechanism for long memory

generation by showing that it can naturally arise when a large number of simple linear

homogenous economic subsystems with a short memory are interconnected to form

a network such that the outputs of each of the subsystem are fed into the inputs of

others. This networking picture yields a type of aggregation that is not merely addi-

tive, resulting in a collective behavior that is richer than that of individual subsystems.

Interestingly, the long memory behavior is found to be almost entirely determined by

the geometry of the network while being relatively insensitive to the specific behavior

of individual agents.

1 Introduction

It widely recognized that many economic and financial time-series data exhibit “long mem-

ory”, that is, posses an autocorrelation function that decays very slowly with lag (e.g.,

Mandelbrot and Ness (1968), Granger and Ding (1996), Comte and Renault (1996), Baillie

(1996)). Explaining and modeling this feature has led to very active literature on structural

breaks and/or regime switching (e.g., Diebold and Inoue (2001), Perron (1989), Perron and

∗The author would like to thank Lars Hansen, Eric Renault and seminar participants at the Cemmap
Workshop “Measurement Error and Related Topics”, at the University of Cambridge and at the Har-

vard/MIT Econometrics seminar for useful comments and acknowledges support from NSF grant SES-

1061263/1156347.
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Qu (2007), Davidson and Sibbertsen (2005), Granger and Ding (1996)) unit roots (e.g. Hall

(1978), Nelson and Plosser (1982), Perron (1988), Phillips (1987)) aggregation (e.g., Granger

(1980), Zafaroni (2004), Abadir and Talmain (2002), Chambers (1998)) learning dynamics

(e.g., Alfarano and Lux (2005), Chevillon and Mavroeidis (2011)) nonlinearity (e.g. Chen,

Hansen, and Carrasco (2010), Miller and Park (2010)), fractional brownian motion (e.g.

Mandelbrot and Ness (1968), Granger and Ding (1996), Comte and Renault (1996), Baillie

(1996)), multifractal models (e.g., Calvet and Fisher (2002)), as well as other mechanisms

(e.g. Parke (1999)). These approaches all identify plausible mechanisms generating a long

memory behavior. The goal of this paper is to identify a different and arguably more uni-

versal mechanism that is active, regardless of the specific dynamic behavior of any one agent

in the economy.

We demonstrates that long memory can naturally arise when a large number of simple

linear homogenous economic subsystems with a short memory are interconnected to form a

network such that the outputs of each of the subsystem are fed into the inputs of others.

This networking picture yields a type of aggregation that is not merely additive, resulting in

a collective behavior that is richer than that of individual subsystems. Interestingly, the long

memory behavior is found to be almost entirely determined by the geometry of the network

while being relatively insensitive to the specific behavior of individual agents.

Our results are the consequence of two main observations. First, we make a direct

connection between a geometric property a network (namely, the fraction of pathways of a

given length that reach a specific destination in the network) and the behavior of the spectral

response of the network near the origin (specifically, its rate of divergence as frequency goes

to zero). Second, we show how this geometric factor can be calculated for general classes

of networks. In particular, drawing from the literature studying random walks on fractals

(Havlin and Ben-Avraham (1987)), we show that a wide range of geometric factors can

be naturally obtained, thus enabling us to generate power spectra matching the divergent

behavior of any fractionally integrated process.

The network structure of an economy and its implications on aggregate fluctuations

has received considerable and ongoing attention (e.g., Long and Plosser (1983), Horvath

(1998), Dupor (1999), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)). However,

this strand of literature centers on the conditions needed for preventing micro-level noise to

simply average out in the aggregate and does not seek to explain long memory behavior.

In fact, the question of aggregate fluctations can be studied entirely within a static model

(e.g., Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)), while investigating the

long memory behavior clearly demands a dynamic model. Even existing models that do

include dynamics (e.g., Long and Plosser (1983)) do not generate general classes of long

memory behavior (except perhaps unit root-type behavior for specific values of the model

parameters, although this is not discussed in Long and Plosser (1983)). These limitations are

circumvented in the present paper by considering a general dynamic model in the limit of

large networks characterized by scaling laws (including, but not limited to, fractal networks).
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In this limit, the effect of network geometry on the small-frequency spectrum dominates the

effect of individual subsystems, a feature that could not be captured by earlier network

models. As such, we make a direct link between so far distinct literatures, the study of long

memory and the study of economic networks structure.

2 Model

2.1 General ideas

We construct the generating process via a collection of elementary short-memory subsystems

interconnected as a network (see Figure 1). Each subsystem takes a number of “input”

variables as given (e.g. prices) and decides the value of output variables (e.g. quantity

produced). The terms “input” or “output” do not necessarily refer to goods being purchased

or sold. “Input” denotes information the system takes as given and cannot change while an

“output” denotes variables the subsystem can decide and that provides information that can

propagate to other subsystems. We place no fundamental restrictions in the direction of the

flow of information (except when considering specific examples). If the “ouput” of subsytem

A goes to subsystem B, the output could be sent to another subsystem C or to the same

subsystem A.

In the absence of noise, this network is assumed to adopt a nonrandom steady-state

equilibrium. This equilibrium may involve time-dependent quantities with deterministic

trends. We then consider how this equilibrium is perturbed by introducing stationary short-

memory noise at one point in the network (hereafter called the “origin”) and by measuring

its impact at another arbitrary point in the network (hereafter called the “destination”).

The effect of noise at the origin on the destination can occur through a number of potential

pathways of different geometries and lengths.

We consider networks consisting of linear subsystems (that is, their ouput is linear in the

input history). If we further assume that the dynamic response of each system to noise is

invariant with respect to time shifts, we can then model the response of each subsystem via a

convolution operation.1 Working in the linear limit not only makes the problem analytically

tractable but also offers the advantage of illustrating that nonlinearity is not necessary to

generate long memory within our framework. One can also interpret our linear approach as

a linearization of the network’s nonlinear subsystems that is justified in the limit of small

noise.2 A subsystem behavior that can be represented as a convolution arises naturally as the

1Satisfying this translation invariance assumption may involve working with some deterministic trans-

formation of the model, e.g. woking with discounted present-value of monetary values or working with

logarithms of some variables. Nevertheless, this assumption is plausible since we focus on deviations from

any deterministic trends characterizing the equilibrium.
2Note that “small noise” is not incompatible with long memory since many long memory processes are

still stationary and even more are mean-reverting (Baillie (1996)).
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Origin Destination

Figure 1: General ideas underying of the approach. Exogenous short-memory noise is fed in

to a network of short-memory subsystems at one point called the “origin”. This noise is then

propagated, through numerous paths of various geometries and lengths, to the “destination”.

It is the sum of all of these indirect effects that generates the long memory property of the

noise monitored at the “destination”.

solution to numerous utility maximization problems or as the linearization of such solutions

around an equilibrium. A typical example can be found in Long and Plosser (1983), where

the behavior of the various sectors of the economy are modeled by a vector autoregressive

process in log levels that can easily be cast into a convolution operation, e.g., by calculating

the impulse response function. Even some models of learning (Chevillon and Mavroeidis

(2011)) take the form of convolutions.

Since our building blocks are stationary processes and translation-invariant operators,

it is natural to state our results entirely in terms of spectral representations. This has the

additional advantages that (i) all results can be stated in terms of deterministic functions

and obtained via conventional algebraic manipulations and (ii) both discrete and continuous

processes can be simultaneously handled transparently.

Mathematical technicalities aside, the general idea is to note that the exogenous noise

 fed into the network at the origin, after is has traversed  identical subsystems charac-

terized by a convolution operation , can be written in the form  (where  denotes 

application of the operation ). The operation  is a convolution with a rapidly decaying

function (e.g., exponentially decaying tail or even compact support), so that each subsystem

on its own has a “short” memory.

In general, there are many pathways of different geometries and lengths that connect

the origin to the destination, so we sum over all possible pathway lengths, weighted by a

geometric factor  that is related to the fraction of paths of length  starting at the origin

that actually reach the destination:
∞X
=0


 (1)
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It turns out that the asymptotic decay of the coefficients  determines if the limiting process

(1) has long memory for any sufficiently regular (and, in fact, short-memory) process 

and convolution . More specifically, the asymptotic rate of decay of the coefficients 
very directly determines the rate of divergence of the power spectrum at the origin. Power

spectrum divergence is often considered as a signature of the various types of long memory

process (see, e.g., Lobato and Robinson (1996), Baillie (1996), Granger and Ding (1996)).

For instance, fractionally integrated processes are known to exhibit a power spectrum of

the form ||−2 near the origin, with  being a nonintegral positive number. To show how

such spectra can be obtained, we calculate the asymptotic behavior for the  for simple

periodic and finite networks. We also borrow powerful results from the literature studying

random walks on fractals to show that one can obtain coefficients  with a wide range of

behaviors, thus yielding power spectra exhibiting the same divergent behavior at the origin

as a fractionally integrated process of any given order. We further show that our results are

robust to various forms of heterogeneity.

2.2 Definitions and Preliminaries

Definition 1 Let

1. L+12 denote the set of all Lebesgue-measurable functions in L1 (R+)∩L2 (R+), endowed
with the usual L2 norm.

2. Y denote the set of stochastic processes  () admiting a moving average representation

 () =

Z 

−∞
 (− )  ()

where  () is a standard Wiener process,  ∈ L+12, and where the equalities and
integrals involving continuous-time stochastic processes are understood in the usual

mean square sense (see Doob (1953), Chap. XI).

3. R be the set of linear operators  admitting the representation

[ ] () =

Z 

−∞
 (− ) () 

with  ∈ L+12 for any  ∈ Y

For discrete processes, we have similar assumptions.

Definition 2 Let
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1. L+12 denote the set of all real-valued sequence (denoted  () with  = 0 1   ) that are
absolutely summable (note that such sequences are automatically square summable as

well),3 endowed with the usual 2 norm.

2. Y denote the set of stochastic processes  () admitting a moving average representa-
tion

 () =

X
=−∞

 (− ) ()

where  () are independent  (0 1) random variables (indexed by ) and  ∈ L+12.
3. R be the set of linear operators  admitting the representation

[ ] () =

X
=−∞

 (− ) ()

with  ∈ L+12 for any  ∈ Y.

