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Abstract

In this paper we specify and use a new duration model to study joint retirement in married couples
using the Health and Retirement Study. Whereas conventionally used models cannot account for
joint retirement, our model admits joint retirement with positive probability, allows for simultaneity
and nests the traditional proportional hazards model. In contrast to other statistical models for
simultaneous durations, it is based on Nash bargaining and it is therefore interpretable in terms of
economic behavior. We provide a discussion of relevant identifying variation and estimate our model
using indirect inference. The main empirical finding is that the simultaneity seems economically
important. In our prefered specification the indirect utility associated with being retired increases
by approximately 10% if one’s spouse is already retired. By comparison, a defined benefit pension
plan increases indirect utility by 20-30%. The estimated model also predicts that the indirect effect
of a change in husbands’ pension plan on wives’ retirement dates is about 10% of the direct effect
on the husbands.
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1 Introduction and Related Literature

This paper investigates the determinants of joint couples’ retirement decisions. A majority of

retirees are married and many studies indicate that a significant proportion of individuals retire

within a year of their spouse. Articles documenting the joint retirement of couples (and datasets

employed) include Hurd (1990) (New Beneficiary Survey); Blau (1998) (Retirement History Study);

Gustman and Steinmeier (2000) (National Longitudinal Survey of Mature Women); Michaud (2003)

and Gustman and Steinmeier (2004) (Health and Retirement Study); and Banks, Blundell, and

Casanova Rivas (2007) (English Longitudinal Study of Ageing). Even though this is especially

the case for couples closer in age, a spike in the distribution of retirement time differences at zero

typically exists for most couples, regardless of the age difference. This is illustrated in Figure 1.

The spike in the distribution of the difference in retirement dates for husbands and wives

in Figure 1 suggests that many couples retire simultaneously. There are at least two distinct

explanations for such a phenomenon. One is that the husband and wife receive correlated shocks

(observable or not), driving them to retirement at similar times. The other is that retirement is

jointly decided, reflecting the taste interactions of both members of the couple. In this paper, we

primarily focus on the second of these explanations. Our motivation is that 55% of respondents in

the Health and Retirement Study expected to retire at the same time as their spouses.1

The distinction between these two drivers of joint retirement (which are not mutually exclu-

sive) is similar to the motivation for studying linear simultaneous equation models, and it parallels

the categorization by Manski (1993) of correlated and endogenous (direct) effects in social interac-

tions. In those literatures, the joint determination of a certain outcome of interest yi, i = 1, 2 for

two individuals i = 1, 2 is represented by the system of equations

y1 = α1y2 + x>1 β1 + ε1

y2 = α2y1 + x>2 β2 + ε2

where xi and εi, i = 1, 2 represent observed and unobserved covariates determining yi. We want

to separate the endogenous (direct) effect (α) from the correlation in εs. There, as in this article,

discerning these two sources of correlation in outcomes is relevant for analytical and policy reasons.

1The figure corresponds to those who answer either YES or NO to the question: “Do you expect your spouse to
retire at about the same time that you do?” (R1RETSWP). It excludes those whose spouse was not working.
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For example, if the estimated model does not allow for the joint decision by the couple, then the

estimate of the effect of a retirement-inducing policy shock will be biased if the retirement times are

indeed chosen jointly. Such spillover effects invalidate, for instance, the commonly employed Stable

Unit Treatment Value Assumption (SUTVA) used in the treatment effects literature, preventing the

clear separation of direct and indirect effects occurring through feedback to the partner’s retirement

decision [e.g., Burtless (1990)]. Furthermore, the multiplier effect induced by the endogenous direct

effect of husband on wife or vice-versa is an important conduit for policy. The quantification of its

relative importance is hence paramount for both methodological and substantive reasons.

Unfortunately, standard econometric duration models are not suitable for analyzing joint

durations with simultaneity of the kind we have in mind. One tempting estimation strategy is

to include the spouse’s retirement date or, in the case of a hazard model, a time-varying variable

indicating his or her retirement date. Because this variable is a choice that is potentially correlated

with the unobservable variables determining a person’s own retirement, standard estimators are

bound to be inconsistent. Essentially, this approach would amount to including an endogenous

variable from a simultaneous equation model in the right-hand side of a regression. An important

contribution of this paper is therefore the specification of an econometric duration model that

allows for simultaneity [see also de Paula (2009) and Honoré and de Paula (2010)]. As in the

linear simultaneous equation model, identification is obtained using exclusion restrictions and, in

our particular case, using the timing patterns in the data.

The broader literature on retirement is abundant, and a number of papers focusing on retire-

ment decisions in a multi-person household have appeared in the last 20 years. Hurd (1990) presents

one of the early documentations of the joint retirement phenomenon. Later papers confirming the

phenomenon and further characterizing the correlates of joint retirement are Blau (1998); Michaud

(2003); Coile (2004a); and Banks, Blundell, and Casanova Rivas (2007). Gustman and Steinmeier

(2000) and Gustman and Steinmeier (2004) work with a dynamic economic model in which the

husband’s and wife’s preferences are affected by their spouse’s actions, but the couple makes retire-

ment decisions individually.2 These papers focus on Nash equilibria to the joint retirement decision,

i.e. each spouse’s retirement decision is optimal given the other spouse’s timing and vice-versa.3

2In the family economics terminology, their model is a non-unitary model in which people in the household make
decisions individually. In unitary models, the household is viewed as a single decision-making unit. A characterization
of unitary and non-unitary models can be found in Browning, Chiappori, and Lechene (2006).

3When more than one solution is possible, they select the Pareto dominant equilibrium, i.e., for all other equilibria
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More recently, Gustman and Steinmeier (2009) present a richer (non-unitary) economic model with

a solution concept that differs from a Nash equilibrium and is guaranteed to exist and be unique.

Michaud and Vermeulen (2011) estimate a version of the “collective” model introduced by Chiap-

pori (1992) in which (static) labor force participation decisions by husband and wife are repeatedly

observed from a panel (i.e., the Health and Retirement Study). Casanova Rivas (2010) suggests

a detailed unitary economic dynamic model of joint retirement. Coile (2004b) presents statistical

evidence on health shocks and couples’ retirement decisions and Blau and Gilleskie (2004) present

an economic model that also focuses on health outcomes and couples’ retirement decisions.

In our analysis, we assume that retirement decisions are made through Nash bargaining

on the retirement date. This solution concept is attributed to Nash (1950) (but see also Zeuthen

(1930)). It chooses retirement decisions to maximize the product of differences between spouses

utilities and respective outside options (i.e., “threat-points”). The Nash solution corresponds to a

set of behavioral axioms on the bargaining outcomes (essentially Pareto efficiency, independence of

irrelevant alternatives and symmetry), and it is widely adopted in the literature on intra-household

bargaining. It can be shown that this solution approximates the equilibrium outcome of a situation

in which husband and wife make offers to each other in an alternating order, and the negotiation

breaks down with a certain probability. As this probability goes to zero, the equilibrium converges to

the Nash solution (see Binmore, Rubinstein, and Wolinsky (1986)). Though this solution also leads

to Pareto efficient outcomes, it imposes more structure than Casanova Rivas (2010) or Michaud

and Vermeulen (2011) [see Chiappori (1992) and Chiappori, Donni, and Komunjer (2012)].

Our model is a variation of a recently developed model (Honoré and de Paula (2010))

that extends well-known duration models to a (non-cooperative) strategic stopping game, in which

endogenous and correlated effects can be disentangled and interpreted (see also de Paula (2009)

for a related analysis). As such, it is close to traditional duration models in the statistics and

econometrics literature. These are well understood and reasonably straightforward to estimate.

Our model extends the usual statistical framework in a way that allows for joint termination of

simultaneous spells with positive probability. In the usual hazard modeling tradition, this property

does not arise. One could appeal to existing statistical models (e.g., Marshall and Olkin (1967)) to

address the joint termination alone as done by An, Christensen, and Gupta (2004) in the analysis

at least one spouse would be worse off. If no equilibrium is Pareto dominant, the equilibrium where retirement by at
least one household member happens earliest is assumed (see, e.g., Gustman and Steinmeier (2000), pp. 515, 520).
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of joint retirement in Denmark, but parameter estimates cannot be directly interpretable in terms

of the couples’ simultaneous decision process. The framework presented in this paper directly

corresponds to an economic model of decision-making by husband and wife, and it can consequently

be more easily interpreted in light of such a model. To estimate our model, we resort to indirect

inference (Smith (1993); Gourieroux, Monfort, and Renault (1993); and Gallant and Tauchen

(1996)), using as auxiliary models standard duration models and ordered discrete choice models,

as suggested in Honoré and de Paula (2010) for a similar framework. (For an earlier application of

indirect inference in a duration context, see Magnac, Robin, and Visser (1995)).

The remainder of this paper proceeds as follows. Section 2 describes our model and the

empirical strategy for its estimation. In Section 3 we briefly describe the data and subsequently

discuss our results in Section 4. We conclude in Section 5.

2 Model and Empirical Strategy

2.1 Basic Setup

In this section we formulate a simple economic model that captures the features that spouses may

decide jointly when to retire and that the optimal decision can be to retire at the same time.

