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Abstract

Parametric mixture models are commonly used in applied work, especially empiri-
cal economics, where these models are often employed to learn for example about the
proportions of various types in a given population. This paper examines the inference
question on the proportions (mixing probability) in a simple mixture model in the pres-
ence of nuisance parameters when sample size is large. It is well known that likelihood
inference in mixture models is complicated due to 1) lack of point identification, and 2)
parameters (for example, mixing probabilities) whose true value may lie on the bound-
ary of the parameter space. These issues cause the profiled likelihood ratio (PLR)
statistic to admit asymptotic limits that differ discontinuously depending on how the
true density of the data approaches the regions of singularities where there is lack of
point identification. This lack of uniformity in the asymptotic distribution suggests
that confidence intervals based on pointwise asymptotic approximations might lead
to faulty inferences. This paper examines this problem in details in a finite mixture
model and provides possible fixes based on the parametric bootstrap. We examine the
performance of this parametric bootstrap in Monte Carlo experiments and apply it to
data from Beauty Contest experiments. We also examine small sample inferences and
projection methods.
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1 Introduction

This paper studies the question of inference, mainly testing and confidence regions, on the

mixing probability in the following finite mixture model with two components where the

density of the observed data is:

p(·; θ, δ) = δfθ + (1− δ)f0 with fθ = f(·, θ) and f0 = f(·, θ0) (1.1)

The mixing probability δ takes values in the closed interval [0, 1]. We observe a sample of n

independent random draws {Xi, i = 1, . . . , n} from the density p(.; θ, δ), and are interested

in inference on δ in the presence of a nuisance parameter θ ∈ Θ, a compact subset of

R
k. Also, here we assume that θ0 and the form of f(.; .) are known. The model above is

an member of a class of parametric finite mixture models, and in this paper we focus on

complications that arise mainly due to the possibility that the true parameters in (1.1) are in

the singularity region where δ ∗ ‖θ − θ0‖ = 0. The singularity region leads to two problems:

lack of identification (if θ = θ0, the model has no information about δ and if δ = 0, the

model has no information about θ) and parameters lying on the boundary of the parameter

space (when δ = 0). Those two issues create problems for inference based on the maximum

likelihood estimators of δ and θ, since the maximum likelihood estimators of the parameters

in the singularity region are no longer necessarily consistent, and the asymptotic distribution

of the likelihood ratio statistic is no longer standard.

Allowing for cases in which the true parameters can lie in this singularity region is key in

mixture models as it is related to learning the number of mixture components in a population,

which in many cases is the main object of interest in applications. Each point (δ, θ) in the

a singularity region, plotted in Figure 1 below, leads to the same density for the observed

data, i.e., p(·) = f0(·). We use a profile likelihood ratio statistic to construct confidence

region for δ while treating θ as a nuisance parameter. The main objective of this paper is to

examine the asymptotic behavior of this profiled likelihood ratio statistic when the true model

lies close to the singularity region.

The pointwise asymptotic distribution of this profiled likelihood ratio statistic (or PLR)

has a well known limit distribution even when true (δ, θ) belong to the singularity region

(see, for example, Liu and Shao (2003)). We complement these results by showing that

the limit distribution of this PLR statistic is a discontinuous function of true δ when this

true δ is in a close neighborhood and drifting towards the singularity region at a given

rate. This discontinuity in the asymptotic distribution of the PLR statistic -or lack of

uniformity- when the true parameters are sufficiently close to the singularity region can cause

misleading inferences (such as undersized test) when these pointwise limit distributions are
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used with finite samples. We first examine the nature of this discontinuity by deriving the

asymptotic distribution of the PLR statistic under drifting -towards the singularity region-

sequences of true parameters, and second we propose an approach to inference using a

parametric bootstrap procedure. The reason to consider the bootstrap in this setup is that

the asymptotic limits involve supremum over complicated stochastic process that are hard to

deal with. In addition, the parametric bootstrap seems like a natural approach to use in the

setup above. We evaluate these issues using some simulations and an empirical application

with experimental data.

θ0

1

0

δ

θ

Singularity Set

Figure 1: Singularity set in the main model (1.1) : when true δ is equal to zero, then the implied

density of the data is f0 no matter what the value of θ is, i.e., when true δ is zero, the parameter

θ is not identified at all. Also, when true θ is equal to θ0, the implied density of the data is also f0

and δ is completely not identified.

There are a few well known issues that one must confront in the above setup. The first is

the lack of identification in the region of singularity. Our approach delivers confidence sets

that maintain coverage whether or not the model is identified. These sets are constructed

by inverting the PLR statistic. In the case where the true model belongs to the singularity

region, the confidence sets will be the whole parameter space. Another non-standard issue is

that in the singularity region some parameters lie on the boundary of the parameter space,

which also creates discontinuities in the limiting distribution of the PLR statistic. Due to

these two problems, we take an approach of drifting sequences of true parameters (local

to the singularity region approach) to derive the limiting distribution of the PLR statistic.

In particular, if these sequences stay away from the singularity set, then the PLR statistic

has regular χ2 limits. As these sequences are allowed to approach the singularity set, the

PLR statistic admits varying limits depending on the rate at which the true parameter

sequence approaches the singularity and the location of the limit point in the singularity

set. Critical sequences are the ones where δ approaches the singularity region at the rate of
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square root of the sample size. We propose a parametric bootstrap as the method to construct

valid confidence set for δ (or joint confidence sets for (δ, θ)). In most cases, the parametric

bootstrap mimics the small sample distribution and is shown to be consistent (even in some

cases when the limiting mixing probability δ lies on the boundary of the parameter space).

The parametric bootstrap is a particularly attractive approach to inference here since using

the asymptotic distribution directly may be computationally difficult. In critical cases, we

show how the parametric bootstrap can be adjusted in such a way to guarantee the correct

uniform coverage.

So, the empirical takeaway from the paper is that when doing inference on the mixing

probabilities in the presence of other parameters, a theoretically attractive approach is to

build confidence regions by inverting a (profiled) likelihood ratio statistic. Getting criti-

cal values is complicated, but the parametric bootstrap seems to do a reasonable job in

approximating the small sample distribution.

Although the model we focus on in this paper is simple, it is a prototypical case that

highlights the statistical problems that arise when analyzing more complicated models (with

more than 2 components and/or vector θ) and so we consider this model in details and

discuss extending our methods to more complicated cases (with vector θ’s and larger number

of mixtures) in the Appendix.

1.1 Motivation, Examples, and Literature

Mixture models are important modeling tools in all areas of applied statistics. See for

example McLachlan and Peel (2000). In empirical economics, finite mixtures are used to

introduce unobserved heterogeneity. In a nutshell, suppose that an individual or a datum

can be one of K types, and each type k ∈ {1, . . . , K} leads to “behavior” with a density

fk. Then, since we do not observe individuals’ types, the likelihood of the observed data is

a mixture over these densities with the proportion of types being a main object of interest.

An important example of this setup from the econometrics literature is Keane and Wolpin

(1997).

In addition, mixture models can arise when analyzing some class of games with multiple

Nash equilibria. For example, one equilibrium can involve pure strategies and one in mixed

strategies1 The observed data are proportions of various outcomes where here a given out-

come can be observed if 1) it is the pure strategy equilibrium, or 2) if it is on the support of

the mixed strategy equilibrium. So, the predicted proportions will be a mixture where the

mixing weights are the selection probabilities. See for example Berry and Tamer (2006).

1One such game is a 2× 2 entry game in which for some values of the payoffs, there are three equilibria,
2 in pure strategies and one in mixed strategies.
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In statistics, there is a large and ongoing literature on inference in finite mixture models

using the likelihood ratio statistic. Most results in this literature focus on deriving the limit

distribution when the true parameter is fixed. These results can allow for lack of identifica-

tion. See, for example, Liu and Shao (2003), Dacunha-Castelle and Gassiat (1999), Azäıs,

Gassiat, and Mercadier (2006), Chernoff and Lander (1995), Chen, Chen, and Kalbfleisch

(2004) and others. Pointwise asymptotic distribution of LR statistic under a fixed null hy-

pothesis for finite mixture models and closely related regime switching models have also been

studied in econometrics; see, e.g., Cho and White (2007).

In econometrics, the literature on uniform approximation and confidence intervals is

motivated by situations where the pointwise asymptotic distribution of a test statistic has

discontinuities in its limit distribution. See, e.g., Mikusheva (2007), Romano and Shaikh

(2012), Andrews and Cheng (2010), Andrews and Cheng (2011), Andrews, Cheng, and

Guggenberger (2011) and references cited therein. Our paper’s approach to finite mixtures

is motivated by this literature. In particular, Andrews and Cheng (2010) and Andrews and

Cheng (2011) provide methods for building valid confidence intervals in moment based and

likelihood setups in which some parameters can be non-point identified but they assume the

true parameters belong to the interior of the parameter space. We follow their approach

in that we consider all possible sequences that approach the region of singularity. A key

difference between our model and theirs is that in a mixture model, the singularity region

can be such that no parameter is point identified and hence methods used in those papers,

which require that at least some parameter be point identified need to be modified.

The main practical results of this paper point towards using the parametric bootstrapped

profiled likelihood ratio statistic under the null as a way to conduct inference. We show that

in almost all cases, this standard parametric bootstrap approximates the asymptotic distri-

bution of the PLR statistic consistently. There are some sequences for which the parametric

bootstrap distribution needs to be modified in a way to guarantee the correct coverage.