The requirement of both integrability and square integrability may be surprising, but

both restrictions are important. On the one hand, square integrability is central to the

theory of stochastic integrals (Doob (1953)). On the other hand, integrability is important

because, by Young’s inequality,4 among the L spaces, only L1 has the property of being
closed under convolution.

Although it is not necessary for the applicability of our approach, we focus on Gaus-

sian processes for simplicity of exposition. To avoid duplication, we adopt the following

conventions in the sequel:

Definition 3 For a discrete process, the notation5
R∞
0

    stands for
P∞

=0   . Let
¡RYL+12¢

stand for either
¡RYL+12

¢
or
¡RYL+12

¢
.

The following Lemmas summarize well-known results from the theory of stochastic pro-

cess (e.g., Doob (1953), Chap. XI, Section 9):

3Note that each element  () of a sequence is bounded by kk1, the 1-norm of that sequence. Then note

that
P∞

=0 | ()|2 = (kk1)2
P∞

=0

³
|()|
kk1

´2
≤ (kk1)2

P∞
=0

|()|
kk1 = (kk1)

2
∞.

4Young’s inequality states that the convolution of a function in L and a function in L belongs to L,
with 1 + 1


= 1


+ 1


. Requiring  =  =  leaves 1 as the only possibility.

5A more sophisticated approach would have been to write all integrals as
R
    () with  set to eigher

the Lebesgue measure or a sum point masses on all the integers, but this would have made the text less

accessible.
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Lemma 1 If  ∈ Y then it also admits a spectral representation ̃ () ≡ R∞
0

 ()  and

an associated power spectrum |̃ ()|2. Moreover, ̃ () is a bounded and square-integrable
function defined for any  ∈ R. A corresponding result hold with Y   ̃ replaced by
R   ̃, respectively, with ̃ () = R∞

0
 () .

For conciseness, we often call the “spectral representation” simply the “spectrum”, re-

serving the term “power spectrum” for its modulus square.

Lemma 2 Let 0 ∈ Y and let  =  · · ·10 with 1      ∈ R for some  ∈ N.
Then  ∈ Y and the spectral representation of these quantities are related through ̃ () =
̃ () · · · ̃1 () ̃0 ().

Note that Lemma 2 does not let us conclude that lim→∞  ∈ Y. In fact, it is precisely
the fact that lim→∞  6∈ Y in general that allows us to consider long memory processes via
a limiting process (since processes in Y necessarily have short memory).
Following standard practice (see, e.g., Lobato and Robinson (1996), Baillie (1996), Granger

and Ding (1996)) we consider a divergence of the spectrum at the origin as a signature of

a process exhibiting long memory. To circumvent well-known difficulties in defining the

power spectrum of nonstationary processes (Mandelbrot and Ness (1968), Flandrin (1989),

Loyne (1968)), we view a long memory process as a limiting case of a sequence of stationary

processes. Accordingly, for a given sequence  of stationary processes with corresponding

well-defined power spectrum |̃ ()|2, we study the behavior of lim→∞ |̃ ()|2 ≡ |̃∞ ()|2.
We will consider that the sequence  exhibits “long memory of order ” if |̃∞ ()|2 behaves
as ||−2 as → 0.

2.3 Main results

With these tools in place, we are ready to state our main assumptions and corresponding

results.

Assumption 1  ∈ R with its associated  () satisfying (i)
R∞
0
| ()| (1 + 2)  ∞, (ii)R∞

0
 ()  = 1, (iii)

R∞
0

 ()  6= 0 and (iv) R∞
0

 () 2 
¡R∞
0

 () 
¢2
.

Assumption 1(i) is a standard constraint on the tail behavior of  () that implies that

the corresponding spectrum ̃ () is twice continuously differentiable. Assumption 1(ii) is

just a normalization, since deviations from it can be absorbed in multiplicative prefactors

(denoted  below). Assumptions 1(iii) and (iv) are automatically satisfied if  () ≥ 0 and
 () is supported on a nondegenerate interval (or more than one point in the discrete case),

but hold more generally as well. Assumption 1(iv) implies that the spectrum ̃ () does not

exceed 1 in magnitude near the origin (and, in fact, can be replaced by that later condition

without affecting the results).
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Assumption 2  ∈ Y with its associated  () satisfying R∞
0

 ()  6= 0.

This assumption rules out the degenerate case where any divergence in the spectrum

at the origin would be made impossible due to the fact that the input noise has no zero-

frequency component.

Definition 4 Let

̄ =

̄X
=0


 (2)

where  satisfies Assumption 1 and  satisfying Assumption 2.

Intuitively,  is the exogenous noise input at the origin of the network, while  is

the effect of this noise after it has gone through  identical subsystems  of the network.

We first consider a network of identical subsystems (although we shall consider extensions

allowing for heterogeneity in Section 2.5) to emphasize the point that heterogeneity is not

necessary to generate long memory.

Since we are interested in the overall effect of this noise at the origin on the destination

via every possible pathway, we sum of pathways of any length , after weighting (via )

proportionally to the effective number of pathways of length  and the “strength” of their

contribution. As such, the sequence  may incorporate information about both the network

topology and the overall average “gain” or “amplification” of the pathways of length . We

will now investigate the behavior of the power spectrum of ̄ as ̄ → ∞ as a function of

the asymptotic behavior of the sequence of weights .

Theorem 1 Let Assumptions 1-2 hold. Let 0 = 1 and  = −(1−) for  ∈ ]−∞ 1] and

 = 1 2    (i) If  ≥ 0, then there exists a neighborhood N of the origin such that for all

 ∈ N\{0}, the power spectrum of ̄ satisfies

lim
̄→∞

|̃̄ ()|2 ≡ |̃∞ ()|2 =  ||−2 + 
¡||−2¢ (3)

for some  ∈ R\ {0} (with the convention that ||−2 ≡ |ln |||2 for  = 0) (ii) If   0 (or,

more generally, whenever
P∞

=0 || ∞), then lim̄→∞ |̃̄ ()|2 ≡ |̃∞ ()|2 = +  (1) for

some  ∈ R.

The proof of this Theorem, given in the Appendix, can be informally outlined as follows:

The spectal representation of the series
P∞

=0 
 is

P∞
=0  (̃ ())


, which is very closely

related to a Taylor series of the function (1− )
−
, for our choice of sequence . Since

̃ () = 1−+ () for some  6= 0 under our assumptions, combining these results yields
a spectral representation of the form (1− 1 + +  ())

−
= −− + 

¡
−

¢
, i.e., a

power spectrum of the form ||−2.
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The fact that the overall response is an infinite sum over the response of various path

lengths makes it possible for the overall impulse response to not be summable, although

individual agents have a summable impulse response function. Intuitively, long memory

arises because each additional convolution lengthens the tail of the impulse response to the

input noise. Note that the lengthing of the tail can occur even if the onset of the agents’

response is instantaneous (i.e. the support of the function  (·) include 0). Of course, long
memory cannot arise if the agents only have an instantaneous response, but that case is

ruled out by Assumption 1(iii).

The assumed behavior for  may seem specific, but other natural possibilities either

yield uninteresting or implausible results. One obvious generalization is  = −(1−)

for   ∈ R. However, the   0 case falls under case (ii) of Theorem 1 and yields a

short memory process. The case   0 yields a spectrum that diverges at all  such that

|̃ ()|  − and not just at  = 0. In that case, even a perturbation of a finite duration
would magnified by the network to such an extent that the overall economy would leave

the local equilibrium considered in a finite time and visit another equilibrium. The process

would then presumably repeat itself until a stable equilibrium (with non-explosive ) is

found. In a sense, the economy should plausibly self-organize to rule out cases where ̃∞ ()
diverges for  6= 0. In this sense,  = 0 is the only nontrivial and plausible case.
One may be concerned that the long memory result of Theorem 1 appears to hold only

under very specific circumstances. However, one has to realize that, realistically, the economy

consists of many networks with different characteristics and the overall response to noise will

be determined by a sum of the response of all of these networks. Perhaps many of them will

have rapidly decaying  that yield short memory processes. But it only takes a few subsets

of the networks with a slowly decaying  to obtain long memory behavior overall, since the

long memory contributions will dominate all other short memory contributions at small .

The following theorem makes this idea of negligibility of short memory processes relative

to long memory processes more precise. It also shows that the conclusion of Theorem 1 is

robust to various deviations from a specific power law behavior for the .

Theorem 2 Let Assumptions 1-2 hold. Let  and 
0
 be two sequences such that

P∞
=0 | − 0| 

∞. Then, the corresponding ̃∞ () and ̃0∞ () are such that (i) |̃∞ ()− ̃0∞ ()| is contin-
uous and uniformly bounded in a neighborhood N of the origin and (ii) whenever |̃∞ ()| =
 ||−2 + 

¡||−2¢ (for  ∈ R and  ∈ R+) we also have |̃0∞ ()|2 = ̃ ||−2 + 
¡||−2¢

for some ̃ ∈ R (with ̃ =  if   0).

Since we have so far considered the effect of the introducing noise at one point of the

network, it is natural to next consider what happens when multiple sources of noise are

introduced at various points in the network. Let us consider independent noise input at

various point of the network. This is without fundamental loss of generality since dependent

noise could, in principle, simply be modeled by constructing a new network describing how
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a common shock is fed to different point of the orginal network. That is, for any network

affected by dependent noise, there exists a bigger network (including the original network

plus a parallel network propagating the noise to different points of the original network) with

independent noise sources that is equivalent to it.

The power spectrum of a linear combination of multiple independent processes is simply a

linear combination of the power spectrum of the individual processes (with squared weights).

It follows that the result of Theorem 1 can be trivially extended to conclude that the power

spectrum resulting from independent noise introduced at any number of points in the network

would also behave as ||−2 near the origin. We can also relax the assumption of a network
of homogenous agents (i.e. sharing a common ). This extension is discussed in Section 2.5.

In the case where the limiting power spectrum |̃∞ ()|2 is integrable (which occurs in
Theorem 1 for   12), we can also establishing a stronger form of convergence that implies

the existence of a stationary limiting process ∞ () with a power spectum of the form ||−2
as ||→ 0.

