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Abstract

This paper studies the problem of specification testing in partially identified models defined by a finite

number of moment equalities and inequalities (i.e., (in)equalities). Under the null hypothesis, there is at

least one parameter value that simultaneously satisfies all of the moment (in)equalities whereas under

the alternative hypothesis there is no such parameter value. While this problem has not been directly

addressed in the literature (except in particular cases), several papers have suggested implementing this

inferential problem by checking whether confidence intervals for the parameters of interest are empty or

not.

We propose two hypothesis tests that use the infimum of the sample criterion function over the

parameter space as the test statistic together with two different critical values. We obtain two main

results. First, we show that the two tests we propose are asymptotically size correct in a uniform sense.

Second, we show our tests are more powerful than the test that checks whether the confidence set for

the parameters of interest is empty or not.
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1 Introduction

This paper studies the problem of specification testing in partially identified models defined by a finite

number of moment equalities and inequalities (i.e. (in)equalities). The model can be written as follows. For

a parameter vector (θ, F ), where θ ∈ Θ is a finite dimensional parameter of interest and F denotes the

distribution of the observed data, the model states that

EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p ,

EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k , (1.1)

where {Wi}ni=1 is an i.i.d. sequence of random variables with distribution F and m : Rd × Θ → Rk is

a known measurable function. This model is said to be partially identified because the sampling process

and the maintained assumptions (i.e. Eq. (1.1) together with regularity conditions) restrict the value of

the parameter of interest θ to a set, called the identified set, which is smaller than the entire space Θ but

potentially larger than a single point. In this paper we propose two hypothesis tests for the null hypothesis of

correct specification of the model in Eq. (1.1) that are based on the same test statistic but employ different

critical values. We show that our two tests are asymptotically size correct in a uniform sense. Furthermore,

we compare the power properties of our tests and the existent test proposed in the literature, which consists

in testing whether confidence sets for θ are empty or not, and obtain two main findings. In finite samples,

our tests have more or equal power than the existing test (for any alternative hypothesis). In addition,

we show that there exist sequences of local alternative hypotheses for which our tests have strictly higher

asymptotic power than the existing test.

A model is said to be correctly specified (or, statistically adequate) when the underlying assumptions are

supported by the observed data.1 The motivation behind the interest in misspecified models stems from the

view that most econometric models are only approximations to the underlying phenomenon of interest. This

is also the case for partially identified models, where strong and usually unrealistic assumptions are replaced

by weaker and more credible ones (see, e.g., Manski, 1989, 2003). In other words, the partial identification

approach to inference allows the researcher to conduct inference on the parameter of interest without impos-

ing assumptions on certain fundamental aspects of the model, typically related to the behavior of economic

agents. Still, for computational or analytical convenience, the researcher has to impose certain other assump-

tions, that are typically related to functional forms or distributional assumptions.2 If these assumptions are

not supported by the data, and so the model is misspecified, the resulting statistical inferences are usually

invalid (see, e.g., Ponomareva and Tamer, 2011; Bugni, Canay, and Guggenberger, 2012).

Specification tests for partially identified models have been studied in Guggenberger, Hahn, and Kim

(2008), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), and

Santos (2012). Guggenberger et al. (2008) propose to transform a linear moment (in)equality model into a

dual form that does not involve parameters and, in this way, eliminate the partial-identification problem.

Innovative as it is, their approach only applies to linear models and is not practical when the dimension of

the parameter is large because the dimension of the dual form grows exponentially with the dimension of the

parameters. Santos (2012) defines specification tests in a partially identified non-parametric instrumental

variable model and, thus, his results are not directly applicable to the model in Eq. (1.1). To the best of

our knowledge, there is only one specification test for the model in Eq. (1.1) that has been described in the

1The concept of statistical adequacy was introduced by Koopmans (1937) and referred to as the Fisher’s axiom of correct
specification. The discussion of the importance of a correct specification for inference purposes dates back to Haavelmo (1944).

2See Manski (2003) and Tamer (2003) for a discussion on the role of different assumptions and partial identification.
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literature and has been shown to have correct (uniform) asymptotic size. This test arises as a by-product

of confidence sets for partially identified parameters and has been proposed by Romano and Shaikh (2008,

Remark 3.7), Andrews and Guggenberger (2009, Section 7), and Andrews and Soares (2010, Section 5).

More specifically, the test rejects the null hypothesis of correct specification whenever the confidence set for

θ is empty. We take this test as the main competitor of the new tests proposed in this paper and so we

describe it formally in the next section. In what follows we will call this test “Test BP”, to emphasize that

it comes as a by-product of confidence sets for θ.

This paper makes two main contributions. Our first contribution is to introduce two new specification

tests and show that both of them have correct asymptotic size and can be significantly less conservative

than Test BP. Our second contribution is to show that our new tests have asymptotic power that is at worst

equal to that of Test BP against all sequences of local alternatives, and that can be strictly higher than

the asymptotic power of Test BP for certain sequences of local alternatives. We therefore conclude that the

hypothesis tests proposed in this paper have better statistical properties that Test BP.

The central reason for this size and power advantages of our specification tests is that they were designed

with the sole purpose of testing the specification of the model, in contrast to Test BP which was conceived

while pursuing a different goal. In particular, our tests involve a different test statistic (which is the infimum

over Θ of the usual test statistic used to construct confidence sets for θ) in the same spirit of the popular

J-test in point-identified moment equality models. The main technical challenge in constructing tests based

on this test statistic lies in the construction of valid and computationally feasible critical values. We propose

two methods with relative merits depending on the context that result in tests that have correct asymptotic

size and are less conservative than Test BP.

It is worth mentioning that the specification tests we propose in this paper are a type of omnibus

tests, in the sense that the specific structure of certain nonparametric alternatives is unknown. However,

a partially identified model is typically the result of removing undesirable restrictions in a certain point

identified model. As a consequence, refuting the partially identified model therefore leaves the researcher

with a reduced set of assumptions that could potentially be wrong. In addition, in some cases testing the

specification of a partially identified model can be analogous to directly testing an interesting economic

behavior. For example, Kitamura and Stoye (2012) recently proposed a specification test for the Axiom

of Revealed Stochastic Preference that shares similarities to our specification tests. In their case, rejecting

the specification of the model through their non-parametric test directly means rejection of the Axiom

of Revealed Stochastic Preferences. We note, however, that there are substantial differences between our

approach and that in Kitamura and Stoye (2012) in terms of the nature of the model, the construction of

the test statistic, and the range of applications in which each of these tests can be applied.

The remainder of the paper is organized as follows. Section 2 introduces the basic notation we use in our

formal analysis and describes the aforementioned Test BP. Section 3 introduces the test statistic we use in the

construction of the two new specification tests. The description of the tests is then completed by combining

this test statistic with appropriate critical values that are introduced in the succeeding sections. Section 4

describes a critical value based on the asymptotic approximation or bootstrap approximation of the limiting

distribution of the test statistic. We call this test the re-sampling test or “Test RS”. Section 5 describes a

critical value that is based on recycling critical values that have already been considered in the literature.

We call this test the re-cycling test or “Test RC”. Section 6 compares the asymptotic size and power of

the new tests we propose and the existing test, Test BP. Finally, Section 7 presents evidence from Monte

Carlo simulations and Section 8 concludes. The Appendix includes all of the proofs of the paper and several

intermediate results. Finally, throughout the paper we divide the assumptions in two groups: maintained
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assumptions indexed by the letter M (to denote mild assumptions that have been assumed elsewhere already)

and regular assumptions indexed by the letter A (to denote the assumptions that are fundamental for our

results).

2 Framework

The objective of our inferential procedure is to test whether the moment conditions in Eq. (1.1) are valid or

not, while maintaining a set of regularity conditions that we use to derive uniform asymptotic statements. We

assume throughout the paper that F , the distribution of the observed data, belongs to a baseline probability

space that we define below. Given this baseline space, we define an appropriate subset where the null

hypothesis holds, denoted null probability space. These two spaces are the main pieces in the description of

our testing problem. We then introduce more technical assumptions in Section 3 before presenting the main

results. The next three definitions provide the basic framework of our problem.

Definition 2.1 (Baseline Probability Space). The baseline space of probability distributions, denoted by

P ≡ P(a,M,Ψ), is the set of distributions F such that, when paired with some θ ∈ Θ, the following

conditions hold:

(i) {Wi}ni=1 are i.i.d. under F ,

(ii) σ2
F,j(θ) = V arF (mj(Wi, θ)) ∈ (0,∞), for j = 1, . . . , k,

(iii) CorrF (m(Wi, θ)) ∈ Ψ,

(iv) EF |mj(Wi, θ)/σF,j(θ)|2+a ≤M ,

where Ψ is a specified closed set of k × k correlation matrices, and M and a are fixed positive constants.

Definition 2.2 (Null Probability Space). The null space of probability measures, denoted by P0 ≡ P0(a,M,Ψ),

is the set of distributions F such that, when paired with some θ ∈ Θ, the following conditions hold:

• Conditions (i)-(iv) in Definition 2.1,

(v) EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p,

(vi) EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k,

where Ψ, M , and a are as in Definition 2.1.

Definition 2.3 (Identified Set). For any distribution F ∈ P, the corresponding identified set ΘI(F ) is the

set of parameters θ ∈ Θ such that the parameter vector (θ, F ) satisfies all conditions in Definition 2.2.

We can now use these definitions to describe the null and alternative hypothesis of our test in a concise

way. Under the maintained hypothesis that F ∈ P, our objective is to conduct the following hypothesis test,

H0 : F ∈ P0, vs. H1 : F 6∈ P0 . (2.1)

By Definitions 2.2 and 2.3, it follows that F ∈ P0 if and only if ΘI(F ) 6= ∅, and thus the hypotheses in Eq.

(2.1) can be alternatively expressed as

H0 : ΘI(F ) 6= ∅ vs. H1 : ΘI(F ) = ∅ , (2.2)
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which is a convenient representation to characterize the existing test, Test BP, in the next subsection.

To test the hypothesis in Eq. (2.1), we use φn to denote a non-randomized test that maps data into a

binary decision, where φn = 1 (φn = 0) denotes rejection (non-rejection) of the null hypothesis. The exact

size of the test φn is given by supF∈P0
EF [φn], while the asymptotic size is

AsySz ≡ lim sup
n→∞

sup
F∈P0

EF [φn] . (2.3)

For any α ∈ (0, 1), the test is said to be asymptotically level α if AsySz ≤ α and it is said to be asymptotically

size correct if AsySz = α. The importance of the distinction between tests that satisfy AsySz ≤ α rather

than pointwise requirement

lim sup
n→∞

EF [φn] ≤ α, ∀F ∈ P0 ,

has been emphasized in much of the recent literature on inference in partially identified models. See, e.g.,

Imbens and Manski (2004), Romano and Shaikh (2008), Andrews and Soares (2010), and Mikusheva (2010).

2.1 The existent specification test

This section formally introduces the Test BP, which is currently used by the literature as the specification

test in partially identified models. As we have already explained, this test arises as a by-product of confidence

sets for partially identified parameters and has been described in Romano and Shaikh (2008, Remark 3.7),

Andrews and Guggenberger (2009, Section 7), and Andrews and Soares (2010, Section 5). Before describing

this test, we need additional notation.

All the specification tests that this paper considers build upon the criterion function approach developed

by Chernozhukov, Hong, and Tamer (2007). In this approach, we define a non-negative function of the

parameter space, QF : Θ→ R+, referred to as population criterion function, with the property that

QF (θ) = 0 if and only if θ ∈ ΘI(F ) . (2.4)

As the notation suggests, QF (θ) depends on the unknown probability distribution F ∈ P and, thus, it is

unknown. We therefore use a sample criterion function, denoted by Qn, that approximates the population

criterion function and can be used for inference. In the context of the moment (in)equality model in Eq.

(1.1), it is convenient to consider criterion functions that are specified as follows (see, e.g., Andrews and

Guggenberger, 2009; Andrews and Soares, 2010; Bugni et al., 2012),

QF (θ) = S(EF [m(W, θ)],ΣF (θ)) , (2.5)

where ΣF (θ) ≡ V arF (m(W, θ)) and S : Rp[+∞] × Rk−p × Ψ → R+ is the test function specified by the

econometrician that needs to satisfy several regularity assumptions.3 The (properly scaled) sample analogue

criterion function is given by

Qn(θ) = S(
√
nm̄n(θ), Σ̂n(θ)) , (2.6)

where m̄n(θ) ≡ (m̄n,1(θ), . . . , m̄n,k(θ)), m̄n,j(θ) ≡ n−1
∑n
i=1mj(Wi, θ) for j = 1, . . . , k, and Σ̂n(θ) is a

3See Assumptions M.4-M.8 in the Appendix for these regularity conditions.

4



consistent estimator of ΣF (θ). A natural choice for this estimator is

Σ̂n(θ) = n−1
n∑
i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))′ . (2.7)

Using this notation, we can now define a generic 1− α confidence set for θ as

CSn(1− α) = {θ ∈ Θ : Qn(θ) ≤ cn(θ, 1− α)} , (2.8)

where cn(θ, 1− α) is such that CSn(1− α) has the correct asymptotic coverage, i.e.,

lim inf
n→∞

inf
(θ,F )∈F0

PF (θ ∈ CSn(1− α)) ≥ 1− α . (2.9)

The condition in Eq. (2.9) guarantees uniform coverage over the space F0, which denotes all parameters

(θ, F ) that satisfy the conditions in Definition 2.2.

Confidence sets that have the structure in Eq. (2.8) and satisfy Eq. (2.9) have been proposed by Romano

and Shaikh (2008); Andrews and Guggenberger (2009); Andrews and Soares (2010); Canay (2010); and

Bugni (2010), among others. In particular, Andrews and Soares (2010) consider confidence sets using Plug-

in asymptotics, subsampling, or generalized moment selection (GMS), and show that all of these methods

satisfy Eq. (2.9). We are now ready to define Test BP.

Definition 2.4 (Test BP). Let CSn(1−α) be a confidence set for θ that satisfies Eq. (2.9). The specification

Test BP rejects the null hypothesis in Eq. (2.1) according to the following rejection rule

φBPn = 1{CSn(1− α) = ∅} . (2.10)

Given Eq. (2.9), it follows that Test BP has an asymptotic size bounded above by α (see Theorem C.3

in the Appendix). However, as pointed out in Andrews and Guggenberger (2009) and Andrews and Soares

(2010), this test is admittedly conservative. Although it has not been formally established in the literature,

one might also suspect that this test suffers from low (asymptotic) power. Our formal analysis shows that

Test BP can have strictly less power than the new specification tests developed in this paper.

Definition 2.4 shows that Test BP depends on the confidence set CSn(1 − α). It follows that Test BP

inherits its size and power properties from the properties of CSn(1−α), and these properties in turn depend

on the particular choice of test statistic and critical value used in the construction of CSn(1 − α). All the

tests we consider in this paper are functions of the sample criterion function defined in Eq. (2.6) and therefore

their relative power properties do not depend on the choice of the particular function S(·). However, the

relative performance of Test BP with respect to the two tests we propose in this paper does depend on

the choice of critical value used in the construction of CSn(1 − α). Bugni (2010) shows that GMS tests

have more accurate asymptotic size than subsampling tests. Andrews and Soares (2010) show that GMS

tests are more powerful than Plug-in asymptotics or subsampling tests. This means that, asymptotically,

the Test BP implemented with a GMS confidence set will be less conservative and more powerful than the

analogous test implemented with Plug-in asymptotics or subsampling. Since our objective is to propose new

specification tests on the grounds of better asymptotic size control and asymptotic power improvements, we

adopt the GMS version of the specification test in Definition 2.4 as the “benchmark version” of Test BP.

This is summarized in the following assumption, maintained throughout the paper.

Assumption M.1. Test BP is computed using the GMS approach in Andrews and Soares (2010). In other
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words, φBPn in Eq. (2.10) is based on

CSn(1− α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} , (2.11)

where ĉn(θ, 1−α) is the GMS critical value constructed using a function ϕ and thresholding sequence {κn}n≥1

satisfying κn →∞ and κn/
√
n→ 0.

We conclude this section by presenting a simple example that illustrates how the identified set can be

empty under misspecification. The example is also used in Section 7 to produce Figure 1, as it captures

the types of situations where there are power gains of implementing the specification tests proposed in this

paper instead of Test BP (see Figure 1).

Figure 1: Rejection rates in the Example 2.1. Each line corresponds to the rejection rates in Table 2 in the
Monte Carlo section.

Example 2.1 (Missing Data). The economic model states that the true parameters (θ, F ) satisfy

EF [Y |X = x] = G(x, θ),∀x ∈ SX , (2.12)

where G is a known parametric function specified by the researcher and SX = {xl}dxl=1 is the (finite) support

of X. As there is missing data on Y , we let Z denote the binary variable that takes value of one if Y is

observed and zero if Y is missing. Conditional on X = x, Y has logical lower and upper bounds given by

YL(x) and YH(x), respectively. The observed data are {Wi}ni=1, where ∀i = 1, . . . , n, Wi = (YiZi, Zi, Xi).

The model in Eq. (2.12) therefore results in the following moment inequalities for l = 1, . . . , dx:

EF [ml,L(W, θ)] ≡ EF [(G(xl, θ)− Y Z − YL(xl)(1− Z))I(X = xl)] ≥ 0 ,

EF [ml,H(W, θ)] ≡ EF [(Y Z + YH(xl)(1− Z)−G(xl, θ))I(X = xl)] ≥ 0 . (2.13)

We now choose a simple parametrization that we use in our Monte Carlo simulations. Suppose that SX =

{x1 = (1, 0, 0), x2 = (−1, 0, 1), x3 = (0, 1, 0)}, that Y represents a non-negative outcome variable without an

upper bound, i.e., YL(x) = 0 and YH(x) = ∞, that G is the linear model G(x, θ) = x′θ, θ = (θ1, θ2, 1), and
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that there are missing data for all covariate values, i.e., P (Z = 1|X = xl) < 1 ∀l = 1, 2, 3. In this context,

Eq. (2.13) is equivalent to

EF [m1,L(W, θ)] ≡ EF [(θ1 − Y Z)I(X = x1)] ≥ 0 ,

EF [m2,L(W, θ)] ≡ EF [(1− θ1 − Y Z)I(X = x2)] ≥ 0 ,

EF [m3,L(W, θ)] ≡ EF [(θ2 − Y Z)I(X = x3)] ≥ 0 . (2.14)

It is straightforward to show that for any distribution F ∈ P, the identified set ΘI(F ) is given by

ΘI(F ) =

{
(θ1, θ2) ∈ Θ :

{
θ1 ∈ [EF [Y Z|X = x1], EF [1− Y Z|X = x2]],

θ2 ≥ EF [Y Z|X = x3]

}}
. (2.15)

It follows that this model is strictly partially identified (i.e., if a solution exists, it is always multiple) and it

is correctly specified if and only if EF [Y Z|X = x1] ≤ EF [1− Y Z|X = x2].

3 The new test statistic

The specification tests we present in this paper share a common test statistic, which is related to the test

statistic Qn(θ) defined in Eq. (2.6). The justification for the new test statistic we propose follows immediately

under the following two mild assumptions, that we maintain throughout the paper.

Assumption M.2. Θ is a nonempty and compact subset of Rdθ (dθ <∞).

Assumption M.3. For any F ∈ P, QF is a lower semi-continuous function.

