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Abstract

The so-called leverage hypothesis is that negative shocks to prices/returns affect volatility

more than equal positive shocks. Whether this is attributable to changing financial leverage is

still subject to dispute but the terminology is in wide use. There are many tests of the lever-

age hypothesis using discrete time data. These typically involve fitting of a general parametric

or semiparametric model to conditional volatility and then testing the implied restrictions on

parameters or curves. We propose an alternative way of testing this hypothesis using realized

volatility as an alternative direct nonparametric measure. Our null hypothesis is of conditional

distributional dominance and so is much stronger than the usual hypotheses considered previ-

ously. We implement our test on a number of stock return datasets using intraday data over a

long span. We find powerful evidence in favour of our hypothesis.
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1 Introduction

The so-called leverage hypothesis, Black (1976) and Christie (1982), is essentially that negative shocks

to stock prices affect their volatility more than equal magnitude positive shocks. Whether this is

attributable to changing financial leverage or is a result of the volatility feedback effect, French,

Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992), is still subject to dispute

(Engle and Ng (1993), Figlewski and Wang (2000), Bekaert and Wu (2000), Bollerslev, Litvinova,

and Tauchen (2006), and Dufour, Garcia, and Taamouti (2012)), but the terminology is in wide use.

There are many statistical tests of the leverage hypothesis using discrete time data. These typically

involve fitting of a general parametric or semiparametric model to conditional volatility and then

testing the implied restrictions on parameters or curves, see for example Nelson (1991), Engle and

Ng (1993), Linton and Mammen (2005), and Rodriguez and Ruiz (2012). Most authors have found

that the parameters governing asymmetric volatility response in daily individual stock returns and

in indexes to be statistically significant.

A theoretical justification of the leverage effect is given in Christie (1982) inside a continuous

time model, and recently there has been an important literature on measuring leverage effects in

high frequency data. Aı̈t-Sahalia, Fan, and Li (2013) investigate the leverage effect “puzzle” within

the continuous time framework. The puzzle is that natural estimators of the leverage effect based

on high frequency data are usually very small and insignificant. They take apart the sources of this

finding and interpret it as bias due to microstructure noise issues, and they propose a solution to this

based on a bias correction. Empirically their method seems to uncover a stronger leverage effect.

Wang and Mykland (2013) propose a nonparametric estimator of a class of leverage parameters

inside a very general class of continuous time stochastic processes. They propose an estimator that

is quite simple and easily studied and provide its limiting properties. They extend the theory to

allow for measurement error and therefore more complicated estimators of volatility and leverage.

Their modified procedure is consistent and asymptotically mixed normal in this case too, although

the rate of convergence is slower. They provide the means to conduct inference about the leverage

parameter, although their application is more towards prediction of volatility and they demonstrate

the value added that their leverage effect has in this purpose.

Our focus is on the low frequency (daily) volatility and return relationship, although our methods

could also be applied to higher frequency data. We propose a way of testing the leverage hypothesis

nonparametrically without requiring a specific parametric or semiparametric model. In that way
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our inference is robust to the model choices that many previous studies have adopted. In fact,

we test a “strong leverage” hypothesis. Our null hypothesis is that the conditional distribution of

volatility given negative returns and past volatility stochastically dominates in the first order sense

the distribution of volatility given positive returns and past volatility. This hypothesis is stronger

in some sense than those considered previously since we refer to the distribution rather than just

the mean of the outcome.1 If our null hypothesis is satisfied then any investor who values volatility

negatively would prefer the distribution of volatility that arises after positive shocks to returns to the

distribution that arises after negative shocks, Levy (2006). A further advantage of formulating our

hypothesis in terms of distributions is that the tests are less sensitive to the existence of moments.

A lot of informal evidence around the leverage effect is reported based on cross correlations between

squared returns and lags and leads of returns, see for example Bouchaud, Matacz, and Potters (2001).

As Mikosch and Starica (2000) have shown, the asymptotic behaviour of sample correlograms can

be badly affected by heavy tails, which themselves have been widely documented in daily stock

returns. Therefore, confidence intervals and hypothesis tests under these circumstances need to be

evaluated with care. Our distribution theory builds on work of Linton, Maasoumi, and Whang (2005)

who considered tests of unconditional stochastic dominance for time series data. Linton, Song, and

Whang (2010) consider conditional dominance tests but inside specific semiparametric models. We

allow for a general stationary and mixing process for both returns and volatility and impose some

smoothness conditions needed for our asymptotic approximations, but otherwise our test is model-

free. We obtain the limiting distribution of our test statistic: it is a functional of a Gaussian process.