The model is explicitly designed to have the proportional hazard model as a special case. In this

sense, it is a true generalization of a standard econometric model. As is usual in choice models,

the retirement decision depends only on the difference in utility between being retired or not. The

levels of the utilities do not matter. This implies that many of the seemingly arbitrary assumptions

made below are mere normalizations with no behavioral implications.

In order to simplify the notation, we measure time in terms of “family age.” In our empirical

analysis family age is set to zero when the oldest partner in the couple reaches age 60. Alternatively,

we could have worked with the individuals’ ages, but that would have been more cumbersome

because the motivation is that the person may enjoy utility from being retired at the same time

as his or her spouse, and not from being retired at the same age. Throughout, we use i = 1, 2 to

denote the two spouses in a married couple. n is used to index couples.

In our model, individual i with observable characteristics, xi, and whose spouse retires at

time tj , receives a utility flow of Ki > 0 before retirement. The vector (K1,K2) is the source of

randomness in our econometric model. After retirement, the utility flow at time s is given by the
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deterministic function, Zi(s)ϕi (xi)D(s, tj). The function D(s, tj) is defined as (δ− 1)1(s ≥ tj) + 1

with δ ≥ 1 and it captures the idea that there can be complementarities in retirement. Given these,

the discounted utility for individual i, who retires at ti and whose spouse retires at tj , is given by

U i(ti, tj ,xi, ki) ≡
∫ ti

0
kie
−ρsds+

∫ ∞
ti

Zi(s)ϕiD(s, tj)e
−ρsds.

The parameter δ could in principle be less than one. However, this would not generate

a positive probability that the individuals retire at the same time (as observed in the data). In

the calculations and exposition below, we therefore restrict our attention to the case where δis

greater than or equal to 1. We assume that the function Zi(·) is increasing with Zi(0) = 0. This

simplifies the algebra, and it implies that, at the time the retirement decision is made, the couples

expect retirement to be an absorbing state. As mentioned above, only the difference in utilities

matters, so the assumption is that retirement becomes relatively more attractive over time. In

particular, we are not assuming that some absolute measure of happiness increases with age. The

multiplicative structure for Zi(s)ϕi (xi)D(s, tj) is imposed because we want the resulting model to

have the same structure as the familiar proportional hazard model. Except for that, it could easily

be relaxed. In principle, it is possible to allow for kinks or discontinuities in Zi(·). In a model

without interdependence, those would correspond to discontinuities in the hazard rate in the case

of kinks in Zi(·) or, in the case of discontinuities in Zi(·), positive probability of retirement at the

discontinuity date.

The δ could be made spouse-specific as well, but we focus on homogeneous δ. The reason

for this is simplicity, and the fact that while the probability of joint retirement will be driven by

δ, it is difficult to think of features of the data that would allow us to separately identify a δ for

husbands and wives.

This structure is essentially the same as in Honoré and de Paula (2010). There, it is assumed

that the observed outcome, (T1, T2), is a Nash equilibrium. That assumption is in the spirit of much

of the recent work in industrial organization, but it seems inappropriate in the context of retirement

decisions. Given a realization (k1, k2) for the random vector (K1,K2), we therefore assume that

retirement timing is obtained as the solution to the Nash bargaining problem [Nash (1950); see also
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Zeuthen (1930)]:

maxt1,t2

(∫ t1
0 k1e

−ρsds +
∫∞
t1
Z1(s)ϕ1D(s, t2)e

−ρsds−A1

)
×(∫ t2

0 k2e
−ρsds+

∫∞
t2
Z2(s)ϕ2D(s, t1)e

−ρsds−A2

) (1)

where A1 and A2 are the threat points for spouses 1 and 2, respectively. In the estimation, we

set Ai equal to a fraction of the maximum utility individual i would obtain without the increased

utility from the externality from the spouse’s retirement. This specification of the threat points

makes economic sense, but it also prevents us from having to deal with the possibility that there are

parameter values for which the factors in (1) cannot be made positive. In the general setting there

may also be asymmetric bargaining weights that appear as exponents in the objective function.

Our analysis could be generalized to include that case, but we ignore this for simplicity and because

it is difficult to think about nonparametric features of the data that would allow us to identify such

an asymmetry.

The Nash bargaining solution concept is widely used in economics (see, for example, Chi-

appori, Donni, and Komunjer (2012)). It can be derived from a set of behavioral axioms on the

bargaining outcomes (essentially Pareto efficiency, independence of irrelevant alternatives and sym-

metry) and it is widely adopted in the literature on intra-household bargaining. While it does not

pin down a particular negotiation protocol between the parties involved, it can be motivated by the

observation that it approximates the equilibrium outcome of a situation where husband and wife

make offers to each other in an alternating order and the negotiation breaks down with a certain

probability. As this probability goes to zero, the equilibrium converges to the Nash solution (see

Binmore, Rubinstein, and Wolinsky (1986)).

One alternative to the Nash bargaining framework used here would be a utilitarian aggre-

gation of the utility functions in the household (i.e., the collective model of Chiappori (1992)). In

that case, the retirement dates would solve:

max
t1,t2

cU1(t1, t2;x1,K1) + U2(t2, t1;x2,K2),

where c stands for the relative weight of agent 1’s utility. This leads to the following first-order

7



conditions:

c× ∂U1(t1, t2;x1,K1))

∂ti
+
∂U2(t2, t1;x2,K2)

∂ti
= 0, i = 1, 2.

The setting we propose focuses instead on maximizing (U1(t1, t2;x1,K1)−A1)×(U2(t2, t1;x2,K2)−

A2). This leads to the following first-order conditions:

U2(t2, t1;x2,K2)−A2

U1(t1, t2;x1,K1)−A1
× ∂U1(t1, t2;x1,K1))

∂ti
+
∂U2(t2, t1;x2,K2)

∂ti
= 0, i = 1, 2.

Consequently, the two are equivalent only if

c =
U2(t2, t1;x2,K2)−A2

U1(t1, t2;x1,K1)−A1
.

In this sense, the Nash bargaining setup imposes further restrictions on the model, as pointed out by

Chiappori, Donni, and Komunjer (2012). That paper also establishes identification results when a

common set of covariates x affects both the threat points Ai, i = 1, 2 and utilities U i, i = 1, 2. Point-

identification is achieved using spouse-specific covariates that affect the threat points Ai, i = 1, 2,

but are excluded from U i, i = 1, 2. In our empirical investigation we rely instead on spouse-specific

covariates in U i, i = 1, 2 and no excluded variables in the threat point functions Ai, i = 1, 2.

Moreover, Chiappori, Donni, and Komunjer (2012) assume that latent variables (i.e., Ki, i = 1, 2)

are additively separable, which is not our case.

In order to estimate a parameterized version of the Nash bargaining model, we will need to

solve it numerically many times. Note that the first term in (1) can be further simplified to

(
k1ρ
−1 (1− e−ρt1)+ ϕ1Z̃1 (t1) + ϕ1 (δ − 1) Z̃1 (max {t1, t2})−A1

)
,

where Z̃i (t) =
∫∞
t Zi(s)e

−ρsds and hence Z̃ ′i (t) = −Zi (t) e−ρt. An analogous simplification applies

to the second term. In other words, the objective function is given by

N (t1, t2) =

≡I︷ ︸︸ ︷(
k1ρ
−1 (1− e−ρt1)+ ϕ1Z̃1 (t1) + ϕ1 (δ − 1) Z̃1 (max {t1, t2})−A1

)
×(

k2ρ
−1 (1− e−ρt2)+ ϕ2Z̃2 (t2) + ϕ2 (δ − 1) Z̃2 (max {t1, t2})−A2

)
︸ ︷︷ ︸

≡II

.
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We note that if Zi(t) = Z (t;αi) = tαi then

Z̃i (t) =

∫ ∞
t

sαie−ρsds =

(
1

ρ

)αi+1

Γ (αi + 1, ρt) ,

where the upper incomplete gamma function is defined by Γ (αi, x) =
∫∞
x sαi−1e−sds.4 As will be

seen below, our model will have the proportional hazard model as a special case, and in that case

Zi(t) will be the integrated baseline hazard. The functional form assumption Zi(t) = Z (t;αi) = tαi

corresponds to a generalization of the proportional hazards model with a Weibull baseline hazard.

This is the parameterization we use below.

If the two spouses retire sequentially, say, t1 < t2, the first-order condition with respect to

t1 is

(
k1e
−ρt1 − Z1(t1)ϕ1e

−ρt1)(∫ t2

0
k2e
−ρsds+

∫ ∞
t2

Z2(s)ϕ2δ(s ≥ t1)e−ρsds−A2

)
= 0.

This implies that either

k1 = Z1(t1)ϕ1

or ∫ t2

0
k2e
−ρsds+

∫ ∞
t2

Z2(s)ϕ2δ(s ≥ t1)e−ρsds = A2.

The second possibility is ruled out since we specify the threat points so that each person gets a

higher utility than his or her threat point at the Nash barganing solution. The first-order condition

with respect to t2 gives

Z2(t2)e
−ρt2ϕ1 (1− δ)× (II) + (I)×

(
k2e
−ρt2 − Z2(t2)ϕ2δe

−ρt2) = 0. (2)

We note that the t2 that sets the above expression to zero occurs earlier than the value obtained

4This expression can be further manipulated by noting that if the random variable X is Gamma distributed with
parameters α and β = 1

FΓ(α,1) (x) = P (X > x) =
1

Γ (α)

∫ ∞
x

sα−1e−sds =
Γ (α, x)

Γ (α)
.