Under Assumptions M.2 and M.3, the population criterion function achieves a minimum value in Θ. This

minimum value is zero when the identified set is non-empty. More precisely, infθ∈ΘQF (θ) ≥ 0 and

inf
θ∈Θ

QF (θ) = 0 ⇐⇒ ΘI(F ) 6= ∅ . (3.1)

It then follows that the hypothesis test in Eq. (2.1) can be re-written as

H0 : inf
θ∈Θ

QF (θ) = 0 vs. H1 : inf
θ∈Θ

QF (θ) > 0 . (3.2)

Based on this formulation of the problem, it is natural to suggest implementing the test using the infimum of

the sample analogue criterion function as a test statistic, i.e., infθ∈ΘQn(θ). In particular, the specification

of the model should be rejected whenever the test statistic exceeds a certain critical value. This leads to the

following hypothesis testing procedure.

Definition 3.1 (New Specification Test). The new specification test rejects the null hypothesis in Eq. (2.1)

according to the following rejection rule

φn = 1

{
inf
θ∈Θ

Qn(θ) > ĉn(1− α)

}
, (3.3)

where ĉn(1− α) is an approximation to the (1− α) quantile of the asymptotic distribution of infθ∈ΘQn(θ).

7



In order to make the test in Definition 3.3 feasible, we need to specify the critical value ĉn(1− α). The

challenging part of our analysis is to propose a critical value in Eq. (3.3) that results in a test that: (a)

controls asymptotic size, (b) has desirable power properties, and (c) is amenable to computation. Towards

this end, we propose two critical values that result in two hypothesis tests that satisfy these requirements.

The first critical value is based on a bootstrap approximation of the distribution of the test statistic under

the null hypothesis. The second critical value is based on a simple bounding argument based on “recycling”

GMS critical values. We describe each of these critical values in the next two sections.

Before introducing the critical values, it is convenient to describe the (1−α) quantile we wish to approx-

imate. In order to do this, we need to describe the limit distribution of the test statistic infθ∈ΘQn(θ) along

sequences of distributions {Fn}n≥1 with Fn ∈ P for all n ≥ 1. We do this by imposing the following four

assumptions (Appendix A contains further details on the notation used below).

Assumption A.1. For every F ∈ P and j = 1, . . . , k, {σ−1
F,j(θ)mj(·, θ) : W → R} is a measurable class of

functions indexed by θ ∈ Θ.

Assumption A.2. The empirical process vn(·) with j-component

vn,j(θ) =
√
nσ−1

Fn,j
(θ)

n∑
i=1

(m̄j(Wi, θ)− m̄n(θ)), j = 1, . . . , k , (3.4)

is asymptotically ρF -equicontinuous uniformly in F ∈ P in the sense of van der Vaart and Wellner (1996,

page 169). This is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
F∈P

P ∗F

(
sup

ρF (θ,θ′)<δ

||vn(θ)− vn(θ′)|| > ε

)
= 0 ,

where P ∗F denotes outer probability and ρF denotes the coordinate-wise version of the intrinsic variance

semimetric (see Eq. (A-2) in Appendix A for details).

Assumption A.3. For some constant a > 0 and all j = 1, . . . , k,

sup
F∈P

EF

[
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣]2+a

<∞ .

Assumption A.4. For any F ∈ P and θ, θ′ ∈ Θ, let ΩF (θ, θ′) be a k × k correlation matrix with typical

[j1, j2]-component

ΩF (θ, θ′)[j1,j2] ≡ EF
[(

mj1 (W,θ)−EF [mj1 (W,θ)]

σF,j1 (θ)

)(
mj2 (W,θ′)−EF [mj2 (W,θ′)]

σF,j2 (θ′)

)]
.

The matrix ΩF satisfies

lim
δ↓0

sup
‖(θ1,θ′1)−(θ2,θ′2)‖<δ

sup
F∈P
‖ΩF (θ1, θ

′
1)− ΩF (θ2, θ

′
2)‖ = 0 .

Assumption A.1 is a mild measurability condition. In fact, the kind of uniform laws large numbers we need

for our analysis would not hold without this basic requirement (see van der Vaart and Wellner, 1996, page
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110). Assumption A.2 is a uniform stochastic equicontinuity assumption which, in combination with the other

three assumptions, is used to show that, for all j = 1, . . . , k, the class of functions {σ−1
F,j(θ)mj(·, θ) :W → R}

is Donsker and pre-Gaussian uniformly in F ∈ P (see Lemma D.2). Assumption A.3 provides a uniform (in F

and θ) envelope function that satisfies a uniform integrability condition. This is essential to obtain uniform

versions of the laws of large numbers and central limit theorems. Finally, Assumption A.4 requires the

correlation matrices to be uniformly equicontinuous, which is used to show pre-Gaussianity. This condition

implies that the Euclidean metric for θ is uniformly stronger than the variance semimetric (see van der Vaart

and Wellner, 1996, problem 3, page 93).

The next theorem derives the limit distribution of our test statistic under the above assumptions. In

the theorem, we let C(Θ2) denote the space of continuous functions that map Θ2 to Ψ, and S(Θ × Rk[±∞])

denote the space of compact subsets of the metric space (Θ × Rk[±∞], d(·)), where d(·) is the metric defined

in Appendix A, Eq. (A-1). We use the symbols
u→ and

H→ to denote uniform convergence and convergence in

Hausdorff distance (see Appendix A). Finally, we let DF (θ) ≡ Diag(ΣF (θ)), and define for any n ∈ N and

F ∈ P the following subset of Θ× Rk,

Λn,F ≡
{

(θ, `) ∈ Θ× Rk : ` =
√
nD
−1/2
F (θ)EF [m(W, θ)]

}
. (3.5)

Theorem 3.1. Let Assumptions A.1-A.4 hold. Let {Fn}n≥1 be a (sub)sequence of distributions such that

for some (Ω,Λ) ∈ C(Θ2) × S(Θ × Rk[±∞]), (i) Fn ∈ P0 for all n ∈ N, (ii) ΩFn(θ, θ′)
u→ Ω(θ, θ′), and (iii)

Λn,Fn
H→ Λ. Then, along the (sub)sequence {Fn}n≥1

Tn ≡ inf
θ∈Θ

Qn(θ)
d→ J(Λ,Ω) ≡ inf

(θ,`)∈Λ
S(vΩ(θ) + `,Ω(θ, θ)), as n→∞ , (3.6)

where vΩ : Θ→ Rk is a Rk-valued tight Gaussian process with covariance (correlation) kernel Ω ∈ C(Θ2).

Theorem 3.1 gives the asymptotic distribution of our test statistic under a (sub)sequence of distributions

that satisfies certain properties. It turns out that these types of (sub)sequences are the relevant ones to

determine the asymptotic size of our tests (for additional details, see Appendix C).

The limit distribution J(Λ,Ω) in Theorem 3.1 depends on the set Λ and the function Ω, and so does

its 1 − α quantile, which we denote by cΛ(Ω, 1 − α). Our goal is to construct feasible critical values that

approximate cΛ(Ω, 1− α) asymptotically. Unfortunately, this is a difficult task as Λ cannot be consistently

estimated in a uniform way. In the next two sections, we propose two approaches to circumvent this problem.

4 Test RS: Re-Sampling critical value

The first approach is based on the use of resampling methods to approximate J(Λ,Ω), which require approx-

imating the limiting set Λ and the limiting correlation function Ω. The limiting correlation function can be

estimated using standard methods. On the other hand, the approximation of Λ is non-standard and presents

two main difficulties. The first one can be related to the difficulty described in Andrews and Soares (2010)

of estimating the slackness parameter for the moment inequalities. The second one is related to the fact that

the set Λ includes limit points of random sequences that contain tuples (θn, Fn) such that θn /∈ ΘI(Fn) for

some or all n ∈ N. This second difficulty is novel to this paper.

To be more precise, Andrews and Soares (2010) denote the slackness parameter that indicates whether a

9



moment inequality is binding, close to be binding, or not binding, by

h1,j = lim
n→∞

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)], for j = 1, . . . , p . (4.1)

This slackness parameter is only defined for (non-random) sequences of parameters {(θn, Fn)}n≥1 with

θn ∈ ΘI(Fn) for all n ∈ N (implying h1,j ∈ [0,∞]) and it cannot be consistently estimated. The GMS

approach proposed by Andrews and Soares (2010) takes advantage of the weak monotonicity of the test

function and then replaces h1,j with a function ϕj(·) of the following sample measure of slackness,

ξn,j(θ) = κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ), for j = 1, . . . , p , (4.2)

where {κn}n≥1 is a thresholding sequence that satisfies κn →∞ and κn/
√
n→ 0.

Our problem is similar in the sense that Λ contains the cluster points of the sequence

{(θn,
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)])}n≥1 . (4.3)

However, the presence of an infimum over θ in our problem implies that the sequence θn is now random.

This is an important technical difficulty, as most of the results in Andrews and Soares (2010) cannot be

extended to random sequences. More importantly, in our setup all we know under the null hypothesis is

that Fn ∈ P0 for all n ∈ N. By definition of P0 (see Definition 2.2), this means that there exists θ?n such

that θ?n ∈ ΘI(Fn) for all n ∈ N. There is, however, no guarantee that the random sequence θn in Eq. (4.3)

satisfies θn ∈ ΘI(Fn). In fact, in most standard models one can construct cases in which θn /∈ ΘI(Fn) for

all n ∈ N. This is problematic because it implies that the set Λ contains tuples (θ, `) such that `j < 0 for

j = 1, . . . , p, or `j 6= 0 for j = p+ 1, . . . , k and so, if an infimum is attained, it could be attained at a value

of θ that is not associated with `j ≥ 0 for j = 1, . . . , p and `j = 0 for j + p+ 1, . . . , k.

Despite the aforementioned difficulties, we can approximate the quantiles of J(Ω,Λ) much in the spirit of

Andrews and Soares (2010), with the addition of an approximation of the identified set ΘI(F ) to guarantee

that the limit points of the elements (θ, `) in the resampling approximation of the set Λ are such that `j ≥ 0

for j = 1, . . . , p and `j = 0 for j = p + 1, . . . , k. The exact approximation of ΘI(F ) we use is described in

the next definition.

Definition 4.1. Let {τn}n≥1 be a non-stochastic sequence defined as τn = κrn for some r ∈ (0, 1) where

{κn}n≥1 is as in Assumption M.1, and let q?n ≡ infθ∈Θ S(τ−1
n

√
nm̄n(θ), Σ̂n(θ)). The approximation to the

identified set is defined as

Θ̂I ≡ {θ ∈ Θ : S(τ−1
n

√
nm̄n(θ), Σ̂n(θ))− q?n ≤ 1} . (4.4)

The set Θ̂I is the standard estimator of the identified set, based on a normalized sample criterion function

centered at the infimum. This normalization is useful in cases where the infimum of the sample criterion

function is not zero in finite samples (see Chernozhukov et al., 2007, p. 1247) and avoids having an estimator

of the identified set that can be empty with positive probability. The estimator Θ̂I is non-empty by definition.

Now we can define the resampling test statistic that we use to construct an approximation to cΛ(Ω, 1−α).

Let {v̂∗n(θ) : θ ∈ Θ} be a stochastic process indexed by θ, whose conditional distribution given the original

sample is known and can be simulated. Consider the following test statistic

T ∗n = inf
θ∈Θ̂I

S(v̂∗n(θ) + ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)) ,

10



where for D̂n(θ) ≡ Diag(Σ̂n(θ)), and Σ̂n(θ) the estimator in Eq. (2.7),

Ω̂n(θ) ≡ D̂−1/2
n (θ)Σ̂n(θ)D̂−1/2

n (θ) ,

ξn(θ) = {ξn,j(θ)}pj=1 with ξn,j(θ) is as in Eq. (4.2), and ϕ = (ϕ1, . . . , ϕp,0k−p)
′ ∈ Rk[+∞] is the function

in Assumption M.1 that is assumed to satisfy the assumptions in Andrews and Soares (2010). Examples

of ϕ include ϕj(ξ,Ω) = ∞I(ξj > 1) (where we use the convention ∞0 = 0), ϕj(ξ,Ω) = max{ξj , 0}, and

ϕj(ξ,Ω) = ξj for j = 1, . . . , p (see Andrews and Soares, 2010, for additional examples).

Conditional on the sample, the distribution of T ∗n is known and its quantiles can be approximated

by Monte Carlo simulation. For example, the stochastic process v̂∗n can be simulated via a bootstrap

approximation, in which case

v̂∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(W ∗i , θ)− m̄n(θ)) , (4.5)

where {W ∗i }ni=1 is an i.i.d. sample drawn with replacement from original sample {Wi}ni=1, or via an asymptotic

approximation, in which case

v̂∗n(θ) =
1√
n

n∑
i=1

D̂−1/2
n (θ)(m(Wi, θ)− m̄n(θ))ζi , (4.6)

where {ζi}ni=1 is an i.i.d. sample satisfying ζi ∼ N(0, 1). We can now define Test RS.

Definition 4.2 (Test RS). The specification Test RS rejects the null hypothesis in Eq. (2.1) according to

the following rejection rule

φRSn = 1

{
inf
θ∈Θ

Qn(θ) > ĉRSn (1− α)

}
, (4.7)

where ĉRSn (1− α) is a resampling approximation to the (1− α)-quantile of T ∗n .

The following result shows that the hypothesis test proposed in Definition 4.2 is asymptotically level

correct.

Theorem 4.1. Let Assumptions A.1-A.7 hold. Then, for any α ∈ (0, 1),

lim sup
n→∞

sup
F∈P0

EF [φRSn ] ≤ α . (4.8)

In order to understand the result in Theorem 4.1, it is convenient to re-write the test statistic T ∗n in a

way that facilitates comparisons with the set Λn,F defined in Eq. (3.5). This can be done by noting that

T ∗n = inf
(θ,`)∈Λ̂∗n

S(v̂∗n(θ) + `, Ω̂n(θ)) ,

where

Λ̂∗n =
{

(θ, `) : θ ∈ Θ̂I , ` = ϕ(ξn(θ), Ω̂n(θ))
}
. (4.9)

Therefore, the resampling approach behind test RS in Definition 4.2 consists in replacing the set Λ with the

approximation Λ̂∗n, which is (generally) not consistent for Λ. The important distinction here, relative to a

standard resampling method, is that the set Λ̂∗n restricts θ ∈ Θ̂I as opposed to θ ∈ Θ in Λn,F . In fact, it is

possible to show that if we were to define the set Λ̂∗n with Θ replacing Θ̂I , this would result in an approach
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that would not control asymptotic size as in Theorem 4.1 for functions ϕ satisfying Assumption A.5. In

other words, under the assumptions of the theorem, using a similar statistic to T ∗n but with an infimum over

Θ (as it is the case for the original test statistic) does not provide a valid asymptotic approximation.4

Once we re-write the test statistic as above, the result in Theorem 4.1 follows from three intermediate

steps that use the following expansion of ΘI(F ).

Definition 4.3. Let ηn ≡ τn log κn and Θηn
I (F ) be defined as

Θηn
I (F ) ≡ {θ ∈ Θ : S(η−1

n

√
nEF [m(W, θ)],ΣF (θ)) ≤ 1} .

Remark 4.1. Θηn
I (F ) is a blow-up of ΘI(F ), with an amount of expansion proportional to ηn/

√
n = o(1).

Moreover, Lemma D.13 in Appendix C shows that

lim
n→∞

inf
F∈P0

PF

(
ΘI(F ) ⊆ Θ̂I ⊆ Θηn

I (F )
)

= 1 .

The first step is immediate and consists in noticing that Tn ≤ T̃n for all n ∈ N, where T̃n is defined

similarly to Tn but with an infimum over θ ∈ Θηn
I (F ). If we let J(Λ′,Ω) denote the limit distribution of T̃n,

it follows from Θηn
I (F ) ⊆ Θ that

J(Λ,Ω) ≤ J(Λ′,Ω) . (4.10)

The advantage of working with this (infeasible) test statistic, is that now the limit set Λ′ does not contain

limit points of sequences {(θn, Fn)}n≥1 with θn far from ΘI(Fn).

The second step is to note that Remark 4.1 implies that, asymptotically, T̃ ∗n ≤ T ∗n , where T̃ ∗n is defined

as T ∗n with Λ̂∗n replaced by

{(θ, `) : θ ∈ Θηn
I (Fn), ` = ϕ∗(ξn(θ))} . (4.11)

This representation is useful for two reasons: the set Θηn
I (Fn) is non-random and the function ϕ∗ is continuous

(which is not necessarily the case for the original function ϕ) and does not depend on Ω̂n(θ) (see Theorem

C.2 for details). If we denote by J(Λ†,Ω) the limit distribution of the test statistic T̃ ∗n , we then show that

J(Λ′,Ω) ≤ J(Λ†,Ω) . (4.12)

The combination of Eqs. (4.10) and (4.12) ensure that the critical value ĉRSn (1− α) is uniformly valid.

Remark 4.2. Note that the sequence ηn and the set Θηn
I (Fn) are used in the proof at intermediate steps

but are not needed for the implementation of the test φRSn .

Remark 4.3. The definition of the set in Eq. (4.11) assumes the existence of a function ϕ∗(·) that is

continuous and satisfies ϕ ≤ ϕ∗. Such assumption is not restrictive. For example, it is satisfied for the

functions ϕ(1)−ϕ(4) described in Andrews and Soares (2010) and Andrews and Barwick (2012) (see Remark

B.1 in Appendix B).

Remark 4.4. Test RS, although feasible, might be computationally demanding in some applications. The

main complexity is that it requires to simulate a stochastic process in θ with a covariance kernel that

converges to Ω(θ, θ′) asymptotically. In practice, this is achieved by simulating v̂∗n(θ) for each θ ∈ Θ̂I as in

4It is worth pointing out that a special choice of the function ϕ can be shown to circumvent the problem and result in a
test that controls asymptotic size. However, such function does not belong to the class of functions considered in Andrews and
Soares (2010) and thus not suitable for the type of power comparisons we study in this paper.
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Equation (4.6). Letting B denote the number of simulation draws, this means that for each θ ∈ Θ̂I Test RS

requires n × B simulations from a standard normal random variable, which increases proportionally to the

sample size.

5 Test RC: Re-Cycling existent critical values

This section proposes a second method to compute critical values that can be computationally attractive in

many models and generates power advantages vis-à-vis Test RS. The critical value for the Test RS is based

on approximating the quantile of the infimum of the criterion function Qn(θ) over all θ ∈ Θ. In contrast,

the main idea behind the critical value for the Test RC is to bound the quantile of the infimum with the

infimum of the approximated quantiles, which are already available in the literature. Formally, the Test RC

is defined as follows.

Definition 5.1 (Test RC). The specification Test RC rejects the null hypothesis in Eq. (2.1) according to

the following rejection rule

φRCn = 1

{
inf
θ∈Θ

Qn(θ) > ĉRCn (1− α)

}
, (5.1)

where ĉRCn (1− α) is given by

ĉRCn (1− α) = inf
θ∈Θ̂I

ĉn(θ, 1− α) , (5.2)

and ĉn(θ, 1− α) is the GMS critical value defined in Assumption M.1.

The following result shows that the hypothesis test proposed in Definition 4.2 is asymptotically level

correct.

Theorem 5.1. Let Assumptions A.1-A.7 hold. Then, for any α ∈ (0, 1),

lim sup
n→∞

sup
F∈P0

EF [φRCn ] ≤ α . (5.3)

Remark 5.1. The computational cost of Test RC is only marginally higher than that of the Test BP, as

Test BP already requires ĉn(θ, 1 − α) for all θ ∈ Θ and Test RC just takes an infimum over Θ̂I of these

critical values. In practice the infimum in Eq. (5.2) is just a minimum over a finite grid, as Θ̂I is typically a

finite collection of points. The additional cost is therefore limited to the computation of Θ̂I .