These problem sequences are related to cases where the nuisance parameters are close to the

singularity regions and approach this regions at a particular rate as sample size increases.

The paper is organized as follows. First, we derive the asymptotic distribution of the PLR

statistic under drifting sequences in Section 2. Section 3 proposes a parametric bootstrap

based method to conduct inference and also constructs confidence sets that are uniformly

valid. It also presents Monte Carlo simulations to investigate small sample behaviors of the

parametric bootstrap. Section 4 applies our methods to the Beauty Contest data. Section 5

discusses extensions and Section 6 briefly concludes. Appendix A contains all the proofs.
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2 Asymptotic Distribution of PLR Statistics

In this paper, we derive large sample distribution of the profiled likelihood ratio statistic

under drifting sequences. This is meant to highlight how these limits vary as a function of

the location of the true parameter relative to the singularity region. Again, let fθ = f(·, θ)
and let f0 = f(·, θ0). The mixture distribution for the mixing probability δ is

p(Xi; θ, δ) = δf(Xi, θ) + (1− δ)f(Xi, θ0)

Here the mixing probability δ is the parameter we are interested in, θ0 is known, and θ is

the unknown (nuisance) scalar parameter that lies in Θ,2 a compact subset of R. The Profile

Likelihood Ratio test statistic (PLR) for testing the null hypothesis δ = δ0 is given by

PLR(δ0) = sup
θ,δ

ln(θ, δ)− sup
θ

ln(θ, δ0)

where

ln(θ, δ) = 2
n

∑

i=1

log

(

1 + δ
f(Xi, θ)− f(Xi, θ0)

f(Xi, θ0)

)

A (1−α) confidence set for δ will be based on inverting the PLR test statistic, and so it will

have the form

Cn(α) = {δ0 ∈ [0, 1] : PLR(δ0) ≤ cn(δ0, α)}

with an appropriate value for cn(δ0, α). The asymptotic coverage probability of this CI is

the probability under p(δ, θ) that the test statistic is less than the appropriate critical value

and its asymptotic size is the limit of the infimum of this probability over all parameters

(δ, θ) ∈ [0, 1] × Θ. When using large sample asymptotics to approximate the small sample

distribution of a statistic - which is the object of interest- an issue that arises is whether

this approximation is uniform in the underlying true density. Heuristically, this asymptotic

approximation is uniform, if there exists a sample size, N∗ say, that is large enough such

that for any n ≥ N∗ the asymptotic distribution is guaranteed to lie in a small neighborhood

of the true density for any density in the class of models considered. So, a lack of uniformity

means that for any arbitrary n, the asymptotic approximation can be poor for some density

in the class. So, uniformity is equivalent to the lack of some common “N∗” beyond which

we get good approximations of the true density no matter where this latter might lie. In

standard cases, usual continuity of the asymptotic distribution in the underlying true density

(and other regularity conditions) guarantee that the convergence is uniform. But, here, this

2To simplify the notation, we assume that θ is scalar. However, the results can be extended to cover
the case when θ is a vector of parameters. The only thing that changes in this case is the definition of the
covariance function of several gaussian processes defined later in the paper when evaluated at θ = θ0.
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asymptotic distribution changes abruptly depending on how we approach the singularity set,

which in this case is the set where there is complete lack of identification of both δ and θ.

2.1 Fixed Asymptotics

In the case with lack of point identification, a version of MLE consistency was first proved

by Redner (1981) in which he showed that the MLE converges to some point in the identified

set.3 In particular, Figure 2 below shows the argsup of the sample log likelihood for two

different sample realizations each of size n = 1000 when δ = 0.
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Figure 2: Level sets of two realizations of the expected log likelihood function: the two black dots

represent the location of the argsup for that particular sample.

Throughout, we maintain the following assumptions which are commonly made in finite

mixture models.

Assumption 2.1 Let the following hold.

A1: (i) Θ ⊂ R is compact, and θ0 ∈ int(Θ). (ii) There is a dominating measure ν such that

for any θ1, θ2 ∈ Θ: fθ1 = fθ2 ν-a.e. iff θ1 = θ2. (iii) θ 7→ f(x, θ) is twice continuously

differentiable ν-a.e. for any x ∈ X . (iv) There is a function B ∈ (L2(f0 · ν), ‖ · ‖2)
such that |fθ/f0|, |f ′

θ/f0|, |f ′′
θ /f0| ≤ B for all x ∈ X and all θ ∈ Θ.

3These results were generalized in Chernozhukov, Hong, and Tamer (2007) where a properly specified set

is shown to converge to this singularity set.
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A2: There exist ρ > 0 and a constant M such that Eθ,δ

∣

∣

∣

∣

(

fθ−f0
δfθ+(1−δ)f0

)2+ρ
∣

∣

∣

∣

< M for all

δ ∈ [0, 1] and θ ∈ Θ.

Assumption A1 above ensures that the set S =
{

(fθ−f0)/f0
‖(fθ−f0)/f0‖2 , θ ∈ Θ \ {θ0}

}

is Donsker and

its closure is compact (see Liu and Shao (2003) for a detailed discussion). In particular,

this assumption requires that the parameter space Θ is compact. In the mixture literature,

this is an important restriction since without it, the asymptotic distribution of the PLR

statistic might become unbounded (see, e.g., Hartigan (1985)). Assumption A2 implies the

Lyapounov condition for the sequence Vn = 1√
n

n
∑

i=1

fθn−f0
δnfθn+(1−δn)f0

, so that the Lindeberg-Lévy

CLT for triangular arrays holds for all converging sequences {(θn, δn)} in Θ× [0, 1].

We first state a theorem that provides the asymptotic distribution of the PLR statistic

when true δ = 0, i.e., when the true distribution is fixed and equal to f0. In the main

example above, this would be equivalent to having true (δ, θ) be such that δ(θ − θ0) = 0 or

(δ, θ) belonging to the singularity set and so θ in this case is not identified. This theorem

can be proved via the approach of Liu and Shao (2003) where the PLR is expanded around

the true density f0 in the density space.4

Theorem 2.1 When δ = 0, and under Assumption 2.1, the asymptotic distribution of the

PLR statistic, sup(δ,θ) ln(δ, θ)− supθ ln(θ, 0) is

sup
θ∈Θ

max(Z(θ), 0)2

where Z(θ) is a mean zero gaussian process with covariance function r(θ1, θ2) such that for

θ1, θ2 6= θ0,

r(θ1, θ2) =

∫

(fθ1 − f0)/f0
‖(fθ1 − f0)/f0‖2

(fθ2 − f0)/f0
‖(fθ2 − f0)/f0‖2

f0dν

and

r(θ1, θ
±
0 ) = r(θ±0 , θ1) = ±

∫

(fθ1 − f0)/f0
‖(fθ1 − f0)/f0‖2

f ′
0/f0

‖f ′
0/f0‖2

f0dν

and

r(θ±0 , θ
±
0 ) =

∫

f ′
0/f0

‖f ′
0/f0‖2

f ′
0/f0

‖f ′
0/f0‖2

f0dν

Notice here that the asymptotic distribution depends on the parameter space which is as-

sumed to be compact. Below, we show that the parametric bootstrap in the case when the

4We note that the standard Taylor expansions in parameter spaces are not valid here since it is not
clear around which parameter vector in the singularity set one should linearize. Instead, by moving to the
implied density space, all the parameters in the singularity set correspond to the same density f0 and hence
a functional expansion (around f0) works.
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true model is such that δ = 0 is exact, i.e., its distribution is equal to the distribution of the

PLR statistic for all n.

Since our objective is to construct valid confidence interval for δ, the size of such confi-

dence interval is based on the asymptotic behavior of the PLR statistic for all possible true

models. And, if the asymptotic distribution is continuous in the underlying true model, then

a parametric bootstrap approximation under a fixed model is uniformly consistent. How-

ever, as we show below, the asymptotic distribution in the simple mixture model above is not

continuous in the underlying DGP, and so the parametric bootstrap might need adjustment.

The true models that create problems are drifting true models that approach the singularity

set at particular rates. The most problematic sequences are the ones that approach the

singularity set at the root n rate. So, the challenge is to adjust the parametric bootstrap in

such a way that guarantees coverage against all such drifting sequences. We first derive the

asymptotic distribution of the PLR statistic under various kinds of drifting sequences.

2.2 Asymptotics under Drifting Sequences

The Profile Likelihood Ratio test statistic for testing the null hypothesis δ = δ0 is

PLR(δ0) = sup
θ,δ

ln(θ, δ)− sup
θ

ln(θ, δ0)

The asymptotic size of confidence sets based on inverting the PLR test is determined by its

behavior for all possible drifting sequences of true models (θn, δn). Throughout the rest of

the paper, we denote drifting sequences of true models by (θn, δn), while estimated quantities

as (θ̃n, δ̃n) ∈ argmaxθ,δ ln(θ, δ) and (θ̂n, δn) ∈ argmaxθ ln(θ, δn). In what follows, we assume

that

A3: θn → θ∗ ∈ int(Θ)

The assumption A3 restricts the attention only to sequences that belong to the interior of

parameter space Θ, and is employed only to simplify the presentation of the results and

avoid the discussion of a nuisance parameter being on the boundary 5.