Theorem 3 Let the Assumptions of Theorem 1 hold. Let L = R for continuous processes
and L = [− ] for discrete processes and assume that |̃ ()|  1 for  ∈ L\ {0} and that
|̃ ()| is uniformy bounded for  ∈ L. IfP∞

=0 || ∞ or if   12, there exists a station-

ary process ∞ () with spectrum ̃∞ () ≡ lim→∞ ̃ () and corresponding moving average

representation ∞ () such that
R
L |̃ ()− ̃∞ ()|2 → 0,

R∞
0
| ()− ∞ ()|2 → 0 and


£| ()− ∞ ()|2

¤→ 0 for almost any given  ∈ R and R∞−∞
£| ()− ∞ ()|2

¤
 () →

0 for a given absolutely integrable, bounded and continuous weighting function  ().

One can also establish a similar convergence result that covers both integrable (  12)

and non integrable ( ≥ 12) limiting power spectra |̃∞ ()|2 by focusing on increments of
the processes. Working with increments is a standard technique (see Mandelbrot and Ness

(1968) and Comte and Renault (1996), for instance) that offers the advantage of providing

finite-variance quantities even in the presence of nonstationarity in the process.

Theorem 4 Let the Assumptions of Theorem 1 hold. Let L = R for continuous processes
and L = [− ] for discrete processes and assume that |̃ ()|  1 for  ∈ L\ {0}, that |̃ ()|
is uniformy bounded for  ∈ L and consider the differenced process

∆ () ≡  ()−  (−∆)

for a given ∆ ∈ R and any  ∈ N (with corresponding moving average representation

∆ () ≡  () −  (−∆) and spectrum ∆̃ () ≡
¡
1− ∆

¢
̃ ()). Then, there ex-

ists a stationary process ∆∞ () with moving average representation6 ∆∞ () ≡ ∞ () −
∞ (−∆) and spectrum∆̃∞ () ≡

¡
1− ∆

¢
̃∞ () satisfying

R
L |∆̃ ()−∆̃∞ ()|2 →

6We take the convention that ∞ () = 0 for   0.
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0,
R∞
0
|∆ ()−∆∞ ()|2  → 0 and 

£|∆ ()−∆∞ ()|2
¤ → 0 for almost any given

 ∈ R and
R∞
−∞

£|∆ ()−∆∞ ()|2
¤
 ()  → 0 for a given absolutely integrable,

bounded and continuous weighting function  ().

Theorems 3 and 4 thus confirm that our approach does not merely amount to studying a

limiting hypothetical case, but that the limit is reachable as an actual well-defined process.

These theorems also show that our conclusions hold whether we take the limit as  → ∞
before or after calculating the spectrum.7

2.4 Network models

An important observation is that if an “output” is sent to multiple subsystems of the net-

work, its effect tends to be diluted by the number of recipients. For instance, if an agent

experiences an exogenous increase in income, its overall expenditure and savings may in-

crease in proportion to the increase, but such increases will be distributed across multiple

categories of goods and services and the increase will be proportionally less in each specific

category. Similarly, an exogenous increase in the availability of some material or goods will

be spead over the multiple agents that make use of it and the effect on one agent (say, via

a price change) will be reduced in proportion to the number of competing agents.

Iterating this argument leads to the conclusion that one should not obtain the coefficients

 in Equation (2) by summing the number of pathways of length  connecting the origin

and a given destination. Instead, one should obtain  by taking the number of pathways

of length  connecting the origin and a given destination and normalizing it by the total

number of pathways of length  reaching any destination. In other words, the weight 
assigned to pathways of length  should not be related to the raw number of such pathways,

but rather to the fraction of such pathways that actually reach a given destination, among

all pathways of length  starting at a given point. If such a normalization were not per-

formed, any noise introduced into the network would be endlessly exponentially magnified,

yielding a completely unstable system – a clearly unrealistic setup. The observation that

the coefficients  should represent the fraction of pathways of length  reaching a given

destination therefore indicates that the coefficients  can be obtained by evaluating the

probability that a random walk on the network (started at the origin) will land on a given

node of the network after  steps.

Of course, the  could, in principle, also be affected by the “gain” of each subsystem.

Thus, in general,  would not exactly equal the probability of reaching the destination.

For simplicity, we do not explicitly consider such deviations in the present section. Small

deviations could be straightforwardly accounted for via Theorem 2 and we consider larger

deviations in Sections 2.5 and 3 below.

7The limit as ||→ 0 is always taken last, because this is the only way to study the rate of divergence of

the spectrum near the origin.
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2.4.1 Periodic and finite networks

We first consider random walks on a simple periodic lattice and calculate the probability of

landing on a given node of the network after  steps, starting from the origin.

Theorem 5 Let  and  be sequences of random variables taking values in Z ( ∈
N\ {0}) and satisfying +1 = +, where 0 = 0 and where  is iid with a distribution

symmetric about  = 0, supported on a finite subset of Z and such that Var [] is positive

definite. Then, for any  ∈ Z, there exists a finite   0 such that

 [ = ] = −2 +
¡
−1−2

¢


If we apply this theorem with  uniformly distributed on a finite subset of Z, we
can conclude that the fraction of paths of length  reaching a given point in the network

scales as −2. The form of this result could have been easily anticipated from the central

limit theorem since, informally, the density of a sum near the origin would scale as −2.
However some care must taken to ensure that the result holds for probabilities at a point

for a discrete distribution and to secure a bound on the remainder term, which is shown to

be always absolutely integrable so that it can only contribute a short-memory component to

the process.

Interestingly,  = 1 (a linear network) gives us  scaling as 
−12 and therefore a long

memory process of order 1 − 12 = 12 by Theorem 1. Similarly  = 2 gives an order of

1−22 = 0 (i.e. a spectrum with a logarithmic divergence at the origin). For  = 3 4    the
sequence −2 is absolutely summable, so that no long memory results. The case  = 0 is
treated separately below and can be interpreted as a random walk on a small finite network.

In this case, we essentially obtain a constant  corresponding to the  = 1 case of Theorem

1, a long memory process of order (i.e. a unit root). This occurs because the noise “feeds

back” an infinite number of times into each subsystem and since the network is finite, none

of the noise ever “diffuses” to infinity.

Theorem 6 Let  be a sequence of random variables taking value in a finite set F ⊂ N and
such that for any   ∈ F and any  ∈ N, we have (i)  [+1 = | = −1     0] =

 [+1 = | = ], (ii)  [+1 = | = ] =  [+2 = |+1 = ] and (iii) for any

  ∈ F, there exists ∆ ∈ N such that  [+∆ = | = ]  0. Then, for any 0 1 ∈ F,
there exists  ∈ ]0 1[, a finite 0  0 and 1     −1 ∈ C for some   #F such that8

 [ = 1|0 = 0] = 0 +

−1X
=1


2 + ((1− )


) 

where the  for  = 1      − 1 satisfy  = ∗−, where ∗ denotes complex conjugation.
8The complex exponential term could be written in terms of sin and cos, to emphasize that the sum is

real-valued, however this yields a cumbersome expression that depends on wether  is odd or even and that

complicates subsequent proofs.
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By Theorem, 1, the constant term yields a ||−2 behavior for the spectrum while the

 ((1− )

) remainder only yields a short-memory contribution. The oscillatory terms of

the form 2 are not covered by Theorem 1 and demand a separate treatment. These

oscilatory terms may appear if the network contains rings with unidirectional connections.

Fortunately, as the following Theorem shows, these terms also do not affect the ||−2 behavior
of the power spectrum introduced by the constant term 0.

Theorem 7 Let Assumptions 1-2 hold. If  =
P−1

=1 
2 (with  = ∗−) then

lim
→0

|̃∞ ()|2 ∞

With these simple networks, we can already obtain common integrated and fractionally

integrated processes, but there some unsatisfactory gaps in the exponents possible. Fortu-

nately, any fractional power of frequency can be obtained by considering a more general class

of network.

2.4.2 Fractal networks

Actual social or economic networks have been observed to exhibit some self-similarity across

scales (Song, Havlin, and Makse (2005), Inaoka, Ninomiya, Taniguchi, and Takayasu (2004)),

suggesting that fractals provide a useful model of such networks. Thanks to the fact that

there is a direct relationship between random walks and the coefficients  for the network,

we can borrow results from the literature studying random walks on fractals (e.g., Havlin

and Ben-Avraham (1987)) to identify network geometries with associated power laws for

diffusion behavior that generate coefficients  with almost any power-law behavior, thus

leading, via Theorem 1, to long memory processes of any fractional order. This literature

has observed that the probability of a random walker to visit a given point after  steps

scales as − asymptotically, where  is some positive real number related to the geometry
of the network. There is therefore a rather direct analogy with diffusion on periodic lattices in

Euclian space. This observation comes from a combination of formal analytical treatments of

various self-similar fractals (e.g. the well-known Sierpinski Gasket, see Figure 2a) as well as

from thorough Monte Carlo simulations on random fractals (statistically self-similar fractals,

e.g., see Figure 2b) guided by renormalization arguments (Havlin and Ben-Avraham (1987)).

We outline these arguments heuristically below.

Interestingly, the exponent  is not merely equal to 2, where  is the fractal dimen-

sion of the network, as a direct analogy the periodic lattices would have suggested. Instead,

 = , where  is an exponent characterizing the degree of so-called anomalous dif-

fusion (Havlin and Ben-Avraham (1987)). For a conventional random walk  = 2 in any

dimension, but  generally differs from 2 for fractal networks. The source of this distinction

is that, a random walk on a fractal typically lacks a characteristic property of a conventional

random walk: Two jumps (say ,) are not necessarily such that  [] = 0 for  6= ,

13



(a) (b)

Figure 2: Examples of (a) a self-similar fractal, the well-known Sierpinski Gasket and of (b)

a statistically self-similar fractal obtained by diffusion-limited aggregation (DLA).

thus leading to the failure of the usual conclusion that
¡

£kk2

¤¢12
= 

¡
12

¢
. A power

law of the form
¡

£kk2

¤¢12
= 

¡
1

¢
is nevertheless maintained, thanks to a fractal’s

self-similarity, albeit with a  6= 2.
The scaling − of the  coefficients can then be heuristically understood as follows.