Consequently,

Z̃ (t;α) =

(
1

ρ

)α+1

Γ (α+ 1, ρt) =

(
1

ρ

)α+1

Γ (α+ 1)FΓ(α+1,1) (ρt)

which is useful since both Γ (·) and FΓ(·,1) (·) are preprogrammed in many software packages.
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in Honoré and de Paula (2010): Z−12 (k2/ϕ2δ).
5 Intuitively, the reason is that with Nash bargain-

ing, spouse number two is willing to forgo some utility if the increase in utility to spouse num-

ber one is sufficiently high. Mathematically, we see this by noting that Z1(t2) > 0, e−ρt2 > 0,

ϕ1 > 0, and 1 − δ < 0. Moreover, II must be positive in equilibrium. This implies that

Z1(t2)e
−ρt2ϕ1 (1− δ) × (II) ≤ 0 at the solution. So for the first-order condition to be zero, the

product (I) ×
(
k2e
−ρt2 − Z2(t2)ϕ2δe

−ρt2
)

should be positive. Since I and e−ρt2 are both positive,

k2 therefore must be greater than Z2(t2)ϕ2δ. Or equivalently, t2 < Z−12 (k2/(ϕ2δ)). This implies

that

T1 = Z−11 (K1/ϕ1)

T2 ≤ Z−12 (K2/ (ϕ2δ)) ,

which gives the same timing choice for the first retiree as in Honoré and de Paula (2010) but an

earlier one for the second spouse. A similar set of calculations is obtained for T2 < T1.
6

A third possibility is for spouses to retire jointly. In this case,

T = arg max
t
N (t, t)

= arg max
t

(
k1ρ
−1 (1− e−ρt)+ ϕ1δZ̃1 (t)−A1

)(
k2ρ
−1 (1− e−ρt)+ ϕ2δZ̃2 (t)−A2

)
.

The derivative of this with respect to t is

e−ρt (K1 − ϕ1δZ1 (t))
(
k2ρ
−1 (1− e−ρt)+ ϕ2δZ̃2 (t)−A2

)
+e−ρt

(
k1ρ
−1 (1− e−ρt)+ ϕ1δZ̃1 (t)−A1

)
(k2 − ϕ2δZ2 (t)) ,

which, set to zero, delivers the optimum implicitly. It can be noted that when t < Z−11 (k1/ (ϕ1δ))

and t < Z−12 (k2/ (ϕ2δ)) this is positive, and when t > Z−11 (k1/ (ϕ1δ)) and t > Z−12 (k2/ (ϕ2δ)), it

5In Honoré and de Paula (2010), we also require that Z1(·) = Z2(·).
6For computation purposes we also notice that the objective function is unimodal on t2. If we start at the

critical value, increasing t2 reduces the function. This is because, for small ρ, Z1(t2)e−ρt2ϕ1 (1− δ) becomes more
negative and II becomes more positive, so the product becomes more negative. For the second term, I decreases and
k2e
−ρt2 − Z2(t2)ϕ2δe

−ρt2 , which is positive, decreases. Their product then decreases. Consequently, the derivative,
which is the sum of these two products, becomes negative, and the objective function is decreasing. Analogously, we
can also determine that the objective function is increasing for values below the critical value.
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is negative. The optimum is therefore in the interval

min
{
Z−11 (k1/ (ϕ1δ)) , Z

−1
2 (k2/ (ϕ2δ))

}
≤ t ≤ max

{
Z−11 (k1/ (ϕ1δ)) , Z

−1
2 (k2/ (ϕ2δ))

}
.

This is useful in the numerical solution to the optimal solution condition on joint retirement.

Figure 2 illustrates these cases and plots both T1 and T2 as a function of K2 as K1 is held

fixed. For low values of K2, T1 > T2: labor force attachment is higher for spouse 1 than for spouse

2. When K1 is large, on the other hand, T1 < T2 and spouse 1 retires sooner. For intermediary

values of K1, T1 = T2 and the two spouses retire at the same time. This generates probability

distributions such as those in Figure 3. Unconditionally, the probability density function for T1 is

smooth. Conditionally on T2 = t2, though, a point mass at T1 = t2 arises.

The set of realizations of (K1,K2) for which T = T1 = T2 is an optimum is larger than the set

obtained in the non-cooperative setup from Honoré and de Paula (2010). This is illustrated in Fig-

ure 4, where the area between the dotted lines is the joint retirement region in Honoré and de Paula

(2010) and the area between solid lines is the joint retirement region in the current paper. Also, in

that paper any date within a range [T < T ] (where T = max
{
Z−11 (k1/ (ϕ1δ)) , Z

−1
2 (k2/ (ϕ2δ))

}
)

was sustained as an equilibrium for pairs (k1, k2) inducing joint retirement. In contrast, the equilib-

rium joint retirement date for a given realization of (K1,K2) is uniquely pinned down in the setup

here. Because Nash bargaining implies Pareto efficiency and because T is the Pareto dominant out-

come among the possible multiple equilibria in the game analyzed by Honoré and de Paula (2010),

it should be the case that joint retirement in the Nash bargaining model occurs on or before T .

In comparison to the non-cooperative paradigm adopted in our previous paper, Nash bargaining

allows spouses to “negotiate” an earlier retirement date, which is advantageous to both.

Finally, we note that when δ = 1 the optimal retirement dates will correspond to

logZi(ti) = − logϕi + logKi, i = 1, 2.

Ki following a unit exponential distribution gives a proportional hazard model. For a general

distribution of Ki, this yields the generalized accelerated gailure time model of Ridder (1990). This

is the sense in which the approach discussed in this section can be thought of as a simultaneous

equations version of a generalized accelerated failure time model.
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2.2 Estimation: Indirect Inference

Because the likelihood for this model is not easily computed in closed form, we resort to simulation-

assisted methods. One potential strategy would be to use simulated maximum likelihood (SML),

where one non-parametrically estimates the conditional likelihood via kernel methods applied to

simulations of T1 and T2 at particular parameter values and searches for the parameter value that

maximizes the (simulated) likelihood. We opt for a different strategy for two main reasons. First,

our likelihood displays some non-standard features. For example, there is a positive probability

for the event {T1 = T2}. Second, consistency of the SML estimator requires a large number of

simulations, which can be computationally expensive.

To estimate our model we therefore employ an indirect inference strategy (see Gourieroux,

Monfort, and Renault (1993); Smith (1993); and Gallant and Tauchen (1996)). Rather than es-

timating the maximum likelihood estimator for the true model characterized by parameter θ, one

estimates an approximate (auxiliary) model with parameter β. Let n = 1, . . . , N index a sample

of households (couples). Then, under the usual regularity conditions,

β̂ = arg max
b

N∑
n=1

logLa (b; zn)
p−→ arg max

b
Eθ0 [logLa (b; zn)] ≡ β0 (θ0) (3)

where La is a pseudo–likelihood function (parameterized by b) for the auxiliary model, zn is the

data for observation n, and the expectation Eθ0 is taken with respect to the true model. β0 (θ0)

is known as the pseudo–true value and the key is that it depends on the true parameters of the

data–generation process (θ0). The basic idea, then, is that if one knew the pseudo–true value as a

function of θ0, it could be used to solve the equation

β̂ = β0

(
θ̂
)

and obtain an estimator for θ0. In our case, we do not know β0(θ), but we can easily approximate

this function using simulations. For a particular value of the parameters of the structural model,

θ, we generate R draws

{(z1r (θ) , z2r (θ) , . . . , zNr (θ))}Rr=1

from our structural model. In practice this is done by transforming uniform random variables.

12



These are then kept fixed as one varies θ. The parameter, θ, enters through the transfromation of

these uniform random variables. We can then estimate the function

β0(θ) ≡ arg max
b
Eθ [logLa (b; zn)]

by

β̃R (θ) = arg max
b

1

R

R∑
r=1

1

N

N∑
n=1

(logLa (b; znr (θ))) .

This suggests finding θ̂ such that the generated data set using θ̂ gives the same estimate in the

auxiliary model as we got in the real sample, β̂ = β̃R

(
θ̂
)

. When the dimensionality of β is greater

than the dimension of θ, this is not possible, and one then estimates θ by a minimum distance

approach that makes the difference between β̂ and β̃R (θ) as small as possible.