Since the limit distribution depends in a complicated way on nuisance parameters, we propose an

inference method based on subsampling (Politis and Romano, 1994). Our test is consistent against

a general class of alternatives.

We apply our testing methodology to stock returns. We focus on whether there is a leverage effect

between daily volatility and daily lagged returns on the S&P500 (cash) index and on individual stocks.

The stocks we consider are five constituents of the Dow Jones Industrial Average. The sample period

covers 1993 to the end of 2009, which includes several very volatile episodes as well as some more

tranquil ones. We measure daily volatility using realized volatility (computed from one minute and

five minute intraday transactions data) and a transform of the realized range, which only requires

1Although Wang and Mykland (2013) also allow for the leverage effect to be defined through any (given) function

F of volatility.
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daily high and low prices. These data are widely available both for indexes and individual stocks.

Dufour, Garcia, and Taamouti (2012) in their study of S&P500 futures data used also the VIX index

of implied volatility but this type of traded volatility instruments are not available for individual

stocks for the long time span we consider. Our methodology sits between discrete time econometrics

and continuous time econometrics, since we use concepts from both literatures. If the volatility

measure we use can be interpreted as an unbiased estimator of ex ante volatility, then our hypothesis

can be interpreted inside the typical discrete time framework. We find strong evidence in favour

of the strong leverage effect in this data. We also carry out several robustness checks and compare

our results with some newly developed methods, and find these further results lend support to our

conclusions.

2 Hypotheses of interest

We suppose that we observe a stationary and weakly dependent process {yt, xt, rt}Tt=1, where xt ∈ Rdx

for some dx and yt ∈ R. Let

F+(y|x) = Pr (yt ≤ y | rt−1 ≥ 0, xt = x)

F−(y|x) = Pr (yt ≤ y | rt−1 < 0, xt−1 = x) .

We consider the hypothesis

H0 : F+(y|x) ≥ F−(y|x) a.s. for all (y, x) ∈ Y × X

H1 : F+(y|x) < F−(y|x) for some (y, x) ∈ Y × X ,

where Y ⊂ R denotes the support of yt and X ⊂ Rdx denotes the support of xt.

A leading example is where yt = σ2
t and xt = σ2

t−1, in which case the hypothesis is that bad news

on returns (rt−1 < 0) leads to a bigger effect on the conditional distribution of future volatility than

good news (rt−1 ≥ 0) whatever the current level of volatility. In this case, we can take Y = X ⊂ R+.

Suppose that σ2
t was generated from a Glosten, Jagannathan and Runkle (1993) process, henceforth

GJR, i.e.,

σ2
t = ω + βσ2

t−1 + γ+r
2
t−11(rt−1 > 0) + γ−r

2
t−11(rt−1 ≤ 0). (1)

The case where γ− > γ+ corresponds to the presence of a leverage effect. In this case the distribution

F−(y|x) first order dominates F+(y|x) for all x. The same dominance relation can be found inside

the Nelson (1991) model taking yt = lnσ2
t and xt = lnσ2

t−1.
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We allow for a more general formulation than yt = σ2
t and xt = σ2

t−1 for practical reasons. In

view of the possible strong dependence in volatility we might consider conditioning on a vector of

past volatilities xt = (σ2
t−1, . . . , σ

2
t−p) ∈ Rp instead of just on σ2

t−1. In practice, however, this is

likely to work poorly for large p because of the curse of dimensionality. We consider a compromise

approach in which we condition on a lower dimensional transform of a vector of lagged volatilities.

Specifically, let h : Rp → Rdx for dx < p ≤ ∞ be a measurable function and replace σ2
t−1 by

xt = h(σ2
t−1, . . . , σ

2
t−p). For example, h(x1, . . . , xp) =

∑p
j=1 cjxj for known c1, . . . , cp. In this case we

consider the conditional distributions F+(y|x) = Pr
(
σ2
t ≤ y | rt−1 ≥ 0, h(σ2

t−1, . . . , σ
2
t−p) = x

)
and

F−(y|x) = Pr
(
σ2
t ≤ y | rt−1 < 0, h(σ2

t−1, . . . , σ
2
t−p) = x

)
.