The (random) endpoint of an  step random walk has a distribution of a width of order

 = 1 . If a steady-state distribution exists (up to an -dependent scaling), and if it

admits a density relative to the underlying fractal network of dimension  , this density

must be normalized by a − prefactor in order to have unit total probability at all .
Combining these two power laws leads to a scaling of − for the density at a given point
in the network.

It is well-known that one can construct subsets of -dimensional space that are fractals

of any fractal dimensions  ∈ [0 ]. This can be illustrated using, for instance, a self-similar
fractal F , i.e., one that has the property that

F =
[

=1
 (F)

where  (F) denotes the set F transformed by the function  (·), which is an isotropic
scaling (by a factor denoted by the scalar ||), followed by a rotation and a translation.
The fractal dimension of such a set, under an easy-to-satisfy “open set condition”9 is given

9There exists a nonempty open set S such that  (S) ⊆ S and  (S) ∩ 0 (S) = ∅ for  6= 0 for
 0 = 1    
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by the solution  to the equation (Bandt and Graf (1992)):

1 =

X
=1

|| 

Taking, for instance, a fractal consisting of  copies of itself with identical scaling factor

|| =  we obtain 1 =  , or

 = − ln
ln 



from which it is clear that a continuum of values10 of  can be obtained by suitable choices

of  and  ∈ [0 1[.
The above discussion, in conjunction with Theorem 1, then leads to the conclusion that

the divergent spectrum characteristic of fractionally integrated processes of any order can be

naturally obtained from the collective behavior of a population of linear homogenous agents

interconnected through a (possibly) fractal network. Two interesting simple special cases

stand out: The case of a power spectrum of the form ||−2 with  = 12 in fact does not

require a fractal network at all: A simple linear chain suffices. Also, the unit root case just

arises from a finite network.

2.5 Heterogeneity

To allow for heterogeneity, we consider a network with the following properties. Each node

 ∈ N of the network is characterized by a different convolution operation  with spectral

representation ̃ (). Even though a given node may have multiple inputs and outputs, we

consider a single  per node. This assumes that the inputs have the same effect on the

ouputs (which may be numerous, but identical). This assumption is actually without loss of

generality because having a single node with multiple inputs with different effects on multiple

outputs can merely be alternatively represented by multiple nodes with different .

We view the  as being picked at random once at  = −∞ and kept constant thereafter.

We make no assumption regarding the covariance structure of ̃ () between different . We

do not require independence between the ̃ () associated with different nodes , although we

do need to contraint the amount of dependence. This section provides conditions under which

the conclusion of Theorem 1 actually holds with probability 1 for such randomly constructed

networks. A key feature of the result is the existence of an average spectral representation

̄ (). In essence, there are so many very long pathways that connect the origin and the

destination, that the fluctuations in the  () across the nodes quickly average out to a

10Given this flexibility in  , the fact that fewer analytic results are known about the exponent  is not

a real concern. Even if there were gaps in the possible values of  (and there is no evidence of it (Havlin

and Ben-Avraham (1987))), it seems exceedingly unlikely that such gaps could not easily be “filled-in” by

adjusting  so that any value of  in [0 1] can be reached.
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single effective value ̄ () representative of the whole network. Stating this result requires

us to be a bit more specific about the geometry of the network:

Definition 5 Let P denote the set of paths connecting node  to  in  steps (each element

 of P is a -dimensional vector of integer specifying which sequence of nodes are visited

by the path). Let |P| denote the number of elements in P. Finally, for two given nodes

  of the network and any ̄ ∈ N, let

̄ =

̄X
=0



⎛⎝ 1

|P|
X

∈P

Y
=1



⎞⎠0 (4)

where the inner parenthesis is conventionally 0 if |P| = 0 and where the product stands
for the composition of multiple convolution operators.

This definition is necessary because each pathway of length  is associated with a different

sequence of convolutions. Note that we average over paths rather than summing, in accor-

dance with the discussion at begining of Section 2.4. Under the normalization convention

used in Equation (4), the coefficients  still have the interpretation of the fraction of path

of length  reaching the destination (because we divide by |P|, the number of pathways
reaching the destination, not the total number of pathways of length ).

Theorem 8 Let 0 satisfy Assumption 2 Let ̄ () ≡ lim→∞
³

1
|P |

P
∈P  [

Q

=1 ̃ ()]
´1

.

Assume that ̄ () exists, satisfies Assumption 1 and is such that

2

⎡⎣⎛⎝ 1

|P|
X

∈P

Ã
Y
=1

̃ ()

̄ ()
− 1
!⎞⎠2⎤⎦ ≤ −3− (5)

for some    0 for all  in some neighborhood of the origin. If  = (max {1 })−(1−)
with  ∈ ]−∞ 1], then the conclusion of Theorem 1 holds with probability 1.

Condition (5) is stated in somewhat high-level form for maximum generality but it is

relatively easy to realize that it is a weak restriction. This condition places a limit on the

order of magnitude of the variance of a certain average. This average is taken over all

possible pathways and effectively samples the spectral representation of a large number of

nodes. Typically, the number |P| of possible pathways of length  is an exponentially

increasing function of  (because at each node there are certain number of possible ways to

go and these alternative multiply to give the number of paths). Hence, unless the covariance

of the summand across two pathways is extremely strong, we expect an exponential decrease

of the variance of the average with , which easily satifies the bound (5). The prefactor  is
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at worst polynomially increasing (in the cases of interest here, where the network is locally

stable) and thus does not destroy the exponential rate. It is therefore natural to expect that

the covariance of the summand across pathways should not to be an issue in most networks.

Another key point is that (5) bounds the heterogeneity in the reponse of paths while placing

only weak restrictions on the heterogeneity in the response of agents. For instance, one could

argue that very large firms are very different from other, smaller, firms in the economy, thus

introducing substantial heterogeneity in the agents’ responses. However, it is likely the such

large firms will constitute some of the links for most long paths, so that most long path are

still quite similar to each other, although agents along the path are not.

3 Discussion

While our framework does not generate new classes of processes, it does provide a structural

basis for popular models that have been proposed, such as fractionally integrated processes

and their extensions (e.g., Mandelbrot and Ness (1968), Comte and Renault (1996), Baillie

(1996), Comte and Renault (1998)). Nevertheless, in this section, we address a few potential

objections to the framework proposed here.

One may argue that our results are in big part due to the assumption of an infinite

network, while real networks are, in reality, finite. However, the behaviors of finite and

infinite networks are similar in a way that makes then empirically difficult to distinguish for

the following reason. It is obvious to see that convergence of the series
P∞

=0  (̃ ())

(used

in the proof of Theorem 1) occurs at an exponential rate for any  such that |̃ ()|  1.

Hence, the series, truncated to a finite number of term, tends to be very close to its limiting

value. A finite series represents a set of pathways that can comfortably fit within a finite

network, so that a finite a network can closely emulate the behavior of an infinite one.

Furthermore, we typically have |̃ ()|  1 for a region of the form || ≥  for any   0 (our

Assumption 1 implies this at least within a neighborhood of the origin, but it is often true

over the whole spectrum). A region of the form || ≥  is precisely the only portion of the

spectrum that is empirically accessible, since the necessarily finite duration of recorded time

series limits the smallest frequency for which the spectrum can be reliably determined.

One may also be tempted to conclude that our findings do not necessarily add much to

the existing literature attempting to explain the occurence of fractionally integrated pro-

cesses. Notably, it is known that fractionally integrated processes can arise from additive

aggregation of an infinite number of heterogenous times series following more elementary

processes (Granger (1980)). However, in this picture, long memory only arises if some of the

original time series arbitrarily closely approach a unit-root process. That is, one needs to as-

sume almost long memory behavior at the individual level to obtain collective long memory

behavior. Moreover, the generation of a fractionally integrated process in this picture is the

consequence of an assumed fractional power law behavior in the density of the autoressive
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parameter in the population. In contrast, in our framework, all subsystems on their own have

short memory and none of them even approach a long memory behavior. Long memory only

results from the network structure and fractional exponents arise from geometric arguments.

Also, in our approach, heterogeneity is not necessary to yield long memory (although it is

not inconsistent with it, since our results are robust to heterogeneity).

Although Theorem 1 focus on pointwise convergence of the spectrum, one can easily

show that convergence is, in fact, uniform over N\ [− ] for any   0. It is not possible to
show uniform convergence over a set of frequency containing the origin because the limiting

spectrum is discontinuous – it is not a limitation of our approach.

One may also wonder what happens if the coefficients  do not follow a power law.

Theorem 2 already handles “small” (i.e. absolutely summable) deviations from power laws.

More generally, it is possible to extend Theorem 2 to show that the ||−2 behavior can
be robust to deviations from −(1−) in the coefficients  than are bigger than absolutely
summable. For instance, consider the case where the  (for  ≥ 1) admit an expansion of
the form

 =

̄X
=1


−(1−) + 0 (6)

where 1  2  · · ·  ̄ and
P∞

=1 |0| ∞. One can apply Theorem 1 to each individual
term of the expansion and Theorem 2 to remainder 0 to yield the conclusion that the

resulting power spectrum |̃∞ ()|2 would then have the behavior

|̃∞ ()|2 =
̄X

=1


¡||−2¢ = 

¡||−21¢ as ||→ 0

since 1   for  = 2     ̄. Taking ̄ finite is without much loss of generality, since

eventually, for some , the power law would become absolutely integrable (if consecutive

exponents  are at least some finite distance from each other).

One could argue that our result are in part driven by the normalization of the spectrum

at the origin ̃ (0) = 1 and our focus on the geometric origin of the coefficients . If ̃ () is

everywhere (including at the origin) less than 1 in magnitude, then a short memory behavior

invariably results. However, our results are still applicable even if many subsystems have

the property |̃ ()|  1, as long as some subsystems to have the property ̃ (0) = 1. In

that case, we can “prune” the network from its |̃ ()|  1 subsystems (since they would

only contribute to a short-memory response) and focus on the “backbone” of the network

containing the subsystems with ̃ (0) = 1. The fractional exponent  (see Section 2.4) would

then simply be the value characterizing the fractal structure of the backbone rather than

the entire network. It should also be noted that the case ̃ (0) = 1 is not at all pathological:

It merely corresponds to the case where the output is of the same magnitude as the input

in the limit of slow variation in input (it is not a “unit root”). It is therefore a plausibly

common occurence.
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One may argue that our network models and associated spectral representations are too

simple and regular to have anything to do with real economic networks. While real networks

are admittedly more complex and less regular than assumed here, we feel that obtaining

formal asymptotic results is important to illustrate that simple ingredients and a simple

derivation can yield complex long memory behavior. Without this relative simplicity, one

would have to rely on extensive numerical analysis of realistic complex networks and attempt

to make a convincing case that the numerically obtained power spectra “look like” the ones

of fractionally integrated processes.