We split all drifting sequences into two main categories:

Definition 2.1 Define the following two classes of sequences of true models:

Class NI: ΛNI = {(θn, δn) : δn‖(fθn − f0)/f0‖2 → 0}
Class PI: ΛPI = {(θn, δn) : δn‖(fθn − f0)/f0‖2 → d ∈ (0,∞)}

5Relaxing assumption A3 will add more cases to asymptotic limits in Theorems 2.2 through 2.5 depending
on whether the limit belongs to the boundary of Θ or not.
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Sequences in Class NI are the sequences that converge to the non-identified singularity set

where the true density of the data is p(·; θ, 0) = p(·; θ0, δ) = f0. The other class of sequences,

Class PI, contain all models that converge to some point-identified density p(·; θ, δ) 6= f0. We

also normalize all these sequences by f0 for convenience (since the formulas below simplify).

In addition, we use L2 norm above since the form of the asymptotic distribution under this

norm are familiar (and convenient). To simplify presentation in the rest of the text we denote

η(θn) ≡ ‖(fθn − f0)/f0‖2 = O(1) and η(θ∗) ≡ ‖(fθ∗ − f0)/f0‖2.

2.2.1 Asymptotics for NI Class:

The class NI contains sequences that approach the singularity set at various rates, and so

we further split sequences in Class NI into the following three sub-categories (classes):

Class NI-0: ΛNI(0) = {(θn, δn) ∈ ΛNI :
√
nδnη(θn) → 0}

Class NI-c: ΛNI(c) = {(θn, δn) ∈ ΛNI :
√
nδnη(θn) → c ∈ (0,∞)}

Class NI-∞: ΛNI(∞) = {(θn, δn) ∈ ΛNI :
√
nδnη(θn) → ∞}

(2.1)

Class NI-0 is the class that approach the singularity set at the fastest rate - faster than

root n. It includes the model where δn ≡ δ = 0. This is the class of sequences that contain

models that are either not point identified, or are weakly identified (in the language of

Andrews and Cheng). It turns out that within this class, the asymptotic distribution of the

PLR statistic is dominated by the distribution for the case where the true model is such

that δn = 0 which is given in Theorem 2.1. This distribution can be consistently estimated

by the distribution of the parametric bootstrap under the null that δ = 0 (proof below).

The class NI-c contains the sequences that converges to the singularity set at just the right

rate to create problems because of the presence of the nuisance parameter θ. Depending on

the location of θ∗, the limit of θn, the asymptotic distribution of PLR differs. Finally, the

NI-∞ class contains the sequences that approach the singularity set at a slow rate and so

here the distribution of the PLR is standard. We start first with some definitions of gaussian

processes that are useful in the limits below.

Let D(θ) be a zero mean gaussian process with covariance function

ρ(θ1, θ2) =

∫

f ′
θ1
/f0

‖f ′
θ1
/f0‖2

f ′
θ2
/f0

‖f ′
θ2
/f0‖2

f0dν
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Also, let W (θ) be a zero mean gaussian process with covariance function

ω(θ1, θ2) =

∫

fθ1 − f0
f0

fθ2 − f0
f0

f0dν

and variance σ2(θ) = ω(θ, θ). In addition, note that

W (θ) = σ(θ)Z(θ)

where Z(θ) is the zero mean gaussian process with covariance function r(θ1, θ2) that is defined

in Theorem 2.1.

We start by considering sequences in Class NI that are less than n−1/2-away from the

density f0. The theorem below gives asymptotic distribution for the PLR test statistic for

such sequences.

Theorem 2.2 [Asymptotic for Class NI-0] Let Assumptions A1-A3 hold. Then under

(θn, δn) ∈ ΛNI(0):

(i) If δn → 0,
√
nδn → ∞, and η(θn) → 0, then

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 − (D(θ0))
2

(ii) If δn → δ∗ ∈ (0, 1] and
√
nη(θn) → 0, then

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 − (D(θ0))
2

(iii) If δn → 0,
√
nδn → γ ∈ (0,∞), and η(θn) → 0, then

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 − sup
θ

(

2γW (θ)− γ2σ2(θ)
)

(iv) If
√
nδn → 0, then

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2

Remark 2.1 For sequences in the NI-0 class the following holds: the limit of PLR(δn)

where δn and θn satisfy the conditions in Case (iv) first-order stochastically dominates the

limit of PLR(δn) for any other sequences in NI-0.

Remark 2.2 Notice that in case (iv) above, the limit holds when δn = 0 which is the case

when δ is on the boundary of the parameter space and θ is not identified.
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Note here that in the first three cases of Theorem 2.2, we have θn drifting to θ0 (possibly

at various rates since we are always restricted here to lie in NI-0), but the asymptotic

distribution is different depending on whether δn is staying sufficiently away from zero (cases

(i) and (ii)) or not (case (iii)). Note also that in the cases when δn stays away from zero, the

asymptotic distribution is the difference between the sup statistic of case (iv) and D(θ0)
2

which has a chi-squared distribution. Also, if δn is converging to zero sufficiently fast (in

fact at a faster rate than
√
n), then the asymptotic distribution is the same as if δn = 0,

regardless where true θ lies.

Now let’s consider the second sub-class in Class NI: the sequences that are exactly n−1/2-

away from the density f0. These sequences present problems for the parametric bootstrap.

Theorem 2.3 [Asymptotics for Class NI-c] Let Assumptions A1-A3 hold. Then under

(θn, δn) ∈ ΛNI(c), the followings hold.

(i) If δn → 0,
√
nδn → ∞ and η(θn) → 0, then

PLR(δn) ⇒ sup
θ

(max{Z(θ) + cr(θ0, θ), 0})2 − (D(θ0) + cr(θ0, θ0))
2

(ii) If
√
nδn → γ ∈ (0,∞) and η(θn) → η(θ∗) > 0, then

PLR(δn) ⇒ sup
θ

(max{Z(θ) + cr(θ∗, θ), 0})2 − sup
θ

(

2γW (θ) + 2γ2ω(θ, θ∗)− γ2σ2(θ)
)

As we can see above, the asymptotic distribution for the case when we approach the sin-

gularity region at the exact root-n rate depends on c (and on γ and θ∗, since c = γσ(θ∗)).

Unfortunately, when
√
nδn → γ ∈ (0,∞), this constant c cannot be consistently estimated,

since θ∗ cannot be consistently estimated under such drifting sequences. The fact that the

asymptotic distribution depends on this unknown limit c creates a problem for the paramet-

ric bootstrap: the parametric bootstrap would sample data from a mixture with parameters

(δ, θ̂) (where θ̂ is some estimator of θ∗) but θ̂ might not become close at all to θ∗ as sam-

ple size n increases. Note that in class NI-c case (i), δn goes to 0 at a slower than root-n

rate (since
√
nδnη(θn) → c ∈ (0,∞) and η(θn) → 0), and as a result, we can estimate θ∗

consistently, as opposed to case (ii).

Next, we consider the third category of sequences in Class NI: sequences that are more

than n−1/2-away from the homogeneity density f0. Sequences in this class are “too far” from

the singularity set, even though they drift towards it, and so for practical reasons, PLR

behaves as though the true model is away from the singularity set.
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Theorem 2.4 [Asymptotics for Class NI-∞] Let Assumptions A1-A3 hold. Then under

(θn, δn) ∈ ΛNI(∞) the followings hold:

(i) If δn → δ∗ ∈ [0, 1), then

PLR(δn) ⇒ χ2
1

(ii) If δn → 1 and
√
n(1− δn) → ∞, then

PLR(δn) ⇒ χ2
1

(iii) If δn → 1,
√
n(1− δn) → γ ∈ [0,∞) and η(θn) → 0, then

PLR(δn) ⇒ (max{N(0, 1)− c0, 0})2

where c0 = γ‖f ′
0/f0‖2 ≥ 0 and ‖ · ‖2 is the norm in L2(f0 · ν).

Notice here that these sequences, though converging to the singularity region, approach that

region at such a slow rate that the PLR statistic converges to the standard distribution

as though the parameters were point identified. All three asymptotic distributions here

are dominated by the asymptotic distribution in (iv) of Theorem 2.2 (Azäıs, Gassiat, and

Mercadier (2006) show that due to a covariance structure of the gaussian process Z(θ),

sup
θ
(max{Z(θ), 0})2 = (sup

θ
Z(θ))2, and for any fixed θ, Z(θ) is a standard normal random

variable).

Finally, we derive the asymptotic distribution of the PLR test statistic for the sequences

in the Point Identified class.

Theorem 2.5 [Asymptotic for Class PI] Let Assumptions A1-A3 hold. Then under

(θn, δn) ∈ ΛPI , we have η(θn) → η(θ∗) > 0.

(i) If δn → δ∗ ∈ (0, 1), then

PLR(δn) ⇒ χ2
1

(ii) If δn → 1 and
√
n(1− δn) → ∞, then

PLR(δn) ⇒ χ2
1

13



(iii) If δn → 1 and
√
n(1− δn) → γ ∈ [0,∞), then

PLR(δn) ⇒ (max{N(0, 1)− c∗, 0})2

where c∗ = γ‖(fθ∗ − f0)/fθ∗‖∗2 ≥ 0 and ‖ · ‖∗2 is the norm in L2(fθ∗ · ν).