While this approach is conceptually straightforward, it requires one to estimate β for each

potential value of θ. This can be computationally burdensome and we therefore adopt a slightly

different version based on the first-order conditions from estimating the auxiliary model. The

expression (3) implies that

1

N

N∑
n=1

Sa
(
β̂; zn

)
= 0,

and that β̂ converges to the solution to Eθ [Sa (b; zn)] = 0, where Sa is the pseudo–score associated

with La. Of course, the solution Eθ [Sa (b; zn)] = 0 is just β0 (θ0) from equaton (3). As before, we

estimate Eθ [Sa (·; zn)] as a function of θ using

1

R

R∑
r=1

1

N

N∑
n=1

Sa (·; znr (θ))

and θ0 is estimated by making it as close to zero as possible. Specifically, if dim (Sa) > dim (β), we

minimize (
1

R

R∑
r=1

1

N

N∑
n=1

Sa
(
β̂; znr (θ)

))>
W

(
1

R

R∑
r=1

1

N

N∑
n=1

Sa
(
β̂; znr (θ)

))
(4)

over θ. The weighting matrix W is a positive definite matrix performing the usual role in terms of

estimator efficiency. The optimal W can be calculated using the actual data (before estimating θ)

and the asymptotic properties follow from standard GMM arguments (see Gourieroux and Monfort

(1996) for details) . This strategy is useful because we only estimate the auxiliary model once using
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the real data. After that, we evaluate its first-order condition for different values of θ.

The outcome variable in our empirical analysis is censored. To use simulation-based infer-

ence we must be able to simulate data that have been censored by the same process. In practice

this means that we must either model the censoring process parametrically or observe the censor-

ing times even for those observations that are uncensored in the data. As discussed below, our

application falls into the second category.

2.2.1 Auxiliary Model

Our auxiliary model is composed of three reduced-form models that are chosen to capture the

features of the data that are our main concern: the duration until retirement for each of the two

spouses, and the idea that some married couples choose to retire jointly. For the first two, we use a

standard proportional hazard model for each spouse with a Weibull baseline hazard and the usual

specification for the covariate function. For the third, we use an ordered logit model as suggested

by our paper Honoré and de Paula (2010). We present the models in detail below.

2.2.2 Weibull Proportional Hazard Model

For each spouse i, the hazard for retirement conditional on x is assumed to be λi (t|x) = αit
αi−1 exp

(
x>βi

)
.

The (log) density of retirement for spouse i conditional on x, log fi (t|x), is then given by:

log
{
λi (t) exp

(
x>βi

)
exp

(
−Zi (t) exp

(
x>βi

))}
= logαi + (αi − 1) log t+ x>βi − tαi exp

(
x>βi

)

The (conditional) survivor function can be analogously obtained and is given by:

logSi (t|x) = log
{

exp
(
−Zi (t) exp

(
x>βi

))}
= −tαi exp

(
x>βi

)

Letting ci,n = 1 if the observed retirement date for spouse i in household n is (right-)censored, and

= 0 otherwise, we obtain the log-likelihood function:

logLi =
N∑
n=1

(1− ci,n)
(
logαi + (αi − 1) log (ti,n) + x′i,nβi

)
−

N∑
n=1

tαii,n exp
(
x′i,nβi

)
First- and second-order derivatives used in the computation of the MLE for this auxiliary model

are presented in the Appendix.
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2.2.3 Ordered Logit Model Pseudo MLE

In the spirit of the estimation strategy suggested in Honoré and de Paula (2010), we also use an

ordered logit model as an auxiliary model. Whereas the Weibull model will convey information on

the timing of retirement, this second auxiliary model will provide information on the pervasiveness

of joint retirement and help identify the taste interactions leading to this phenomenon (i.e., δ).

Define

yn =


1, if t1 > t2 + 1

2, if |t1 − t2| ≤ 1

3, if t2 > t1 + 1

Incorrectly assuming an ordered logit model for yn yields

P (yn = 1 or yn = 2) = Λ
(
x>n γ1

)
and P (yn = 2) = Λ

(
x>n γ1 − γ0

)

where Λ (·) is the cummulative distribution function for the logistic distribution. This allows us to

construct the following pseudo-likelihood function:

Q =
∑
yn=0

log
(

1− Λ
(
x>0nγ

))
+
∑
yn 6=0

log
(

Λ
(
x>0nγ

))
+
∑
yn 6=2

log
(

1− Λ
(
x>1nγ

))
+
∑
yn=2

log
(

Λ
(
x>1nγ

))

where

x0n =

(
x>n

...0

)>
x1n =

(
x>n

...1

)>
γ =

(
γ>1

...− γ0
)>

As before, first- and second-order derivatives are presented in the Appendix.

The explanatory variables in the three parts of the auxiliary model need not be the same,

and they need not coincide with the explanatory variables in the model to be estimated. In the

empirical section below, the covariates in the Weibull auxiliary models are each spouses’s own values

of the explanatory variables in the model of interest. We use a constant only as an explanatory

variable in the ordered logit model. This leaves the number of overidentifying restrictions constant

across specifications.
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2.2.4 Overall Auxiliary Model

The overall auxiliary model objective function is then defined by the pseudo-log-likelihood function

logLmen (α1, β1) + logLwomen (α2, β2) +Q (γ)

and the moment conditions used for estimating the parameters of the structural model are the

first-order conditions for maximizing this.

As indicated above, we choose as our weighting matrix W = Ĵ−10 , where

Ĵ0 = V̂




∂ logLmn
∂(α1,β1)

∂ logLwn
∂(α2,β2)

∂Qn
∂γ




The (asymptotic) standard errors of the structural estimates are calculated using the for-

mulae in Gourieroux and Monfort (1996).

2.3 Computational Details

Evaluating the objective function (4) for a particular set of parameter values requires us to numer-

ically solve the optimal retirement problem for each individual couple. As pointed out above, the

structure makes this fairly straightforward. On the other hand, it is not easy to characterize the

derivatives of the objective function with respect to the parameters. We therefore minimize (4) by

repeating a multi-step procedure: First, we minimize using the method proposed by Powell (1964).

Starting at the optimal parameter value, we then apply MATA’s implementation of Nelder and

Mead (1965). If this sequence leads to an improvement of the objective function, we start over.

Otherwise, we perturb each parameter by +/- 0.0001 and start over if that leads to an improvement.

If it does not, we perform a full line search over each of the parameters. This process is repeated

until the whole sequence does not lead to an improvement in the function value. In the estimation

we specify Zi(t) = tθ1i , i = 1, 2. As explained above this simplifies the calculation of Z̃i(t).

To maximize the objective function, θ1i is parameterized as exp(αi), and δ is parameterized

as 1 + exp(τ). The starting values for the θ1i and the coefficients of the explanatory variables

are the maximum likelihood estimates from a Weibull proportional hazards model applied to the
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retirement times of husbands and wives, respectively, and the starting value for δ is 0.08. The

discount factor is fixed and not estimated.

3 Data

In the United States, full retirement age for those reaching 62 before 2000 was 65 years old. The

full retirement age has been increasing ever since, until it reaches 67 for those reaching 62 in 2022.

Workers who claim benefits early (between ages 62 to 65) have their basic benefit (PIA, primary

insurance account) reduced proportionately. Individuals who delay retirement receive increases in

benefits for every month of delayed retirement before age 70. (The rate of increase rose gradually

until reaching 8 percent for year of delayed retirement in 2005.) Those claiming early retirement are

also subject to an earnings test whereby half of the earnings above a certain threshold are withheld.

Most of the lost earnings are treated as delayed receipt. (Until 2000, recipients were also subject

to an earnings test during the first five years of retirement.) Aside from the OASDI (Old Age,

Survivors, and Disability Insurance) program, the SSA also administers the SSI (Supplemental

Security Income) program, which provides assistance to individuals age 65 or older as well as

the disabled. The entitlement level is unrelated to previous work earnings and is based on the

individual’s or couple’s income and net worth.

We estimate the model using eight waves of the Health and Retirement Study (every two

years from 1992 to 2006) and keep households where at least one individual was 60 years old or

more. Retirement is observed at a monthly frequency. We classify as retired a respondent who is

not working and not looking for work and one for whom there is any mention of retirement through

the employment status or the questions that ask the respondent whether he or she considers him- or

herself to be retired.7 To avoid left-censoring, selected households also had both partners working

at the initial period. Right-censoring occurs when someone dies or has his or her last interview

before the end of the survey. We excluded individuals who were part of the military. Finally, we

exclude households with multiple spouses and/or couples throughout the period of analysis, couples

with conflicting information over marital status or other joint variables, and couples of the same

gender. This leaves us with 1,469 couples. Of those, 384 couples have both the husband’s and

the wife’s uncensored retirement dates. Among the uncensored couples, 33 couples (≈ 8.6%) retire

7Specifically, we use the classification provided by the variable RwLBRF.
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jointly.8 Figure 5 plots the retirement month of the husbands against the retirement month of the

wives for those couples whose retirement month is uncensored for both spouses (January 1931 is

month 1). The points along the 45-degree line are the joint retirements.

We condition covariates on the first “household year”: when the oldest partner reaches 60

years old.9 The covariates we use are:

1. the age difference in the couple (husband’s age minus wife’s age in years);

2. dummies for race (non-Hispanic black, Hispanic and other race with non-Hispanic whites as

the omitted category);

3. dummies for education (high school or GED, some college and college or above with less than

high school as the omitted category);

4. indicators of region (NE, SO, and WE with MW or other region as omitted category);

5. self-reported health dummies (good health, very good health, with poor health as the omitted

category);

6. an indicator for whether the person has health insurance;

7. the total health expenditure per individual in the previous 12 months for the first two waves

and the previous 2 years for the subsequent years10 (inflation adjusted using the CPI to

Jan/2000 dollars);

8. indicators for whether the person had a defined contribution (DC) or defined benefit (DB)

plan; and

8There are 540 additional couples with only one censored spouse. If those are presumed to have retired sequentially,
the proportion of joint retirements among couples with at most one censored spouse is 3.5%. Taking into account the
remaining households where both individual retirement dates are censored would place the proportion of simultaneous
retirements somewhere between 2.2% (if all additional households are assumed to retire sequentially) and 39% (if all
additional households are assumed to retire simultaneously).