Remark 5.2. The computational advantage of Test RC over Test RS comes from the fact that Test RC

requires to simulate the Gaussian process v̂∗n(θ) at each particular θ, which is a normal random variable with

zero mean and a variance Ω(θ). In other words, the correlation of v̂∗n(θ) and v̂∗n(θ′) for θ 6= θ′ is not needed

to compute Test RC. In practice, this means that for each θ ∈ Θ̂I , Test RC requires k×B simulations from

a standard normal random variable, which does not increase with the sample size, c.f. Remark 4.4.

Remark 5.3. Theorem 5.1 follows immediately from Theorem 4.1 once we notice that

ĉRSn (1− α) ≤ inf
θ∈Θ̂I

ĉn(θ, 1− α) = ĉRCn (1− α) , (5.4)

as the quantile of an infimum is weakly smaller than the infimum of the quantiles. See the proof of Theorem

6.1 in the next section for details.
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6 Power analysis

It follows from previous results that the three specification tests we study in this paper are asymptotically

size correct. In this section we show that the two tests we propose, Test RS and test RC, weakly dominate

Test BP in terms of finite sample power for all n ∈ N, and can even strictly dominate Test BP in terms

of asymptotic power for certain types of local alternatives. These results are summarized in the next two

theorems.

Theorem 6.1. For any (n, F ) ∈ N× P,

φRSn ≥ φRCn ≥ φBPn .

Corollary 6.1. For any sequence of local alternatives {Fn ∈ P/P0}n≥1,

lim inf
n→∞

(EFn [φRSn ]− EFn [φRCn ]) ≥ 0, and lim inf
n→∞

(EFn [φRCn ]− EFn [φBPn ]) ≥ 0 .

The proof of Theorem 6.1 is in Appendix C, while Corollary 6.1 follows directly from Theorem 6.1. Note

that Theorem 6.1 is a statement that holds for all n ∈ N and F ∈ P. This is not only a finite sample power

result, but it is also a relationship that holds for distributions F ∈ P0. It follows that the two tests we

propose cannot be more conservative than the existing Test BP.

Theorem 6.1 and Corollary 6.1 show that Test BP will never do better (in terms of power or asymptotic

conservativeness) than Test RS and Test RC. However, there is nothing that prevents a situation in which

all these tests provide exactly the same power. The last result in this section therefore provides a type of

local alternatives for which both of our tests have strictly higher asymptotic power than Test BP. The result

relies on the following condition.

Assumption A.9. Let Θ̂I be the set defined in Definition 4.1. The sequence {Fn ∈ P}n≥1 satisfies the

following properties: (i) there is a sequence {θ∗n ∈ Θ}n≥1 s.t. Qn(θ∗n) = Tn and ĉn(θ∗n, 1−α)
p→ c2, (ii) there

is a sequence {θn ∈ Θ̂I}n≥1 s.t. ĉn(θn, 1− α)
p→ c1, and (iii) Tn

d→ J and P (J ∈ (c1, c2)) > 0.

The intuition behind Assumption A.9 is illustrated in Figure 2, which is based on Example 2.1. In

words, Assumption A.9 requires that the standard estimator of the identified set includes at least two points

asymptotically along the sequence of alternatives, and that the quantiles of the limit distribution of Qn(θ)

are different at each of these two points. For example, in Figure 2 the set of minimizers of Qn(θ) is a line

and therefore Θ̂I is a rectangle. In particular, the critical value at the point labeled “1, 2, 3 active” is one

for which there are three moment inequalities that are active (and it converges to c2 in the notation of the

assumption), while the critical value at the point labeled “1, 2 active” is one for which there are only two

moment inequalities that are active (and so it converges to c1 in the notation of the assumption). The value

of Qn(θ) is the same at these two points. It is therefore clear that whenever the set of minimizers of Qn(θ)

is not a singleton and the distribution of Qn(θ) is not the same along the minimizers, Assumption A.9 will

be satisfied.

Theorem 6.2. Assume the sequence of local alternatives {Fn ∈ P/P0}n≥1 satisfies Assumption A.9. Then,

lim inf
n→∞

(EFn [φRCn ]− EFn [φBPn ]) > 0 .
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θ1

θ2
minimizers of Qn(θ)

θ2 = Z̄?3,n

θ1 = (Z̄?1,n + Z̄?2,n)/2

Θ̂I

3 active

3 inactive

2 active2 inactive 1 active 1 inactive

c2
1, 2, 3 active

c1 1, 2 active

Figure 2: Illustration of Assumption A.9 . The identified set is defined in Eq. (7.2) and Z?j ≡ {YiZi|X = xj}
for j = 1, 3 and Z?2 ≡ 1− {YiZi|X = x2}, where {YiZi|X = xj} are defined as in Eq. (7.1).

Theorem 6.2 shows that Test RC is asymptotically strictly more powerful than Test BP for sequence of

alternatives satisfying Assumption A.9. Combining this theorem with Theorem 6.1, it follows that Test RS

is also strictly more powerful than Test BP asymptotically.

Remark 6.1. If one considers sequences of alternatives under which the inequality in Eq. (5.4) becomes

strict, it is then possible that Test RS becomes strictly more powerful than Test RC for such alternatives.

7 Monte Carlo simulations

We now present Monte Carlo simulations that illustrate the finite sample properties of the specification tests

considered in this paper. We simulate data according to the simple parametrization presented in Example

2.1, i.e., Eq. (2.14). The data {Wi}ni=1 are i.i.d., where Wi ≡ (Xi, YiZi) is distributed as follows

P (Xi = x1) = P (Xi = x2) = P (Xi = x3) = 1/3 ,

{YiZi|X = x1} ∼ N(0, 1), {YiZi|X = x2} ∼ N(1 + η, 1), {YiZi|X = x3} ∼ N(0, 1) , (7.1)

for different values of η ∈ R. By plugging in this information into Eq. (2.14), we can derive the following

closed form solution for the identified set

ΘI(F ) = {(θ1, θ2) ∈ Θ : θ1 ∈ [0,−η], θ2 ≥ 0} . (7.2)

The parameter η ∈ R measures the amount of model misspecification. On the one hand, η ≤ 0 implies

that the model is correctly specified and strictly partially identified, i.e., the identified set includes multiple

values. On the other hand, η > 0 implies that the the model is misspecified, i.e., the identified set is empty.

The results from the simulations are collected in Tables 1 and 2. The parameters we use to produce

both tables are as follows: α = 10%, κn =
√

log n, n ∈ {100, 500}, and τn ∈ {
√

log log n, κn/3, 2κn/3}. The

number of replications is set to MCsize = 2, 000. Our simulation results are consistent with our theoretical

findings.

Under the null hypothesis (i.e. η ≤ 0) all tests considered in this paper provide size control (i.e. rejection

rate does not exceed α). In fact, these tests appear to be slightly conservative in the current setup (i.e.
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η
Test τn -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BP N/A 0.75 2.20 5.65 11.90 22.55 37.15 53.40 68.30 79.75 88.55 94.50 97.85
RC

√
log log n 1.65 4.05 9.55 18.55 31.85 47.95 64.25 76.15 86.05 93.00 97.35 99.00

RC (1/3)κn 1.65 4.05 9.55 18.55 31.85 47.95 64.25 76.15 86.05 93.00 97.35 99.00
RC (2/3)κn 1.65 4.05 9.55 18.55 31.85 47.95 64.25 76.15 86.05 93.00 97.35 99.00
RS

√
log log n 1.95 5.45 11.50 22.00 36.00 52.55 68.00 79.15 88.10 94.25 97.85 99.05

RS (1/3)κn 1.80 4.75 10.65 20.45 34.10 50.15 66.30 77.70 87.00 93.65 97.55 99.05
RS (2/3)κn 2.00 5.65 12.05 22.65 36.90 53.30 68.80 79.95 88.60 94.50 97.90 99.05

Table 1: Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (7.2). Parameter
values are n = 100, α = 10%, and κn =

√
log n. Results based on 2, 000 Monte Carlo replications.

η
Test τn -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BP N/A 0.15 2.50 14.80 44.75 78.75 95.45 99.55 100 100 100 100 100
RC

√
log log n 0.40 4.15 20.75 53.90 85.05 97.20 99.70 100 100 100 100 100

RC (1/3)κn 0.40 4.15 20.75 53.90 85.05 97.20 99.70 100 100 100 100 100
RC (2/3)κn 0.40 4.15 20.75 53.90 85.05 97.20 99.70 100 100 100 100 100
RS

√
log log n 0.50 4.45 22.40 55.80 86.50 97.70 99.70 100 100 100 100 100

RS (1/3)κn 0.40 4.35 21.90 55.20 86.05 97.60 99.65 100 100 100 100 100
RS (2/3)κn 0.50 4.55 23.20 56.40 86.65 97.80 99.70 100 100 100 100 100

Table 2: Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (7.2). Parameter
values are n = 500, α = 10%, and κn =

√
log n. Results based on 2, 000 Monte Carlo replications.

rejection rate less than α). As expected, under the alternative hypothesis (i.e. η > 0) the rejection rates

increase, with an amount of rejection increasing with the amount of misspecification, measured by η.

In accordance to Theorem 6.1, the tests proposed in this paper should reject more or equal than Test BP.

As a corollary, Tests RS and RC are (a) less or equally conservative and (b) more or equally powerful than

Test BP. Our Tables reveal that both of these findings occur strictly in finite samples. For concreteness,

consider the results for a small sample size n = 100 in Table 1 and concentrate on implementing Tests

RC and RS using the recommended value of τn =
√

log log n. For a null hypothesis with η = 0, Test BP

is significantly more conservative than Tests RC and RS (rejection rates of 2.2% versus 4.05% and 5.45%,

respectively). For an alternative hypothesis with η = 0.3, Test BP is significantly less powerful than Tests

RC and RS (rejection rates of 22.55% versus 31.85% and 36%, respectively). The results for a moderate

sample size n = 500 in Table 2 are qualitatively similar. Our results indicate that the rejection rates of Tests

RC and RS are relatively insensitive to reasonable choices of τn (especially for n = 500).

Section 6 shows that a simplified version of our model used in these Monte Carlo simulations satisfies the

assumptions of Theorem 6.2. By using similar arguments, it is possible to show that these findings extends

to the current setup. As a consequence, the strict power advantages that of the tests proposed in this paper

vis-à-vis Test BP can be understood as the finite sample consequence of our asymptotic results.

One interesting feature of our simulation results is that the rejection rates for Test RC and RS are very

similar. This is not a coincidence. In the context of Example 2.1, it is possible to show thats Test RC and RS

have the same asymptotic power for all (local) alternative hypotheses considered in our simulations. Using

a different example, we show that the Test RS can have a higher asymptotic power than Test RC. In Monte

Carlo simulations based on this alternative example, we show that Test RS can have significantly more power

16



in finite samples than test RC.5 This example illustrates a situation in which the additional computational

cost of Test RS relative to Test RC is compensated by better power properties.

8 Conclusions

This paper studies the problem of specification testing in partially identified models with special focus on

models defined by a finite number of moment equalities and inequalities (i.e. (in)equalities). Under the null

hypothesis of the test, there is at least one parameter value that simultaneously satisfies all of the moment

(in)equalities whereas under the alternative hypothesis of the test there is no such parameter values. While

this problem has not been directly addressed in the literature (except in particular cases), several papers in

the literature have suggested implementing this inferential problem by checking whether confidence sets for

the parameters of interest are empty or not.

We propose two hypothesis tests that use the infimum of the sample criterion function over the parameter

space as test statistic. The difference between these tests lies in their critical values. We show that both of

these hypothesis tests are: (a) asymptotically size correct in a uniform sense and (b) more powerful than tests

that check whether the confidence intervals for the parameters of interest are empty or not. Our numerical

results show that the gains in power can be substantial even for small sample sizes.

Appendix A Notation

Throughout the appendix we use the following notation. For any u ∈ N, 0u is a column vector of zeros of size u,

1u is a column vector of ones of size u, and Iu is the u× u identity matrix. We use R++ = {x ∈ R : x > 0},
R+ = R++ ∪{0}, R+,∞ = R+ ∪{+∞}, R[+∞] = R∪{+∞}, and R[±∞] = R∪{±∞}. For any u ∈ N, we equip Ru[±∞]

with the following metric d. For any x1, x2 ∈ Ru[±∞],

d(x1, x2) =

(
u∑
i=1

(G(x1,i)−G(x2,i))
2

)1/2

, (A-1)

where G : R[±∞] → [0, 1] is such that G(−∞) = 0, G(∞) = 1, and G(y) = Φ(y) for y ∈ R, where Φ is the standard

normal CDF. Finally, D̂n(θ) ≡ Diag(Σ̂n(θ)), Ω̂n(θ) ≡ D̂
−1/2
n (θ)Σ̂n(θ)D̂

−1/2
n (θ), vn(θ) ≡

√
nD
−1/2
F (θ)(m̄n(θ) −

EF [m(W, θ)]), ṽn(θ) ≡
√
nD̂
−1/2
n (θ)(m̄n(θ)−EF [m(W, θ)]), and v∗n(θ) is defined as v̂∗n(θ) in Eqs. (4.5) and (4.6) with

D
−1/2
F (θ) replacing D̂

−1/2
n (θ).

Remark A.1. The space (Ru[±∞], d) constitutes a compact metric space. Also, if a sequence in (Ru[±∞], d) converges

to an element in Ru, such a sequence will also converge in (Ru, || · ||), where || · || denotes the Euclidean norm.

Let C(Θ2) denote the space of continuous functions that map Θ2 to Ψ and S(Θ × Rk[±∞]) denote the space of

compact subsets of the metric space (Θ×Rk[±∞], d). In addition, let dH denote the Hausdorff metric associated to d,

i.e., for any sets A,B ∈ Θ× Rk[±∞],

dH(A,B) ≡ max

{
sup

(θ1,h1)∈A
inf

(θ2,h2)∈B
d((θ1, h1), (θ2, h2)), sup

(θ2,h2)∈B
inf

(θ1,h1)∈A
d((θ1, h1), (θ2, h2))

}
.

We use “
H→” to denote convergence in the Hausdorff metric, i.e., An

H→ B ⇐⇒ dH(An, B) → 0. Finally,

for non-stochastic functions of θ ∈ Θ, we use “
u→” to denote uniform in θ convergence, e.g., ΩFn

u→ Ω ⇐⇒
supθ,θ′∈Θ d(ΩFn(θ, θ′),Ω(θ, θ′))→ 0. Also, we use Ω(θ) and Ω(θ, θ) equivalently.

5These Monte Carlo simulations are available upon request.
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We denote by l∞(Θ) the set of all uniformly bounded functions that map Θ→ Ru, equipped with the supremum

norm. The sequence of distributions {Fn ∈ P}n≥1 determine a sequence of probability spaces {(W,A, Fn)}n≥1.

Stochastic processes are then random maps X :W → l∞(Θ). In this context, we use “
d→”, “

p→”, and “
a.s.→ ” to denote

weak convergence, convergence in probability, and convergence almost surely in the l∞(Θ) metric, respectively, in the

sense of van der Vaart and Wellner (1996). In addition, for every F ∈ P, we useM(F ) ≡ {D−1/2
F (θ)m(·, θ) :W → Rk}

and denote by ρF the coordinate-wise version of the “intrinsic” variance semimetric, i.e.,

ρF (θ, θ′) ≡
∥∥∥∥{VF [σ−1

F,j(θ)mj(W, θ)− σ−1
F,j(θ

′)mj(W, θ
′)]1/2

}k
j=1

∥∥∥∥ . (A-2)

It is easy to show that ρF (θ, θ′) =
√

2||[Ik −Diag(ΩF (θ, θ′))]1/2||.

Finally, the assumptions in the next section and some of the auxiliary results make use of the sets

Λ′n,Fn ≡
{

(θ, `) ∈ Θηn
I (Fn)× Rk : ` =

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)]
}
, (A-3)

Λ∗n,Fn ≡
{

(θ, `) ∈ Θηn
I (Fn)× Rk : ` = κ−1

n

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)]
}
. (A-4)

Appendix B Additional assumptions

This section collects several assumptions that are routinely assumed in the literature of partially identified models

defined by moment (in)equalities, and some additional ones required by this paper.

Assumption A.5. Given the function ϕ : Rp[+∞] × Rk−p[±∞] × Ψ → Rk[+∞] in Assumption M.1, there is a function

ϕ∗ : Rk[±∞] → Rk[+∞] that takes the form ϕ∗(ξ) = (ϕ∗1(ξ1), . . . , ϕ∗p(ξp),0k−p) and, for all j = 1, . . . , p,

(a) ϕ∗j (ξj) ≥ ϕj(ξ,Ω) for all (ξ,Ω) ∈ Rp[+∞] × Rk−p[±∞] ×Ψ.

(b) ϕ∗j is continuous.

(c) ϕ∗j (ξj) = 0 for all ξj ≤ 0 and ϕ∗j (∞) =∞.

Assumption A.6. For any {Fn ∈ P0}n≥1, let Λ∗ and Λ′ be such that Λ∗n,Fn
H→ Λ∗ and Λ′n,Fn

H→ Λ′, where Λ′n,F

and Λ∗n,Fn are defined in Eqs. (A-3) and (A-4), respectively. Then, for all (θ, `) ∈ Λ∗ there exists (θ, `′) ∈ Λ′ where

`′j = 0 for all j > p, `′j ≥ ϕ∗j (`j) for all j ≤ p, and ϕ∗ is defined as in Assumption A.5.

Assumption A.7. For any {Fn ∈ P0}n≥1, let (Ω,Λ′) be such that ΩFn
u→ Ω and Λ′n,Fn

H→ Λ′ with (Ω,Λ′) ∈ C(θ)×
S(Θ×Rk[±∞]) and Λ′n,Fn as in Eq. (A-3). Let q(Ω,Λ′)(1−α) be the (1−α)-quantile of J(Ω,Λ′) ≡ inf(θ,`)∈Λ′ S(vΩ(θ)+

`,Ω(θ)). Then,

(a) If q(Ω,Λ′)(1− α) > 0, the distribution of J(Ω,Λ′) is continuous at q(Ω,Λ′)(1− α).

(b) If q(Ω,Λ′)(1− α) = 0, lim infn→∞ PFn(T̃n = 0) ≥ (1− α), where T̃n ≡ infθ∈Θ
ηn
I

(Fn) Qn(θ).

Assumption A.8. The following conditions hold.

(a) For all (θ, F ) ∈ Θ× P0, QF (θ) ≥ cmin{δ, dH({θ},ΘI(F ))χ} for constants c, δ > 0.

(b) Θ is convex.

(c) For any F ∈ P0, let GF (θ) denote the matrix conformed by collecting the gradient of each coordinate of

D
−1/2
F (θ)EF [m(W, θ)] : Θ → Rk. There exists a constant K > 0 s.t. GF satisfies the following Lipschitz

type condition

sup
F∈P0

||GF (θ′)−GF (θ)|| ≤ K||θ′ − θ|| .
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(d) τ2
n(log κn)2/

√
n→ 0, where τn and κn are as in Definition 4.1 and Assumption M.1, respectively.

Remark B.1. Assumption A.5 is satisfied if the function ϕ is any of the the functions ϕ(1)−ϕ(4) described in Andrews

and Soares (2010) or Andrews and Barwick (2012). This follows from Lemma D.8, as the functions ϕ(1)−ϕ(4) satisfy

the conditions of the lemma.

Remark B.2. Assumption A.6 is a mild assumption if we assume that the (studentized) moment conditions are

smooth. In particular, Lemma D.9 shows that Assumption A.8 implies Assumption A.6.

Remark B.3. Without Assumption A.7 the asymptotic distribution of the test statistic could be discontinuous at

the probability limit of the critical value, resulting in asymptotic over-rejection under the null hypothesis. One way

to address this problem is by adding an infinitesimal constant to the critical value, which introduces an additional

tuning parameter that needs to be chosen by the researcher. Another way is to impose Assumption A.7, so that the

limiting distribution is either continuous or has a discontinuity that does not cause asymptotic over-rejection.