Remark 2.3 The limit of PLR(δn) where δn and θn satisfy the conditions in Case (iv) of

class NI-0 first-order stochastically dominates the limit of PLR(δn) for any sequence in class

NI-∞ or class PI.

Note here again that for the class of point identification, we get the standard asymptotic

chi squared limits. To conclude, even though in the limit all the sequences of true parameter

converge to the singularity region, the asymptotic distribution of PLR varies discontinuously

in the underlying parameters. Though we still have pointwise asymptotic limits, this lack of

uniform convergence can impact the coverage of confidence regions. We examine this next

in the context of the parametric bootstrap.

3 Confidence Sets for Mixing Probability: Uniform

Coverage

As we can see, though the PLR statistic has a limit distribution under a given sequence

(δn, θn), this limit distribution is not uniform in the kinds of sequences that we allow. Hence,

the question of interest that this paper attempts to answer is to propose confidence intervals

that maintain uniform coverage over all sequences. We adopt the parametric bootstrap

as a resampling method because intuitively, in a likelihood setup, a parametric bootstrap

generates data from a distribution that is closest to the null. Also, a bootstrap based inference

is attractive here because the asymptotic distribution of the PLR statistic is complicated

and not easy to simulate since it involves the supremum of stochastic processes that might

not behave well.

We construct confidence sets for δ via inverting the likelihood ratio test:

CSn(1− α) = {δ ∈ [0, 1] : PLR(δ) ≤ cn,1−α(δ)} ∪ C0

where C0 = [0, 1] if PLR(0) ≤ cn,1−α(0) and C0 = ∅ otherwise; and cn,1−α(δ) is the critical

value for the significance level α that possibly depends on n and δ. In order to get uniform

coverage, we need to find cn,1−α(δ) such that

lim inf
n→∞

inf
Pδ,θ∈P

Pδ,θ{PLR(δ) ≤ cn,1−α(δ)} ≥ 1− α
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where P is the set of mixture densities p(·, θ, δ) that obey Assumption 2.1 and where θ ∈
Θr ⊂ int(Θ) (assumption A3)6.

As we showed in the previous section, the asymptotic distribution of PLR statistic for

various drifting sequences depends on the class the particular sequence belongs to. The

theorem below suggest one way to get critical values for the sequences where θn can be

consistently estimated. This is useful since for these sequences, a straightforward parametric

bootstrap provides correct inference.

Theorem 3.1 [Asymptotics for the Resampling PLR] Let PLR∗(δn) be the value of

the profile likelihood ratio statistic for testing the null hypothesis that δ = δn for n independent

random draws from the mixture distribution with the density p∗(x) = δnf(x, θ̂n) + (1 −
δn)f(x, θ0) where θ̂n = arg sup

θ
ln(θ, δn). Let δn be such that θ̂n − θn = op(1), θn → θ∗. Also,

let PLR(δn) ⇒ Y(δ, θ∗) where Y(δ, θ∗) is the corresponding limit in either NI-0(i,ii,iv),

NI-c(i), NI-∞ or PI cases above. Then under Assumptions A1-A3, PLR∗(δn) ⇒ Y(δ, θ∗).

This result implies that for certain sequences {(δn, θn) : n = 1, 2, . . .} we can construct

critical values based on the random sampling from the mixture with parameters δ = δn and

θ1 = θ̂n. This covers all cases above that either 1) converge to the singularity region at fast

rate, 2) are in the singularity region, 3) converge to the singularity region at slow rates, or 4)

are away from the singularity region (point identified). This parametric bootstrap is simple

to compute.

Remark 3.1 Notice here that for example, even when some parameters lie on the boundary

of the parameter space, such as cases when δ = 1 the parametric bootstrap for the PLR is

pointwise consistent. The only condition required in Theorem 3.1 is that θ̂n − θn = op(1).

So, this bootstrap procedure is consistent whether or not true δ lies on the boundary as long

as the MLE of θ is consistent.

3.1 Least Favorable Critical Values for
√
n Sequences

For sequences in NI-0(iii) and NI-c(ii) classes such that
√
nδn → γ ∈ (0,∞) we have that

θ̂n − θn = Op(1) rather than op(1). That is, the resampling scheme with δ = δn and

θ1 = θ̂n = arg sup ln(δn, θ) may lead to under- or over-coverage. That is, if a sequence of

mixing probabilities δn goes to zero at the rate n−1/2, the resampling scheme in Theorem

3.1 may lead to incorrect coverage. It is possible to get an idea as to how different the

6Here we formally consider only uniformity over a subset of the interior of a compact parameters space
Θ.
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two distributions are in the NI-c case. The asymptotic distribution of the bootstrapped

PLR∗(δn) can be characterized in the following way. Let Fγ,θ∗ be the the distribution of

ξ = arg sup
θ

(2γσ(θ) [Z(θ) + γσ(θ∗)r(θ, θ∗)− γσ(θ)])

(here we used the relationship between W (θ) and Z(θ): W (θ) = σ(θ)Z(θ)). Then the
asymptotic distribution of PLR∗(δn) for

√
nδn → γ > 0 and θn → θ∗ 6= θ0 is for ξ ∼ Fγ,θ∗ :

sup
θ

[max{Z(θ) + γσ(ξ)r(θ, ξ), 0}]2 − sup
θ

[

2γσ(θ)

(

Z(θ) + γσ(ξ)r(θ, ξ)− 1

2
γσ(θ)

)]

(3.1)

Compare that to the limit of PLR(δn):

sup
θ

[max{Z(θ) + γσ(θ∗)r(θ, θ∗), 0}]2−

sup
θ

[

2γσ(θ)

(

Z(θ) + γσ(θ∗)r(θ, θ∗)σ(θ)− 1

2
γσ(θ)

)] (3.2)

These distributions are different and one can simulate them in particular examples to ex-

amine how different they are.

Example 3.1 (Mixture of Normals) Here we consider the following mixture model: Θ =

[−5, 5], f0(x) =
1√
2π
e−

(x−1)2

2 , fθ∗(x) =
1√
2π
e−

(x−θ∗)2

2 and δn = γ/
√
n. We simulate distribu-

tions in (3.1) and (3.2) for the following values: n = 100, 000, γ = .1 and the following

choices for θ∗:

(a) θ∗ = −2.1;

(b) θ∗ = 0.1;

(c) θ∗ = 1.6.

Here one can see that the bootstrap distribution can lie above the asymptotic distribution

(Figure 4), below the asymptotic distribution(Figure 5), or even coincide with the asymptotic

distribution (Figure 6). In all three cases the distribution of θ̂ (the constrained argsup of the

log-likelihood function) does not place a large probability mass in the area around the true

parameter θ∗.

One way to alleviate this problem is to use the least-favorable critical value combined

with pre-testing. Let c1−α(δ, θ
∗) denote the (1 − α) quantile of the asymptotic distribution

of PLR statistic for a random sample of size n from the mixture distribution p(·) = (1 −
δ)f(·, θ0) + δf(·, θ∗). We define the least favorable critical value as

cLFn,1−α(δ) = sup
θ∗

c1−α(δ, θ
∗)
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Then by construction (taking into account Remarks 2.1 and 2.3) we have

lim inf
n→∞

inf
δ,θ

Pδ,θ{PLR(δ) ≤ cLFn,1−α(δ)} ≥ 1− α

When nuisance parameter θ is multi-dimensional, finding the least-favorable critical value

may be a difficult task. One way to approach the optimization problem to obtain the least

favorable critical values is to generate randomly a set of M θ’s, and under the null of δ = δn,

use the parametric bootstrap that draws multiple times a random sample of size n from the

mixture with density δnf(·, θ)+(1−δn)f(·, θ0) to get critical values for each of the randomly

generated θ’s, and then pick the largest critical value. As long as M increases with the

sample size n, this procedure can be used to approximate the asymptotic least favorable

critical value cLFn,1−α(δ).

When θ is multidimensional, this procedure might be computationally demanding. We

suggest an easy-to-calculate upper bound on the least favorable critical value. First note that

the asymptotic distribution of the PLR statistic for a given sequence
√
nδn → γ and θn → θ∗

in class NI-c is stochastically dominated by the distribution of

(

sup
θ∈Θ

(Z(θ) + cr(θ, θ∗))

)2

.

Then we can define (θmax, θ
∗
max) = argmax

θ,θ∗
σ(θ∗)|r(θ, θ∗)|. This is a deterministic rather

than a stochastic optimization problem, and numerous methods are available to solve it

numerically. Then the (1− α) quantile of the distribution of

(

sup
θ∈Θ

(Z(θ) +
√
nδnσ(θ

∗
max)|r(θmax, θ

∗
max)|)

)2

bounds the least favorable critical value cLFn,1−α(δ) from above. However, this bound is not

sharp.

An even simpler upper bound can be obtained by noticing that for any θ1, θ2 ∈ Θ,

|r(θ1, θ2)| ≤ 1

Therefore, the (1− α) quantile of the distribution of

(

sup
θ∈Θ

(Z(θ) +
√
nδn sup

θ∈Θ
σ(θ))

)2

bounds the least favorable critical value cLFn,1−α(δ) from above. Again, this upper bound is

not sharp, but is relatively easy to calculate, especially when θ is multidimensional. This

bound may be too large in many applications, depending on the size of the parameter space

Θ.
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Example 3.2 (Mixture of Normals, cont.) In the mixture of normals, with Θ = [−5, 5],

the least favorable critical value computed for δn = 0.1/
√
n is 4.16. The least-favorable

critical value was calculated via sampling from mixture models with θ0 = 0 and θ∗ chosen on

a grid on [5,5] with .1 step, and calculating the asymptotic 5% critical value for each grid

point. The least favorable critical value was calculated as the largest asymptotic critical value

on the grid. Figure 7 illustrates the behavior of asymptotic critical values as θ∗ moves away

from θ0 = 0.