9We take the measurements from the first interview after the oldest spouse turns 60.

10We use the transformation sgn(total health expenditure)×
√

abs(total health expenditure). This transformation
is in the spirit of a logarithmic transformation of positive variables and implies that large quantities have a decreasing
effect. In contrast to a log transformation, it allows us to handle zeroes. In the computations, we also divide the
transformed variable above by 103 to avoid overflow.
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9. financial wealth (inflation adjusted using the CPI to Jan/2000 dollars).11 This measure

includes the value of checking and savings accounts, stocks, mutual funds, investment trusts,

CDs, government bonds, Treasury bills and all other savings minus the value of debts such

as credit card balances, life insurance policy loans or loans from relatives. It does not include

housing wealth or private pension holdings.

Table 1 presents summary statistics for these variables. Note that we observe potential

censoring months even for the observations that are uncensored in the data. As pointed out

previously, this allows us to impose the same censoring process in the simulations as used to

generate the data.

In Table 2, we present an overview of intra-household differences. Most of the couples marry

within their own race but there is substantial variation in term of education. Many couples report

different health statuses, and accordingly, there is a substantial difference in health expenditures.

There are also differences with respect to insurance and pension ownership. Figure 6 presents the

Kaplan-Meier estimates for the retirement behavior in our sample (measured in months since the

oldest partner turned 60 years old).

4 Results

We now present our estimation results using monthly data on couples’ retirement. The discount rate

ρ is set to 0.004 per month (i.e., 5% per year) and the threat points are set at 0.6 times the utility

level they would have obtained if his or her partner never retired.12 The number of simulations

in each set of estimates is R = 10. We assume that Zi(·) is smooth. As pointed out earlier, it is

easy to allow for non-smoothness in Zi(·). In fact, Figure 6, which displays estimates for marginal

cummulative distribution functions of husbands and wives, suggests that a kink might be present

at least for men around month twenty-four since the oldest household member turns 60 years old.13

11For financial wealth we use the transformation sgn(financial wealth)×
√

abs(financial wealth). This transforma-
tion is in the spirit of a logarithmic transformation of positive variables and implies that large quantities have a
decreasing effect. In contrast to a log transformation, it allows us to handle negative numbers. It is concave for
positive values and convex for negative ones. In the computations, we also divide the transformed variable above by
103 to avoid overflow.

12In our estimations, we experimented with other multiples of this scaled between 0 and 1 as well. See the discussion
at the end of this section.

13Since the oldest member is usually the husband, this correponds to those turning 62 years old and becoming
eligible to early retirement.
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For simplicity, we abstract from this issue here. For the computational reasons discussed in Section

2, we assume that Zi(t) = tθ1i . In our baseline specifications, utility flows while in the labor force are

drawn from independent unit exponentials, Ki ∼ exp(1). The independence assumption is relaxed

as a robustness check at the end of this section. Finally, we take ϕi(xi) = exp(θ>2ixi). This implies

that when δ = 1 the durations follow simple independent proportional hazard Weibull models

(Lancaster (1990), p.44). This is the sense in which our approach generalizes simple standard

econometric duration models.

As is often the case in structural estimation, it can be difficult to understand what features

of the data identify the parameters of the model. Within the duration literature, this has led to a

sizeable number of papers dealing with semiparametric identification. This literature is useful in

shedding light on the relation between the parameters of the model and the underlying data. First,

note that the functions Zi(·), ϕi(·) and the marginal distribution for Ki are formally identified (up

to scale) if covariates have a support large enough so that ϕj(xj) can be made arbitrarily close to

zero. For such an individual, it is essentially optimal to have tj = ∞. The other spouse will then

optimally retire at Ti such that

logZi(Ti) = − logϕi(xi) + logKi

and one can apply the arguments in Ridder (1990) to identify Zi(·), ϕi(·) and the marginal distri-

bution of Ki (up to scale). We note also that this identification argument operates irrespective of

the values of A1 and A2 (or asymmetries in the bargaining power). Intuitively, this argument would

apply if the explanatory variables take values that make one of the spouses strongly attached to the

labor force given his or her covariate values. In our data, for example, about 5% of the husbands

who do not have a defined benefit pension plan retire after more than 126 months since the oldest

member of the household turns 60 years old. Similarly, for the wives, 5% of those without a defined

benefit pension plan retire more than 140 months since the oldest member turns 60.

Having identified Zi(·), ϕi(·) and the marginal distribution of Ki, the probability of joint

retirement is driven by the interaction parameter δ. When δ = 1 there are no retirement comple-

mentarities and joint retirement happens with zero probability. Larger values of δ will induce larger

retirement complementarities, which should make joint retirement more likely. Even in the event of

sequential retirement, whereas the first person to retire always retires at Z−1i (Ki/ϕi), larger values
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of δ will lead to earlier retirement of the second retiree, providing additional variation to identify

δ (see Appendix for details).

Tables 3 and 4 present our estimates. The results are very robust across covariate specifica-

tions. There is positive duration dependence: retirement is more likely as the household ages. Age

differences tend to increase the retirement hazard for men and decrease it for women. Since men

are typically older and we count “family age” from the 60th year of the older partner, a larger age

difference implies that the wife is younger at time zero and less likely to retire at any “family age”

than an older woman (i.e., a similar wife in a household with a lower age difference). Both non-white

men and women have a lower retirement hazard than non-Hispanic whites, though only Hispanics’

coefficients tend to be significant. The hazard of a Hispanic woman is about 0.666 (= exp(−0.407))

of a white woman’s. The hazard of a Hispanic man is about 0.678 (= exp(−0.389)) of a white

man’s.

More educated women, but especially those with a high school diploma or GED and in

some covariate specifications with a college degree, seem to retire earlier than those without a high

school diploma, but the coefficients on those categories are not statistically significant. For men,

college-educated husbands retire later than all other categories and the association is statistically

significant. There is some evidence that high school graduates retire earlier but the effect is nu-

merically small and statistically insignificant. Husbands in the Northeast tend to retire earlier,

whereas those in the South and West retire later than those in the Midwest. However, only sta-

tistically significant coefficients are those associated with the South. Geographical region does not

seem to play a statistically significant role for women. Furthermore, depending on the covariate

specification, women in the Northeast and South have a lower or higher hazard than those in the

Midwest. Western wives do seem to retire earlier in all covariate specifications, but then again,

standard errors are quite imprecise.

Self-reported health lowers the hazard, with healthier people retiring later than those in

poor health. Only the female coefficient on “good health” is significant in some of the specifica-

tions. Having health insurance increases the hazard for both husbands and wives, though not in

a statistically significant way. Total health expenditures increase the hazard for husbands, but

lowers it for wives. Though health expenditures tend to increase as self-reported health decreases,

we conjecture that this captures a deterioration in health not completely reflected in self-reported
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variables. Having a defined benefit contribution pension plan increases the probability of retirement

for both genders in a numerically and statistically significant manner. A defined contribution plan

negatively affects the male hazard but not the female. Wealthier women tend to retire earlier, but

financial wealth does not affect the hazard of men significantly.

The interaction parameter ranges from 1.134 to 1.085 across our various specifications. In

terms of our model, this means that the utility flow of retirement increases by around 10% when

one’s partner retires. In terms of the effect on the hazard rate of retirement, this corresponds to

about 40% of the effect of having a defined benefit plan for men.

To gauge the economic importance of the retirement externality, we simulated a counter-

factual in which all men were assigned to a defined contribution pension plan and compared its

outcome to assigning them to a defined benefit plan, holding everything else fixed. 14 This resulted

in a 24.1-month change in the median uncensored retirement date for men. The simulated effect

on the women was a change in the median uncensored retirement date of 2.1 months. In other

words, the indirect effect on the women through the retirement externality is about 10% of the

direct effect on the men. Given the large amount of censoring, one might argue that the median

uncensored retirement date is not representative of the data we actually use. We therefore also

compared the effect on the 25th percentile of uncensored retirement dates. Here, the direct effect

on the husbands was 12.0 months, while the effect on the wives was about 1.1 months.

We also added spousal variables as covariates to the last specification. Those variables

were: dummies for “very good health” and “good health” and dummies for defined benefit and

defined contribution pensions. In the simultaneous duration model, the coefficient for the dummy

on “West” is now barely significant at 10% for wives, but the coefficient estimates on the remaining

variables are essentially the same as in the tables. For males, the spousal coefficients are statistically

insignificant at the usual levels. For females, only the coefficient on a defined benefit pension plan

for the spouse is statistically significant. The absence of an effect of spousal health is in line with

previous findings in the literature (e.g., Coile (2004a)). The effect of a husband having a defined

benefit plan on a woman’s duration (0.324) is comparable with that of the woman herself having

a defined benefit pension plan, which is 0.399 once we include spousal covariates. In contrast, the

point estimate of the effect of a wife having a defined benefit pension plan on the man’s duration

14We used 100 simulation draws per individual.
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(−0.072) is negative, much lower in magnitude and statistically insignificant, when compared to

that of the man himself having a defined benefit plan, which is 0.262 once we include spousal

covariates.