We next rewrite the null hypothesis in a way that we will use for testing. Letting

π+
0 (x) = Pr(rt−1 ≥ 0|xt = x)

π−0 (x) = Pr(rt−1 < 0|xt = x),

we can write the above hypotheses by the conditional moment inequalities:

H0 : E

[
1(yt ≤ y)

(
1(rt−1 < 0)

π−0 (xt)
− 1(rt−1 ≥ 0)

π+
0 (xt)

)∣∣∣∣xt = x

]
≤ 0 for all (y, x) ∈ Y × X ,

H1 : E

[
1(yt ≤ y)

(
1(rt−1 < 0)

π−0 (xt)
− 1(rt−1 ≥ 0)

π+
0 (xt)

)∣∣∣∣xt = x

]
> 0 for some (y, x) ∈ Y × X ,

or equivalently,

H0 : E
[
1(yt ≤ y)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}∣∣xt = x
]
≤ 0 for all (y, x) ∈ Y × X

H1 : E
[
1(yt ≤ y)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}∣∣xt = x
]
> 0 for some (y, x) ∈ Y × X ,

using the fact π+
0 (x) = 1− π−0 (x) > 0 for all x. It is well known that the hypotheses of H0 and H1

can be equivalently stated using the unconditional moment inequalities

H0 : E
[
1(yt ≤ y)g (xt)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}]
≤ 0 for all (y, g) ∈ Y × G, (2)

H1 : E
[
1(yt ≤ y)g (xt)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}]
> 0 for some (y, g) ∈ Y × G, (3)

where g is an instrument that depends on the conditioning variable xt and G is the collection of

instruments, see, e.g., Andrews and Shi (2013) and the references therein. In this paper, we take

G =
{
ga,b : ga,b(x) = Πdx

i=11 (ai < xi ≤ bi) for some a, b ∈ X
}
,
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see Andrews and Shi (2013) for more examples of instruments. We will use the relation (2) to

generate a test statistic.

We emphasize the null hypothesis of a leverage effect. Instead, one might take the hypothesis

to be the absence of a leverage effect. Specifically, we might consider the conditional independence

hypothesis, i.e.,

σ2
t is independent of sign (rt−1) given σ2

t−1. (4)

This hypothesis would be consistent with a GARCH(1,1) process for σ2
t , namely, σ2

t = ω+βσ2
t−1+γr

2
t−1

for positive parameters ω, γ, β. The GJR process (1) is incompatible with this hypothesis. In fact,

the GJR process is incompatible with (4) whenever γ− 6= γ+. In general, the alternative hypothesis

to (4) contains many processes that do not represent what we think a leverage effect should be, and

we should properly define the null hypothesis in a much more complicated way (in the parametric

case this is straightforward, but not so in the nonparametric case), which is why we do not pursue

this hypothesis here further.

3 Test Statistic

We next define empirical versions of the moment inequalities. Let π̂+ be nonparametric kernel

estimators of π+
0 , i.e.,

π̂+(x) =

∑T
t=2 1(rt−1 ≥ 0)Kh (x− xt)∑T

t=2Kh (x− xt)
,

where K : Rdx → R is a kernel function and Kh(·) = K(·/h)/h and h is a bandwidth parameter

satisfying the assumptions below. Now the hypothesis can be tested based on the following statistic

m̄T (y, g, π) =
1

T

T∑
t=1

1(yt ≤ y)g (xt) {π(xt)− 1(rt−1 ≥ 0)} .

We consider Kolmogorov Smirnov-type (KS) and Cramér-von Mises-type (CM) test statistics, defined

by

ST = sup
(y,g)∈Y×G

√
Tm̄T (y, g, π̂+) and

S∗T =

∫
max

{
(
√
Tm̄T (y, g, π̂+), 0

}2

dQ(y, g),
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respectively, where Q is a weighting function (i.e., probability measure) on Y × G and the integral

is over Y × G. These statistics are relatively easy to compute, they require some choices regarding

kernel, bandwidth and function class G, but these will be discussed below. For brevity, we mainly

discuss the asymptotic properties of ST , but we expect that analogous results hold for S∗T .