The literature routinely assumes that the test function S in Eq. (2.5) satisfies the following assumptions (see,

e.g., Andrews and Soares (2010), Andrews and Guggenberger (2009), and Bugni et al. (2012)). We therefore treat

the assumptions below as maintained.

Assumption M.4. The function S satisfies the following conditions.

(a) S((m1,m2),Σ) is non-increasing in m1, for all (m1,m2) ∈ Rp[+∞] × Rk−p and all variance matrices Σ ∈ Rk×k.

(b) S(m,Ω) = S(∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite diagonal ∆ ∈ Rk×k.

(c) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ,

(d) S(m,Ω) is continuous at all m ∈ Rp[+∞] × Rk−p and Ω ∈ Ψ.

Assumption M.5. For all h1 ∈ Rp[+∞] × Rk−p, all Ω ∈ Ψ, and Z ∼ N (0k,Ω), the distribution function of

S (Z + h1,Ω) at x ∈ R is:

(a) continuous for x > 0,

(b) strictly increasing for x > 0 unless p = k and h1 =∞p,

(c) less than or equal to 1/2 at x = 0 when k > p or when k = p and h1,j = 0 for some j = 1, . . . , p.

(d) is degenerate at x = 0 when p = k and h1 =∞p.

(e) P (S (Z + (m1,0k−p) ,Ω) ≤ x) < P (S (Z + (m∗1,0k−p) ,Ω) ≤ x) for all x > 0 and all m1,m
∗
1 ∈ Rp[+∞] with

m1 < m∗1.

Assumption M.6. The function S satisfies the following conditions.

(a) The distribution function of S(Z,Ω) is continuous at its (1 − α) quantile, denoted c (Ω, 1− α), for all Ω ∈ Ψ,

where Z ∼ N (0k,Ω) and α ∈ (0, 0.5),

(b) c (Ω, 1− α) is continuous in Ω uniformly for Ω ∈ Ψ.

Assumption M.7. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, . . . , p or mj 6= 0 for some j = p + 1, . . . , k,

where m = (m1, . . . ,mk)′ and Ω ∈ Ψ. Equivalently, S(m,Ω) = 0 if and only if mj ≥ 0 for all j = 1, . . . , p and mj = 0

for all j = p+ 1, . . . , k, where m = (m1, . . . ,mk)′ and Ω ∈ Ψ.

Assumption M.8. For some χ > 0, S(am,Ω) = aχS(m,Ω) for all scalars a > 0, m ∈ Rk, and Ω ∈ Ψ.

Assumption M.9. For all n ≥ 1, S(
√
nm̄n(θ), Σ̂(θ)) is a lower semi-continuous function of θ ∈ Θ.
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Appendix C Proofs of the Main Theorems

Proof of Theorem 3.1. The proof is similar to that of Theorem C.1 in this section and therefore omitted.

Proof of Theorem 4.1. We start by proving that for η ≥ 0,

lim sup
n→∞

sup
F∈P0

PF (Tn > ĉRSn (1− α) + η) ≤ α .

We divide the argument into steps. Steps 1-3 hold for η ≥ 0, step 4 uses that η > 0, and step 5 proves the result for

η = 0 under Assumption A.7.

Step 1. Recall that from Definition 4.3 and Assumption A.7, ηn ≡ τn log κn and T̃n ≡ infθ∈Θ
ηn
I

(Fn) Qn(θ). Let

c̃RSn (1− α) denote the conditional (1− α)-quantile of

inf
θ∈Θ

ηn
I

(Fn)
S
(
v̂∗n(θ) + ϕ∗(κ−1

n

√
nD̂1/2

n (θ)m̄n(θ)), Ω̂n(θ)
)
,

where ϕ∗ is the function defined in Assumption A.5. For any F ∈ P0 consider the following derivation

PF (Tn > ĉRSn (1− α) + η) ≤ PF (T̃n > ĉRSn (1− α) + η)

≤ PF (T̃n > c̃RSn (1− α) + η) + PF (ĉRSn (1− α) < c̃RSn (1− α))

≤ PF (T̃n > c̃RSn (1− α) + η) + PF (Θ̂I * Θηn
I (F )) ,

where the first inequality follows from F ∈ P0 which implies that Θηn
I (F ) ⊇ ΘI(F ) 6= ∅ and so Tn ≤ T̃n, the

second inequality is elementary, and the third inequality follows from the fact that Assumption A.5 and ĉRSn (1−α) <

c̃RSn (1− α) implies Θ̂I * Θηn
I (F ). By this and Lemma D.13, it follows that

lim sup
n→∞

sup
F∈P0

PF (Tn > ĉRSn (1− α) + η) ≤ lim sup
n→∞

sup
F∈P0

PF (T̃n > c̃RSn (1− α) + η) .

Step 2. By definition, there exists a subsequence {an}n≥1 of {n}n≥1 s.t.

lim sup
n→∞

sup
F∈P0

PF (T̃n > c̃RSn (1− α) + η) = lim
n→∞

PFan (T̃an > c̃RSan (1− α) + η) . (C-1)

By Lemma D.6, there is a further sequence {bn}n≥1 of {an}n≥1 s.t. ΩFbn
u→ Ω, Λ′bn,Fbn

H→ Λ′, and Λ∗bn,Fbn
H→ Λ∗,

where Λ′bn,Fbn and Λ∗bn,Fbn are as in Eqs. (A-3) and (A-4), respectively, for some (Ω,Λ,Λ∗) ∈ C(θ)×S(Θ×Rk[±∞])
2.

Since ΩFbn
u→ Ω and Λ′bn,Fbn

H→ Λ′, Theorem C.1 implies that T̃bn
d→ J(Λ′,Ω) ≡ inf(θ,`)∈Λ′ S(vΩ(θ) + `,Ω(θ)).

Step 3. We now show that for q(Λ′,Ω)(1− α) being the (1− α)-quantile of J(Λ′,Ω) and any ε > 0,

limPFbn (c̃RSbn (1− α) ≤ q(Λ′,Ω)(1− α)− ε) = 0 . (C-2)

We begin by showing that J∗(Λ∗,Ω) ≥ J(Λ′,Ω), where J∗(Λ∗,Ω) is defined in the statement of Theorem C.2. Suppose

not, that is, suppose that J∗(Λ∗,Ω) < J(Λ′,Ω). It follows that ∃(θ, `) ∈ Λ∗ s.t. S(vΩ(θ) + ϕ∗(`),Ω(θ)) < J(Λ′,Ω).

By Assumption A.6, ∃(θ, `′) ∈ Λ′ where `′j = 0 for all j > p and `′j ≥ ϕ∗j (`j) for all j ≤ p. It then follows that

S(vΩ(θ) + `′,Ω(θ)) ≤ S(vΩ(θ) + ϕ∗(`),Ω(θ)) < J(Λ′,Ω) ≡ inf
(θ,`)∈Λ′

S(vΩ(θ) + `,Ω(θ)) ,

which is a contradiction to (θ, `′) ∈ Λ′. Now let ε > 0 be chosen so that q(Λ′,Ω)(1−α)− ε is a continuity point of the

CDF of J∗(Λ∗,Ω). By Theorem C.2, {T̃ ∗bn |{Wi}bni=1}
d→ J∗(Λ∗,Ω) for almost all sample sequences. As a consequence,
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for almost all sample sequences,

limPFbn

(
T̃ ∗bn ≤ q(Λ′,Ω)(1− α)− ε

∣∣∣ {Wi}bni=1

)
= P (J∗(Λ∗,Ω) ≤ q(Λ′,Ω)(1− α)− ε)

≤ P (J(Λ′,Ω) ≤ q(Λ′,Ω)(1− α)− ε)

< 1− α ,

where the first equality holds because {T̃ ∗bn |{Wi}bni=1}
d→ J∗(Λ∗,Ω) (for almost all sample sequences) and that

q(Ω,Λ)(1 − α) − ε is a continuity point of the CDF of J∗(Λ∗,Ω), the second weak inequality is a consequence of

J∗(Λ∗,Ω) ≥ J(Λ′,Ω), and the final strict inequality follows from the fact that q(Ω,Λ)(1−α) is the (1−α) quantile of

J(Λ′,Ω). Next, notice that{
limPFbn

(
T̃ ∗bn ≤ q(Λ′,Ω)(1− α)− ε

∣∣∣ {Wi}bni=1

)
< 1− α

}
⊆
{

lim inf{c̃RSbn (1− α) > q(Λ′,Ω)(1− α)− ε}
}
.

Since the RHS occurs for almost all sample sequences, then the LHS must also occur for almost all sample sequences.

Then, Eq. (C-2) is a consequence of this and Fatou’s Lemma.

Step 4. For η > 0, we can define ε > 0 in step 3 so that η − ε > 0 and q(Λ′,Ω)(1− α) + η − ε is a continuity point

of the CDF of J(Λ′,Ω). It then follows that

PFbn

(
T̃bn > c̃RSbn (1− α) + η

)
= PFbn

({
T̃bn > c̃RSbn (1− α) + η

}
∩
{
c̃RSbn (1− α) ≤ q(Λ′,Ω)(1− α)− ε

})
+ PFbn

({
T̃bn > c̃RSbn (1− α) + η

}
∩
{
c̃RSbn (1− α) > q(Λ′,Ω)(1− α)− ε

})
≤ PFbn

(
c̃RSbn (1− α) ≤ q(Λ′,Ω)(1− α)− ε

)
+ 1− PFbn

(
T̃bn ≤ q(Λ′,Ω)(1− α) + η − ε

)
.

Taking limit supremum on both sides, using steps 2 and 3, and that η − ε > 0,

lim sup
n→∞

PFbn

(
T̃bn > c̃RSbn (1− α) + η

)
≤ 1− P

(
J(Λ′,Ω) ≤ q(Λ′,Ω)(1− α) + η − ε

)
≤ α .

This combined with steps 1 and 2 completes the proof under η > 0.

Step 5. For η = 0, there are two cases to consider. First, q(Λ′,Ω)(1− α) = 0. In this case, note that

PFbn (T̃bn > c̃RSbn (1− α)) = PFbn (T̃bn > c̃RSbn (1− α) ∩ T̃bn = 0) + PFbn (T̃bn > c̃RSbn (1− α) ∩ T̃bn 6= 0)

≤ PFbn (T̃bn 6= 0) .

By computing limit supremum on both sides and Assumption A.7, we deduce that

lim sup
n→∞

PFbn (T̃bn > c̃RSbn (1− α)) ≤ lim sup
n→∞

PFbn (T̃bn 6= 0) ≤ α .

The proof is completed by combining the previous equation with steps 1 and 2. Second, q(Ω,Λ)(1− α) > 0. Consider

a sequence {εm}m≥1 s.t. εm ↓ 0 and q(Ω,Λ)(1 − α) − εm is a continuity point of the CDF of J(Λ′,Ω) for all m ∈ N.

For any m ∈ N, consider the following argument

PFbn (T̃bn > c̃RSbn (1− α)) = PFbn ({T̃bn > c̃RSbn (1− α)} ∩ {c̃RSbn (1− α) ≤ q(Λ′,Ω)(1− α)− εm})

+ PFbn ({T̃bn > c̃RSbn (1− α)} ∩ {c̃RSbn (1− α) > q(Λ′,Ω)(1− α)− εm})

≤ PFbn (c̃RSbn (1− α) ≤ q(Λ′,Ω)(1− α)− εm) + 1− PFbn (T̃bn ≤ q(Λ′,Ω)(1− α)− εm) .

Taking limit supremum on both sides, using steps 3 and 4,

lim sup
n→∞

PFbn (T̃bn > c̃RSbn (1− α)) ≤ 1− P (J(Λ′,Ω) ≤ q(Λ′,Ω)(1− α)− εm) .

Now take εm ↓ 0 and use continuity to deduce that the RHS is equal to α. The proof is completed by combining the
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previous equation with steps 1 and 2.

Proof of Theorem 5.1. The proof follows directly from Theorem 6.1.

Proof of Theorem 6.1. This is a non-stochastic result that holds for every sample {Wi}ni=1.

Part 1. Show that φRSn ≥ φRCn . This result follows immediately from ĉRSn (1 − α) ≤ ĉRCn (1 − α). To show this,

note that by definition ĉRSn (1− α) ≤ c̃n(θ, 1− α) ∀θ ∈ Θ̂I , where c̃n(θ, 1− α) is the conditional (1− α)-quantile of

S(v̂∗n(θ) + ϕ(κ−1
n

√
nD̂1/2

n (θ)m̄n(θ), Ω̂n(θ)), Ω̂n(θ)) . (C-3)

By definition, ĉn(θ, 1 − α) denotes the GMS critical value, which is defined as the conditional (1 − α)-quantile of

Eq. (C-3), except that v̂∗n(θ) is replaced by Ω̂
1/2
n (θ)Z∗, with Z∗ ∼ N(0k, Ik) and Z∗ independent of {Wi}ni=1. Since

v̂∗n(θ) and Ω̂
1/2
n (θ)Z∗ have the same conditional distribution, it follows that c̃n(θ, 1− α) = ĉn(θ, 1− α) ∀θ ∈ Θ̂I . We

conclude that

ĉRSn (1− α) ≤ inf
θ∈Θ̂I

c̃n(θ, 1− α) = inf
θ∈Θ̂I

ĉn(θ, 1− α) = ĉRCn (1− α) .

Part 2. Show that φRCn ≥ φBPn . This result is a consequence of the following argument{
inf
θ∈Θ

Qn(θ) ≤ ĉRCn (1− α)

}
=

{
inf
θ∈Θ̂I

Qn(θ) ≤ inf
θ∈Θ̂I

ĉn(θ′, 1− α)

}
⊆

{
inf
θ∈Θ̂I

Qn(θ) ≤ ĉn(θ′, 1− α), ∀θ′ ∈ Θ̂I

}
⊆

{
∃θ ∈ Θ̂I : Qn(θ) ≤ ĉn(θ, 1− α)

}
⊆ {∃θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} ,

where the first equality holds by Θ̂I 6= ∅ and infθ∈Θ Qn(θ) = infθ∈Θ̂I
Qn(θ) (see Lemma D.11) and the definition of

ĉRCn (1 − α), the first inclusion is elementary, the second inclusion holds by the lower semi-continuity of Qn (implies

that Qn achieves a minimum in Θ and, hence, a minimum in Θ̂I), and the final inclusion holds by Θ̂I ⊆ Θ.

Proof of Theorem 6.2. Let θ∗n and θn denote the sequences in Assumption A.9. Assume n is large enough so that

ĉn(θ∗n, 1 − α) > ĉn(θn, 1 − α), which holds by the same assumption, and recall that Tn = Qn(θ∗n). Consider the

following derivation:

EFn [φBPn ] = PFn(Qn(θ) > ĉn(θ, 1− α), ∀θ ∈ Θ)

≤ PFn (Qn(θ∗n) > ĉn(θ∗n, 1− α))

= PFn (Qn(θ∗n) > ĉn(θn, 1− α))− PFn(ĉn(θn, 1− α) < Qn(θ∗n) ≤ ĉn(θ∗n, 1− α))

≤ PFn(Tn > infθ∈Θ̂I
ĉn(θ, 1− α))− PFn(ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α)) ,

where the first inequality follows from θ∗n ∈ Θ, the second equality from ĉn(θ∗n, 1 − α) > ĉn(θn, 1 − α), and the last

inequality follows from θn ∈ Θ̂I and Tn = Qn(θ∗n). Note that PFn(Tn > infθ∈Θ̂I
ĉn(θ, 1− α)) = EFn [φRCn ], and so

lim sup
n→∞

(EFn [φRCn ]− EFn [φBPn ]) ≥ lim sup
n→∞

PFn (ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α)) .

It suffices to show that the expression on the RHS is positive. To do this, fix ε ∈ (0, (c2 − c1)/3) and consider the

following argument

PFn(ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α))

≥ PFn(ĉn(θn, 1− α) < c1 + ε < Tn < c2 − ε ≤ ĉn(θ∗n, 1− α))

≥ PFn(c1 + ε < Tn < c2 − ε) + PFn(ĉn(θn, 1− α) < c1 + ε) + PFn(c2 − ε ≤ ĉn(θ∗n, 1− α))− 2 ,
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where all the inequalities are elementary. Using Assumption A.9 and taking sequential limits lim inf as n → ∞ and

ε ↓ 0 we conclude that

lim inf
n→∞

PFn(ĉn(θn, 1− α) < Tn ≤ ĉn(θ∗n, 1− α)) ≥ lim
ε↓0

P (J ∈ (c1 + ε, c2 − ε)) = P (J ∈ (c1, c2)) > 0 ,

where the equality follows from Fatou’s Lemma and the strict inequality is due to Assumption A.9.

C.1 Auxiliary Theorems

Theorem C.1. Assume Assumptions A.1-A.4. Let {Fn ∈ P0}n≥1 be a (sub)sequence of distributions s.t. for some

(Ω,Λ′) ∈ C(Θ2)×S(Θ×Rk[±∞]), (i) ΩFn
u→ Ω and (ii) Λ′n,Fn

H→ Λ′, where Λ′n,Fn is as in Eq. (A-3), for {κn}n≥1 and

{τn}n≥1 as in Assumption M.1 and Definition 4.1, respectively. Then, along the sequence {Fn}n≥1,

T̃n ≡ inf
θ∈Θ

ηn
I

(Fn)
Qn(θ)

d→ J
(
Λ′,Ω

)
≡ inf

(θ,`)∈Λ′
S(vΩ(θ) + `,Ω(θ, θ)) ,

where vΩ : Θ→ Rk is a tight Gaussian process with zero-mean and covariance (correlation) kernel Ω ∈ C(Θ2).

Proof. Step 1. Let Ω̃n(θ) ≡ D−1/2
Fn

(θ)Σ̂n(θ)D
−1/2
Fn

(θ) and consider the following derivation

T̃n = inf
θ∈Θ

ηn
I

(Fn)
S(
√
nm̄n(θ),Σn(θ))

= inf
θ∈Θ

ηn
I

(Fn)
S(
√
nD
−1/2
Fn

(θ)m̄n(θ), Ω̃n(θ))

= inf
θ∈Θ

ηn
I

(Fn)
S(vn(θ) +

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)], Ω̃n(θ))

= inf
(θ,`)∈Λ′

n,Fn

S(vn(θ) + `, Ω̃n(θ)) .

Step 2. Let D denote the of functions that map Θ onto Rk ×Ψ and let D0 be the space of uniformly continuous

functions that map Θ onto Rk ×Ψ. Let the sequence of functionals {gn}n≥1 with gn : D → R be defined by

gn(v(·),Ω(·)) ≡ inf
(θ,l)∈Λ′

n,Fn

S(v(θ) + `,Ω(θ)) . (C-4)

Let the functional g : D0 → R be defined by

g(v(·),Ω(·)) ≡ inf
(θ,l)∈Λ′

S(v(θ) + `,Ω(θ)) .

We now show that if the sequence of (deterministic) functions {(vn(·),Ωn(·))}n≥1 with (vn(·),Ωn(·)) ∈ D for all n ∈ N
satisfies

lim
n→∞

sup
θ∈Θ
||(vn(θ),Ωn(θ))− (v(θ),Ω(θ))|| = 0 , (C-5)

for some (v(·),Ω(·)) ∈ D0, then

lim
n→∞

gn(vn(·),Ωn(·)) = g(v(·),Ω(·)) .