All of the estimation results presented here can be thought of as GMM results. Rather

than working with the same moment conditions for all specifications, we always work with the

moment conditions that come from the scores of the Weibull proportional hazard auxiliary model

using the same explanatory variables as in the final model, combined with the scores from the

pseudo-likelihood function for the ordered logit using only a constant as an explanatory variable.

This means that the number of overidentifying restrictions is one for all the specifications. As a

specification test, we should therefore compare our minimized objective function to a Chi-squared

distribution with one degree of freedom. The p-values associated with this test of overidentifying

restrictions ranges from 9% to 88%, with the simpler models providing larger p-values. The average

p-value across the six specifications is 25%. This suggests that our specification provides a good fit

to the moments implicitly used in the estimation.

In Figure 7, we verify the robustness of our estimates to different threat point levels. As

mentioned previously, we set Ai, i = 1, 2, equal to 0.6 of the utility spouse i would obtain if

spouse j never retired. In the graph we plot 95% confidence intervals and point estimates of δ for

various proportions of the utility one would get in case the partner were not to retire in the third

specification from Tables 3 and 4. As seen from the plots, the confidence set bounds are at least

about 1.03 (for the lower bounds) and at most 1.17 (for the upper bounds). The point estimates

hover around 1.11, which is the estimate presented in our main tables.

Because the differential utility from joint retirement may depend on household characteris-

tics, we also split our estimation into households where husband and wife are within 3 years apart

in age and households where their age difference is greater than 3 years. The results are presented

in Table 5 for the covariates used in the third specification from Tables 3 and 4. As expected,

for households closer in age, δ is higher (1.102 versus 1.083). Interestingly, retirement timing for

wives in those households responds more to health conditions and education than in the baseline

specification in Table 3. The hazard is also comparatively higher for non-Hispanic black wives than

in the baseline specification. For households farther apart in age, Hispanic wives retire later than

in the baseline specification and college seems to decrease the retirement hazard while it raises it in
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the baseline specification. With respect to husbands, those in households closer in age now seem to

respond less to a college education, whose coefficient is also less precisely estimated. The coefficient

on Other race is quite different across subsamples. The proportion of individuals of other race is

nonetheless small in both: around 3.5% among couples more than 3 years apart in age, and only

1.5% among those closer in age.

The utility externality parameter, δ, is the only source of the dependence between the

retirement times in the models estimated above. It generates the simultaneous retirement dates

that motivated the paper but it also generates dependence in the part of the joint distribution of the

retirement times that does not correspond to simultaneous retirement. As mentioned previously,

this dependence could also be driven by correlated unobservables. To investigate this, we also

estimated a version of the model allowing for positive correlation between the unobserved variables

K1 and K2. We still assume that their marginal distributions are unit exponentials, but we allow

for dependence using a Clayton-Cuzick copula function (see Clayton and Cuzick (1985)). More

precisely, we model the joint cummulative distribution function of K1 and K2 as:

FK1,K2(k1, k2; τ) = K(1− exp(−k1), 1− exp(−k2); τ),

where

K (u, v; τ) =

 (u−τ + v−τ − 1)
−1/τ

for τ > 0

uv for τ = 0.

The unobservables are independent when τ = 0, so this nests our previous specifications. When

τ > 0, there is positive dependence between variables K1 and K2. Specifically, Kendall’s rank

correlation for the Clayton-Cuzick copula is equal to τ/(2 + τ) (see, for example, Trivedi and

Zimmer (2006)). This copula is commonly used to introduce dependence in the duration literature.

To understand why the joint distribution of K1 and K2 is identified, consider a point (k1, k2).

If the joint support of covariates is large enough, then for that point, there is a pair (ϕ1, ϕ2) that

induces sequential retirement in a neighborhood of (k1, k2). When there is sequential retirement,

the retirement dates t1 and t2 are a one-to-one mapping from k1 and k2. For example, if t1 < t2,

then t1 is equal to Z−11 (k1/ϕ1) and t2 is also uniquely determined (see footnote 6). From the FOC,

it is also clear that, given (t1, t2) (and k1 = Z1(t1)ϕ1), one can uniquely retrieve the corresponding

k2. Since we have a one-to-one mapping, the joint distribution of (T1, T2) is therefore informative
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about the joint density of (K1,K2). A different distribution of (K1,K2) in the neighborhood of

(k1, k2) changes the probability of (T1, T2) given the covariates corresponding to the initial choice

of (ϕ1, ϕ2).

To perform the estimation with the copula function we augment our auxiliary models with

the covariance in failure times (including censored observations in both data and simulation mo-

ments). Specifically, we calculate the covariance between the residuals from a regression of (log)

failure time on all covariates for husband and wife. An alternative is to use the residuals from regres-

sions on spouse-specific variables and/or to define generalized residuals from a proportional hazard

model estimated by maximum likelihood. The reason why we did not choose those approaches is

that the asymptotic distribution for the covariance would then depend on nuisance parameters (i.e.,

the regression coefficients). This is not the case if we use the same set of covariates for husband

and wife and estimate the model by OLS. The estimates from this specification are presented in

Table 6 for the third covariate specification from Tables 3 and 4. Regressor coefficient estimates are

slightly higher for education variables but virtually unchanged. The logarithm of τ is estimated at

-0.358, which would imply a Kendall’s rank correlation coefficient of 0.259. Finally, the interaction

parameter is estimated at 1.047, compared to 1.115 in our baseline specification (see Tables 3 and

4). The p-value for the test of overidentifying restrictions with this specification is 2%.

Finally, to evaluate whether joint retirement is likely to be an outcome from a common

shock, as opposed to the interaction between husband and wife, we compare the time variation of

our regressors across couples that retire simultaneously and couples that retire sequentially. For the

survey waves preceding retirement of any member in household, we look at the average proportional

changes in financial assets and health expenditures and average changes in self-reported health

status, pension plans (defined benefit and defined contribution) and health insurance. For all of

these variables, couples retiring simultaneously displayed at least as much stability (if not more)

in the survey waves preceding retirement than those retiring sequentially. For example, financial

assets for those who end up retiring simultaneously are much more stable than for couples who

retire sequentially: the average relative change in financial wealth across survey waves preceding

retirement is 3.197 for those who retire simultaneously versus 8.222 for those who retire sequentially.

Furthermore, there is no discernible statistical difference between the average change in financial

assets from survey wave to survey wave for these two groups. Consequently, it is unlikely that
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shocks to financial wealth (and, for that matter, that shocks to any of the variables listed above)

explain the joint retirement decision in our sample.

5 Concluding Remarks

We have presented a new model that nests the usual generalized accelerated failure time model,

but accounts for joint termination of spells and is built upon an economic model of joint decision

making. We then applied the model to retirement of husband and wife using data from the Health

and Retirement Study. The main empirical finding is that simultaneity seems economically im-

portant. In our preferred specification, the indirect utility associated with being retired increases

by approximately 10% if one’s spouse is already retired. By comparison, a defined benefit pension

plan increases indirect utility by 20-30%. The estimated model also predicts that the indirect effect

of a change in the pension plan for husbands on wives’ retirement dates is about 10% of the direct

effect on the husbands.

The present analysis can be extended in many respects. In future work, we plan to repro-

duce our analysis for a multi-country comparison of retirement behavior within couples (using, for

example, similar data from the Survey of Health, Ageing and Retirement in Europe (SHARE) and

the English Longitudinal Study of Ageing (ELSA)).

Appendix

AUXILIARY MODELS FOR INDIRECT INFERENCE

Log-likelihood Derivatives: Weibull Model

∂ logLi
∂αi

=

N∑
n=1

(1− ci,n)

(
1

αi
+ log (ti,n)

)
−

N∑
n=1

tαii,n log (ti,n) exp
(
x′i,nβi

)
∂ logLi
∂βi

=

N∑
n=1

(1− ci,n)xi,n −
N∑
n=1

tαii,n exp
(
x′i,nβi

)
xi,n

∂2 logLi
∂α2

i

= −
N∑
n=1

(1− ci,n)
1

α2
i

−
N∑
n=1

tαii,n log (ti,n)2 exp
(
x′i,nβi

)
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∂2 logLi
∂αi∂β

′
i

= −
N∑
n=1

tαii,n log (ti,n) exp
(
x′i,nβi

)
xi,n

∂2 logLi
∂βi∂β

′
i

= −
N∑
n=1

tαii,n exp
(
x′i,nβi

)
xi,nx

′
i,n

To impose αi > 0 in our computations we parameterize αi = exp (θ). Then,

∂ logLi
∂θ

=
∂ logLi
∂αi

∂αi
∂θ

=

(
N∑
n=1

(1− ci,n)

(
1

αi
+ log (ti,n)

)
−

N∑
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tαii,n log (ti,n) exp
(
x′i,nβi

))
αi

∂ logLi
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(
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)
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∂
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Pseudo-likelihood Derivatives: Ordered Model