4 Asymptotic Theory

We suppose that we observe a process {yt, xt, rt}Tt=1. In practice, we have only an estimate σ̂2
t of σ2

t

computed from high frequency data. Barndorff-Nielsen and Shephard (2002) have shown that the

realized volatility consistently estimates integrated volatility σ2
t at rate n

−1/2
t , where nt is the number

of high frequency observations within day t. We assume that nt is (effectively) very large relative

to T such that we may safely ignore the fact that volatility is estimated.2 In some contexts this

may not be a good assumption. Ghosh and Linton (2008) worked with monthly volatility estimates

computed from daily data. They developed a bias correction method suitable for a special class of

moment condition asset pricing models that takes account of estimation error in volatility. This type

of analysis is rather difficult to conduct in this context because of the lack of smoothness (indicator

functions). We note that the volatility measures we consider are widely used in empirical studies, see

for example French, Schwert, and Stambaugh (1987), and typically are used without any adjustment

for estimation error.

4.1 The null distribution

Let Xε be an ε- neighborhood of X for some ε > 0. For some constant B <∞,let

Π =
{
π : ‖π(·)‖q,Xε

≤ B
}
, (5)

where q is an integer that satisfies q > dx/2. For nonnegative integers k, λ and ω with ω ≥ λ, we

define the following class of kernels:

2Corradi, Distaso and Fernandes (2012) established the “necessary” rate conditions relating nt to T such that for

a somewhat similar statistic for testing conditional independence one can do this.
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Kk,λ,ω = { K(·) : Rk → R :

∫
K(x)dx = 1,

∫
xµK(x)dx = 0

∀1 ≤ |µ| ≤ ω − λ− 1,

∫
|xµK(x)|dx <∞ ∀|µ| = ω − λ,

DµK(x)→ 0 as ‖x‖ → ∞ ∀µ with |µ| < λ,

sup
z∈Rk

|Dµ+ejK(x)|(‖x‖ ∨ 1) <∞ ∀µ with |µ| ≤ λ ∀j = 1, ..., k,

and K(·) is zero outside a bounded set in Rdx ,

where ej denotes the j-th elementary dx-vector.} .

Assumption A

1. (i) {(yt, xt, rt) : t ≥ 1} is a sequence of strictly stationary strong mixing random variables

with mixing numbers of size −2(4dx + 5)(dx + 2). (ii) X is an open bounded subset of Rdx with

minimally smooth boundary.

2. (i) The distribution of xt is absolutely continuous with respect to Lebesgue measure with density

f(x). (ii) infx∈Xε f(x) > 0, Dµf(x) exists and is continuous on Rdx and supx∈Xε
|Dµf(x)| <

∞ ∀µ with |µ| ≤ max{ω, q}, where ω is a positive integer that also appears in the other

assumptions below. (iii) The conditional distribution F (y|x) of yt given xt = x has bounded

density f(y|x) for almost all x ∈ Rdx .

3. Dµ
[
π+
0 (x)f(x)

]
exists and are continuous on Rdx and supx∈Xε

∣∣Dµ
[
π+
0 (x)f(x)

]∣∣ <∞ ∀µ with

|µ| ≤ max{ω, q}.

4. K(·) ∈ Kdx,0,ω
⋂
Kdx,q,q.

5. The bandwidth parameter h satisfies Tmin{ 1
2(dx+q)

, 1
4dx
}h→∞ and T

1
2ωh→ 0.

Assumption A1 requires that xt lies in an open bounded set with minimally smooth boundary.

Examples of sets with minimally smooth boundaries include open bounded sets that are convex or

whose boundaries are C1-embedded in Rdx . Finite unions of aforementioned type whose closures are

disjoint also have minimally smooth boundaries. The boundedness assumption is not restrictive,

because, if needed, we can transform the values of xt into a compact interval, say [0, 1]dx , via strictly
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increasing transformation. Assumptions A2 and A3 imposes smoothness on f and π+
0 . They are

needed to ensure that the realization of π̂+ are smooth with probability tending to one and therefore

the stochastic equicontinuity condition of a stochastic process {ν̄T (·, ·, ·) : T ≥ 1} that appears in

our proof can be verified. The use of higher-order kernel K(·) in Assumption A4 is due to the need

to establish T κ convergence of the kernel estimators f̂ , π̂+(x) (see (11) and (12) in Appendix) for

some sufficiently large κ ≥ 1/4. Assumption A5 imposes some conditions on the rate of convergence

of bandwidth to zero. The conditions are compatible if ω is sufficiently large. These conditions can

be relaxed, if needed, to allow for data-dependent methods of choosing bandwidth parameters, e.g.

cross-validation or plug-in procedures.