We need to show that lim inf gn(vn(·),Ωn(·)) ≥ g(v(·),Ω(·)). The argument to show that lim sup gn(vn(·),Ωn(·)) ≤
g(v(·),Ω(·)) is very similar and is therefore omitted. Suppose not, i.e., suppose that ∃δ > 0 and a subsequence {an}n≥1

of {n}n≥1 s.t. ∀n ∈ N,

gan(van(·),Ωan(·)) < g(v(·),Ω(·))− δ . (C-6)

By definition, there exists a sequence {(θan , `an)}n≥1 that approximately achieves the infimum in Eq. (C-4), i.e.,

∀n ∈ N, (θan , `an) ∈ Λan,Fan and

||gan(van(·),Ωan(·))− S(van(θan) + `an ,Ωan(θan))|| ≤ δ/2 . (C-7)
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Since Λ′an,Fan ⊆ Θ× Rk[±∞] and since (Θ× Rk[±∞], d) is a compact metric space, there exists a subsequence {bn}n≥1

of {an}n≥1 and (θ∗, `∗) ∈ Θ× Rk[±∞] s.t. d((θbn , `bn), (θ∗, `∗))→ 0.

We first show that (θ∗, `∗) ∈ Λ′. Suppose not, i.e., (θ∗, `∗) 6∈ Λ′, and consider the following argument

d((θbn , `bn), (θ∗, `∗)) + dH(Λ′bn,Fbn ,Λ
′) ≥ d((θbn , `bn), (θ∗, `∗)) + inf

(θ,`)∈Λ′
d((θ, `), (θbn , `bn))

≥ inf
(θ,`)∈Λ′

d((θ, `), (θ∗, `∗)) > 0 ,

where the first inequality follows from the definition of Hausdorff distance and the fact that (θbn , `bn) ∈ Λ′bn,Fbn ,

and the second inequality follows by the triangular inequality. The final strict inequality follows from the fact that

Λ′ ∈ S(Θ×Rk[±∞]), i.e., it is a compact subset of (Θ×Rk[±∞], d), f(θ, `) = d((θ, `), (θ∗, `∗)) is a continuous real-valued

function, and Royden (1988, Theorem 7.18). Taking limits as n → ∞ and using that d((θbn , `bn), (θ∗, `∗)) → 0 and

Λ′bn,Fbn
H→ Λ′, we reach a contradiction.

We now show that `∗ ∈ Rp[+∞] × Rk−p. Suppose not, i.e., suppose that ∃j = 1, . . . , k s.t. `∗j = −∞ or ∃j > p s.t.

`∗j =∞. Let J denote the set of indices j = 1, . . . , k s.t. this occurs. For any ` ∈ Rk[±∞] define Ξ(`) ≡ maxj∈J ||`j ||.
By definition of Λ′bn,Fbn , `bn ∈ Rk and thus, Ξ(`bn) <∞. By the case under consideration, lim Ξ(`bn) = Ξ(`∗) =∞.

Since (Θ, || · ||) is a compact metric space, d((θbn , `bn), (θ∗, `∗)) → 0 implies that θbn → θ∗. Then, consider the

following derivation,

||(vbn(θbn),Ωbn(θbn))− (v(θ∗),Ω(θ∗))||

≤ ||(vbn(θbn),Ωbn(θbn))− (v(θbn),Ω(θbn))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))||

≤ sup
θ∈Θ
||(vbn(θ),Ωbn(θ))− (v(θ),Ω(θ))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))|| → 0 ,

where the last convergence holds by Eq. (C-5), θbn → θ∗, and (v(·),Ω(·)) ∈ D0.

Notice that (v(·),Ω(·)) ∈ D0 and the compactness of Θ imply that (v(θ∗),Ω(θ∗)) is bounded. Since lim Ξ(`bn) =∞
and v(θ∗) ∈ Rk, it then follows that lim Ξ(`bn)−1||vbn(θbn)|| = 0. By construction, {Ξ(`bn)−1`bn}n≥1 is s.t.

lim Ξ(`bn)−1 [`bn,j ]− = 1 for some j ≤ p or lim Ξ(`bn)−1 |`bn,j | = 1 for some j > p. We conclude that lim Ξ(`bn)−1[vbn,j(θbn)+

`bn,j ]− = 1 for some j ≤ p or lim Ξ(hbn)−1 |vbn,j(θbn) + `bn,j | = 1 for some j > p. This implies that,

S(vbn(θbn) + `bn ,Ωbn(θbn)) = Ξ(`bn)χS(Ξ(`bn)−1(vbn(θbn) + `bn),Ωbn(θbn))→∞ .

Since {(θbn , `bn)}n≥1 is a subsequence of {(θan , `an)}n≥1 which approximately achieves the infimum in Eq. (C-4), it

then follows that

gn(vn(·),Ωn(·))→∞ . (C-8)

We now show that Eq. (C-8) is a contradiction. Since {Fn ∈ P0}n≥1 then there is a sequence {θn}n≥1 s.t.

lim inf
n→∞

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)] ≡ `∗j ≥ 0, for j ≤ p

lim
n→∞

√
nσ−1

Fn,j
(θn)|EFn [mj(W, θn)]| ≡ `∗j = 0, for j > p .

By compactness of (Θ×Rk[±∞], d), we can find a subsequence {kn}n≥1 of {n}n≥1 s.t. d((θ̃kn , ˜̀
kn), (θ̃∗, ˜̀∗))→ 0 with

(θ̃∗, ˜̀∗) ∈ Θ × Rp[+∞] × Rk−p. By repeating the previous arguments, we can show that lim(vkn(θkn),Ωkn(θ̃bn)) =

(v(θ̃∗),Ω(θ̃∗)) ∈ Rk ×Ψ, which implies that

inf
(θ,l)∈Λ′

kn,Fkn

S(vkn(θ) + `,Ωkn(θ)) ≤ S(vkn(θ̃kn) + ˜̀
kn ,Ωkn(θ̃mn))→ S(v(θ̃∗) + ˜̀∗,Ω(θ̃∗)) .

Since (v(θ̃∗) + ˜̀∗,Ω(θ̃∗)) ∈ Rp[+∞] ×Rk−p ×Ψ, we conclude that S(v(θ̃∗) + ˜̀∗,Ω(θ̃∗)) is bounded. Since {kn}n≥1 is a

subsequence of {n}n≥1, this is a contradiction to Eq. (C-8).

Since d((θbn , `bn), (θ∗, `∗))→ 0, we can conclude that lim(vbn(θbn),Ωbn(θbn)) = (v(θ∗),Ω(θ∗)) ∈ Rk×Ψ repeating
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previous arguments. This implies that lim(vbn(θbn) + `bn ,Ωbn(θbn)) = (v(θ∗) + `∗,Ω(θ∗)) ∈ (Rk[±∞] × Ψ) and, so,

gives us that limS(vbn(θbn) + `bn ,Ωbn(θbn)) = S(v(θ∗) + `∗,Ω(θ∗)), i.e, ∃N ∈ N s.t. ∀n ≥ N ,

||S(vbn(θbn) + `bn ,Ωbn(θbn))− S(v(θ∗) + `∗,Ω(θ∗))|| ≤ δ/2 . (C-9)

By combining Eqs. (C-7), (C-9), and the fact that (θ∗, `∗) ∈ Λ, it follows that ∃N ∈ N s.t. ∀n ≥ N ,

gbn(vbn(·),Ωbn(·)) ≥ S(v(θ∗) + `∗,Ω(θ∗))− δ ≥ g(v(·),Ω(·))− δ ,

which is a contradiction to Eq. (C-6).

Step 3. The proof is completed by combining the representation in step 1, the convergence result in step 2, Lemma

D.2, and the extended continuous mapping theorem (see, e.g., van der Vaart and Wellner (1996, Theorem 1.11.1)).

In order to apply this result, it is important to notice that parts 1 and 5 in Lemma D.2 and standard convergence

results imply that (vn(·), Ω̃(·)) d→ (vΩ(·),Ω(·)) and (vΩ(·),Ω(·)) ∈ D0 a.s.

Theorem C.2. Assume Assumptions A.1-A.5. Let {Fn ∈ P0}n≥1 be a (sub)sequence of distributions s.t. for some

(Ω,Λ∗) ∈ C(Θ2) × S(Θ × Rk[±∞]), (i) ΩFn
u→ Ω and (ii) Λ∗n,Fn

H→ Λ∗, where Λ∗n,Fn is as in Eq. (A-4), for {κn}n≥1

and {τn}n≥1 as in Assumption M.1 and Definition 4.1, respectively. Then, there is a subsequence {an}n≥1 of {n}n≥1

s.t., along the sequence {Fan}n≥1,{
inf

θ∈Θ
ηan
I

(Fan )

S
(
v̂∗an(θ) + ϕ∗(κ−1

an

√
anD̂

1/2
an (θ)m̄an(θ)), Ω̂an(θ)

)∣∣∣∣∣ {Wi}ani=1

}
d→ J∗(Λ∗,Ω)

≡ inf
(θ,`)∈Λ∗

S(vΩ(θ) + ϕ∗(`),Ω(θ, θ)) ,

for almost all sample sequences {Wi}i≥1, where vΩ : Θ → Rk is a tight zero-mean Gaussian process with covariance

(correlation) kernel Ω ∈ C(Θ2).

Proof. Step 1. Consider the following derivation:

inf
θ∈Θ

ηn
I

(Fn)
S
(
v̂∗n(θ) + ϕ∗(κ−1

n

√
nD̂1/2

n (θ)m̄n(θ)), Ω̂n(θ)
)

= inf
θ∈Θ

ηn
I

(Fn)
S
(
v̂∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′κ−1

n

√
nD
−1/2
Fn

(θ)EFn [m(W, θ)]), Ω̂n(θ)
)

= inf
(θ,`)∈Λ∗

n,Fn

S
(
v̂∗n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′`), Ω̂n(θ)

)
,

where µn(θ) = (µn,1(θ), µn,2(θ)), µn,1(θ) ≡ κ−1
n ṽn(θ) and µn,2(θ) ≡ {σ̂−1

n,j(θ)σFn,j(θ)}
k
j=1. In order to obtain this

expression, we have used that D̂
−1/2
n (θ) and D

1/2
Fn

(θ) are both diagonal matrices.

Step 2. We now show that there is a subsequence {an}n≥1 of {n}n≥1 s.t. {{(v̂∗an , µan , Ω̂an)|{Wi}ani=1}
d→ (vΩ, (0k,1k),Ω)

in l∞(θ), for almost all sample sequences {Wi}∞i=1. By part 8 in Lemma D.2, {v̂∗n|{Wi}ni=1}
d→ vΩ in l∞(θ). Then

the result would follow from finding a subsequence {an}n≥1 of {n}n≥1 s.t. {{(µan , Ω̂an)|{Wi}ani=1} → ((0k,1k),Ω)

in l∞(θ), for almost all sample sequences {Wi}∞i=1. Since (µn, Ω̂n) is conditionally non-random, this is equivalent to

finding a subsequence {an}n≥1 of {n}n≥1 s.t. (µan , Ω̂an)
a.s.→ ((0k,1k),Ω) in l∞(θ). In turn, this follows from step 1,

part 5 of Lemma D.2, and Lemma D.7.

Step 3. Let D denote the space of functions that map Θ onto Rk × Ψ and let D0 be the space of uniformly

continuous functions that map Θ onto Rk ×Ψ. Let the sequence of functionals {gn}n≥1 with gn : D → R be defined

by

gn(v(·), µ(·),Ω(·)) ≡ inf
(θ,`)∈Λ∗

n,Fn

S(v(θ) + ϕ∗(µ1(θ) + µ2(θ)′`),Ω(θ)) . (C-10)
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Let the functional g : D0 → R be defined by

g(v(·), µ(·),Ω(·)) ≡ inf
(θ,`)∈Λ∗

S(v(θ) + ϕ∗(µ1(θ) + µ2(θ)′`),Ω(θ)) .

We now show that if the sequence of (deterministic) functions {(vn(·), µn(·),Ωn(·))}n≥1 with (vn(·), µn(·),Ωn(·)) ∈ D
for all n ∈ N satisfies

lim
n→∞

sup
θ∈Θ
||(vn(θ), µn(θ),Ωn(θ))− (v(θ), (0k,1k),Ω(θ))|| = 0 , (C-11)

for some (v(·),Ω(·)) ∈ D0, then

lim
n→∞

gn(vn(·), µn(·),Ωn(·)) = g(v(·), (0k,1k),Ω(·)) .

We now show lim infn→∞ gn(vn(·), µn(·),Ωn(·)) ≥ g(v(·), (0k,1k),Ω(·)). Showing lim sup gn(vn(·), µn(·),Ωn(·)) ≤
g(v(·), (0k,1k),Ω(·)) is very similar and therefore omitted. Suppose not, i.e., suppose that ∃δ > 0 and a subsequence

{an}n≥1 of {n}n≥1 s.t. ∀n ∈ N,

gan(van(·), µan(·),Ωan(·)) < g(v(·), (0k,1k),Ω(·))− δ . (C-12)

By definition, there exists a sequence {(θan , `an)}n≥1 that approximately achieves the infimum in Eq. (C-10), i.e.,

∀n ∈ N, (θan , `an) ∈ Λan,Fan and

|gan(van(·), µan(·),Ωan(·))− S(van(θan) + ϕ∗(µ1(θan) + µ2(θan)′`an),Ωan(θan))| ≤ δ/2 . (C-13)

Since Λ′an,Fan ⊆ Θ× Rk[±∞] and since (Θ× Rk[±∞], d) is a compact metric space, there exists a subsequence {bn}n≥1

of {an}n≥1 and (θ∗, `∗) ∈ Θ× Rk[±∞] s.t. d((θbn , `bn), (θ∗, `∗))→ 0.

We first show that (θ∗, `∗) ∈ Λ∗. Suppose not, i.e. (θ∗, `∗) 6∈ Λ∗, and consider the following argument

d((θbn , `bn), (θ∗, `∗)) + dH(Λ∗bn,Fbn ,Λ
∗) ≥ d((θbn , `bn), (θ∗, `∗)) + inf

(θ,`)∈Λ∗
d((θ, `), (θbn , `bn))

≥ inf
(θ,`)∈Λ∗

d((θ, `), (θ∗, `∗)) > 0 ,

where the first inequality follows from the definition of Hausdorff distance and the fact that (θbn , `bn) ∈ Λ∗bn,Fbn ,

and the second inequality follows by the triangular inequality. The final strict inequality follows from the fact that

Λ∗ ∈ S(Θ×Rk[±∞]), i.e., it is a compact subset of (Θ×Rk[±∞], d), f(θ, `) = d((θ, `), (θ∗, `∗)) is a continuous real-valued

function, and Royden (1988, Theorem 7.18) . Taking limits as n→∞ and using that d((θbn , `bn), (θ∗, `∗))→ 0 and

Λ∗bn,Fbn
H→ Λ∗ , we reach a contradiction.

Since (Θ, || · ||) is a compact metric space, d((θbn , `bn), (θ∗, `∗)) → 0 implies that θbn → θ∗. Then, consider the

following derivation:

||(vbn(θbn), µbn(θbn),Ωbn(θbn))− (v(θ∗), (0k,1k),Ω(θ∗))||

≤ ||(vbn(θbn), µbn(θbn),Ωbn(θbn))− (v(θbn), (0k,1k),Ω(θbn))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))||

≤ sup
θ∈Θ
||(vbn(θ), µbn(θ),Ωbn(θ))− (v(θ), (0k,1k),Ω(θ))||+ ||(v(θbn),Ω(θbn))− (v(θ∗),Ω(θ∗))|| → 0 ,

where the last convergence holds by Eq. (C-11), θbn → θ∗, and (v(·),Ω(·)) ∈ D0.

By continuity of ϕ∗ and Eq. (C-11), it follows that ϕ∗(µbn,1(θbn) + µbn,2(θbn)′`bn) → ϕ∗(`∗) . To see why, it

suffices to show that ϕ∗j (µbn,1,j(θbn) + µbn,2,j(θbn)′`bn,j) → ϕ∗j (`
∗
j ) for any j = 1, . . . , k. For j > p, the result holds

because ϕ∗j = 0. For j ≤ p, we consider the following argument. On the one hand, d((θbn , `bn), (θ∗, `∗))→ 0 implies

`bn,j → `∗j ∈ R[±∞] and on the other hand, Eq. (C-11) implies (µbn,1,j(θbn), µbn,2,j(θbn)) → (0, 1). Combining

this, we conclude that µbn,1,j(θbn) + µbn,2,j(θbn)`bn,j → `∗j , where `∗j ∈ R[±∞]. Assumption A.5 then implies that

ϕ∗j (µbn,1,j(θbn) + µbn,2,j(θbn)`bn,j)→ ϕ∗j (`
∗
j ).

26



Notice that (v(·),Ω(·)) ∈ D0 and the compactness of Θ imply that (v(θ∗),Ω(θ∗)) is bounded. Then, regardless

of whether ϕ∗(`∗) is bounded or not, lim(vbn(θbn) + ϕ∗(µ1(θbn) + µ2(θbn)`bn),Ωbn(θbn)) = (v(θ∗) + ϕ∗(`∗),Ω(θ∗)) ∈
(Rk[±∞] ×Ψ) and so limS(vbn(θbn) +ϕ∗(µ1(θbn) + µ2(θbn)`bn),Ωbn(θbn)) = S(v(θ∗) +ϕ∗(`∗),Ω(θ∗)), i.e, ∃N ∈ N s.t.

∀n ≥ N ,

||S(vbn(θbn) + ϕ∗(µ1(θbn) + µ2(θbn)`bn),Ωbn(θbn))− S(v(θ∗) + ϕ∗(`∗),Ω(θ∗))|| ≤ δ/2 . (C-14)

By combining Eqs. (C-13), (C-14), and the fact that (θ∗, `∗) ∈ Λ∗, it follows that ∃N ∈ N s.t. ∀n ≥ N ,

gbn(vbn(·), µbn(·),Ωbn(·)) ≥ S(v(θ∗) + ϕ∗(`∗),Ω(θ∗))− δ ≥ g(v(·), (0k,1k),Ω(·))− δ ,

which is a contradiction to Eq. (C-12).

Step 4. The proof is completed by combining the representation in step 1, the convergence result in step 2, the

continuity result in step 3, and the extended continuous mapping theorem (see, e.g., van der Vaart and Wellner

(1996, Theorem 1.11.1)). In order to apply this result, it is important to notice that parts 1 and 5 in Lemma D.2

and standard convergence results imply that (vΩ(·),Ω(·)) ∈ D0 a.s.

Theorem C.3. Let φBPn be the test defined in Definition 2.4. Then, lim supn→∞ supF∈P0
EF [φBPn ] ≤ α.

Proof. Fix (n, F ) ∈ N×P0 arbitrarily. By definition, F ∈ P0 if and only if (θ, F ) ∈ F0 for some θ ∈ Θ. This implies

that

EF [1− φBPn ] = PF (CSn(1− α) 6= ∅) ≥ PF (θ ∈ CSn(1− α)) .

This and Eq. (2.9) imply that

lim inf
n→∞

inf
F∈P0

EF [1− φBPn ] ≥ lim inf
n→∞

inf
F∈P0

inf
θ∈ΘI (F )

PF (θ ∈ CSn(1− α))

= lim inf
n→∞

inf
F∈P0

inf
θ∈ΘI (F )

PF (θ ∈ CSn(1− α)) ≥ 1− α ,

and the result follows.

Appendix D Auxiliary Lemmas

D.1 Auxiliary convergence results

Lemma D.1. Assumptions A.1-A.4 imply that:

1. (M(F ), ρF ) being totally bounded uniformly in F ∈ P.

2. M(F ) is Donsker and pre-Gaussian, both uniformly in F ∈ P.

3. (Θ, || · ||) is a totally bounded metric space.