Using the same (least favorable) critical value for all candidate values of δ will result

in a confidence set that is too conservative (i.e., too large) according to Remarks 2.1 and

2.3. Below, we provide a double pre-testing approach to alleviate this problem. Namely, we

identify sequences of mixing probabilities δ that go to zero slower than root-n and sequences

that go to zero faster than root-n. For those two types of sequences, we can construct

critical values using results in Theorem 3.1 and Theorem 2.2 respectively. However, for the

sequences that are exactly root-n away from zero, we still have to rely on the least-favorable

critical value.

3.1.1 Pre-Testing Based Critical Values

The LF critical value leads to a conservative coverage for the sequences in NI-∞ and PI

classes, as well as some sequences in NI-0 and NI-c classes. In order to improve the LF

critical value, we suggest the “pre-testing”7 for δn that goes to zero at n−1/2 rate or faster.

Let {τn} be a deterministic sequence such that τn → 0 and
√
nτn → ∞. Possible choices

are τn = log n/
√
n or τn = log log n/

√
n. Then we can define

cn,1−α(δ) =

{

cLFn,1−α(δ) if δ < τn
c∗n,1−α(δ) if δ ≥ τn

(3.3)

where c∗n,1−α(δ) is the (1 − α) quantile of PLR∗(δ) defined in Theorem 3.1. This way we

control for sequences of mixing probabilities that are no more than root-n away from zero.

The above definition of the pre-testing based critical values ignores the fact that for

sequences of mixing probabilities that are strictly less than root-n away from zero, the

asymptotic distribution of the PLR statistic does not depend on the unknown θ∗. To take

that into account, and make the confidence sets less conservative, we can also use pre-testing

7This is not an actual pre-testing in the sense that the usual pre-testing based critical values for the test
of a null hypothesis may be based on the results of another test (“pre-test”). Rather, in our case “pre-
testing” means selecting the appropriate convergence rate category (and therefore critical values) to test a
null hypothesis about δ; and this selection rule is based on a hypothesized value of the mixing probability δ,
as well as sample size n.
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to separate those sequences: let τUn , τ
L
n → 0 so that

√
nτUn → ∞ and

√
nτLn → 0 and define

the pre-testing critical value as follows:

cn,1−α(δ) =







cLFn,1−α(δ) if τLn < δ < τUn
c∗n,1−α(δ) if δ ≥ τUn
c∗n,1−α(0) if δ ≤ τLn

(3.4)

The above procedure is more reasonable than just computing the LF critical values since

it zeroes in on sequences that might be in the problem region. We can summarize the uniform

coverage results in the following theorem.

Theorem 3.2 [Uniform Coverage with Pre-Testing Based CVs] Let PLR(δn) be the

value of the profile likelihood ratio statistic for testing the null hypothesis that δ = δn, and

let cn,1−α(δ) be defined as in (3.4). Then under Assumptions A1-A3,

lim inf
n→∞

inf
Pδ,θ∈P

Pδ,θ{PLR(δ) ≤ cn,1−α(δ)} ≥ 1− α.

4 Empirical Illustration: Beauty Contest Experiments

In the experimental economics literature, one posits a set of finite behavioral types whereas

each member of a population is a type k individual, and a question of interest in this

literature is the design of experiments that enables an analyst to infer the proportion of

various types using the responses (or behaviors) from the choices made (or the experimental

data). See the work of Stahl and Wilson (1995), Bosch-Domenech, Montalvo, Nagel, and

Satorra (2002), Costa-Gomes, Crawford, and Broseta (2001), and Kline (2012). In particular,

Bosch-Domènech, Montalvo, Nagel, and Satorra (2010) and Bosch-Domenech, Montalvo,

Nagel, and Satorra (2002) use experimental data from Beauty Contest games to try to infer

the various proportions of behavior. In these games, players guess a number between one

and a hundred and the winner is the player whose guess is closest to 2/3 of the mean of the

players. Guessing a zero is the unique Nash equilibrium of this game. Below, we plot the

histogram of responses from over 8000 data points to this game. We clearly see that the

density of the data (See Figure 3) is a mixture of types, and that inference on the number of

types is interesting. The PLR based approach to inference based on the parametric bootstrap

will be valid whether true parameters are on the boundary and whether the model is point

identified which is important in these models.

Similar to Bosch-Domènech, Montalvo, Nagel, and Satorra (2010), we split the outcome

space [0, 100] into the following segments: [0, 14], [14, 30] and [30, 40] and consider the fol-

lowing types of players:
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Figure 3: Histogram of responses to Beauty Contest Games: Note that 0 is the unique NE of this

game, but other types with various “levels” can provide different guesses. The data is indicative

of the presence of a mixture of types (a kernel density estimator is superimposed to highlight the

shape of the density).

• L−0: those are the players that do not rationalize. We assume that they are uniformly

distributed on all three segments: B(1, 1).

• L − 1: players with level-1 rationality. They are distributed according to some Beta

distribution on [30, 40]: B(α1, β1). That is, on [30, 40] we observe a mixture of L − 1

and L− 0 players.

• L − 2: players with level-2 rationality. They are distributed according to some Beta

distribution on [14, 30]: B(α2, β2) That is, on [14, 30] we observe a mixture of L − 2

and L− 0 players.

• L − ∞: players that play exactly Nash equilibrium (0) or randomize around Nash

equilibrium. They are distributed according to some Beta distribution on [0, 14]:

B(α∞, β∞) so that on [0, 14] we observe a mixture of L−∞ and L− 0 players.

According to the results in Bosch-Domènech, Montalvo, Nagel, and Satorra (2010), estimated

α1 and β1 are both above 350, which makes this case less interesting for our purpose since

B(1, 1) (uniform) and B(α1, β1) distributions are too far. Therefore, we focus on L− 2 and

L − ∞ cases. Using our procedure, we constructed the following confidence sets for the

proportion of non-L− 0 players: for L− 2, the set is [0.4, 0.6], and for L−∞ it is [0.3, 0.5].
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5 Extensions: Finite Sample Inference and Projections

It is also possible to conduct finite sample inference via simulations following the approach

of Dufour (2006). Suppose we want to test the null that H0 : δ = δ∗ against the alternative

that the null is false, we can also use the profiled likelihood ratio statistic

PLRn(δ
∗) = sup

θ,δ
ln(θ, δ)− sup

θ
ln(θ, δ

∗)

The way to compute the critical value via simulation is as follows. Fix a value θ∗ for θ. Let

{X∗
i , i = 1, . . . , n} be random draws from the density p∗(·) = δ∗f(·, θ∗) + (1− δ∗)f(·, θ0) and

define LR∗
n(θ

∗, δ∗) as the likelihood ratio test statistic calculated based on this sample. Note

that the distribution of this LR statistic is fully specified and we can draw as many samples

from the density p∗(.) and use the empirical distribution of LR∗
n(θ

∗, δ∗) to approximate its

true distribution assuming that θ∗ is the true θ. Let c∗n,α,R(θ
∗, δ∗) be the (1 − α)-quantile

of empirical distribution of LR∗
n(θ

∗, δ∗) based on R random samples of size n. Since, we

do not know the true value of θ∗, we can take the largest critical value, i.e., c∗n,α,R(δ
∗) =

sup
θ∗

c∗n,α,R(δ
∗, θ∗). Then, the confidence interval

CSn,1−α = {δ ∈ [0, 1] : PLRn(δ) ≤ c∗n,α,R(δ)}

will be such that

inf
Pδ,θ∈P

Pδ,θ{PLRn(δ) ≤ c∗n,α,R(δ)} = 1− α

as R increases. This is an exact small sample confidence interval. This CS is hard to compute,

especially when θ has many components, since the computation will require calculating

critical values on the grid in Θ. One might do random draw of θ∗ from Θ to simplify the

computation.

Projections: Similarly, if we assume that the model is correctly specified. We want to

test a simple hypothesis H0 : θ = θ∗, δ = δ∗ against the alternative H1 : “H0 is false” using

the likelihood ratio test statistic

LRn(θ
∗, δ∗) = sup

θ,δ
ln(θ, δ)− ln(θ

∗, δ∗)

Let {X∗
i , i = 1, . . . , n} be random draws from the density p∗(·) = δ∗f(·, θ∗) + (1− δ∗)f(·, θ0)

and define LR∗
n(θ

∗, δ∗) as the likelihood ratio test statistic calculated based on this sample.

Note that if there is no misspecification and the null hypothesis is true, LRn(θ
∗, δ∗) and

LR∗
n(θ

∗, δ∗) have the same distribution for any sample size n. As above, let c∗n,α,R(θ
∗, δ∗) be
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the (1− α)-quantile of empirical distribution of LR∗
n(θ

∗, δ∗) based on R random samples of

size n. Then under the null hypothesis,

lim
R→∞

P{LRn(θ
∗, δ∗) ≤ c∗n,α,R(θ

∗, δ∗)} = 1− α

for any sample size n.