We now derive the asymptotic of the test statistic under the null hypothesis. Define the empirical

processes in (y, g) ∈ R× G

νT (y, g) =
√
T {ξT (y, g)− EξT (y, g)} , (6)

where

ξT (y, g) =
1

T

T∑
t=1

{1(yt ≤ y)− F (y|xt)} g (xt)
{
π+
0 (xt)− 1(rt−1 ≥ 0)

}
. (7)

Let ν(y, g) be a mean zero Gaussian process with covariance function given by

C((y1, g1), (y2, g2)) = lim
T→∞

cov (νT (y1, g1), νT (y2, g2)) .

The limiting null distribution of our test statistic is given in the following theorem.

Theorem 1. Suppose that Assumption A holds. Then, under the null hypothesis H0,

ST ⇒

{
sup(y,g)∈B [ν(y, g)] if B 6= ∅
−∞ if B = ∅

,

where B = {(y, g) ∈ Y × G : E
[
1(yt ≤ y)g (xt)

{
π+
0 (xt)− 1(rt−1 ≥ 0)

}]
= 0}.

Theorem 1 shows that our test statistic has a non-degenerate limiting distribution on the boundary

of the null hypothesis, i.e. the case where the “contact set” (i.e., the subset of Y × G where the null

hypothesis (2) holds with equality) is non-empty. Since the distribution depends on the true data

generating process, we cannot tabulate it once and for all. We suggest estimating the critical values

by a subsampling procedure.
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4.2 Critical Values and Consistency

We first define the subsampling procedure. With some abuse of notation, the test statistic ST can

be re-written as a function of the data {Wt : t = 1, . . . , T} :

ST =
√
TτT (W1, . . . ,WT ),

where τT (W1, . . . ,WT ) is given by sup(y,g)∈Y×G m̄T (y, g, π̂+). Let

GT (·) = Pr
(√

TτT (W1, . . . ,WT ) ≤ ·
)

(8)

denote the distribution function of ST . Let τT,b,t be equal to the statistic τb evaluated at the subsample

{Wt, . . . ,Wt+b−1} of size b, i.e.,

τT,b,t = τ(Wt,Wt+1, . . . ,Wt+b−1) for t = 1, . . . , T − b+ 1.

We note that each subsample of size b (taken without replacement from the original data) is indeed

a sample of size b from the true sampling distribution of the original data. Hence, it is clear that one

can approximate the sampling distribution of ST using the distribution of the values of τT,b,t computed

over T −b+1 different subsamples of size b. That is, we approximate the sampling distribution GT of

ST by

ĜT,b(·) =
1

T − b+ 1

T−b+1∑
t=1

1
(√

bτT,b,t ≤ ·
)
.

Let gT,b(1− α) denote the (1− α)-th sample quantile of ĜT,b(·), i.e.,

gT,b(1− α) = inf{w : ĜT,b(w) ≥ 1− α}.

We call it the subsample critical value of significance level α. Thus, we reject the null hypothesis at

the significance level α if ST > gT,b(1− α). The computation of this critical value is not particularly

onerous, although it depends on how big b is. The subsampling method has been proposed in Politis

and Romano (1994) and is thoroughly reviewed in Politis, Romano, and Wolf (1999). It works in

many cases where the standard bootstrap fails: in heavy tailed distributions, in unit root cases, in

cases where the parameter is on the boundary of its space, etc.

We now show that our subsampling procedure works under a very weak condition on b. In many

practical situations, the choice of b will be data-dependent, see Linton, Maasoumi and Whang (2005,
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Section 5.2) for some methodology for choosing b. To accommodate such possibilities, we assume

that b = b̂T is a data-dependent sequence satisfying

Assumption B: Pr[lT ≤ b̂T ≤ uT ] → 1 where lT and uT are integers satisfying 1 ≤ lT ≤ uT ≤
T, lT →∞ and uT/T → 0 as T →∞.