∂Q
∂γ

=
∑
n

[(
1 {yn 6= 0} − Λ

(
x>0nγ

))
x0n +

(
1 {yn = 2} − Λ

(
x>1nγ

))
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(
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>
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ADDITIONAL DERIVATIONS FOR IDENTIFICATION DISCUSSION

Here we provide details for the effect of δ on the retirement date of the second spouse to
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retire when there is sequential retirement. First, note that when t1 ≈ 0, applying the Implicit

Function Theorem to the FOC for t2 (see equation (2)) gives

dt2
dδ

= −

[
∂2I
∂t2∂δ

× (II) + ∂II
∂δ ×

∂I
∂t2

+ ∂2II
∂t2∂δ

× (I) + ∂I
∂δ ×

∂II
∂t2

∂2I
∂2t2
× (II) + ∂II

∂t2
× ∂I

∂t2
+ ∂2II

∂2t2
× (I) + ∂I

∂t2
× ∂II

∂t2

]
, (5)

where (I) and (II) are defined as in equation (2). The various terms can be signed as shown below:

∂I
∂δ = ϕ1Z̃1(t2) > 0 ∂II

∂δ = ϕ2Z̃2(t2) > 0

∂I
∂t2

= Z1(t2)e
−ρt2ϕ1(1− δ) < 0 ∂II

∂t2
= k2e

−ρt2 − Z2(t2)ϕ2δe
−ρt2 > 0

∂2I
∂t2∂δ

= −Z1(t2)e
−ρt2ϕ1 < 0 ∂2II

∂t2∂δ
= k2e

−ρt2 − Z2(t2)ϕ2δe
−ρt2 > 0

∂2I
∂t22

= Z ′1(t2)e
−ρt2ϕ1(1− δ) < 0 ∂2II

∂t22
= −ρe−ρt2(k2 − Z2(t2)ϕ2δ)− Z ′2(t2)e−ρt2 < 0.

These and the fact that (I) ≥ 0 and (II) ≥ 0 imply that the denominator in expression (5) is

strictly negative. To see that the numerator is also negative notice that

lim
δ→1

[
∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2

]
= ϕ1Z̃1(t2)[k2 − Z2(t2)ϕ2] = 0

where the last equality follows because k2 = Z2(t2)ϕ2 at the optimally chosen t2 when δ = 1. Since

∂

∂δ

[
∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2

]
= −ϕ1ϕ2

(
Z1(t2)Z̃2(t2) + Z2(t2)Z̃1(t2)

)
e−ρt2 < 0,

it follows that

∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2
< 0.

The other two remaining terms in the numerator are negative, which then implies that the nu-

merator is negative. Consequently, (5) is negative: larger values of δ lead to earlier retirement by

the second agent (i.e., lower t2). Because t1 ≈ 0, I (and, consequently, t2) will not depend on k1.

Having identified Zi(·), ϕi(·) and the marginal distribution of K2, this allows one to identify δ.
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Appendix: Figures and Tables

Figure 1: Difference in Retirement Months (Husband-Wife)
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Figure 2: T1 and T2 as Functions of K2 (For K1 Fixed)

Figure 3: Marginal Density for T1 and Conditional Given T2 = 45 and T2 = 75, Respectively.
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Figure 4: Joint Retirement Regions
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Figure 5: Retirement Months: Husband vs Wife
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Figure 6: Kaplan-Meier Estimates: Husband and Wife
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Figure 7: Robustness of δ̂ to Different Threat Point Specifications
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Table 1: Summary statistics

All Observations Uncensored Censored
Variable Mean N Mean N Mean N

Gender 0.50 2938 0.59 1308 0.43 1630
Failure Month 53.60 2938 42.67 1308 62.36 1630
Censored 0.56 2938 0 1308 1 1630
Censoring Montha 81.36 2938 105.03 1308 62.36 1630
Age Diff. 3.90 2794 3.62 1268 4.14 1526
Non-Hisp. White 0.77 2916 0.809 1298 0.73 1618
Non-Hisp. Black 0.10 2916 0.089 1298 0.11 1618
Other Race 0.03 2916 0.023 1298 0.03 1618
Hispanic 0.11 2916 0.079 1298 0.14 1618
< High School 0.19 2916 0.191 1298 0.20 1618
HS or GED 0.36 2916 0.378 1298 0.35 1618
Some College 0.22 2916 0.216 1298 0.22 1618
College or Above 0.22 2916 0.215 1298 0.23 1618
NE 0.17 2916 0.181 1298 0.16 1618
MW 0.24 2916 0.265 1298 0.23 1618
SO 0.42 2916 0.384 1298 0.45 1618
WE 0.17 2916 0.169 1298 0.17 1618
Health Insurance 0.85 2896 0.88 1288 0.83 1608
V Good Health 0.53 2916 0.551 1298 0.52 1618
Good Health 0.31 2916 0.294 1298 0.31 1618
Poor Health 0.16 2916 0.155 1298 0.17 1618
Tot. Health Exp.b 8.07 ×103 2436 8.80 ×103 1249 7.30 ×103 1187
Pension (DB) 0.23 2916 0.28 1298 0.18 1618
Pension (DC) 0.22 2916 0.201 1298 0.23 1618
Financial Wealthb 94.01 ×103 2938 87.83 ×103 1308 98.97 ×103 1630

a. For those uncensored, the censoring month is either the last interview or death date, which
ever is the earlier date. It is used in the simulations for indirect inference.
b. Inflation-adjusted using the CPI to 2000 US dollars.
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Table 2: Intra-Household Differences
Prop. or Diff. N of Couples

Same Race (proportion) 0.9523 1447
Same Education (proportion) 0.4731 1469
Same Self-Reported Health (proportion) 0.4755 1447
Health Insurance (both) (proportion) 0.8160 1429
Health Insurance (neither) (proportion) 0.1092 1429
DB Pension (both) (proportion) 0.0636 1447
DB Pension (neither) (proportion) 0.6123 1447
DC Pension (both) (proportion) 0.0560 1447
DC Pension (neither) (proportion) 0.6185 1447
Health Exp. (difference) (US$1,000) 1.900 1208

Only couples with no missing variables. Inflation-adjusted health expenditures in Jan/
2000 USD.
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Table 3: WIVES’ Simultaneous Duration
Variable Coef. Coef. Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.134 1.118 1.115 1.085 1.088 1.091
( 0.030 ) ( 0.029 ) ( 0.027 ) ( 0.026 ) ( 0.024 ) ( 0.025 )

θ1 1.148 1.212 1.210 1.217 1.226 1.227
( 0.039 ) ( 0.049 ) ( 0.051 ) ( 0.054 ) ( 0.054 ) ( 0.062 )

Constant -5.627 ∗∗ -5.964 ∗∗ -5.793 ∗∗ -6.011 ∗∗ -5.966 ∗∗ -6.011 ∗∗
( 0.176 ) ( 0.290 ) ( 0.279 ) ( 0.335 ) ( 0.342 ) ( 0.347 )

Age Diff. -0.071 ∗∗ -0.067 ∗∗ -0.068 ∗∗ -0.074 ∗∗ -0.076 ∗∗ -0.077 ∗∗
( 0.017 ) ( 0.019 ) ( 0.020 ) ( 0.019 ) ( 0.019 ) ( 0.020 )

Non-Hisp. Black -0.151 -0.130 -0.049 -0.031 0.027
( 0.177 ) ( 0.160 ) ( 0.164 ) ( 0.155 ) ( 0.161 )

Other race -0.355 -0.369 -0.334 -0.304 -0.317
( 0.370 ) ( 0.403 ) ( 0.296 ) ( 0.346 ) ( 0.321 )

Hispanic -0.445 ∗ -0.476 ∗∗ -0.376 † -0.418 † -0.407 †
( 0.184 ) ( 0.184 ) ( 0.207 ) ( 0.218 ) ( 0.216 )

High school or GED 0.141 0.182 0.211 0.148 0.141
( 0.168 ) ( 0.167 ) ( 0.159 ) ( 0.156 ) ( 0.181 )

Some college 0.107 0.116 0.076 0.057 -0.009
( 0.171 ) ( 0.173 ) ( 0.170 ) ( 0.175 ) ( 0.175 )

College or above 0.162 0.176 0.274 0.155 0.067
( 0.189 ) ( 0.190 ) ( 0.185 ) ( 0.189 ) ( 0.212 )

NE -0.007 -0.001 -0.083 -0.116 -0.132
( 0.164 ) ( 0.158 ) ( 0.160 ) ( 0.159 ) ( 0.161 )

SO -0.002 0.007 0.021 -0.015 -0.019
( 0.126 ) ( 0.125 ) ( 0.124 ) ( 0.119 ) ( 0.120 )

WE 0.182 0.207 0.167 0.163 0.180
( 0.151 ) ( 0.150 ) ( 0.153 ) ( 0.153 ) ( 0.152 )

V Good Health -0.174 -0.207 -0.257 -0.251
( 0.139 ) ( 0.163 ) ( 0.157 ) ( 0.164 )

Good Health -0.319 ∗ -0.321 ∗ -0.390 ∗ -0.353 †
( 0.144 ) ( 0.163 ) ( 0.156 ) ( 0.165 )