4. ∀ε > 0, limδ↓0 lim supn→∞ supF∈P PF (sup||θ−θ′||<δ ||vn(θ)− vn(θ′)|| > ε) = 0.

Proof. Part 1. Fix δ > 0 arbitrarily and consider the following derivation:

{ρF (θ, θ′) ≤ δ} ≡
{∥∥∥∥{VF [σ−1

F,j(θ)mj(W, θ)− σ−1
F,j(θ

′)mj(W, θ
′)]1/2

}k
j=1

∥∥∥∥ ≤ δ}
=

{
||[Ik −Diag(ΩF (θ, θ′))]1/2|| ≤ δ/

√
2
}

⊇
{
||θ − θ′|| ≤ δ′

}
,

where the identity follows from the definition of the “intrinsic” variance semimetric, the second equality is elementary,

and the inclusion holds for some δ′ > 0 independent of F due to Assumption A.4.
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By compactness of (Θ, || · ||), ∃{θs}Ss=1 s.t. ∪Ss=1{θ ∈ Θ : ||θs − θ|| ≤ δ′} = Θ. Based on this, we can define

{fs ∈M(F )}Ss=1 s.t. fs ≡ D−1/2
F (θs)m(·, θs) for all s = 1, . . . , S. Let D

−1/2
F (θ)m(·, θ) ∈M(F ) be arbitrarily chosen.

We now claim that ρF (θs, θ) ≤ δ for some s = 1, . . . , S. By the previous construction, ∃s ∈ {1, . . . , S} s.t.

{||θs − θ|| ≤ δ′} ⊆ {ρF (θs, θ) ≤ δ}. Since the choice of δ > 0 was arbitrary and independent of F , the result holds.

Part 2. This follows from van der Vaart and Wellner (1996, Theorem 2.8.2). Assumption A.1 implies thatM(F )

is a measurable class. We take the envelope function to be {supθ∈Θ |σ
−1
F,j(θ)mj(·, θ)|2}kj=1, which is square integrable

uniformly in F ∈ P due to Assumption A.3.

Under these conditions, the desired result is equivalent to the following: (i) vn being asymptotically ρF -equicontinuous

uniformly in F ∈ P and (ii) (M(F ), ρF ) being totally bounded uniformly in F ∈ P. The first condition is exactly

assumed by Assumption A.2 and the second condition follows from part 1.

Part 3. This result follows trivially from the fact that (Θ, || · ||) is a compact metric space. See, e.g., Royden

(1988, pages 154-155).

Part 4. Fix ε > 0 arbitrarily. By elementary arguments, it suffices to show ∃δ′ > 0 s.t.

lim sup
n→∞

sup
F∈P

PF

(
sup

θ,θ′∈Θ:||θ−θ′||≤δ′
||vn(θ)− vn(θ′)|| > ε

)
≤ ε . (D-1)

By Assumption A.2, ∃δ > 0 s.t.

lim sup
n→∞

sup
F∈P

PF

(
sup

θ,θ′∈Θ:ρ(θ,θ′)≤δ
||vn(θ)− vn(θ′)|| > ε

)
≤ ε . (D-2)

In turn, for this choice of δ, we can use the argument in Part 1 to prove ∃δ′ > 0 (independent of F ) s.t. {||θ− θ′|| ≤
δ′} ⊆ {ρF (θs, θ) ≤ δ}. From this, it follows that,

PF

(
sup

θ,θ′∈Θ:||θ−θ′||≤δ′
||vn(θ)− vn(θ′)|| > ε

)
≤ PF

(
sup

θ,θ′∈Θ:ρ(θ,θ′)≤δ
||vn(θ)− vn(θ′)|| > ε

)
.

By combining the previous equation with Eq. (D-2), Eq. (D-1) follows.

Lemma D.2. Assume Assumptions A.1-A.4. Let {Fn ∈ P}n≥1 be a (sub)sequence of distributions s.t. ΩFn
u→ Ω

for some Ω ∈ C(Θ2). Then, the following results hold:

1. vn
d→ vΩ in l∞(Θ), where vΩ : Θ → Rk is a tight zero-mean Gaussian process with covariance (correlation)

kernel Ω. In addition, vΩ is a uniformly continuous function, a.s.

2. Ω̃n
p→ Ω in l∞(Θ).

3. D
−1/2
Fn

(·)D̂1/2
n (·)− Ik

p→ 0k in l∞(Θ).

4. D̂
−1/2
n (·)D1/2

Fn
(·)− Ik

p→ 0k in l∞(Θ).

5. Ω̂n
p→ Ω in l∞(Θ).

6. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n vn

p→ 0k in l∞(Θ).

7. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n ṽn

p→ 0k in l∞(Θ).

8. {v∗n|{Wi}ni=1}
d→ vΩ in l∞(Θ), for almost all sample sequences {Wi}∞i=1, where vΩ is the tight Gaussian process

described in part 1.

Proof. Part 1. The first part of the result follows from van der Vaart and Wellner (1996, Lemma 2.8.7), which requires

three conditions: (i) M(F ) is Donsker and pre-Gaussian, both uniformly in {Fn ∈ P0}n≥1, (ii) van der Vaart and

Wellner (1996, Eq. (2.8.5)), and (iii) van der Vaart and Wellner (1996, Eq. (2.8.6)). Condition (i) follows from part

1 in Lemma D.1, condition (ii) follows from ΩFn
u→ Ω, and condition (iii) follows from Assumption A.3.
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To show the second part, consider the following arguments. On the one hand, Assumption A.4 and ΩFn
u→ Ω

imply that ∀ε1 > 0, ∃δ1 > 0 (independent of θ, θ′ ∈ Θ) s.t. ||θ − θ′|| ≤ δ1 implies that ||Diag(Ω(θ, θ′)) − Ik|| ≤ ε1

and this, in turn, implies that: ρΩ(θ, θ′) =
√

2||[Diag(Ω(θ, θ′))− Ik]1/2|| ≤
√

2ε1 where ρΩ is the “intrinsic” variance

semimetric when the variance-covariance function is Ω. On the other hand, the fact that vΩ is a tight Gaussian

process and the argument in van der Vaart and Wellner (1996, page 41) implies that ∀ε2 > 0, ∃δ2 > 0 (independent

of θ, θ′ ∈ Θ) s.t. ρΩ(θ, θ′) ≤ δ2 implies that P (||vΩ(θ) − vΩ(θ′)|| ≤ ε2) = 1. Fix ε > 0 arbitrarily. By setting ε = ε2

, ε1 = δ2, and δ = δ1, we conclude from both of these arguments that ∀ε > 0, ∃δ > 0 (independent of θ, θ′ ∈ Θ) s.t.

||θ − θ′|| ≤ δ implies that P (||vΩ(θ)− vΩ(θ′)|| ≤ ε) = 1, as required.

Part 2. For any j1, j2 = {1, . . . , k}, define the classes of functionsMj1,j2(F ) ≡ {σ−1
F,j1

(θ)mj1(·, θ)σ−1
F,j2

(θ)mj2(·, θ) :

W → Rk} and Mj1(F ) ≡ {σ−1
F,j1

(θ)mj1(·, θ) : W → Rk}. The desired result can be shown by verifying that,

∀j1, j2 = {1, . . . , k}, Mj1,j2(F ) and Mj1(F ) are both Gliveko-Cantelli uniformly in F ∈ P. In order to show such

a result, we apply van der Vaart and Wellner (1996, Theorem 2.8.1) to each of these classes. We only verify the

conditions of the theorem for Mj1,j2(F ) (the result for Mj1(F ) follows from using very similar arguments).

ConsiderMj1,j2(F ) for any j1, j2 = {1, . . . , k}. Assumption A.1 implies thatMj1,j2(F ) is a measurable class for

all F ∈ P. For this class, the function maxj≤k supθ∈Θ(σ−1
F,j(θ)mj(W, θ))

2 is an envelope function.

We now argue the envelope satisfies the first condition of the theorem. Under Assumption A.3, we follow the

argument in Lehman and Romano (2005, page 463) to deduce that,

lim
λ→∞

sup
F∈P

EF

[(
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣2
)

1

[
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣ > λ

]]
<∞, for j = 1, . . . , k ,

which implies that the envelope function satisfies the first condition of the theorem.

We now verify the second condition for Mj1,j2(F ). By Assumption A.3, the envelope is bounded in the

L1(F )-norm, uniformly in F ∈ P. Consequently, a sufficient requirement to verify the second condition is that

(Mj1,j2(F ), L1(F )) is totally bounded uniformly in F ∈ P, i.e., for all δ > 0 there is a set {θs ∈ Θ}Ss=1 s.t. for all

θ ∈ Θ, ∃s ≤ S s.t.

EF

[∣∣∣∣∣mj1(W, θ)

σ−1
F,j1

(θ)

mj2(W, θ)

σ−1
F,j2

(θ)
− mj1(W, θs)

σ−1
F,j1

(θs)

mj2(W, θs)

σ−1
F,j2

(θs)

∣∣∣∣∣
]
< δ .

Now notice that, ∀θ, θs ∈ Θ,

EF

[∣∣∣∣mj1(W, θ)

σF,j1(θ)

mj2(W, θ)

σF,j2(θ)
− mj1(W, θs)

σF,j1(θs)

mj2(W, θs)

σF,j2(θs)

∣∣∣∣]
≤ EF

[∣∣∣∣mj1(W, θ)

σF,j1(θ)
− mj1(W, θs)

σF,j1(θs)

∣∣∣∣ ∣∣∣∣mj2(W, θ)

σF,j2(θ)

∣∣∣∣]+ EF

[∣∣∣∣mj2(W, θ)

σF,j2(θ)
− mj2(W, θs)

σF,j2(θs)

∣∣∣∣ ∣∣∣∣mj1(W, θs)

σF,j1(θs)

∣∣∣∣]

≤

 max
j∈{j1,j2}

(
EF

[∣∣∣∣mj(W, θ)

σF,j(θ)
− mj(W, θs)

σF,j(θs)

∣∣∣∣2
])1/2


2 max

j′∈{j1,j2}

(
EF

[∣∣∣∣mj′(W, θ)

σF,j′(θ)

∣∣∣∣2
])1/2

 ,

where the first inequality is elementary and the second inequality follows Hölder’s inequality. The RHS is a product

of two terms. By Assumption A.3, the second term is finite. Hence, the LHS can be arbitrarily small by choosing

the first term of the RHS small enough. As a consequence, (Mj1,j2(F ), L1(F )) is totally bounded uniformly in

F ∈ P follows from (Mj1(F ), L2(F )) and (Mj2(F ), L2(F )) being totally bounded uniformly in F ∈ P. By using the

argument in van der Vaart and Wellner (1996, Exercise 1, Page 93), we can show this follows from (M(F ), ρF ) being

totally bounded uniformly in F ∈ P, which has already been shown in part 1 of Lemma D.1.

Part 3. By part 2 and the fact thatDiag(Ω̃n(θ)) = D−1
Fn

(θ)D̂n(θ) andDiag(Ω(θ)) = Ik, it follows thatD−1
Fn

(θ)D̂n(θ)−
Ik

p→ 0k in l∞(Θ), i.e., supθ∈Θ |σ
−2
Fn,j

(θ)σ̂2
n,j(θ)− 1| p→ 0 ∀j = 1, . . . , k.

For any (a, ε̃) ∈ R× (0, 1), |a2 − 1| ≤ ε̃ implies ||a| − 1| ≤ max{
√

1 + ε̃− 1, 1−
√

1− ε̃} = 1−
√

1− ε̃. Based on
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this, choose ε ∈ (0,min{1, 2/k}) arbitrarily, set ε̃ = 1− (1− kε)2 > 0, and consider the following argument,{
max
θ∈Θ
||D−1

Fn
(θ)D̂n(θ)− Ik|| ≤ ε̃

}
⊆

⋂
j=1,...,k

{
max
θ∈Θ
|σ−2
Fn,j

(θ)σ̂2
n,j(θ)− 1| ≤ ε̃

}

⊆
⋂

j=1,...,k

{
max
θ∈Θ
|σ−1
Fn,j

(θ)σ̂n,j(θ)− 1| ≤ ε/k
}

⊆
{

max
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε
}
.

The result then follows from part 2 and ε being arbitrarily chosen.

Part 4. For a finite sample size, it is possible that σ̂n,j(θ) = 0 for some (θ, j) ∈ Θ×{1, . . . , k}, in which case D̂
1/2
n (θ)

would not be invertible. Let An = {D̂1/2
n (θ) is invertible ∀θ ∈ Θ} and define D̃

1/2
n (θ) ≡ D̂

1/2
n (θ) if An occurs and

D̃
1/2
n (θ) ≡ Ik otherwise. Note that D̃

1/2
n (θ) and D̃

−1/2
n (θ) are both diagonal matrices, and denote σ̃n(θ) ≡ D̃1/2

n (θ)[j,j]

and σ̃−1
n (θ) ≡ D̃−1/2

n (θ)[j,j] for al j = 1, . . . , k. Since D̂
1/2
n (θ) may not always be invertible, we prove instead that: (i)

infF∈P PF ({D̃−1/2
n (θ) = D̂

−1/2
n (θ) ∀θ ∈ Θ})→ 1 and (ii) D̃

−1/2
n (θ)D

1/2
Fn

(θ)− Ik
p→ 0k in l∞(Θ). Under the previous

two results, we conclude that D̂
−1/2
n (θ)D

1/2
Fn

(θ)− Ik
p→ 0k in l∞(Θ) by a slight abuse of notation.

We first show that infF∈P PF ({D̃−1/2
n (θ) = D̂

−1/2
n (θ) ∀θ ∈ Θ}) → 1. Fix (n, ε) ∈ N × (0, 1) arbitrarily. Notice

that supθ∈Θ ||D
−1/2
Fn

(θ)D̂
1/2
n (θ) − Ik|| ≤ ε implies that σ̂n,j(θ) > 0 for all (θ, j) ∈ Θ × {1, . . . , k} which is equivalent

to D̂
1/2
n (θ) being invertible ∀θ ∈ Θ, i.e., An. From this, we conclude that{

sup
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε
}
⊆ {D̃−1/2

n (θ) = D̂−1/2
n (θ) ∀θ ∈ Θ} .

The result then follows from part 3. The result reveals that the matrix D̂
1/2
n (θ) is invertible ∀θ ∈ Θ, uniformly in

F ∈ P, for n large enough.

We now show D̃
−1/2
n (θ)D

1/2
Fn

(θ)−Ik
p→ 0k in l∞(Θ). For any arbitrarily chosen ε ∈ (0, 1) we set ε′ ≡ kε/(1−ε) > 0

s.t. ε = ε′/(k + ε′) > 0. In this case, elementary arguments imply that{
sup
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε
}
⊆

⋂
j=1,...,k

{
sup
θ∈Θ

∣∣σ̃n,j(θ)σ−1
Fn,j

(θ)− 1
∣∣ ≤ ε}

=
⋂

j=1,...,k

{
sup
θ∈Θ

∣∣σ̃−1
n,j(θ)σFn,j(θ)− 1

∣∣ ≤ ε′

k

}

⊆
{

sup
θ∈Θ
||D̃−1/2

n (θ)D
1/2
Fn

(θ)− Ik|| ≤ ε′
}
.

Since the arbitrary choice of ε ∈ (0, 1) induced a constant ε′ > 0, the result then follows from part 3.

Part 5. By the triangular inequality and part 2, it suffices to show that Ω̂n(θ)− Ω̃n(θ)
p→ 0k×k in l∞(Θ). To show

this, consider the following argument:

Ω̂n(θ)− Ω̃n(θ) ≡ D̂−1/2
n (θ)Σ̂n(θ)D̂−1/2

n (θ)− Ω̃n(θ)

= D̂−1/2
n (θ)D

1/2
Fn

(θ)Ω̃n(θ)D
1/2
Fn

(θ)D̂−1/2
n (θ)− Ω̃n(θ)

= ((D
1/2
Fn

(θ)D̂−1/2
n (θ)− Ik) + Ik)Ω̃n(θ)((D

1/2
Fn

(θ)D̂−1/2
n (θ)− Ik) + Ik)− Ω̃n(θ)

= 2(D
1/2
Fn

(θ)D̂−1/2
n (θ)− Ik)Ω̃n(θ) + (D

1/2
Fn

(θ)D̂−1/2
n (θ)− Ik)Ω̃n(θ)(D

1/2
Fn

(θ)D̂−1/2
n (θ)− Ik) .

By the previous equation, the submultiplicative property of the matrix norm and the fact that Ω̃n(θ) is a corre-

lation matrix, it follows that

||Ω̂n(θ)− Ω̃n(θ)|| ≤ 2||D1/2
Fn

(θ)D̂−1/2
n (θ)− Ik||+ ||D1/2

Fn
(θ)D̂−1/2

n (θ)− Ik||2 .
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Fix ε > 0 arbitrarily and set ε′ > 0 s.t. 2ε′ + (ε′)2 ≤ ε. Then, the previous equation implies that{
sup
θ∈Θ
||D−1/2

Fn
(θ)D̂1/2

n (θ)− Ik|| ≤ ε′
}
⊆
{

sup
θ∈Θ
||Ω̂n(θ)− Ω̃n(θ)|| ≤ ε

}
.

The result then follows from part 3 and ε being arbitrarily chosen.

Part 6. Fix ε, δ > 0 arbitrarily. By part 3 in Lemma D.1, ∃{θs}Ss=1 s.t. ∪Ss=1{θ ∈ Θ : ||θs − θ|| ≤ δ} = Θ. Based

on this, consider the following derivation:

PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
= PFn

(
max
s≤S

sup
{θ∈Θ:‖θs−θ‖≤δ}

||(vn(θ)− vn(θs)) + vn(θs)|| > λnε

)

≤ PFn

(
max
s≤S

sup
{θ∈Θ:‖θs−θ‖≤δ}

||vn(θ)− vn(θs)|| > λnε/2

)
+ PFn

(
max
s≤S
||vn(θs)|| > λnε/2

)

≤ PFn

(
sup

{θ,θ′∈Θ:||θ′−θ||≤δ}
||vn(θ)− vn(θ′)|| > λnε/2

)
+

S∑
s=1

PFn(||vn(θs)|| > λnε/2) .

Since λn →∞, λnε/2 > ε for all n ∈ N and, so

lim sup
n→∞

PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
≤ lim sup

n→∞
PFn

(
sup

{θ,θ′∈Θ:||θ′−θ||≤δ}
||vn(θ)− vn(θ′)|| > ε

)

+

S∑
s=1

lim sup
n→∞

PFn(||vn(θs)|| > λnε/2) .

By taking limits as δ ↓ 0 and part 4 in Lemma D.1, we conclude that

lim sup
n→∞

PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
≤

S∑
s=1

lim sup
n→∞

PFn(||vn(θs)|| > λnε/2) ,

and it then suffices to show PFn(||vn(θ)|| > λnε/2) → 0 ∀θ ∈ Θ. To show this, notice that ΩFn
u→ Ω implies

ΩFn(θ, θ)→ Ω(θ, θ) which, in turn, implies that vn(θ)
d→ N(0k,Ω(θ, θ)). Since λn →∞, the result follows.

Part 7. Fix ε > 0 arbitrarily. By definition, ṽn(θ) ≡ D̂
−1/2
n (θ)D

1/2
Fn

(θ)vn(θ) ∀θ ∈ Θ and, so the next derivation

follows:

PFn

(
sup
θ∈Θ
||ṽn(θ)|| > λnε

)
= PFn

(
sup
θ∈Θ
||((D̂−1/2

n (θ)D
1/2
Fn

(θ)− Ik) + Ik)vn(θ)|| > λnε

)
≤ PFn

(
sup
θ∈Θ
||(D̂−1/2

n (θ)D
1/2
Fn

(θ)− Ik)|| sup
θ̃∈Θ

||vn(θ̃)|| > λnε

)
+ PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
≤ PFn

(
sup
θ∈Θ
||(D̂−1/2

n (θ)D
1/2
Fn

(θ)− Ik)|| >
√
λnε

)
+ PFn

(
sup
θ∈Θ
||vn(θ)|| >

√
λnε

)
+ PFn

(
sup
θ∈Θ
||vn(θ)|| > λnε

)
.