The following theorem shows that our test based on the subsample critical value has asymptoti-

cally correct size:

Theorem 2. Suppose Assumptions A and B hold. Then, under the null hypothesis H0,

lim
T→∞

Pr[ST > gT,b̂T (1− α)] ≤ α,

with equality holding if B 6= ∅, where B is defined in Theorem 1.

Theorem 2 shows that our test based on the subsampling critical values has asymptotically valid

size under the null hypothesis and has asymptotically exact size on the boundary of the null hypoth-

esis. Under additional regularity conditions, we can extend this pointwise result to establish that

our test has asymptotically correct size uniformly over the distributions under the null hypothesis,

using the arguments of Andrews and Shi (2013) and Linton, Song and Whang (2010). For brevity,

we do not discuss the details of this issue in this paper.

We next establish that the test ST based on the subsampling critical values is consistent against

the fixed alternative H1.

Theorem 3. Suppose that Assumptions A and B hold. Then, under the alternative hypothesis

H1,

lim
T→∞

Pr[ST > gT,b̂T (1− α)] = 1.

5 Empirical Results

In this section we test the leverage hypothesis with stock return data, the S&P500 (cash) index

and five constituents of the Dow Jones Industrial Average (DJIA): Microsoft (MSFT), IBM (IBM),

General Electronic (GE), Procter& Gamble (PG) and 3M (MMM). The samples used for the test

span from Jan-04-1993 to Dec-31-2009 (4,283 trading days). We focus on whether there is a strong

leverage effect between daily volatility and lagged return. We first introduce two estimators for

estimating the daily volatility and detail how we construct the test statistic with the estimated daily

volatility and present the empirical results.

11



5.1 Estimating The Daily Volatility

We consider two methods to estimate the daily volatility. The first one is the realized variance

estimator RVt

RVt =
nt∑
i=1

r2i,t,

where ri,t = logP (t − 1 + i
nt

) − logP (t − 1 + i−1
nt

) is the ith intraday log return on day t, nt is the

total number of intraday log return observations on day t, and P (t− 1 + i/nt) is the intraday asset

price at time stamp t− 1 + i/nt. The second estimator we consider for estimating daily volatility is

the squared intraday range RG2
t (Garman and Klass, 1980; Parkinson, 1980):

RG2
t =

IG2

4 log 2
,

IG = max
t−1≤τ<t

logP (τ)− min
t−1≤τ<t

logP (τ) ,

where P (τ) is the intraday asset price at time stamp τ on day t, t− 1 ≤ τ < t. The constant 4 log 2

is an adjustment factor to scale IG2 in order to obtain an unbiased estimate, and together with other

mild regular conditions, RG2
t will be a conditionally unbiased estimator for the daily volatility.

To obtain the daily realized variance RVt, we need intraday high frequency data of asset prices on

day t. For the squared intraday range RG2
t , we need only the highest and lowest price data on day

t. The two estimators thus contain different information of data from different sampling frequencies.

One of the reasons we use the two estimators is that we would like to see whether the daily volatility

estimated from using high frequency intraday or low frequency daily data can affect the test results.

In addition, the two estimators are easy to use, and they also provide comparable performances on

accurate estimation of the daily volatility as other volatility estimators. It is known that the squared

intraday range estimator is more robust (to microstructure noise) than the squared daily return on

capturing daily volatility dynamics when daily data are used. When high frequency intraday data

are used, Liu, Patton and Sheppard (2013) show that over a wide range classes of assets and long

sample period, there is strong evidence that more sophisticated daily volatility estimators do not

outperform the realized variance estimator (with 5-min data) in term of accuracy of daily volatility

estimations.

A detailed discussion of how we filter the high frequency data before they were used for the

estimations can be found in Appendix B. Let RV 1min
t and RV 5min

t denote the realized variances
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evaluated from using 1 and 5 minute intraday return data. Figure 1 shows time series plots of:√
RV 1min

t ,
√
RV 5min

t , RGt and the daily return Rt for the S&P500 index and the five constituents of

DJIA. Here the Rt of S&P500 is daily index return, and of the DJIA stocks are daily holding period

returns excluding dividends. From the Figure, during the 2008 financial crisis period, all the five

stocks and S&P500 show huge fluctuations in daily returns and volatilities, while in other periods,

these fluctuations are relatively mild.