Based on this result, one can construct projection-based confidence set for δ in the fol-

lowing way:

CSP
n,1−α = {δ ∈ [0, 1] : LRn(δ, θ) < c∗n,α,R(θ, δ) for some θ ∈ Θ}

This projection-based confidence set CSP
n,1−α has uniform coverage by construction (since it

is based on a point-wise testing procedure that has exact coverage in finite samples rather

than asymptotically), but it is likely to be conservative as compared to an asymptotic CS.

6 Conclusion

This paper examines a canonical finite mixture model and addresses the question of how

to build valid confidence sets for the mixing parameters. These confidence sets must re-

main valid 1) under all sequences of true parameters, 2) and when the true parameters are

such that the model is not identified. Using large sample approximations in mixture mod-

els where there is reason to believe that the parameters are in -or close to- the singularity

regions presents difficulties due to the presence of discontinuities. In addition, we propose a

parametric bootstrap that tries to address 1) computational issues with dealing directly with

the complicated asymptotic distribution, and 2) the uniformity issues in that the parametric

bootstrap is adjusted in cases where we suspect that we are close to the singularity region.

The methodology proposed in the paper can be extended to cover the uniformity in nuisance

parameter θ over the whole parameter space Θ rather than any subset Θr in its interior8. Fi-

nally, the asymptotic results for the canonical finite mixture model above can be generalized

to 2 component mixtures with unknown parameter (θ0 is unknown) and also to mixtures of

three or more distributions. We give in the Appendix a heuristic description of an extension

of the above methods to a mixture of two components with unknown parameters (A.2) and

to mixtures of three distributions (A.3) where joint confidence intervals are considered.

8This will require modifying the parametric bootstrap procedure to take care of discontinuities of asymp-
totic distribution of PLR statistic when the nuisance parameter approaches the boundary of parameter space.
This can be done via pre-testing whether the limit belongs to the boundary or not.
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A Appendix

A.1 Proof of Theorems

In this subsection we denote ln(θ̂, δn) = sup
θ

ln(θ, δn) and ln(θ̃, δ̃) = sup
θ,δ

ln(θ, δ).

Proof. [Theorem 2.2]

Case (i): Let δn → 0,
√
nδn → ∞, and fθn → f0. Then (by Wong and Shen (1995))

‖fθ̂ − f0‖2 = op(1), so that θn is consistently estimated by θ̂. Also,
√
nδn‖(fθ̂ − f0)/f0‖2 =

Op(1). Then under (f0 · ν)⊗n and according to Lemma A.1

ln(θ̂, δn) = 2
n

∑

i=1

log

(

1 + δn
fθ̂ − f0

f0

)

⇒ (D(θ0))
2

Since [f0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous, we have

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 − (D(θ0))
2

under [(f0 + δn(fθn − f0)) · ν]⊗n, where the supremum part follows from Azäıs, Gassiat, and

Mercadier (2006).

Case (ii): Let δn → δ∗ ∈ (0, 1] and fθn → f0. In this case, θ̂
p→ θ0, and

ln(θ̂, δn) = 2
n

∑

i=1

log

(

1 + δn
fθ̂ − f0

f0

)

⇒ (D(θ0))
2

Since [f0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous, we have

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 − (D(θ0))
2

under [(f0 + δn(fθn − f0)) · ν]⊗n.

Case (iii): Now let δn → 0,
√
nδn → γ ∈ (0,∞), and fθn → f0. In this case θ̂− θn = Op(1).

Then

ln(θ, δn) = 2
n

∑

i=1

δn
fθ − f0

f0
−

n
∑

i=1

(

δn
fθ − f0

f0

)2

+ op(1)

where op(1) is uniform in θ ∈ Θ. Then we have under [f0 · ν]⊗n

ln(θ, δn) = 2γW (θ)− γ2σ2(θ) + op(1)
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Since [f0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous,

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 − sup
θ

(

2γW (θ)− γ2σ2(θ)
)

under [(f0 + δn(fθn − f0)) · ν]⊗n.

Processes D(θ) and Z(θ) have the following covariance function:

Cov(Z(θ1), D(θ2)) =

∫

(fθ1 − f0)/f0
‖(fθ1 − f0)/f0‖2

f ′
θ2
/f0

‖f ′
θ2
/f0‖2

f0dν if θ1 6= θ0

and

Cov(Z(θ±0 ), D(θ2)) = ±
∫

f ′
0/f0

‖f ′
0/f0‖2

f ′
θ2
/f0

‖f ′
θ2
/f0‖2

f0dν

Case (iv): Let δn → 0 and
√
nδn → 0. Since Θ is compact, ‖(fθ − f0)/f0‖2 is bounded

uniformly over θ ∈ Θ. Therefore, uniformly in θ ∈ Θ, ln(θ, δn) = op(1) under [f0 · ν]⊗n. That

is, under [(f0 + δn(fθn − f0)) · ν]⊗n,

PLR(δn) ⇒ sup
θ

(max{Z(θ), 0})2 .

The following lemma is used to prove Theorem 2.2:

Lemma A.1 Let
√
nδn‖(fθn − f0)/f0‖2 → 0 and fθn → f0. If θ̂

p→ θ0, then under [(f0 +

δn(fθn − f0)) · ν]⊗n

ln(θ̂, δn) =
n

∑

i=1

log

(

1 + δn
fθ̂ − f0

f0

)

⇒ (D(θ0))
2

Proof. Since θ̂ − θ0 = op(1), we can use Taylor series expansion around θ = θ0: under

[f0 · ν]⊗n

ln(θ, δn) = 2
n

∑

i=1

log

(

1 + δn
fθ − f0

f0

)

= 2
n

∑

i=1

(

δn
fθ − f0

f0

)

−
n

∑

i=1

(

δn
fθ − f0

f0

)2

+ op(1)

= 2
n

∑

i=1

δn
f ′
0(θ − θ0)

f0
−

n
∑

i=1

(

δn
f ′
0(θ − θ0)

f0

)2

+ op(1)
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Taking supremum over θ yields

ln(θ̂, δn) =

(

n
∑

i=1

f ′
0/f0

)2

n
∑

i=1

(f ′
0/f0)

2
+ op(1)

Under [f0 · ν]⊗n, ln(θ̂, δn) ⇒ (D(θ0))
2, and since [f0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are

mutually contiguous, we have ln(θ̂, δ) ⇒ (D(θ0))
2 under [(f0 + δn(fθn − f0)) · ν]⊗n.

Proof. [Theorem 2.3]

Case (i): Let ‖(fθn − f0)/f0‖2 → 0. In this case (see Wong and Shen (1995)), θ̂ − θn
p→ 0

and θ̂ − θ0
p→ 0. Then under [f0 · ν]⊗n

ln(θ̂, δn) = 2
n

∑

i=1

δn
f ′
0

f0
(θ̂ − θ0)−

n
∑

i=1

(

δn
f ′
0

f0
(θ̂ − θ0)

)2

+ op(1)

⇒ (D(θ0))
2

By Le Cam’s third lemma, under [(f0 + δn(fθn − f0)) · ν]⊗n,

ln(θ̂, δn) ⇒ (D(θ0) + cr(θ0, θ0))
2

Finally, since [f0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous,

PLR(δn) ⇒ sup
θ

(max{Z(θ) + cr(θ0, θ), 0})2 − (D(θ0) + cr(θ0, θ0))
2

Case (ii): Now let
√
nδn → γ ∈ (0,∞) and fθn → fθ∗ 6= f0. Then under [f0 · ν]⊗n,

θ̂ − θn = Op(1). Also, following similar argument as in Case (iii) of Theorem 2.2,

ln(θ, δn) = 2
n

∑

i=1

δn
fθ − f0

f0
−

n
∑

i=1

(

δn
fθ − f0

f0

)2

+ op(1)

⇒ (2γW (θ)− γ2σ2(θ))

Since [f0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous, then according to Le

Cam’s third lemma, under [(f0 + δn(fθn − f0)) · ν]⊗n,

ln(θ, δn) ⇒ (2γW (θ) + 2γcµ(θ, θ∗)− γ2σ2(θ))

where

µ(θ, θ∗) =

∫

fθ − f0
f0

(fθ∗ − f0)/f0
‖(fθ∗ − f0)/f0‖2

f0dν.
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Note that here c = γ‖(fθ∗ − f0)/f0‖2. Thus we can also write

ln(θ, δn) ⇒ (2γW (θ) + 2γ2ω(θ, θ∗)− γ2σ2(θ)).

Finally, we have under [(f0 + δn(fθn − f0)) · ν]⊗n

PLR(δn) ⇒ sup
θ

(max{Z(θ) + cr(θ∗, θ), 0})2 − sup
θ

(

2γW (θ) + 2γ2ω(θ, θ∗)− γ2σ2(θ)
)

Proof. [Theorem 2.4]

Let Qn(θ, δ) =
1
n
ln(θ, δ) be the normalized objective function. Its expected value E(Qn(θ, δ))

is uniquely maximized at (θn, δn). Conditions (Lipschitz and higher moments) imply that

the Lindeberg-Lévy CLT for triangular arrays holds uniformly in (θ, δ), so that under [(f0 +

δn(fθn − f0)) · ν]⊗n

sup
θ,δ

|
√
n(Qn(θ, δ)− E(Qn(θ, δ)))| = Op(1),

and θ̃ − θn = op(1), δ̃ − δn = op(1), where Qn(θ̃, δ̃) ≥ Qn(θ, δ) for all (θ, δ) ∈ Θ× [0, 1].