4 Empirical Evidence

One way to empirically assess if the proposed mechanism for long memory generation is

plausible is to verify if the  coefficients in a real economic network indeed obey a power

law. For this purpose, we use the so-called “input-output accounts” database compiled by

the Bureau of Economic Analysis describing interactions between ∼ 460 sectors of the US
economy in 2010. We construct the network following the same procedure as in Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), considering the existence of a “link” between

two sectors of the economy if one sector constitutes more than 5% of the inputs (in monetary

value) of the other sector.

The  coefficients can be directly calculated via Monte Carlo by generating a large

number of random walks on that network and by keeping track of the fraction of those walks

that visit a given point of the network as a function of path length . In our application,

we simply keep track of the fraction of random walk that return to their starting point in

 steps as function of . At each , we generate 10000 random walks with random starting

points to obtain Figure 3.

This exercise reveals evidence of a power law  = − with an exponent of  ≈ 084 (with
a standard deviation of 007) that persists over an order of magnitude, as obtained with a

standard linear least squares regression of the data in logarithmic form. This corresponds to

a power spectrum behaving as ||−032 near the origin, resulting in network behavior that is
between white noise and a random walk. This finding supports the plausibility of the long

memory generation mechanism we propose.

Although this is, strictly speaking, a finite network, one can still observe a behavior

that would be expected from an infinite network for “short” paths, because “short” paths

do not “feel” the boundary of the network. Here, we are considering paths up to a length

of 50, which indicates these “short” paths can in fact be fairly long without seeing signs

of the finiteness of the network. Of course, if we increased the cut off (to  ≈ 75, in this
example), the graph would flatten out, as would be expected for a finite network (since the

 would be asymptotically constant in that case). As explained at the beginning of Section

3, since the convergence of the power spectrum is exponential for any frequency outside of
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Figure 3: Evidence of power law scaling − in the  coefficients (i.e. the probability of
reaching a given point  of the network after  steps of a random walk ) in a network

representing the US economy as ∼ 460 interconnected sectors.

a small neighborhood of the origin, obtaining a power law behavior for small  is sufficient

to emulate the response of an infinite network. Another potential concern is the presence of

fluctuations around the power law that appear large and roughly constant over path length

. However, since the figure is plotted on a logarithmic scale, deviations that appear constant

in magnitude are in fact exponentially decaying in  and are therefore summable, so that

they would not affect the power law behavior of the spectrum near the origin.

5 Conclusion

While numerous plausible mechanisms generating a long memory behavior have been pro-

posed, this paper identifies a different and arguably more universal mechanism that may be

active, regardless of the specific dynamic behavior of any one agent in the economy. We

show that long memory can naturally arise when a large number of simple linear homoge-

nous economic subsystems with a short memory are interconnected to form a network such

that the outputs of each of the subsystem are fed into the inputs of others. This networking

picture yields a type of aggregation that is not merely additive, resulting in a collective

behavior that is richer than that of individual subsystems. Interestingly, the long memory

behavior is found to be almost entirely determined by the geometry of the network while

being relatively insensitive to the specific behavior of individual agents. Specifically, we find
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that, under weak regularity conditions, the power spectrum of the network’s response to

exogenous short-memory noise can mimic a fractionally integrated processes (), with 

related to the scaling properties of the network (e.g. its fractal dimension).

As such, this work not only provides a plausible structural model for the generation of

fractionally integrated long memory processes but also demonstrates that long memory is

possible without nonlinearity, heterogeneity, unit roots or near unit roots, learning or struc-

tural breaks (although these mechanisms can obviously play a role as well). The proposed

approach also make a direct connection between the literatures focusing on long memory pro-

cesses, economic networks, diffusion on fractals, and applications of fractals in economics.

A Proofs

Definition 6 To avoid ambiguities due to the multivalued nature of the fractional power

function, we define:

()
 ≡

½ || 2 if   0

|| −2 if   0

Moreover, the following convention is useful to avoid special cases: If  = 0, then

()
 ≡ − ln () ≡

½
ln ||+ 2 if   0

ln ||− 2 if   0

Lemma 3 Assumption 1 implies that (i) for some finite  ∈ R+\ {0}, ̃ () = 1++

 () and |̃ ()|2 = 1−2 + 
¡
2
¢
as → 0.and (ii) there exists a neighborhood N of the

origin such that |̃ ()|  1 for all  ∈ N\{0} 

Proof. Assumption 1(i) implies that ̃ () is everywhere twice continuously differentiable.

Thus, in particular, near the origin, we have the expansion ̃ () = 0−1− 1
2
2

2+
¡
2
¢

with 0 1 2 finite. Assumption 1(i) also implies that the moment theorem applies up to

order 2, so that  =
R∞
0

 () . By Assumption 1(ii) 0 = 1. Since  () is real, the real

part of ̃ () is symmetric while its imaginary part is anti-symmetric. Therefore, 1 and 2
must be real. Assumption 1(iii) implies that 1 ∈ R\ {0} and the first conclusion of the
lemma follows. Next, we note that |̃ ()|2 = ¡1− 1

2
2

2
¢2
+ 21

2 + 
¡
2
¢
= 1 − 2

2 +
1
4
22

4+21
2+ 

¡
2
¢
= 1− (2 −21)

2+ 
¡
2
¢
, where 2−21  0 by assumption 1(iv).

It follows that |̃ ()|  1 in some neighborhood of the origin.

Lemma 4 Assumption 2 implies that ̃ () =  +  (1) for some  ∈ R\ {0}.
Proof. Assumption 2 requires that  ∈ Y, which implies that the Fourier transform ̃ ()

is continuous, thus implying an expansion of the form  +  (1). Moreover  () is real, so

 = ̃ (0) is real as well and nonzero by Assumption 2.
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Proof of Theorem 1. By Assumption 1 and Lemma 3, (i) for some finite  6= 0,

̃ () = 1−  +  () as  → 0.and (ii) there exists a neighborhood N of the origin such

that |̃ ()|  1 for all  ∈ N\{0}. Also, by Lemma 4, ̃ () =  +  (1) as → 0 for some

 ∈ R\ {0}.
Consider first the special case11  = 1, so that  = 1. By Lemma 2, the spectrum

of  is given by (̃ ())

̃ () and thus the spectrum of  is

P

=0 (̃ ())

̃ () (and

the corresponding power spectrum is |P

=0 (̃ ())

̃ ()|2). For all  ∈ N\{0}, the seriesP∞

=0 (̃ ())
 ≡ lim→∞

P

=0 (̃ ())

is convergent because |̃ ()|  1 and we can directly

evaluate this geometric series:

̃∞ () = ̃ ()

∞X
=0

(̃ ())

= ̃ ()

1

1− ̃ ()

= ( +  (1))
1

1− 1 ++  ()
= ( +  (1))

1

+  ()

=  (1 +  (1))
−1



1

1 +  () 
= 

−1



1 +  (1)

1 +  (1)

=
−1


(1 +  (1)) =

−1


+ 

¡
−1

¢
Next, we consider the more general cases where  ∈ ]0 1[. Consider the Taylor series

 (1− )
−
=
P∞

=0 
0


 for ||  1 for any nonzero constant , where

0 = 
1

!

Y
=1

(+  − 1)

(with 00 ≡  by convention) and note that, for  ∈ N\{0},

̃0∞ () ≡ ̃ ()

∞X
=0

0 (̃ ())

= ̃ () (1− ̃ ())

−
=  ( +  (1)) (1− 1 ++  ())

−

=  ( +  (1))− (+  ())
−
= − ()− (1 +  (1)) (1 +  () )

−

= − ()− (1 +  (1)) =
−

()
 + 

¡||−¢
There remains to show that  is sufficiently close to 

0
 so that ̃∞ () has the same asymp-

totic behavior as ̃0∞ (). By Theorem 2 (below), it is sufficient to show that
P∞

=0 | − 0| 
∞. To this effect, note that

0 = 

Y
=1

(+  − 1)


= 

Y
=1

µ
1− ̄



¶
11This case could be combined with the more general case  ∈ ]0 1[ below, but this simple case illustrates

the idea of the proof with the least technical complications.
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where ̄ ≡ 1− . Let  = ln (
̄0) and observe that

 = ̄ ln+

X
=1

ln
³
1− ̄



´
= ln (1− ̄) + ̄ ln+

X
=2

ln
³
1− ̄



´
= ln (1− ̄) + ̄

X
=2

(ln  − ln ( − 1)) +
X

=2

ln
³
1− ̄



´
= ln (1− ̄)− ̄

X
=2

ln
 − 1


+

X
=2

ln
³
1− ̄



´
= ln (1− ̄)−

X
=2

̄ ln

µ
1− 1



¶
+

X
=2

ln
³
1− ̄



´
= ln (1− ̄) +

X
=2

µ
ln
³
1− ̄



´
− ̄ ln

µ
1− 1



¶¶
(7)

Note that since ln (1− ) = −− 1
2
2 + (3) as → 0, the summand in (7) is such that

ln
³
1− ̄



´
− ̄ ln

µ
1− 1



¶
= −̄


− 1
2

³ ̄


´2
− ̄

µ
−1

− 1
2

1

2

¶
+

¡
−3
¢

= −̄

− ̄2

2
−2 +

̄


+

̄

2
−2 +

¡
−3
¢

=
̄ (1− ̄)

2
−2 +

¡
−3
¢

Since −2 is a summable sequence, it follows that the series (7) converges, i.e. ∞ ≡
lim→∞  is well-defined and finite. We can also conclude that

 − ∞ =

∞X
=+1

µ
ln
³
1− ̄



´
− ̄ ln

µ
1− 1



¶¶

=

∞X
=+1

µ
̄ (1− ̄)

2
−2 +

¡
−3
¢¶

≤
Z ∞



µ
̄ (1− ̄)

2
−2 +

¡
−3
¢¶



= 
¡
−1

¢
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Now, set the constant  = exp (−∞) and consider  = −̄. We have

0 −  = 0 − −̄

= −̄ (0
̄ − 1)

= −̄ ( exp ln (0
̄)− 1)

= −̄ ( exp ()− 1)
= −̄ (exp ( − ∞)− 1)
= −̄

¡
exp

¡

¡
−1

¢¢− 1¢
= −̄

¡
1 +

¡
−1

¢− 1¢
= −̄−1

Since
P∞

=1 
−̄−1 ∞, we haveP∞

=1 |0 − | ∞ and the result follows.