Table 1 shows some summary statistics of the daily returns and estimated daily volatilities. Since

the initial estimations on the daily volatilities are very small, we scale them by 100 before we calculate

the summary statistics. From the Table, for the individual stocks, it can be seen that their RGt has

a lower mean value but a higher standard deviation than their
√
RVt, which may suggest that the

intraday range estimator has a downward bias. The intraday range estimator also has a lower first

order autocorrelation (denoted by ACF(1)) than the square root of the realized variance. Comparing

means of square root of the realized variances of the five stocks, we can see rank of the average

price fluctuations are consistent. On average, MSFT is the most volatile and MMM is least volatile

stocks among the five stocks. The mean of the intraday range estimator, however, shows that PG is

the least volatile stock, although it still indicates that MSFT is the most volatile stock. Comparing

with the individual stocks, S&P500 on average has a less volatile return during the sample period.

Its estimated daily volatilities all have smaller mean values than the five individual stocks have.

The mean values of the three estimated daily volatilities suggest that on average, the daily return

of S&P500 and the five stocks have different degrees of fluctuations. However, as can be seen in

this Table,
√
RVt and RGt of S&P500 overall have higher sample skewness and kurtosis than the

individual stocks (except for GE), which indicates that shapes of unconditional distributions of
√
RVt

and RGt are more right-skewed and fat-tailed for S&P500.

5.2 Unconditional Cross Correlation

We next see how the daily volatility correlates with the daily return. Figure 2 shows the sample

(unconditional) cross correlation ρj between the estimated daily volatility and daily return of the five

stocks of the DJIA and S&P500 index. We set lag length j = −10, . . . , 10 (negative j means lead

return and lagged volatility). The horizontal dash lines in these plots are the 95% confident bands

for the sample cross correlation under the null of zero correlation.

From Figure 2 it can be seen that as j < 0, the sample cross correlation ρj gradually increases
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as j approaches to zero, and then drops sharply from positive to negative as j becomes positive. As

for j > 0, the negative ρj instead converges slowly to zero as j grows. It also can be seen that ρj’s

for the cases of j > 0 are overall larger in magnitude and more statistically significant than those for

the cases of j < 0, which suggests that the cross correlations are asymmetric and the unconditional

leverage effect may exist for the five DJIA stocks and S&P500 index.

The leading effect of volatility on asset return is another volatility asymmetry, which is called

the volatility feedback effect. The reason why the effect might exist is that if the volatility is priced,

an expectation of volatility increase would raise the required return to compensate an investor who

bears such volatility risk, which in turn leads to a decline in stock price (then a higher future return).

Thus the causality induced from the volatility feedback effect runs from volatility to return, which

is opposite to that induced from the leverage effect. Both the leverage and volatility feedback effects

have been documented empirically, but the leverage effect seems to be more supported. Figure 2

shows that the cross correlations are overall higher for lagged return and lead volatility than those for

lead return and lagged volatility, which suggests that if the two effects really exist, the leverage effect

is stronger than the volatility feedback effect. More detailed discussions on the empirical evidence

for the lead-lag effects of return and volatility with high frequency data estimations can be found in

Bollerslev, Litvinova and Tauchen (2006) and Dufour, Garcia and Taamouti (2012).

5.3 Conducting the Leverage Hypothesis Test

In the previous section, we have shown that the sample unconditional cross correlations between the

lead estimated daily volatilities and lagged returns of the five stocks of the DJIA and S&P500 index

are negative and statistically significant, which suggests that the unconditional leverage effect may

exist. Will such a leverage effect still exist when we explicitly take the lagged volatility into account

and when we also require it to hold in distribution and not just in averages? With the estimated daily

volatility, we can empirically construct the test statistic to test the conditional leverage hypothesis.

In this section, we formally test the null hypothesis of (2) and use the test statistic ST described in

section 3 for the test. We plug the estimated daily volatility σ̂2
t = yt , lagged one period estimated

daily volatility σ̂2
t−1 = xt and lagged j period daily return Rt−j = rt, j > 0 into the function m̄T

shown in section 3. We will use the three estimated daily volatilities RV 1min
t , RV 5min

t and RG2
t in

the test.
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Let

τ 1T
(
y, g, π̂+

)
=

1

T

T∑
t=1

1 {yt ≤ y} 1 {rt < 0} g (xt) π̂
+ (xt) ,

τ 2T
(
y, g, π̂−

)
=

1

T

T∑
t=1

1 {yt ≤ y} 1 {rt ≥ 0} g (xt) π̂
− (xt) ,

where π̂+ and π̂− are nonparametric kernel estimators of π+
0 and π−0 . It can be shown that

m̄T

(
y, g, π̂+

)
= τ 1T

(
y, g, π̂+

)
− τ 2T

(
y, g, π̂−

)
.