Health Insurance 0.302 † 0.227 0.202
( 0.164 ) ( 0.179 ) ( 0.167 )

Tot. Health Exp. -0.155 -0.130 -0.077
( 0.945 ) ( 1.192 ) ( 1.027 )

Pension (DC) 0.112 0.127
( 0.124 ) ( 0.125 )

Pension (DB) 0.370 ∗∗ 0.387 ∗∗
( 0.117 ) ( 0.116 )

Fin. Wealth 0.376 †
( 0.195 )

Obj. Func. Value 0.024 2.055 2.255 2.349 2.450 2.852
Number of Obs. 1397 1379 1379 1143 1143 1143

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for θ1 or δ. Ommitted
categories are Non-Hisp. White, Less than high school, Midwest or Other Region, and Poor Health
The threat point scale factor is 0.6, ρ = 0.004 and R = 10.
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Table 4: HUSBANDS’ Simultaneous Duration
Variable Coef. Coef. Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.134 1.118 1.115 1.085 1.088 1.091
( 0.030 ) ( 0.029 ) ( 0.027 ) ( 0.026 ) ( 0.024 ) ( 0.025 )

θ1 1.172 1.216 1.218 1.208 1.218 1.221
( 0.039 ) ( 0.044 ) ( 0.045 ) ( 0.039 ) ( 0.045 ) ( 0.042 )

Constant -5.444 ∗∗ -5.396 ∗∗ -5.341 ∗∗ -5.659 ∗∗ -5.704 ∗∗ -5.699 ∗∗
( 0.169 ) ( 0.217 ) ( 0.247 ) ( 0.262 ) ( 0.274 ) ( 0.261 )

Age Diff. 0.025 ∗∗ 0.023 ∗ 0.023 ∗∗ 0.033 ∗∗ 0.032 ∗∗ 0.031 ∗∗
( 0.007 ) ( 0.007 ) ( 0.007 ) ( 0.007 ) ( 0.009 ) ( 0.007 )

Non-Hisp. Black -0.116 -0.107 -0.144 -0.127 -0.119
( 0.145 ) ( 0.142 ) ( 0.158 ) ( 0.170 ) ( 0.166 )

Other race -0.163 -0.143 -0.059 -0.009 -0.062
( 0.218 ) ( 0.217 ) ( 0.263 ) ( 0.230 ) ( 0.270 )

Hispanic -0.590 ∗∗ -0.583 ∗∗ -0.437 ∗∗ -0.423 ∗∗ -0.389 ∗
( 0.169 ) ( 0.162 ) ( 0.173 ) ( 0.173 ) ( 0.173 )

High school or GED 0.047 0.016 0.033 0.050 0.040
( 0.121 ) ( 0.118 ) ( 0.131 ) ( 0.134 ) ( 0.134 )

Some college 0.036 0.006 -0.015 -0.018 -0.055
( 0.126 ) ( 0.125 ) ( 0.140 ) ( 0.144 ) ( 0.144 )

College or above -0.300 ∗ -0.323 ∗ -0.285 † -0.257 † -0.296 ∗
( 0.129 ) ( 0.127 ) ( 0.139 ) ( 0.141 ) ( 0.144 )

NE 0.102 0.111 0.117 0.089 0.084
( 0.114 ) ( 0.113 ) ( 0.126 ) ( 0.120 ) ( 0.124 )

SO -0.230 ∗ -0.207 ∗ -0.151 -0.171 -0.170
( 0.100 ) ( 0.099 ) ( 0.112 ) ( 0.110 ) ( 0.110 )

WE -0.110 -0.119 -0.052 -0.078 -0.066
( 0.120 ) ( 0.119 ) ( 0.131 ) ( 0.127 ) ( 0.128 )

V Good Health -0.053 0.028 0.028 0.025
( 0.126 ) ( 0.142 ) ( 0.139 ) ( 0.141 )

Good Health -0.056 0.015 -0.028 -0.039
( 0.127 ) ( 0.146 ) ( 0.142 ) ( 0.145 )

Health Insurance 0.226 † 0.198 0.200
( 0.126 ) ( 0.136 ) ( 0.133 )

Tot. Health Exp. 1.188 ∗ 1.356 † 1.355 ∗
( 0.590 ) ( 0.730 ) ( 0.656 )

Pension (DC) -0.204 † -0.211 ∗
( 0.106 ) ( 0.107 )

Pension (DB) 0.289 ∗∗ 0.290 ∗∗
( 0.104 ) ( 0.104 )

Fin. Wealth 0.103
( 0.174 )

Obj. Func. Value 0.024 2.055 2.255 2.349 2.450 2.852
Number of Obs. 1397 1379 1379 1143 1143 1143

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for θ1 or δ. Ommitted
categories are Non-Hisp. White, Less than high school, Midwest or Other Region, and Poor Health
The threat point scale factor is 0.6, ρ = 0.004 and R = 10.
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Table 5: Simultaneous Duration by Age Diff.

> 3 yrs. ≤ 3 yrs.
Wife Husband Wife Husband

Variable Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.083 1.1017
( 0.046 ) ( 0.0304 )

θ1 1.200 1.246 1.2657 1.237
( 0.081 ) ( 0.049 ) ( 0.0551 ) ( 0.062 )

Constant -6.227 ∗∗ -5.429 ∗∗ -5.7166 ∗∗ -5.171 ∗∗
( 0.460 ) ( 0.311 ) ( 0.3423 ) ( 0.380 )

Non-Hisp. Black -0.569 -0.177 0.3421 † 0.016
( 0.422 ) ( 0.207 ) ( 0.1996 ) ( 0.242 )

Other race -0.366 0.386 † -1.3068 -1.129 ∗
( 0.442 ) ( 0.218 ) ( 0.4810 ) ( 0.549 )

Hispanic -0.982 ∗∗ -0.135 -0.0971 -0.905 ∗∗
( 0.246 ) ( 0.209 ) ( 0.2560 ) ( 0.266 )

High school or GED -0.137 0.041 0.2715 0.102
( 0.209 ) ( 0.177 ) ( 0.2382 ) ( 0.187 )

Some college -0.248 -0.135 0.1158 0.002
( 0.206 ) ( 0.188 ) ( 0.2565 ) ( 0.199 )

College or above -0.575 ∗ -0.318 † 0.5600 ∗ -0.223
( 0.255 ) ( 0.182 ) ( 0.2527 ) ( 0.196 )

NE 0.250 -0.137 -0.1254 0.460
( 0.254 ) ( 0.199 ) ( 0.2171 ) ( 0.148 )

SO 0.312 -0.083 -0.1471 -0.241
( 0.216 ) ( 0.163 ) ( 0.1589 ) ( 0.157 )

WE 0.558 ∗ -0.031 -0.0114 0.003
( 0.248 ) ( 0.189 ) ( 0.2213 ) ( 0.167 )

V Good Health -0.158 -0.025 -0.3828 † -0.261
( 0.211 ) ( 0.171 ) ( 0.2097 ) ( 0.242 )

Good Health -0.238 0.012 -0.5186 ∗∗ -0.342
( 0.231 ) ( 0.176 ) ( 0.2005 ) ( 0.251 )

Obj Func Value 4.124 2.964

Significance levels :† : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed
for θ1 or δ. Omitted categories are Non-Hisp. White, Less than high school,
Midwest or Other Region, and Poor Health. The threat point scale factor is 0.6,
ρ = 0.004 and R = 5.
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Table 6: Simultaneous Duration (Copula)

Wife Husband
Variable Coef. Coef.

(Std. Err.) (Std. Err.)

δ 1.047
( 0.026 )

θ1 1.227 1.226
( 0.052 ) ( 0.043 )

Constant -5.792 ∗∗ -5.341 ∗∗
( 0.275 ) ( 0.230 )

Age Diff. -0.067 ∗∗ 0.023 ∗∗
( 0.020 ) ( 0.007 )

Non-Hisp. Black -0.131 -0.130
( 0.159 ) ( 0.160 )

Other race -0.379 -0.191
( 0.341 ) ( 0.234 )

Hispanic -0.508 ∗∗ -0.587 ∗∗
( 0.176 ) ( 0.169 )

High school or GED 0.212 0.014
( 0.158 ) ( 0.120 )

Some college 0.157 0.034
( 0.170 ) ( 0.131 )

College or above 0.220 -0.281 ∗
( 0.190 ) ( 0.128 )

NE -0.028 0.087
( 0.156 ) ( 0.116 )

SO -0.006 -0.226 ∗
( 0.118 ) ( 0.101 )

WE 0.205 -0.127
( 0.151 ) ( 0.121 )

V Good Health -0.200 -0.064
( 0.145 ) ( 0.119 )

Good Health -0.331 ∗ -0.038
( 0.147 ) ( 0.127 )

ln(τ) -0.358
( 0.468 )

Obj Func Value 5.588

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Signifi-
-cance levels are not displayed for θ1, ln(τ) or δ. Omit-
-ted categories are Non-Hisp.White, Less than high
school, Midwest or Other Region, and Poor Health.
The threat point scale factor is 0.6, ρ = 0.004 and R =
10. τ is the parameter for the Clayton-Cuzick copula.
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