By parts 4 and 6, the three terms on the RHS converge to zero, concluding the proof.

Part 8. This result follows from a modification of van der Vaart and Wellner (1996, Theorem 3.6.2) to allow for

drifting sequences of probability measures {Fn ∈ P}n≥1. The original result proves that three statements are equal:

(i), (ii), and (iii). For the purpose of this part, it suffices to prove that (i) still implies (iii) in the case of drifting

sequences of probability measures. In order to complete the proof, one could follow the steps of the original proof:

(i) implies (ii), and (i) plus (ii) imply (iii).

Provided that the assumptions of the original theorem are valid uniformly in F ∈ P, then it is natural that

the conclusions of such theorem are also hold uniformly. Based on this argument, we limit ourselves to show that

condition (i) is uniformly valid. First, part 2 of Lemma D.1 indicates thatM(F ) is Donsker and pre-Gaussian, both

uniformly in F ∈ P. Second, Assumption A.3 is a finite (2 + a)-moment condition uniformly in F ∈ P.
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D.2 Auxiliary results on S

Lemma D.3. Let the set A be defined as follows:

A ≡
{
x ∈ Rp[+∞] × Rk−p : max

{
max

j=1,...,p
{[xj ]−}, max

s=p+1,...,k
{|xs|}

}
= 1

}
. (D-3)

Then, inf(x,Ω)∈A×Ψ S(x,Ω) > 0.

Proof. First, notice that (x,Ω) ∈ A×Ψ implies that either xj < 0 for j ≤ p or xs 6= 0 for s > p, and so S(x,Ω) > 0.

So suppose not, i.e., suppose that inf(x,Ω)∈A×Ψ S(x,Ω) = 0. Then, ∃{(xn,Ωn) ∈ A×Ψ}n≥1 (and so, S(xn,Ωn) >

0) s.t. limn→∞ S(xn,Ωn) = 0. By taking a further subsequence {an}n≥1 of {n}n≥1, {(xan ,Ωan)}n≥1 converges to

(x̄, Ω̄) ∈ cl(A × Ψ) = A × Ψ and so S(x̄, Ω̄) > 0. This implies that (xan ,Ωan) → (x̄, Ω̄) and limn→∞ S(xan ,Ωan) =

0 < S(x̄, Ω̄), which is a contradiction to the continuity of S on Rp[+∞] × Rk−p ×Ψ.

Lemma D.4. There exist a constant $ > 0 such that S(x,Ω) ≤ 1 for any Ω ∈ Ψ implies xj ≥ −$ for all j ≤ p and

|xs| ≤ $ for all s > p.

Proof. Let (x,Ω) ∈ Rp[+∞] × Rk−p × Ψ be arbitrary s.t. S(x,Ω) ≤ 1. Set x̃ ≡ ({[xj ]−}pj=1, {xs}
k
s=p+1) and note

that xj ≥ −$ for all j ≤ p and |xs| ≤ $ for all s > p is equivalent to maxj=1,...,k |x̃j | ≤ $. Since S ((x1, x2) ,Σ)

is non-increasing in x1 ∈ Rp[+∞] and {xj}pj=1 ≥ {[xj ]−}
p
j=1, it follows that S(x,Ω) ≤ S(x̃,Ω). Thus, it suffices to

find $ > 0 s.t. S(x̃,Ω) ≤ 1 implies that maxj=1,...,k |x̃j | ≤ $. If maxj=1,...,k |x̃j | = 0, the result trivially follows so

consider the case where maxj=1,...,k |x̃j | > 0. In this case, the maintained assumptions on S imply the following,

1 ≥ S(x̃,Ω) = S

(
x̃

maxj=1,...,k |x̃j |
,Ω

)(
max

j=1,...,k
|x̃j |
)χ
≥ inf

(x,Ω)∈A×Ψ
S (x,Ω)

(
max

j=1,...,k
|x̃j |
)χ

,

where the set A is as in Eq. (D-3). Lemma D.3 then implies that

max
j=1,...,k

|x̃j | ≤
(

inf
(x,Ω)∈A×Ψ

S (x,Ω)

)−1/χ

,

and the result then holds for $ ≡ (inf(x,Ω)∈A×Ψ S(x,Ω))−1/χ > 0.

Lemma D.5. Let {(xn,Ωn) ∈ Rk[±∞]×Ψ}n≥1 be a sequence s.t. lim infn→∞ xn,j ≥ 0 for j ≤ p and limn→∞ xn,j = 0

for j > p. Then, limn→∞ S(xn,Ωn) = 0.

Proof. Suppose not, i.e., suppose that lim infn |S(xn,Ωn)| > 0. Since (Rk[±∞]×Ψ, d) is compact, there is a subsequence

{an}n≥1 of {n}n≥1 s.t. d((xan ,Ωan), (x,Ω)) → 0 for some (x,Ω) ∈ Rk[±∞] × Ψ. By the behavior of the limits, x ∈
Rp[+∞]×{0k−p} ⊆ Rp[+∞]×Rk−p. By continuity of S, limn |S(xan ,Ωan)| = |S(x,Ω)| = 0, which is a contradiction.

D.3 Auxiliary results on subsequences

Lemma D.6. Let Assumption A.4 hold. Let {Fn ∈ P}n≥1 be an arbitrary sequence of distributions, and let {ηn ∈
R++}n≥1 and {κn ∈ R++}n≥1 be non-stochastic sequences. Then, there exists a subsequence {un}n≥1 of {n}n≥1 s.t.

Λ′un,Fun
H→ Λ′, Λ∗un,Fun

H→ Λ∗, and ΩFun
u→ Ω for some (Ω,Λ′,Λ∗) ∈ C(Θ2)×S(Θ×Rk[±∞])

2, where Λ′n,F and Λ∗n,Fn
are defined in Eqs. (A-3) and (A-4), respectively.

Proof. By Assumption A.4, {ΩF (θ, θ′) ∈ C(Θ2)}F∈P is an equicontinuous family of functions. Since {ΩFn(θ, θ′)}n≥1

is a bounded sequence in Rk×k, and its closure is compact. Then, by the Arzelà-Ascoli theorem (see, e.g., Royden

(1988, page 169)), there is a subsequence {an}n≥1 of {n}n≥1 and Ω ∈ C(Θ2) s.t. ΩFan
u→ Ω.
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Since (Θ × Rk[±∞], d) is a compact metric space, Λ′an,Fan ∈ Θ × Rk[±∞], and the fact that any closed subset of

a compact space is compact (see, e.g., Royden (1988, page 156)), cl(Λ′an,Fan ) is a compact subset of Θ × Rk[±∞],

i.e., cl(Λ′an,Fan ) ∈ S(Θ × Rk[±∞]). By Corbae et al. (2009, Theorem 6.1.16), S(Θ × Rk[±∞]) is compact under

the Hausdorff metric. As a consequence, there is a subsequence {bn}n≥1 of {an}n≥1 and Λ′ ∈ S(Θ × Rk[±∞])

s.t. dH(cl(Λ′bn,Fbn ),Λ′) → 0. To conclude, it suffices to show that: dH(Λ′bn,Fbn ,Λ
′) → 0, which follows from

dH(Λ′bn,Fbn , cl(Λ
′
bn,Fbn

)) = 0 and the triangular inequality.

As a next step, one would define a subsequence {cn}n≥1 of {bn}n≥1 s.t. Λ∗cn,Fcn
H→ Λ∗ using an identical argument

to the one used before. The proof is then concluded by setting {un}n≥1 ≡ {cn}n≥1.

Lemma D.7. Let {Fn ∈ P}n≥1 be an arbitrary (sub)sequence of distributions and let Xn(θ) : Ω → l∞(Θ) be any

stochastic process s.t. Xn
p→ 0 in l∞(Θ). Then, there exists a subsequence {un}n≥1 of {n}n≥1 s.t. Xun

a.s.→ 0 in

l∞(Θ).

Proof. Throughout this proof, we consider an arbitrary sequence {εn ∈ R++}n≥1 with εn ↓ 0. Then, for arbitrary

δ > 0 and arbitrary subsequence {un}n≥1 of {n}n≥1, it follows that:{
lim sup
n→∞

{
sup
θ∈Θ
||Xun(θ)|| > εun

}}c
=

{
lim inf
n→∞

{
sup
θ∈Θ
||Xun(θ)|| ≤ εun

}}
⊆
{

lim inf
n→∞

{
sup
θ∈Θ
||Xun(θ)|| ≤ δ

}}
.

Then, in order to complete the proof, it suffices to construct a subsequence {un}n≥1 of {n}n≥1 (solely dependent on

{εn ∈ R++}n≥1) s.t.

P

(
lim sup
n→∞

{
sup
θ∈Θ
||Xun(θ)|| > εun

})
= 0 .

Consider the following elementary argument:

P

(
lim sup
n→∞

{
sup
θ∈Θ
||Xun(θ)|| > εun

})
≡ P

(
∩n≥1

{
∪m≥n

{
sup
θ∈Θ
||Xkm(θ)|| > εkm

}})
≤ lim sup

n→∞
P

({
∪m≥n

{
sup
θ∈Θ
||Xkm(θ)|| > εkm

}})
≤ lim sup

n→∞

∑
m≥n

PFkm

({
sup
θ∈Θ
||Xkm(θ)|| > εkm

})
. (D-4)

It suffices to show that we can construct a subsequence {un}n≥1 of {n}n≥1 (solely dependent on {εn}n≥1) s.t. the

limit supremum on the RHS of Eq. (D-4) is zero.

Set u0 = 1. By the fact that Xn
p→ 0 in l∞(Θ) and for each n ∈ N, we can find un ≥ max{n, un−1} s.t.

PFun

(
sup
θ∈Θ
||Xun(θ)|| > εn

)
≤ 1

2n
.

As a corollary of this, we would have constructed a subsequence {un}n≥1 of {n}n≥1 s.t.

∑
m≥1

PFum

(
sup
θ∈Θ
||Xum(θ)|| > εm

)
<∞ .

It follows that the right hand size of Eq. (D-4) is zero, completing the proof.

D.4 Auxiliary results on sufficient conditions for our assumptions

In this section we present some sufficient conditions for the assumptions in section B to hold.

Lemma D.8. Let ϕ : Rp[+∞]×Rk−p[±∞]×Ψ→ Rk[+∞] take the form ϕ(ξ) = (ϕ1(ξ1), . . . , ϕp(ξp), 0k−p) and be such that,

for all j = 1, . . . , p,
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a. ϕj(ξj) ≤ 0 for all ξj < 0.

b. ϕj(ξj) = 0 at ξj = 0.

c. ϕj(ξj)→∞ as ξj →∞.

d. ϕj(ξj) has finitely many discontinuity points and ξj = 0 is not one of them.

Then, this function ϕ satisfies Assumption A.5.

Proof. Consider the following argument ∀j = 1, . . . , p. If ϕj is continuous, then set ϕ∗j (ξj) = max{ϕj(ξj), 0} for all

ξj ∈ R[±∞]. Otherwise, we split the constructive argument into the following cases.

First, suppose that all its points of discontinuity are negative. In this case, define ϕ∗j (ξj) = 0 for all ξj < 0 and

ϕ∗j (ξj) = ϕ∗j (ξj) for all ξj ≥ 0. It is now easy to verify that this function satisfies all the desired properties.

Second, suppose not all points of discontinuity are negative. By condition (d), zero is not a discontinuity point

and we can find the minimum discontinuity point, which we denote by ξ??j . It follows that ϕj(ξj) is a continuous

function for all ξj ∈ [0, ξ??j ). By continuity at zero, ∃ξ?j ∈ (0, ξ??j ) s.t. for some real number δ > 0, |ϕj(ξj)| ≤ δ for all

ξj ∈ [0, ξ?j ]. We divide the rest of the proof into two cases.

Case 1. ∃δ ∈ (0, 1) s.t. |ϕj(δξ?j )| > 0. In this case, define the following constants: A ≡ (G(δ) − δ)/(1 − δ) and

B ≡ δ/|ϕj(δξ?j )|, where G : R[±∞] → [0, 1] is the function defined in Eq. (A-1). Since δ ∈ (0, 1), it follows that

A ∈ (0, 1) and B ≥ 1. In this case, define

ϕ∗j (ξj) =



0 if ξj ∈ [−∞, 0)

B|ϕj(ξj)| if ξj ∈ [0, δξ?j )

G−1(Aξj/ξ
?
j + (1−A)) if ξj ∈ [δξ?j , ξ

?
j )

∞ if ξj ∈ [ξ?j ,∞]

.

It is now easy to verify that this function satisfies all the desired properties.

Case 2. 6 ∃δ ∈ (0, 1) s.t. |ϕj(δξ?j )| > 0, i.e., ϕj(ξj) = 0 ∀ξj ∈ [0, ξ?j ). In this case, define:

ϕ∗j (ξj) =


0 if ξj ∈ [−∞, 0)

G−1(ξj/(2ξ
?
j ) + 1/2) if ξj ∈ [0, ξ?j )

∞ if ξj ∈ [ξ?j ,∞]

.

It is now easy to verify that this function satisfies all the desired properties.

Lemma D.9. Let Assumption A.8 hold and let ηn = τn log κn, where {κn}n≥1 and {τn}n≥1 are as in Assumption

M.1 and Definition 4.1, respectively. Then, for any {θn ∈ Θηn
I (Fn)}n≥1 and γ ∈ (0, 1), there is a subsequence {un}n≥1

of {n}n≥1, and a sequence {θ̂un ∈ Θ
ηun
I (Fun)}n≥1 such that

lim
n→∞

√
knσ

−1
Fkn ,j

(θ̂kn)EFkn [mj(W, θ̃kn)] ≥ lim
n→∞

κ−γkn
√
knσ

−1
Fkn ,j

(θkn)EFkn [mj(W, θkn)], for j ≤ p ,

lim
n→∞

√
knσ

−1
Fkn ,j

(θ̂kn)EFkn [mj(W, θ̃kn)] = lim
n→∞

κ−γkn
√
knσ

−1
Fkn ,j

(θkn)EFkn [mj(W, θkn)], for j > p . (D-5)

Proof. By definition, {θn ∈ Θηn
I (Fn)}n≥1 implies that S(η−1

n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)],ΩFn(θn)) ≤ 1 or, equiva-

lently, QFn(θn) ≤ (ηn/
√
n)χ and, thus, limn→∞QFn(θn) = 0. We now claim that η−1

n

√
ndH({θn},ΘI(Fn)) = O(1).

To see why, consider the following derivation:

min{δ, dH(θn,ΘI(Fn))χ} < c−1QFn(θn) ≤ c−1(ηn/
√
n)χ ,
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where the first inequality holds by Assumption A.8(a). Because the right hand size converges to zero as n → ∞, it

is smaller than δ for sufficiently large n. Thus, the above display implies, for sufficiently large n,

dH(θn,ΘI(Fn))χ ≤ c−1(ηn/
√
n)χ , (D-6)

which implies η−1
n

√
ndH(θn,ΘI(Fn)) ≤ c−1/χ = O(1). Since η−1

n

√
ndH({θn},ΘI(Fn)) = O(1), there is a sequence

{θ̃n ∈ ΘI(Fn)}n≥1 with (η−1
n

√
n)||θ̃n − θn|| = O(1).

By the convexity of Θ and the continuous differentiability of D
−1/2
Fn

(·)EFn [m(W, ·)], the intermediate value theorem

implies that there is a sequence {θ∗n ∈ Θ}n≥1 with θ∗n in the linear combination between θn and θ̃n such that

κ−γn
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] =
√
nGFn(θ∗n)κ−γn (θn − θ̃n) + κ−γn

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] . (D-7)

Define θ̂n ≡ κ−γn θn + (1− κ−γn )θ̃n or, equivalently,

θ̂n − θ̃n = κ−γn (θn − θ̃n) . (D-8)

By convexity of Θ, {θ̂n ∈ Θ}n≥1. By Eq. (D-8), lim supn→∞(η−1
n

√
n)||θ̃n− θn|| <∞, and κ−γn → 0, we conclude that

(η−1
n

√
n)||θ̂n − θ̃n|| → 0. Furthermore, Eqs. (D-7) and (D-8) imply

κ−γn
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] =
√
nGFn(θ∗n)(θ̂n − θ̃n) +

√
nκ−γn D

−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] . (D-9)

By the convexity of Θ and by the continuous differentiability of D
−1/2
Fn

(·)EFn [m(W, ·)], the intermediate value

theorem implies that there is a sequence {θ∗∗n ∈ Θ}n≥1 with θ∗∗n in the linear combination between θ̂n and θ̃n such

that
√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] =
√
nGFn(θ∗∗n )(θ̂n − θ̃n) +

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] . (D-10)

By definition of {θ∗n ∈ Θ}n≥1 and (η−1
n

√
n)||θ̃n− θn|| = O(1), (η−1

n

√
n)||θ̃n− θ∗n|| = O(1). Similarly, by definition

of {θ∗∗n ∈ Θ}n≥1 and (η−1
n

√
n)||θ̂n − θ̃n|| → 0, (η−1

n

√
n)||θ̃n − θ∗∗n || → 0. Then, triangle inequality implies that

(η−1
n

√
n)||θ∗n − θ∗∗n || = O(1).

Now consider the following derivation:

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] =
√
nGFn(θ∗n)(θ̂n − θ̃n) +

√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)] + εn,1

= κ−γn
√
nD
−1/2
Fn

(θn)EFn [m(W, θn)] + εn,1 + εn,2 , (D-11)

where the first equality follows from Eq. (D-10) and defining εn,1 ≡
√
n(GFn(θ∗∗n ) − GFn(θ∗n))(θ̂n − θ̃n), and the

second equality follows from Eq. (D-9) and by defining εn,2 ≡ (1− κ−γn )
√
nD
−1/2
Fn

(θ̃n)EFn [m(W, θ̃n)].

On the one hand, θ̃n ∈ ΘI(Fn) and κ−γn → 0 implies that εn,2 is s.t. εn,2,j ≥ 0 for j ≤ p and εn,2,j = 0 for j > p.

On the other hand, ||εn,1|| → 0. To see this, notice that

||εn,1|| ≤
√
n sup
F∈P0

||GF (θ∗n)−GF (θ∗∗n )|| × ||θ̂n − θ̃n|| = O(η2
n/
√
n)→ 0 ,

where the result combines our assumptions with (η−1
n

√
n)||θ∗n − θ∗∗n || = O(1) and (η−1

n

√
n)||θ̂n − θ̃n|| = O(1).

We now verify that θ̂n ∈ Θηn
I (Fn) for all sufficiently large n. By Eq. (D-11), {θn ∈ Θηn

I (Fn)}n≥1, Lemma D.4,

κ−γn → 0, and the properties shown for εn,1 and εn,2, we have that

η−1
n

√
nσ−1

Fn,j
(θ̂n)EFn [mj(W, θ̂n)] ≥ η−1

n κ−γn
√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)] + εn,1,j ≥ −κ−γn $ → 0, j ≤ p ,

η−1
n

√
nσ−1

Fn,j
(θ̂n)|EFn [mj(W, θ̂n)]| ≤ η−1

n κ−γn
√
nσ−1

Fn,j
(θn)|EFn [mj(W, θn)]|+ |εn,1| ≤ κ−γn $ → 0, j > p .