For  = 0, consider − ln (1− ) =
P∞

=1 
0


 with 0 =
1

for  ≥ 1 and 00 = 0. Note

that, for  ∈ N\{0},

̃0∞ () ≡
∞X
=0

0 (̃ ())

= − ln (1− ̃ ()) = − ln (1− 1 ++  ()) = − ln (+  ())

= − ln ( (1 +  (1))) = − ln () + ln (1 +  (1))

= − ln () +  (1) = − ln ()− ln () +  (1) = − ln () + (1) = − ln () +  (|ln |||)
The same conclusion holds for ̃∞ () since 0 and  differ only for  = 0, implying thatP∞

=0 | − 0| ∞ and enabling the use of Theorem 2.

We now consider the final case where either   0 or
P∞

=0 || ∞. Since   0 impliesP∞
=0 ||  ∞, we focus on the latter condition. Conclusion (i) of Theorem 2 with 0 = 0

delivers the desired result: ̃∞ () =  +  (1).

Proof of Theorem 2. Let ∆ ≡  − 0 and let ∆̃ () = ̃ () − ̃0 () denote
the corresponding spectrum. To prove the result, we exploit the fact that a uniformly

convergent sequence of continuous functions converges to a continuous function. Since, by

Assumption 1 and Lemma 3, |̃ ()| ≤ 1 for  ∈ N , some neighborhood of the origin and
since

P∞
=0 |∆| ∞ by assumption, we can write, for  ∈ N ,

|∆̃̄ ()−∆̃∞ ()| =
¯̄̄̄
¯

∞X
=̄+1

∆ (̃ ())


¯̄̄̄
¯ ≤

∞X
=̄+1

|∆| |̃ ()| ≤
∞X

=̄+1

|∆|→ 0

as ̄→∞. Therefore, ∆̃̄ () converges uniformly to ∆̃∞ () as ̄→∞ for  ∈ N . This,
combined with the fact that ∆̃̄ () is continuous in  for any finite ̄ and  ∈ N (since it

is a finite sum of continuous functions) implies that ∆̃∞ () is continuous in N and we also

have ∆̃∞ () =  +  (1) as → 0. It follows that, for  ≥ 0, and as → 0,

̃0∞ () = ̃∞ () +∆̃∞ () =  ||− + 
¡||−¢+ +  (1) = ̃ ||− + 

¡||−¢
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for some finite nonzero ̃ (that equals  if   0).

Proof of Theorem 3. First note that |̃ ()|  1 for  ∈ L\ {0} implies that ̃ () →
̃∞ () pointwise for any  ∈ L\ {0}, since

|̃ ()− ̃∞ ()| =
¯̄̄̄
¯̃ ()

∞X
=+1

̃ ()


¯̄̄̄
¯ ≤ |̃ ()|

∞X
=+1

|| |̃ ()|

≤ |̃ ()|
µ
sup


||
¶ ∞X

=+1

|̃ ()| =
µ
sup


||
¶
|̃ ()| (1− |̃ ()|)−1 |̃ ()|+1 

where |̃ ()|+1 → 0 as |̃ ()|  1 for  ∈ L\ {0} and where all the prefactors are finite by
assumption.12

The proof then proceeds by first showing that
R
L |̃∞ ()|2   ∞, thus implying thatR∞

0
|∞ ()|2  ∞, which in turn implies, that there exists some stationary process ∞ ()

with moving average representation ∞ () and with spectrum ̃∞ (). Then, we show that
there exists some ̄ () also satisfying

R
L (̄ ())

2
 ∞ such that

|̃ ()− ̃∞ ()|2 ≤ (̄ ())2

for all , so that, by Lebesgue dominated convergence theorem, lim→∞
R
L |̃ ()− ̃∞ ()|2  =R

L lim→∞ |̃ ()− ̃∞ ()|2  = 0. This implies that
R∞
0
| ()− ∞ ()|2  → 0, from

which the mean square convergence of  () to ∞ () follows by standard arguments (e.g.,
Doob (1953), Chap. XI, Section 9).

The
P∞

=0 || ≡ 1 ∞ case (including the   0 case) is simple:

|̃∞ ()| ≤ |̃ ()|
∞X
=0

|| |̃ ()| ≤ |̃ ()|
∞X
=0

|| 1 = |̃ ()|1 ≡ ̄ ()

|̃ ()− ̃∞ ()| =
¯̄̄̄
¯̃ ()

∞X
=+1

̃ ()


¯̄̄̄
¯ ≤ |̃ ()|

∞X
=+1

|| |̃ ()|

≤ |̃ ()|
∞X

=0

|| |̃ ()| ≤ |̃ ()|1 ≡ ̄ ()

where
R
L |̃ ()|2  ∞.

For the  ∈ ]0 12[ case, we consider some small cutoff ̄  0 and compute a separate

bound for large (|| ≥ ̄) and small (|| ≤ ̄) frequencies.

12Note that if there existed sequence  such that |
| → ∞, then we would have P∞=0 || ≥P∞

=0 |
|→∞. Having  = −(1−) with   12 also rules out |

|→∞.
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To find a bound on |̃ ()| for || ≥ ̄, we note that, by Assumption 1, and Lemma 3,

|̃ ()|2 = 1− 2
2 + 

¡
2
¢
for some 2  0 as → 0 and thus

|̃ ()| ≤ 1− 3
2 (8)

for some 3 ∈ ]0 22[ for all || ≤ ̄ sufficiently small. We can then show that for ̄

sufficiently small, the maximum of |̃ ()| over the set £̄∞£∩L is reached at  = ̄. In the

case where L is infinite, we can rule out a maximum “at infinity” as follows. We must have

lim sup||→∞ |̃ ()| = 0, because any other limiting value, combined with the fact that ̃ ()
has a uniformly bounded first derivative (by Assumption 1(i)) would imply that

R
L |̃ ()|2 

diverges (contradicting that ̃ ∈ L2 (L)). Since the maximum cannot be at infinity, we can

limit the search to bounded sets. But the maximum of |̃ ()| in any set of the form £
̄ ̄

∗¤
for ̄ ̄

∗
 0 is reached at some ∗, by compactness of the set and continuity of ̃ () (by

Assumption 1(i)) and by Assumption (iv), ̃ (∗)  1. Such a ̃ (∗) would eventually be
exceed by

¯̄
̃
¡
̄
¢¯̄
for ̄ sufficiently small since ̃

¡
̄
¢ → 1 as ̄ → 0. This contradiction is

avoided only if ∗ = ̄ for all ̄ sufficiently small. Hence |̃ ()| ≤ 1 − 3̄
2
for || ≥ ̄ for

sufficiently small ̄.

Letting ̄ = 1− , we can then write, for || ≥ ̄,

|̃∞ ()| = |̃ ()|
¯̄̄̄
¯1 +

∞X
=1

−̄ (̃ ())
¯̄̄̄
¯ ≤ |̃ ()|

Ã
1 +

∞X
=1

−̄ |̃ ()|
!

≤ |̃ ()|
Ã ∞X

=0

³
1− 3̄

2
´!

=
|̃ ()|

1−
³
1− 3̄

2
´

=
|̃ ()|
3̄

2
≤ 4 |̃ ()| ≡ ̄ ()

and

| ()− ∞ ()| = |̃ ()|
¯̄̄̄
¯

∞X
=+1

−̄ (̃ ())
¯̄̄̄
¯ ≤ |̃ ()|

∞X
=+1

−̄ |̃ ()|

≤ |̃ ()|
∞X

=1

|̃ ()| ≤ |̃ ()|
∞X

=0

³
1− 3̄

2
´

= |̃ ()| 1

1−
³
1− 3̄

2
´ = |̃ ()|

3̄
2
≤ 4 |̃ ()| ≡ ̄ ()

for some 3 4  0 and where ̃ is such that
R
||≥̄ |̃ ()|2  ≤

R |̃ ()|2   ∞ since

̃ ∈ L2 (R) because  ∈ L2 (R+).
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For || ≤ ̄, since ̃∞ () =  ||− + 
¡||−¢, we have

|̃∞ ()| ≤ 4 ||−

which satisfies
R
||≤̄ ||−2  ∞ for  ∈ [0 12[. Also, since ̃ () = 1++  () (from

Lemma 3), we have, by Lemma 5 (below),

|̃ ()− ̃∞ ()| = |̃ ()|
¯̄̄̄
¯

∞X
=+1

−̄ (̃ ())
¯̄̄̄
¯ = |̃ ()| |̃ ()|

¯̄̄̄
¯
∞X

=1

(+ )
−̄
(̃ ())



¯̄̄̄
¯

≤ |̃ ()| |̃ ()|
d5||eX
=1

(+ )
−̄ |̃ ()| ≤ |̃ ()| |̃ ()|

d5||eX
=1

(+ )
−̄ |̃ ()|

≤ 

2

d5||eX
=1

−̄ ≤ 2
Ã
1 +

Z 5||

1

−̄

!
=



2

³
1 +

£
1−̄¤5||

1

´
=



2

Ã
1 +

µ
5

||
¶1−̄

− 1
!
=



2

µ
5

||
¶1−̄

= 6 ||−

for some finite 5 6  0. Hence, we can set ̄ () = 6 ||− for || ≤ ̄, which is square

integrable over || ≤ ̄ for  ∈ [0 12[.