Case (i): Let θn → θ∗ and δn → δ∗ ∈ [0, 1) (here θ∗ = θ0 if δ
∗ > 0). Taylor series expansion

around (θn, δn) yields:

PLR(δn) =

(

n
∑

i=1

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2

n
∑

i=1

(

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2
+ op(1)

For any (θ, δ), we define

ZI(θ, δ) =































lim
n→∞

n
∑

i=1
f ′
0/f0

(

n
∑

i=1
(f ′

0/f0)
2
)1/2 if θ = θ0

lim
n→∞

n
∑

i=1

(fθ−f0)/f0
1+δ(fθ−f0)/f0

(

n
∑

i=1

(

(fθ−f0)/f0
1+δ(fθ−f0)/f0

)2
)1/2 if θ 6= θ0

(A.1)

Under [f0 ·ν]⊗n, ZI(θ0, δ
∗) and ZI(θ

∗, 0) are standard normal random variables (here we again

used Lindeberg-Lévy CLT for triangular arrays). Since [f0 ·ν]⊗n and [(f0+δn(fθn−f0)) ·ν]⊗n

are mutually contiguous, we have that under [(f0 + δn(fθn − f0)) · ν]⊗n

PLR(δn) ⇒ χ2
1
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Case (ii): Now let δn → 1 and
√
n(1 − δn) → ∞. Since δn → 1, it must be the case that

θn → θ∗ = θ0. Then similar to case (i), we have

PLR(δn) =

(

n
∑

i=1

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2

n
∑

i=1

(

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2
+ op(1) ⇒ ZI(θ0, 1)

2

Case (iii): Let
√
n(1 − δn) → γ ∈ [0,∞). Again in this case we have that θn → θ∗ = θ0.

Taking into account boundary conditions (δn → 1), we have that under [fθ0 · ν]⊗n,

PLR(δn) =











max



















n
∑

i=1

(fθn−f0)/f0
1+δn(fθn−f0)/f0

(

n
∑

i=1

(

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2
)1/2

, 0





























2

+ op(1)

Then under [fθ0 · ν]⊗n,

PLR(δn) ⇒ (max{ZI(θ0, 1), 0})2

Since [fθ0 · ν]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous, we have that under

[(f0 + δn(fθn − f0)) · ν]⊗n,

PLR(δn) ⇒ (max{ZI(θ0, 1)− c0, 0})2

where c0 = γ‖f ′
0/f0‖2, ‖ · ‖2 is the norm in L2(f0 · ν), and ZI(θ0, 1) is a standard normal

random variable.

Proof. [Theorem 2.5] This is a point identified case except that θ∗ 6= θ0, so that we can

directly use the theory of extremum estimators to show that under [(f0+ δ∗(fθ∗ − f0)) · ν]⊗n,

θ̂ − θ∗ = op(1), θ̃ − θ∗ = op(1), and δ̃ − δ∗ = op(1) is all three cases.

Case (i): Let δn → δ∗ ∈ (0, 1) and fθn → fθ∗ 6= f0. Using Taylor series expansion

around (δ∗, θ∗) for ln(θ̃, δ̃) and around θ∗ for ln(θ̂, δn), we have

ln(θ̃, δ̃)−ln(θ̂, δn) = 2
n

∑

i=1

(fθ∗ − f0)/f0
1 + δ∗(fθ∗ − f0)/f0

(δ̃−δ∗)−
n

∑

i=1

((fθ∗ − f0)/f0)
2

(1 + δ∗(fθ∗ − f0)/f0)2
(δ̃−δ∗)2+op(1)

That is, under [(f0 + δ∗(fθ∗ − f0)) · ν]⊗n

PLR(δn) =

(

n
∑

i=1

(fθ∗−f0)/f0
1+δ∗(fθ∗−f0)/f0

)2

n
∑

i=1

(

(fθ∗−f0)/f0
1+δ∗(fθ∗−f0)/f0

)2
+ op(1) ⇒ χ2

1
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Since [(f0 + δ∗(fθ∗ − f0) · ν)]⊗n and [(f0 + δn(fθn − f0)) · ν]⊗n are mutually contiguous,

PLR(δn) ⇒ χ2
1

under [(f0 + δn(fθn − f0)) · ν]⊗n.

Case (ii): Now let δn → 1 and
√
n(1 − δn) → ∞. Similar arguments can be used to show

that under [(f0 + δn(fθn − f0)) · ν]⊗n,

PLR(δn) =

(

n
∑

i=1

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2

n
∑

i=1

(

(fθn−f0)/f0
1+δn(fθn−f0)/f0

)2
+ op(1) ⇒ χ2

1

Case (iii): Let
√
n(1 − δn) → γ ∈ [0,∞). Then taking into account boundary conditions,

we have that under [fθ∗ · ν]⊗n, we have

PLR(δn) =











max



















n
∑

i=1

(fθ∗−f0)/f0
1+δn(fθ∗−f0)/f0

(

n
∑

i=1

(

(fθ∗−f0)/f0
1+δn(fθ∗−f0)/f0

)2
)1/2

, 0





























2

+ op(1)

Then using the definition of ZI(θ, δ) in the proof of Theorem 2.4 in equation (A.1), we have

that under [fθ∗ · ν]⊗n,

PLR(δn) ⇒ (max{ZI(θ
∗, 1), 0})2

Under [fθ∗ · ν]⊗n, ZI(θ
∗, 1) is a standard normal random variable. Since [fθ∗ · ν]⊗n and

[(f0+δn(fθ∗−f0))·ν]⊗n are mutually contiguous, we have that under [(f0+δn(fθ∗−f0))·ν]⊗n,

PLR(δn) ⇒ (max{ZI(θ
∗, 1)− c∗, 0})2

where c∗ = γ‖(fθ∗ − f0)/fθ∗‖∗2, ‖ · ‖∗2 is the norm in L2(fθ∗ · ν), and ZI(θ
∗, 1) is a standard

normal random variable.

Proof. [Theorem 3.1] Let’s start with the NI-0 class: in cases (i), (ii) and (iv) (where θn

is consistently estimated by θ̂n, the limiting distribution of the PLR statistic is continuous

in θ∗ = lim
n→∞

θn. Since θ̂n − θ∗ = op(1), then continuity in θ∗ implies that sup
u

|P{PLR(δn) ≤
u} − P{PLR∗(δn) ≤ u}| → 0.
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For the sequences in the class NI-c (i): if ‖fθn −f0‖2 → 0, then θ̂n−θ0 = op(1) (see the proof

of Theorem 2.3). That is, the parametric bootstrap density also satisfies NI-c (i) condition

in probability: ‖fθ̂n − f0‖2
p→ 0, so that sup

u
|P{PLR(δn) ≤ u} − P{PLR∗(δn) ≤ u}| → 0.

For all sequences in the class NI-∞: since parameter space Θ is compact, for any sequence

in NI-∞ we can choose a convergent sub-sequences such that ‖fθn − fθ∗‖ → 0 for some

θ∗ ∈ Θ. For those subsequences, θ̂n − θ∗ = op(1), so that we also have
√
nδn‖(fθ̂n − f0)/f0‖2

is unbounded in probability, and δn‖(fθ̂n − f0)/f0‖2
p→ lim

n→∞
δn‖(fθn − f0)/f0‖2. That is, in

this case we have sup
u

|P{PLR(δn) ≤ u} − P{PLR∗(δn) ≤ u}| → 0. Finally, the result for

the class PI can be proved similarly to that for the class NI-∞.

Proof. [Theorem 3.2] The result follows from the definition of cn,1−α(δ), sequences τ
L
n and

τUn , and uniform convergence result in Theorem 3.1.
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A.2 Mixture of Two Components with Unknown Parameters

Suppose now that we don’t know the parameters in either of the mixing distributions. That

is, the density of X is given by

p(·, θ1, θ2, δ) = (1− δ)f(·, θ1) + δf(·, θ2)

and both θ1 and θ2 are unknown (as well as the mixing probability δ). We assume that

θ1, θ2 ∈ Θ. In order to distinguish fθ1 from fθ2 , we need to impose some restrictions on the

parameter space Θ×Θ. For simplicity, let’s assume again that θ1, θ2 ∈ R, and that θ1 ≤ θ2.

Identification fails when δ = 0, δ = 1 or θ1 = θ2. The log-likelihood for a set of parameters

(δ, θ1, θ2) is

ln(δ, θ1, θ2) = 2
n

∑

i=1

log((1− δ)f(Xi, θ1) + δf(Xi, θ2))

and the PLR statistic for testing H0 : δ = δ0 is defined as

PRL(δ0) = sup
δ,θ1≤θ2

ln(δ, θ1, θ2)− sup
θ1≤θ2

ln(δ0, θ1, θ2)

Now there are two points at which the asymptotic distribution of PLR(δ0) is non-standard:

δ0 = 0 and δ0 = 1. Both those cases cannot be distinguished from the case where θ1 = θ2.