By these findings and Lemma D.5, we conclude that S(η−1
n

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)],ΩFn(θ̂n)) → 0 and, thus,

θn ∈ Θηn
I (Fn) for all sufficiently large n. As a consequence, there is a subsequence {an}n≥1 of {n}n≥1 s.t. {θ̂an ∈
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Θ
ηan
I (Fan)}n≥1.

To conclude the proof, consider the following argument. Since (Rk[±∞], d) is compact, there is a further subsequence

{bn}n≥1 of {an}n≥1 s.t.
√
bnD

−1/2
Fbn

(θ̂bn)EFbn [m(W, θ̂bn)] and κ−γbn
√
bnD

−1/2
Fbn

(θbn)EFbn [m(W, θbn)] converge. By Eq.

(D-11), combined with the properties of εn,1 and εn,2, we conclude that

lim
n→∞

η−1
bn

√
bnσ

−1
Fbn ,j

(θ̂bn)EFbn [mj(W, θ̂bn)] ≥ lim
n→∞

η−1
bn
κ−γbn
√
bnσ

−1
Fbn ,j

(θbn)EFbn [mj(W, θbn)], for j ≤ p ,

lim
n→∞

η−1
bn

√
bnσ

−1
Fbn ,j

(θ̂bn)EFbn [mj(W, θ̂bn)] = lim
n→∞

η−1
bn
κ−γbn
√
bnσ

−1
Fbn ,j

(θbn)EFbn [mj(W, θbn)], for j > p .

The proof is completed by considering the subsequence {un}n≥1 with un ≡ bn.

Lemma D.10. Let {Fn ∈ P0}n≥1 be s.t. Λ′n,Fn
u→ Λ′ ∈ S(Θ × Rk[±∞]). Then, Assumptions A.5 and A.8 imply

Assumption A.6.

Proof. First note that by Lemma D.9, Assumption A.8 implies that Eq. (D-5) holds. By definition, (θ∗, `∗) ∈ Λ∗

implies that there is a (sub)sequence {(θn, `n) ∈ Λ∗n,Fn}n≥1 s.t. limn→∞ d((θn, `n), (θ∗, `∗)) = 0. Note that `n ≡
κ−1
n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)]. Since (θn, `n) ∈ Λ∗n,Fn then θn ∈ Θηn
I (Fn), i.e.,

S(η−1
n

√
nD
−1/2
Fn

(θn)EFn [m(W, θn)],Ωn(θn)) ≤ 1 .

By Lemma D.4, ∃$ > 0 such that

κnη
−1
n `n,j = η−1

n

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)] ≥ −$, for j ≤ p ,

κnη
−1
n |`n,j | = η−1

n

√
nσ−1

Fn,j
(θn)|EFn [mj(W, θn)]| ≤ $, for j > p . (D-12)

By Definition 4.1, τn = κrn for r ∈ (0, 1) and by Lemma D.9 we can choose γ ∈ (r, 1) ⊂ (0, 1). By Eq. (D-12) and

ηn ≡ τn log κn it then follows that

κ1−γ
n `n,j = κ−γn

√
nσ−1

Fn,j
(θn)EFn [mj(W, θn)] ≥ −κ−γn ηn$ → 0, for j ≤ p ,

κ1−γ
n |`n,j | = κ−γn

√
nσ−1

Fn,j
(θn)|EFn [mj(W, θn)]| ≤ κ−γn ηn$ → 0, for j > p .

By the previous equations, κ1−γ
n →∞, and d(`n, `

∗)→ 0, we conclude that `∗ ∈ Rp[+∞] × {0k−p}.

Also, Eq. (D-12) and Lemma D.9 imply that there is a subsequence {an}n≥1 of {n}n≥1 and a sequence {θ̂n ∈
Θηn
I (Fn)}n≥1 that satisfies:

lim
n→∞

√
anσ

−1
Fan ,j

(θ̂an)EFan [mj(W, θ̂an)] ≥ lim
n→∞

κ1−γ
an `an,j ≥ 0, for j ≤ p ,

lim
n→∞

√
anσ

−1
Fan ,j

(θ̂an)EFan [mj(W, θ̂an)] = lim
n→∞

κ1−γ
an `an,j = 0, for j > p .

We define ˆ̀
n ≡

√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] and notice that, by definition, (θ̂an , ˆ̀
an) ∈ Λ′an,Fan . Since (Θ ×

Rk[±∞], d) is compact, there is a subsequence {bn}n≥1 of {an}n≥1 s.t. d((θ̂bn , ˆ̀
bn), (θ, `′))→ 0. Finally, since Λ′n,Fn →

Λ′ ∈ S(Θ× Rk[±∞]), we conclude that (θ, `′) ∈ Λ′. We can summarize the previous construction as follows:

`′j = lim
n→∞

ˆ̀
bn,j ≥ lim

n→∞
κ1−γ
bn

`bn,j ≥ 0, for j ≤ p ,

`′j = lim
n→∞

ˆ̀
bn,j = lim

n→∞
κ1−γ
bn

`bn,j = 0, for j > p . (D-13)

To conclude the proof, we show that (θ, `′) satisfies the requirements in Assumption A.6. First, for j > p, Eq.

(D-13) implies that `′j = limn
ˆ̀
bn,j = 0. Next, consider j ≤ p. If `∗j = 0, then ϕ∗j (`

∗
j ) = 0 by Assumption A.5. Eq.

(D-13) then implies `′j ≥ 0 = ϕ∗j (`
∗
j ). If `∗j > 0, then κ1−γ

bn
`bn,j → ∞ and so Eq. (D-13) implies `′j = ∞. It follows

that `′j ≥ ϕ∗(`∗j ) in this case as well.
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D.5 Auxiliary results on Θ̂I

Lemma D.11. The set Θ̂I in Definition 4.1 satisfies the following properties: (i) infθ∈Θ Qn(θ) = infθ∈Θ̂I
Qn(θ), (ii)

Θ̂I 6= ∅.

Proof. For the first property note that Θ̂I ⊆ Θ implies that infθ∈Θ Qn(θ) ≤ infθ∈Θ̂I
Qn(θ). Now suppose that the

inequality is strict, i.e., infθ∈Θ Qn(θ) < infθ∈Θ̂I
Qn(θ). Then, there is θ̃ ∈ Θ\Θ̂I such that Qn(θ̃) < infθ∈Θ̂I

Qn(θ).

Since θ̃ 6∈ Θ̂I , we conclude that Qn(θ̃) > infθ∈Θ Qn(θ) + τχn ≥ infθ∈Θ̂I
Qn(θ), which together with τn ≥ 0 implies a

contradiction.

For the second property, fix n ∈ N arbitrarily. Notice that τn > 0 implies that ∃θ̃ ∈ Θ such that Qn(θ̃) <

infθ∈Θ Qn(θ) + τχn which, in turn, implies that θ̃ ∈ Θ̂I .

Lemma D.12. Let {Fn ∈ P0}n≥1 be a (sub)sequence of distributions s.t. ΩFn
u→ Ω for some Ω ∈ C(Θ2). For any

arbitrary sequence {λn ∈ R++}n≥1 s.t. λn →∞, λ−1
n infθ∈Θ Qn(θ)

p→ 0.

Proof. Fix n ∈ N arbitrarily. By definition, Fn ∈ P0 implies that θn ∈ ΘI(Fn), which implies that EFn [mj(W, θn)] ≥ 0

for j ≤ p and EFn [mj(W, θn)] = 0 for j > p. Therefore

0 ≤ λ−1
n inf

θ∈Θ
Qn(θ) ≤ λ−1

n Qn(θn) = S(λ−1/χ
n

√
nmn(θn), Σ̂n(θn)) = S(λ−1/χ

n vn(θn), Ω̃n(θn)) ,

where the first two inequalities are elementary, the first equality is by definition of Qn and by the fact that S is

homogeneous of degree χ, and the second equality follows from monotonicity properties of S and θn ∈ ΘI(Fn), which

implies that EFn [mj(W, θn)] ≥ 0 for j ≤ p and EFn [mj(W, θn)] = 0 for j > p.

The proof is completed by showing that S(λ
−1/χ
n vn(θn), Ω̃n(θn))

p→ 0. Suppose not, i.e., ∃ε̄ > 0 such that

lim sup
n→∞

PFn

(∣∣∣S(λ−1/χ
n vn(θn), Ω̃n(θn))

∣∣∣ > ε̄
)
> 0 . (D-14)

Based on this, notice that

lim sup
n→∞

PFn

(∣∣∣S(λ−1/χ
n vn(θn), Ω̃n(θn))

∣∣∣ > ε̄
)

= lim
n→∞

PFan

(∣∣∣S(λ−1/χ
an van(θan), Ω̃an(θan))

∣∣∣ > ε̄
)

= lim
n→∞

PFbn

(∣∣∣S(λ
−1/χ
bn

vbn(θbn), Ω̃bn(θbn))
∣∣∣ > ε̄

)
, (D-15)

where the first equality holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit supremum, the second

equality holds for a subsequence {bn}n≥1 of {an}n≥1 s.t. Ω(θbn)→ Ω∗. By Lemma D.2 (parts 5 and 6) and {λ1/χ
n ∈

R++}n≥1 s.t. λ
1/χ
n → ∞, we conclude that λ

−1/χ
bn

vbn(θbn)
p→ 0k and Ω̃bn(θbn) − Ωbn(θbn)

p→ 0k. This, combined

with Ω(θbn)− Ω∗ → 0k and assumed properties of S, implies that S(λ
−1/χ
bn

vbn(θbn), Ω̃bn(θbn))
p→ S(0k,Ω

∗) = 0. As

a result, the RHS of Eq. (D-15) is zero, contradicting Eq. (D-14).

Lemma D.13. Assume Assumptions A.1-A.4. Then,

lim
n→∞

inf
F∈P0

PF
(

ΘI(F ) ⊆ Θ̂n ⊆ Θηn
I (F )

)
= 1 ,

where ηn ≡ τn log κn, for {κn}n≥1 and {τn}n≥1 as in Assumption M.1 and Definition 4.1, respectively.

Proof. Throughout this proof, let

Θ̂LB
I ≡ {θ ∈ Θ : Qn(θ) ≤ τχn } = {θ ∈ Θ : S(τ−1

n

√
nm̄n(θ), Σ̂n(θ)) ≤ 1}

Θ̂UB
I ≡ {θ ∈ Θ : Qn(θ) ≤ τχn (1 + (log κn)χ/2)} = {θ ∈ Θ : S((τn(1 + (log κn)χ/2)1/χ)−1√nm̄n(θ), Σ̂n(θ)) ≤ 1}

where we have used the definition of Qn and that S is homogeneous of degree χ.
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Step 1. Show that infF∈P0 PF (ΘI(F ) ⊆ Θ̂LB
I )→ 1. Fix (n, F ) ∈ N× P0 arbitrarily. By Lemma D.4 there exists

$ > 0 such that

Θ̂LB
I ≡ {θ ∈ Θ : S(τ−1

n

√
nm̄(θ), Σ̂n(θ)) ≤ 1}

= {θ ∈ Θ : S(τ−1
n

√
nD̂−1/2

n (θ)m̄(θ), Ω̂n(θ)) ≤ 1}

⊆

{
θ ∈ Θ :

{
{
√
nσ̂−1

n,j(θ)m̄j(θ) ≥ −$τn}pj=1∩
{
√
nσ̂−1

n,j(θ)|m̄j(θ)| ≤ $τn}kj=p+1

}}
.

Based on this, consider the following derivation:

{
ΘI(F ) ⊆ Θ̂LB

I

}
⊇

 ⋂
θ∈ΘI (F )

{
{
√
nσ̂−1

n,j(θ)m̄j(θ) ≥ −$τn}pj=1∩
{
√
nσ̂−1

n,j(θ)|m̄j(θ)| ≤ $τn}kj=p+1

}
=

{
{infθ∈ΘI (F )(

√
nσ̂−1

n,j(θ)m̄j(θ)) ≥ −$τn}pj=1∩
{supθ∈ΘI (F )(

√
nσ̂−1

n,j(θ)|m̄j(θ)|) ≤ $τn}kj=p+1

}

⊇


{

inf
θ∈ΘI (F )

ṽn,j(θ) ≥ −$τn
}p
j=1

∩

{
sup

θ∈ΘI (F )

|ṽn,j(θ)| ≤ $τn

}k
j=p+1


⊇
{

sup
θ∈Θ
||ṽn(θ)|| ≤ $τn

}
,

where the second last inclusion follows from the fact that θ ∈ ΘI(F ) implies EF [mj(W, θ)] ≥ 0 for j ≤ p and

EF [mj(W, θ)] = 0 for j > p, and the last inclusion follows from ΘI(F ) ⊆ Θ. From this, it follows that

lim inf
n→∞

inf
F∈P0

PF
(

ΘI(F ) ⊆ Θ̂LB
I

)
≥ lim inf

n→∞
inf
F∈P0

PF

(
sup
θ∈Θ
||ṽn(θ)|| ≤ $τn

)
= lim
n→∞

PFan

(
sup
θ∈Θ
||ṽan(θ)|| ≤ $τan

)
= lim
n→∞

PFbn

(
sup
θ∈Θ
||ṽbn(θ)|| ≤ $τbn

)
= 1 ,

where first equality holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit and the infimum, the second

equality holds for a subsequence {bn}n≥1 of {an}n≥1 such that ΩFbn
u→ Ω for some Ω ∈ C(Θ2) (which can be found

by Lemma D.6), and the final equality follows from part 7 of Lemma D.2.

Step 2. Show that infF∈P0 PF (Θ̂LB
I ⊆ Θ̂I) → 1. Fix (n, F ) ∈ N × P0 arbitrarily. By qn ≡ infθ∈Θ Qn(θ) ≥ 0, we

conclude that

Θ̂LB
I = {θ ∈ Θ : Qn(θ) ≤ τχn } ⊆ {θ ∈ Θ : Qn(θ)− qn ≤ τχn } = Θ̂I ,

which implies that PF (Θ̂LB
I ⊆ Θ̂I) = 1.

Step 3. Show that infF∈P0 PF (Θ̂I ⊆ Θ̂UB
I )→ 1. Fix (n, F ) ∈ N× P0 arbitrarily. Notice that:

{qn ≤ τχn } ⊆
{
{θ ∈ Θ : Qn(θ) ≤ qn + τχn } ⊆

{
θ ∈ Θ : Qn(θ) ≤ τχn (1 + (log κn)χ/2)

}}
= Θ̂I ⊆ Θ̂UB

I .

Based on this, it suffices to show that infF∈P0 PF (qn ≤ τχn )→ 1. To show this, notice that:

lim inf
n→∞

inf
F∈P0

PF
(
qn ≤ τχn (log κn)χ/2

)
= lim
n→∞

PFan (qan ≤ τ
χ
an (log κan)χ/2) = lim

n→∞
PFbn (qbn ≤ τ

χ
bn

(log κbn)χ/2) = 1 ,

where the first equality holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit and the infimum, the

second equality holds for a subsequence {bn}n≥1 of {an}n≥1 s.t. ΩFan
u→ Ω for some Ω ∈ C(Θ2), and the third

equality holds by Lemma D.12.

Step 4. Show that infF∈P0 PF (Θ̂UB
I ⊆ Θηn

I (F ))→ 1. Fix (n, F ) ∈ N×P0 arbitrarily. By Lemma D.4 there exists
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$ > 0 such that

Θηn
I (F ) ≡ {θ ∈ Θ : S(η−1

n

√
nEF [m(W, θ)],ΣF (θ)) ≤ 1}

= {θ ∈ Θ : S(η−1
n

√
nD−1

F (θ)EF [m(W, θ)],ΩF (θ)) ≤ 1}

⊆

{
θ ∈ Θ :

{
{
√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ −$ηn}pj=1∩
{
√
nσ−1

F,j(θ)|EF [mj(W, θ)]| ≤ $ηn}kj=p+1

}}
.

Based on this, consider the following derivation:

{
Θ̂I ⊆ Θηn

I (F )
}
⊇

 ⋂
θ∈Θ̂UB

I

{
{
√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ −$ηn}pj=1∩
{
√
nσ−1

F,j(θ)|EF [mj(W, θ)]| ≤ $ηn}kj=p+1

}
=

{
{infθ∈Θ̂UB

I

√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ −$ηn}pj=1∩
{supθ∈Θ̂UB

I

√
nσ−1

F,j(θ)|EF [mj(W, θ)]| ≤ $ηn}kj=p+1

}

⊇

{
max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ $ηn

}
.

From this, it follows that

lim inf
n→∞

inf
F∈P0

PF
(

ΘI(F ) ⊆ Θ̂UB
I

)
≥ lim inf

n→∞
inf
F∈P0

PF

(
max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ $ηn

)
.

The proof is completed by showing that the RHS is equal to one.

Fix (n, F, θ, j) ∈ N× P0 × Θ̂UB
I × {1, . . . , k} arbitrarily. By definition,

√
nσ−1

F,j(θ)EF [mj(W, θ)] = −vn,j(θ) +
√
nσ̂−1

n,j(θ)m̄j(θ)σ
−1
F,j(θ)σ̂n,j(θ) .

In the case of j ≤ p, θ ∈ Θ̂UB
I ⊆ Θ, and Lemma D.4 then implies that

inf
θ∈Θ̂UB

I

√
nσ−1

F,j(θ)EF [mj(W, θ)] ≥ − sup
θ̃∈Θ

|vn,j(θ̃)| −$τn sup
θ̆∈Θ

|σ−1
F,j(θ̆)σ̂n,j(θ̆)| .

In the case of j > p, the same argument implies that

sup
θ∈Θ̂UB

I

√
nσ−1

F,j(θ)EF [mj(W, θ)] ≤ sup
θ̃∈Θ

|vn,j(θ̃)|+$τn sup
θ̆∈Θ

|σ−1
F,j(θ̆)σ̂n,j(θ̆)| .

On can combine the information ∀j ∈ {1, . . . , k} to deduce that

max
j=1,...,k

sup
θ∈Θ̂UB

I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ sup
θ̃∈Θ

||vn(θ̃)||+$τn sup
θ̆∈Θ

||D−1/2
F (θ̆)D̂1/2

n (θ̆)|| .
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From this, it follows that

lim inf
n→∞

inf
F∈P0

PF

(
max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F,j(θ)EF [mj(W, θ)]| ≤ $ηn

)

≥ lim inf
n→∞

inf
F∈P0

PF

(
sup
θ̃∈Θ

||vn(θ̃)||+$τn sup
θ∈Θ
||D−1/2

F (θ)D̂1/2
n (θ)|| ≤ $ηn

)

≥ lim inf
n→∞

inf
F∈P0

PF

(
sup
θ∈Θ
||vn(θ)|| ≤ ηn$/2

)
+ lim inf

n→∞
inf
F∈P0

PF

(
2 sup
θ∈Θ
||D−1/2

F (θ)D̂1/2
n (θ)|| ≤ ηn/(τn(1 + (log κn)χ/2)1/χ)

)
− 1

= lim
n→∞

PFan

(
sup
θ∈Θ
||van(θ)|| ≤ ηan$/2

)
+ lim
n→∞

PFan

(
2 sup
θ∈Θ
||D−1/2

Fan
(θ)D̂1/2

an (θ)|| ≤ log κan/((1 + (log κan)χ/2)1/χ)

)
− 1

= lim
n→∞

PFan

(
sup
θ∈Θ
||van(θ)|| ≤ ηan$/2

)
= 1 ,

where first equality holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit, the infimum, and s.t. ΩFan
u→ Ω

for some Ω ∈ C(Θ2) (which can be found by Lemma D.6), and the final equality follows from parts 3 and 6 of Lemma

D.2.
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