Lemma 5 Let  → 0 be a real, positive and decreasing sequence and  ∈ [− ], then for
any  ∈ N, ¯̄̄̄

¯
X

=1




¯̄̄̄
¯ ≤ 

2

̄X
=1



where ̄ ≡ d2 ||e (where d·e denotes the “round up” operation).

Proof. Let  () = 
1−−

R 
0
de for  ∈ R+ and note that  () for  ∈ N∗ matches the

partial sum
P

=1 
:

 () =


1− −

Z 

0

de
 =



1− −

X
=1

Z 

−1
de



=


1− −

X
=1



Z 

−1
 =



1− −

X
=1


 − (−1)


=

X
=1




Now, observe that  () traces out a spiral in the complex plane as  increases and let D be

the closed and finite region bounded by the curve  () for  ∈ [0 ̄] and the segment joining
 (̄) with the origin. That is, D contains the first complete “turn” of the spiral (which
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corresponds to terms 1 to ̄ of the series). Since  is decreasing, the region D will also

encloses all subsequent “turns” of the spiral and we can write, for any  ∈ N,¯̄̄̄
¯

X
=1




¯̄̄̄
¯ ≤ max

∈D
kk = sup

∈[0̄]
| ()| ≤ sup

∈[0̄]

¯̄̄̄


1− −

¯̄̄̄ Z 

0

¯̄
de
¯̄ ¯̄

¯̄


=

Ã
sup

∈[−]

¯̄̄̄


1− −

¯̄̄̄!
sup

∈[0̄]

Z 

0

de ≤ 

2

Z ̄

0

de =


2

̄X
=1



Proof. The proof is similar to the one of Theorem 4 and we focus here on the differences.

It is clear that the differenced process ∆ () admits the moving average representation:

∆ () =

Z 

−∞
( (− )−  (−∆− ))  ()

where the kernel  (− ) −  (−∆− ) is absolutely integrable/summable since it is

a difference of two absolutely integrable/summable terms. Its Fourier transform is thus

well-defined and equal to:

∆̃ () =

Z ∞

0

( ()−  (−∆))  = ̃ ()− ∆̃ () =
¡
1− ∆

¢
̃ ()

The pointwise limit of ∆̃ () also poses no problem (as in Theorem 3):

∆̃∞ () ≡ lim
→∞

¡
1− ∆

¢
̃ () =

¡
1− ∆

¢
̃∞ () ,

with the aditionaly advantage that ∆̃ (0) = 0 and therefore ∆̃∞ (0) = 0 (so the  = 0

point is no longer exceptional).

Now observe that, for some sufficiently small ̄  0,Z
L
|∆̃∞ ()|2  =

Z
||≤̄

¯̄¡
1− ∆

¢
̃∞ ()

¯̄2
+

Z
∈L:|≥̄|

¯̄¡
1− ∆

¢
̃∞ ()

¯̄2


≤
Z
||≤̄

1 |∆|2 ||−2 +
Z
∈L:|≥̄|

2 |̃∞ ()|2 

≤
Z
||≤̄

1 ||2(1−) +
Z
∈L:|≥̄|

2 |̃ ()|2  ∞

for some finite constant 1  0 and where 1− ≥ 0. Hence ∆̃∞ ∈ L2 (R) and therefore the
corresponding ∆∞ is also in L2 (R+) and the corresponding process ∆∞ () is stationary.
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Next, we again make use of Lebesgue’s dominated convergence theorem to show thatR
L |∆̃ ()−∆̃∞ ()|2  → 0, which requires the existence of a square integrable ̄ ()

such that |∆̃ ()−∆̃∞ ()| ≤ ̄ (). For || ≥ ̄, we proceed as in Theorem 3 after noting

that the prefactor
¡
1− ∆

¢
is bounded in magnitude by 2. For || ≤ ̄, we proceed as in

Theorem 3, after noting that the prefactor
¡
1− ∆

¢
is bounded in magnitude by 2 || for

some finite 2  0. This leads to a ̄ () that has the form ||1− (instead of ||−), which
is clearly square integrable for || ≤ ̄ for any  ∈ [0 1].
Proof of Theorem 5. Let  denote the distribution of  (the same for any ). Note that

the distribution of  (denoted ⊗, the -fold convolution of  with itself) is supported

on Z, so that  [ = 0] can be written in the form

 [ = 0] =

Z
R
 (− 0) 

⊗ () (9)

where  : R 7→ R is a continuous function such that  (0) = 1 and  () = 0 for  ∈ Z\ {0}
(its value for  ∈ R\Z is not restricted, other than to satisfy continuity). A convenient
choice of  () is

 () =

Y
=1

sin ()




Note that  () is continuous (even at  = 0), sin () = 0 for any integer  and  (0) = 1

(as defined via a limit). The function  () is the inverse Fourier transform of a rectangular

function on [− ]:
 () = (2)

−
Z
∈[−]

−

Using Parseval’s identity, we can write (9) in terms of Fourier transforms:

 [ = 0] = (2)
−
Z
∈[−]

·0
³
̃ ()

´


where ̃ () is the characteristic function of the probability measure  and, by the Convolu-

tion Theorem,
³
̃ ()

´
is the characteristic function of the probability measure ⊗.

We can further decompose  [ = 0] as

 [ = 0] = (2)
−
Z
∈B(−12+)

·0
³
̃ ()

´
 +1 (10)

where B () denotes an open ball of radius  centered at the origin,  ∈ ]0 18[ and where
1 is a remainder:

1 = (2)
−
Z
∈[−]\B(−12+)

·0
³
̃ ()

´
 (11)
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To bound1, we observe that, since  is supported on a finite subset of Z, the characteristic
function ̃ () is a sum of a finite number of terms of the form ·, with  ∈ Z. As a result,¯̄̄
̃ ()

¯̄̄
can only reach the value 1 if  (2) ∈ Z. Hence, in the set [− ],

¯̄̄
̃ ()

¯̄̄
can only

reach 1 at  = 0. Since  is supported on a bounded set, any of its moments are finite

and thus ̃ () is differentiable (any number of times) and, in particular, it admits a Taylor

expansion about  = 0:

̃ () = 1 +
1

2
0̃ (2) (0)  +

¡kk4¢ (12)

where we exploit the facts that ̃ (0) = 1 and that the distribution of  is symmetric about

0, so all odd terms vanish. Also the second derivative ̃ (2) (0) is a negative-definite ×matrix
by the moment theorem, since Var [] is positive-definite by assumption. The expansion

(12) implies that there exists 1  0 such that
¯̄̄
̃ ()

¯̄̄
≤ 1 − 1 kk2 for any  ∈ B (1) for

some 1  0. Let 0 ≡ argmax∈[−]\B(1)
¯̄̄
̃ ()

¯̄̄
, which exists since ̃ () is continuous and

[− ] \B () is compact. Since
¯̄̄
̃ ()

¯̄̄
only reaches 1 at  = 0, we must have

¯̄̄
̃ (0)

¯̄̄
 1.

Let 1 =
³
1 +

¯̄̄
̃ (0)

¯̄̄´
2 and pick 2 ∈ ]0 1] such that for any  ∈ B (2) we have¯̄̄

̃ ()
¯̄̄
 1. Such an 2 always exists since

¯̄̄
̃ ()

¯̄̄
≤ 1 − 1 kk2 for  ∈ B (1). It follows

that for any  such that −12+  2, we have
¯̄̄
̃ ()

¯̄̄
≤ 1− 1

¡
−12+

¢2
= 1− 1

−1+2

for any  ∈ [− ] \B ¡−12+¢. We can now bound the ³̃ ()´ term in (11) as:

sup
∈[−]\B(−12+)

¯̄̄³
̃ ()

´ ¯̄̄
= sup

∈[−]\B(−12+)

¯̄̄
exp

³
 ln ̃ ()

´¯̄̄
≤ exp

¡
 ln

¡
1− 1

−1+2¢¢ = exp ¡ ¡−1−1+2 +
¡
−2+4

¢¢¢
= exp

¡−12 +
¡
−1+4

¢¢ ≤ exp ¡−22¢
for some 2 ∈ ]0 1[ for all  sufficiently large. We then have

|1| ≤ (2)
−
Z
∈[−]\B(−12+)

¯̄
·0

¯̄
exp

¡−22¢ 
≤ (2)

−
exp

¡−22¢ Z
∈[−]

 = exp
¡−12¢ 

which goes to 0 faster than any negative power of .

We now come back to  [ = 0] given by Equation (10), in which we now write
³
̃ ()

´
as exp

³
̃ ()

´
with ̃ () = ln ̃ (). Note that since ̃ () is differentiable (any number of
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times) and since ̃ () is nonvanishing in a neighborhood of  = 0 (because we established

above that ̃ () = 1 +
¡
2
¢
), ̃ () admits a Taylor expansion about  = 0:

̃ () = ̃ (0) + ̃ (1) (0)  +
1

2
̃ (2) (0) 2 +

1

6
̃ (3) (0) 3 +

1

24
̃ (4)

¡
̄
¢
4

= ̃ (2) (0) 2 + ̃ (4)
¡
̄
¢
4

where ̄ ∈ [0 ] is a mean value and, for simplicity, we let an expression such as ̃ ()
¡
̄
¢


stand for
P

1
̃
()
1

¡
̄
¢
1 · · ·  . We used symmetry of the distribution of  to obtain

the second expression. Note that ̃ (2) (0) is negative-definite by the moment theorem and

the positivity of the variance of . We then have

 [ = 0] = (2)
−
Z
∈B(−12+)

·0 exp
³
̃ (2) (0) 2 + ̃ (4)

¡
̄
¢
4
´
 +1

Next, we make the change of variable  = −12̃

 [ = 0] = (2)
−
Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0)−1̃

2
+ ̃ (4)

¡
−12̄

¢
−2̃

4
´
−2̃ +1

= (2)
−

−20 +1

where

0 =

Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0) ̃

2
+ ̃ (4)

¡
−12̄

¢
−2̃

4
´
̃

in which the mean value ̄ lies in
h
0 ̃
i
. We then have

0 =

Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0) ̃

2
´
̃ +2

=

Z
̃∈B()