Following Dacunha-Castelle and Gassiat (1999), we can define the set of extended scores at

δ = 0 as

S0 =

{

dθ1,θ2 =
(fθ2 − fθ1)/fθ1

‖(fθ2 − fθ1)/fθ1‖2
, for θ1 6= θ2

}

⋃

{

d+θ,θ =
+f ′

θ/fθ
‖f ′

θ/fθ‖2
, for θ ∈ Θ

}

Similarly, we can define the set of extended scores at δ = 1 as

S1 =

{

dθ1,θ2 =
(fθ2 − fθ1)/fθ2

‖(fθ2 − fθ1)/fθ2‖2
, for θ1 6= θ2

}

⋃

{

d−θ,θ =
−f ′

θ/fθ
‖f ′

θ/fθ‖2
, for θ ∈ Θ

}

For any d ∈ Sl, l = 0, 1, we can define the gaussian processes

Zl(θ1, θ2) = lim
n→∞

1√
n

n
∑

i=1

d(Xi, θ1, θ2)

Then under the null hypothesis H0 : δ = 0 or θ1 = θ2, the unconstrained maximum likelihood

converges in distribution to

sup
δ,θ1≤θ2

ln(δ, θ1, θ2) ⇒ sup
θ1,θ2

(max{Z0(θ1, θ2), 0})2

and similarly, under the null hypothesis H0 : δ = 1 or θ1 = θ2,

sup
δ,θ1≤θ2

ln(δ, θ1, θ2) ⇒ sup
θ1,θ2

(max{Z1(θ1, θ2), 0})2
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We suggest using similar procedure to construct confidence sets for δ: collect all candidate

values of δ0 for which we fail to reject the null hypothesis H0 : δ = δ0, keeping in mind the

following (now two) special cases: if H0 : δ = 0 or θ1 = θ2 is not rejected, [0, 1] is the CS for

δ; and if H0 : δ = 1 or θ1 = θ2 is not rejected, [0, 1] is the CS for δ. Critical values for the

test of H0 : δ = δ0can be obtained by a resampling from the restricted mixture distribution

p̂(·) = δ0f(·, θ̂1) + (1− δ0)f(·, θ̂2)

where

(θ̂1, θ̂2) = arg sup
θ1≤θ2

ln(δ0, θ1, θ2)

As before, let {X∗
i : i = 1, . . . , n} be iid random draws from mixture distribution with

density p̂(·; δ) = (1− δ)f(·, θ̂1) + δf(·, θ̂2), and let PLR∗(δ) be the PLR statistic calculated

for this sample.

Let’s fix θ1 and θ2 and consider all possible sequences for δn. As in the previous case

(with θ0 known), estimator θ̂1 is inconsistent when δn = O(n−1/2) and θ̂2 is inconsistent

when 1− δn = O(n−1/2). That is, to construct uniform confidence set for δ, we can modify

the procedure from the previous section in the following way: for a given confidence level

(1− α), the 100(1− α)% uniform confidence set for δ is

CSn(1− α) = {δ ∈ [0, 1] : PLR(δ) ≤ cn,1−α(δ)} ∪ C0

where C0 = [0, 1] if PLR(0) ≤ cn,1−α(0) and C0 = ∅ otherwise. Let τUn = log log n/
√
n and

τLn = 1/(
√
n log log n) and define the pre-tested critical value as follows:

cn,1−α(δ) =























c∗n,1−α(0) if δ ≤ τLn
cLFn,1−α(δ) if τLn < δ < τUn
c∗n,1−α(δ) if τUn ≤ δ ≤ 1− τUn
cLFn,1−α(δ) if 1− τUn ≤ δ ≤ 1− τLn
c∗n,1−α(1) if δ ≥ 1− τLn

(A.2)

where c∗n,1−α(δ) is the (1−α) quantile of the distribution of PLR∗(δ), and the least favorable

critical value cLFn,1−α(δ) is defined as before as

cLFn,1−α(δ) = sup
θ1,θ2

cn,1−α(δ, θ1, θ2)

Here cn,1−α(δ, θ1, θ2) is the (1 − α) quantile of the distribution of PLR(δ) for a random

sample of size n from a mixture density p(·) = (1− δ)f(·, θ1) + δf(·, θ2).

31



A.3 Mixture of Three Distributions

Assume now that we have a mixture of three components: one known and two unknown.

That is,

p(·) = (1− δ1 − δ2)f(·, θ0) + δ1f(·, θ1) + δ2f(·, θ2)

where θ0 is known, but θ1 and θ2 are unknown. Two out of three distributions in this mixture

have unknown parameters, therefore we need to restrict parameter space to θ1, θ2 ∈ Θ and

θ1 ≤ θ2.

We may be interested in two sets of confidence regions for mixing probabilities δ1, δ2:

either joint confidence set for (δ1, δ2) or in individual confidence sets for δ1 and δ2. As with

the mixture of two distributions, we construct pointwise testing-based confidence sets using

both resampling and least favorable critical values to achieve uniform coverage. We treat

two cases separately in more details below.

Throughout this section, we use the following notation:

ln(δ1, δ2, θ1, θ2) = 2
n

∑

i=1

log ((1− δ1 − δ2)f(Xi, θ0) + δ1f(Xi, θ1) + δ2f(Xi, θ2))

A.3.1 Joint Confidence Sets

We define the joint profile likelihood ratio statistic for (δ1, δ2) as

PLRJ(δ1, δ2) = sup
δ1,δ2;θ1≤θ2

ln(δ1, δ2, θ1, θ2)− sup
θ1≤θ2

ln(δ1, δ2, θ1, θ2)

and construct the joint confidence set for (δ1, δ2) as

CSn(1−α) = {(δ1, δ2) ∈ [0, 1]× [0, 1] : PLR(δ1, δ2)) ≤ cn,1−α(δ1, δ2)}∪C00∪C01∪C10 (A.3)

where

• C00 = [0, 1]× [0, 1] if PLR(0, 0) ≤ cn,1−α(0, 0) and C00 = ∅ otherwise.

• C01 = {(δ1, δ2) ∈ [0, 1]× [0, 1], PLR(0, δ2) ≤ cn,1−α(0, δ2)}

• C01 = {(δ1, δ2) ∈ [0, 1]× [0, 1], PLR(δ1, 0) ≤ cn,1−α(δ1, 0)}

Depending on how close δ1 or δ2 are to zero, we use as cn,1−α(δ1, δ2) either resampling critical

value c∗n,1−α(δ1, δ2) or least-favorable critical value c
LF
n,1−α(δ1, δ2). let (θ̂1, θ̂2) = arg sup

θ1≤θ2

ln(δ1, δ2, θ1, θ2).

The resampling critical value c∗n,1−α(δ1, δ2) is the (1 − α) quantile of the distribution of

PLR∗
J(δ1, δ2) based on the iid random sample {X∗

i : i = 1, . . . , n} from the mixture distri-

bution p̂ = (1− δ1 − δ2)f0 + δ1fθ̂1 + δ2fθ̂2 .
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Table 1: Critical values for the joint CS: cn,1−α(δ1, δ2) =

δ2 ≤ τL2,n τL2,n < δ2 ≤ τU2,n τU2,n < δ2

δ1 ≤ τL1,n c∗n,1−α(0, 0) cLF,Jn,1−α(0, δ2) c∗n,1−α(0, δ2)

τL1,n < δ1 ≤ τU1,n cLF,Jn,1−α(δ1, 0) cLF,Jn,1−α(δ1, δ2) cLF,1n,1−α(δ1, δ2)

τU1,n < δ1 c∗n,1−α(δ1, 0) cLF,2n,1−α(δ1, δ2) c∗n,1−α(δ1, δ2)

The joint least favorable critical value cLF,Jn,1−α(δ1, δ2) is defined as

cLF,Jn,1−α(δ1, δ2) = sup
θ1,θ2

cn,1−α(δ1, δ2, θ1, θ2)

where cn,1−α(δ1, δ2, θ1, θ2) is the (1 − α) quantile of the distribution of PLR(δ1, δ2) for a

random sample of size n from a mixture density p = (1− δ1 − δ2)f0 + δ1fθ1 + δ2fθ2 .

The partial least favorable critical value cLF,jn,1−α(δ1, δ2) for j = 1, 2 is defined as

cLF,jn,1−α(δ1, δ2) = sup
θ1

cj,∗n,1−α(δ1, δ2, θj)

where cj,∗n,1−α(δ1, δ2, θj) is the (1−α) quantile of the distribution of PLR(δ1, δ2) for a random

sample of size n from a mixture density p = (1− δ1 − δ2)f0 + δ1fθj + δ2fθ̂(−j)
.

The choice of cn,1−α(δ1, δ2) in (A.3) is summarized in Table 1 for some sequences τLj,n, τ
U
l,n →

0 such that
√
nτLj,n → 0 and

√
nτUj,n → ∞ for j = 1, 2.
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A.4 Figures

Figure 4: Asymptotic and Bootstrap distributions of PLR statistic (left); and distribution of θ̂

(right) for θ∗ = −2.1.

Figure 5: Asymptotic and Bootstrap distributions of PLR statistic (left); and distribution of θ̂

(right) for θ∗ = 0.1.

Figure 6: Asymptotic and Bootstrap distributions of PLR statistic (left); and distribution of θ̂

(right) for θ∗ = 1.6.
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Figure 7: Asymptotic critical values.
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