µ
1 + −12̃ · 0 − −1

2
̃·0

³
̃ · 0

´2¶
exp

³
̃ (2) (0) ̃

2
´
̃ +2

=

Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´
̃ +2 +3 +4

= 0 +2 +3 +4 +5
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where we have introduced the remainder terms:

2 =

Z
̃∈B()


−12̃·0 exp

³
̃ (2) (0) ̃

2
´³
exp

³
̃ (4)

¡
−12̄

¢
−1̃

4
´
− 1
´
̃

3 = −
−1

2

Z
̃∈B()

̃·0
³
̃ · 0

´2
exp

³
̃ (2) (0) ̃

2
´
̃

4 = −12
Z
̃∈B()

̃ · 0 exp
³
̃ (2) (0) ̃

2
´
̃

5 =

Z
̃∈R\B()

exp
³
̃ (2) (0) ̃

2
´
̃

and the constant 0 =
R
̃∈R exp

³
̃ (2) (0) ̃

2
´
̃  0. Considering each term in turn, we

have

|2| ≤
Z
̃∈B()

¯̄̄


−12̃·0
¯̄̄
exp

³
̃ (2) (0) ̃

2
´³
exp

³
̃ (4)

¡
−12̄

¢
−1̃

4
´
− 1
´
̃

=

Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´³
exp

³
̃ (4)

¡
−12̄

¢
−1̃

4
´
− 1
´
̃

Let ̄ (4) ≡ sup∈B(3)
¯̄̄
̃ (4) ()

¯̄̄
for some 3  0. For  sufficiently large, we eventually have

−12̄ ≤ 3 and we can write

|2| ≤
Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´ ¡
exp

¡
̄ (4)−14

¢− 1¢ ̃
=

¡
exp

¡
̄ (4)−1+4

¢− 1¢ Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´
̃

=
¡
1 + ̄ (4)−1+4 + 

¡
−1+4

¢− 1¢ Z
̃∈B()

exp
³
̃ (2) (0) ̃

2
´
̃

= 
¡
−1+4

¢ Z
R
exp

³
̃ (2) (0) ̃

2
´
̃

where the last integral is finite since ̃ (2) (0) is negative-definite. Next,

|3| ≤ −1

2

Z
̃∈B()

¯̄̄
̃·0

¯̄̄ ³
̃ · 0

´2
exp

³
̃ (2) (0) ̃

2
´
̃

≤ −1

2

Z
̃∈R

³
̃ · 0

´2
exp

³
̃ (2) (0) ̃

2
´
̃

= 
¡
−1

¢
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where the last integral is finite since ̃ (2) (0) is negative-definite.

Next, 4 vanishes by the symmetry of exp
³
̃ (2) (0) ̃

2
´
(in ̃). Finally,

|5| ≤
Z
̃∈R\B()

exp

µ

°°°̃°°°2¶ ̃

= 

Z ∞


 exp

¡−2¢ 
≤ 

Z ∞


exp (−2)  = 

2
exp (−2)

where  is the smallest eigenvalue of −̃ (2) (0). In the second line, we have expressed

the integral in polar coordinates with  being the radius and  is the (− 1)-dimensional
“surface” of a hypersphere of radius 1. The third line holds for some 2  0 for  sufficiently

large and yields an expression that decays faster than any power of .

Collecting the order of the remainders, we have, with  = (2)
−

0  0,

 [ = 0] = (2)
−

−2
¡
0 +

¡
−1+4

¢
+

¡
−1

¢
+ 0 +

¡
exp

¡−22¢¢¢+
+ (exp (−1))

= −2 +
¡
−1−2

¢

Proof of Theorem 6. Assumptions (i) and (ii) imply that  is a discrete-time

finite-state time-homogenous Markov chain characterized by the transition matrix  ≡
 [+1 = | = ]. Since Assumption (iii) implies that  is irreducible, the Perron-

Frobenius Theorem (Meyer (2000), Chap. 8) lets us conclude that (i) all eigenvalues 
of  satisfy || ≤ 1, (ii) one eigenvalue of  satisfies 0 = 1, its associated 1 × 1 “Jordan
block” is 0 = 1 and has an associated eigenvector 0 with strictly positive entries (and

none of the other eigenvectors have all nonnegative entries), (iii) the other eigenvalues 
of  satisfying || = 1 (if any), have the form  = 2 for  = 1      − 1 for some
0 ≤   #F, each have multiplicity 1, and each have an associated 1 × 1 Jordan block
 =  and an eigenvector  and (iv) all other eigenvalues ,  ≥ , of  are such that

||  1 and have Jordan blocks that may, in general, be larger than 1× 1.
Consider an arbitrary probability vector , which can be expressed as the linear combi-

nation

 =

#F−1X
=0



where  denote the columns of the matrix  yielding the Jordan form  =  −1 , with
entries of  = diag (0 1   ) ordered as above. Consider the effect of iterated applications
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of  to :

 = 0
0 +

−1X
=1


 +

#F−1X
0=

00

= 00 +

−1X
=1

2 +

#F−1X
0=

0
0 

where, by convention the sum
P−1

=1 vanishes if  = 0. By the properties of the Jordan

form, 0 = 0, where  is a block-diagonal matrix with entries of the form
¡




¢
−0

with  ranging from 0 to − 1, where  is the size of the largest Jordan block and where

0 is any one of the eigenvalues such that |0|  1. Since  is bounded and
¡




¢ ≤ !

only grows as a power of , we have that, for any 1  0, there exists 1  0 such that¡




¢ ≤ 1 (1 + 1)

. Hence, there exist 2  0 such that

¡




¢
−0 ≤ 2̄


, for some

̄ ∈ ]max0≥ |0|  1[ and it follows that
¯̄̄P#F−1

0= 0
0

¯̄̄
≤ 3̄


for some 3  0.

Note that, since  must have nonnegative entries, we must have that 0  0 (other-

wise, the
P−1

=1 
2 term would eventually yield some negative entries, since theP#F−1

0= 0
0 → 0 as →∞).

Now,  [ = 1|0 = 0] is given by [
]1 for  with elements  = 1 [ = 0] and it

follows that, for some   0,

 [ = 1|0 = 0] = 0 +

−1X
=1


2 + ((1− )


)

where 0 = 0 [0]1  0 and  =  []1 . Requiring  [ = 1|0 = 0] to be real,

forces  = ∗−.

Proof of Theorem 7. Each of the term of the form 
2 gives a spectrum of the

form: ∞X
=0


2 (̃ ())


= 

∞X
=0

¡
2 ̃ ()

¢
=



1− 2 ̃ ()

for any  such that |̃ ()|  1. Note that, since  6= 1, the denominator never vanishes and
the function 

¡
1− 2

¢
is continuous in  and bounded for || ≤ 1. By Assumption

1(iv), |̃ ()| ≤ 1 in a neighborhood of the origin and therefore

lim
→0



1− 2 ̃ ()
=



1− 2 lim→0 ̃ ()
=



1− 2
∞

where we have used continuity and the fact that lim→0 ̃ () = 1 by Assumption 1. It follows
that lim→0 ̃∞ () exists and is bounded and so is lim→0 |̃∞ ()|2. Note that this proof does
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not establish that ̃∞ (0) is finite (it may not be). However, it is the limit lim→0 ̃∞ () and
not ̃∞ (0) that determine whether oscillatory terms can affect the rate of divergence of the
spectrum as → 0.

Corollary 9 Let  be a deterministic sequence and let the corresponding ̃∞ () satisfy
̃∞ () =  ()

−
+ 

¡
()

−¢
(for  ∈ R and  ∈ R+). Let 0 be a random sequence

such that 
£
(0 − )

2
¤ ≤  (1 + )

−3−
for some   0, then the corresponding ̃0∞ ()

satisfies ̃0∞ () =  ()
−
+ 

¡
()

−¢
with probability one.

Proof of Corollary 9. To simplify the notation let the sequence start at index  = 1

instead of 0. By Theorem 2, it suffice to show that
P∞

=1 |0 − | is finite with probability
one, i.e.  [

P∞
=1 |0 − | ≥ ] → 0 as  → ∞. Let ∆ = 0 −  and for a given , let

 = 
¡P∞

=1 
−1−3¢−1. Note that P∞

=1 
−1−3  ∞ and that  → ∞ =⇒  → ∞.

Then note that |∆| ≤ −1−3 for all  ∈ N∗ implies that P∞
=1 |∆| ≤ . Taking the

contrapositive of that statement yields that the event
P∞

=1 |∆| ≥  implies the event

|∆| ≥ −1−3 for some  ∈ N∗. Then write



" ∞X
=1

|∆| ≥ 

#
≤ 

£|∆| ≥ −1−3 for some  ∈ N∗¤
≤

∞X
=1


£|∆| ≥ −1−3

¤
=

∞X
=1


£|∆|2 ≥ 2−2−23

¤
≤

∞X
=1


£|∆|2

¤
2−2−(23)

≤
∞X
=1

−3−

2−2−(23)
=



2

∞X
=1

−1−3

where we have used, in turn, (i) the fact that if two events are such that  =⇒ 

then  [] ≥  [], (ii) for any sequence of events , we have  [∪] ≤
P

  [], (iii)

monotonicity of the function 2 for  ≥ 0 (iv) Markov’s inequality  [ ≥ ] ≤  [] 

applied to the random variable  = |∆|2, (v) the assumption 
£|∆|2

¤ ≤ −3−. SinceP∞
=1 

−1−3  ∞, it follows that, as  → ∞,  → ∞ and  [
P∞

=1 || ≥ ] → 0, as

desired.
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Proof of Theorem 8. The spectral representation of Equation (4) is

̃̄ () = ̃0 ()

̄X
=0


1

|P|
X

∈P

Y
=1

̃ ()

= ̃0 ()

̄X
=0

 (̄ ())
 1

|P|
X

∈P

Y
=1

̃ ()

̄ ()

= ̃0 ()

̄X
=0

⎛⎝ +


|P|
X

∈P

Ã
Y
=1

̃ ()

̄ ()
− 1
!⎞⎠ (̄ ())

= ̃0 ()

̄X
=0

( +∆) (̄ ())


where

∆ =


|P|
X

∈P

Ã
Y
=1

̃ ()

̄ ()
− 1
!

Hence, Corollary 9 applies directly.
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