Let ˆ̄mT , τ̂ 1T and τ̂ 2T denote empirical versions of m̄T , τ 1T and τ 2T when the daily return and estimated

volatility are used for the evaluations. Note that ˆ̄mT (y, g, π̂+) = τ̂ 1T (y, g, π̂+) − τ̂ 2T (y, g, π̂−) also

holds. We use Gaussian kernel for π̂+ and π̂−. Let

ŜT = sup
(y,g)∈Y×G

√
T ˆ̄mT

(
y, g, π̂+

)
.

The quantity ŜT is an empirical version of ST obtained when
√
T ˆ̄mT (.) is used. To practically evaluate

ŜT , we apply the following procedures. First, we set the instrument function g (xt) = 1 {σ < xt ≤ σ},
where σ and σ are lower and upper bounds for xt. We fix the lower bound σ = 0 for reducing

computational burden. We then seek a combination of (y, σ) to maximize the function ˆ̄mT (.), where

y ∈ [mint=2,...,T σ̂
2
t , 1.1×maxt=2,...,T σ̂

2
t ] and σ ∈

[
mint=2,...,T σ̂

2
t−1, 1.1×maxt=2,...,T σ̂

2
t−1
]
, and

√
T

times the maximum value of ˆ̄mT (.) is the feasible test statistic ŜT . The same procedures apply when

we use the subsampling scheme to construct the approximated sample distribution for ŜT . Since we

will plug different lagged returns Rt−j in the functions, for distinguishing the different evaluations

and ease of notations, we will use ˆ̄mTj , τ̂
1
Tj

, τ̂ 2Tj and ŜTj to denote the corresponding quantities when

the j period lagged return is used.

To illustrate how the test statistic behaves, we use MSFT as an example. Figure 3 shows plots

of the surfaces τ̂ 1Tj (y, g, π̂+), τ̂ 2Tj (y, g, π̂−), and ˆ̄mTj (y, g, π̂+) against (y, σ) when one and five period

lagged returns are used (j = 1 and 5). Here RV 5min
t is used as the estimated daily volatility. From

the Figure, the surfaces τ̂ 1Tj (y, g, π̂+) and τ̂ 2Tj (y, g, π̂−) are smooth and monotonically increasing with

y and σ, and visually they look almost the same. It also can be seen that the surfaces of ˆ̄mTj (y, g, π̂+)

are not everywhere nonnegative, and searching for their maximum values, we find ŜT1 and ŜT5 are

around 0.0916 and 0.1101 respectively.
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With the same configurations as in Figure 3, we show the empirical critical values over different

subsample sizes in Figure 4. The subsample (1− α)-th quantile at different significant levels α often

decrease as the subsample size b increases. They also become more concentrated as b becomes large.

This is expected, since as the subsample size approaches the full sample size, the approximated sample

distribution will converge to a point mass. Figure 5 shows the corresponding empirical p-values over

different subsample sizes. The empirical p-value of j = 5 is larger and more stable than that of j = 1

as the subsample size varies. The empirical p-values for both j’s also show decreasing trends as b

increases, which is consistent with the property that the approximated sample distribution becomes

more concentrated as b approaches the full sample size. Over different subsample sizes, the empirical

p-value ranges from 0.977 to 0.340 for j = 1 and from 0.986 to 0.851 for j = 5, which lends support

to the claim that the leverage effect exists for MSFT.

As for more empirical results, Table 2 to 4 show the subsample critical values for the five stocks

and S&P500 when different estimated daily volatilities are used. We focus on the cases when the

subsample size b = 500, 1000 and 2000 and lag lengths of returns j = 1 and 5. In each table we

also report the test statistic ŜTj . Table 5 shows their corresponding empirical p-values. From the

Tables, it can be seen that only in a few cases the conditional leverage hypothesis can be rejected at

α ≤ 0.1. For example, as RV 1min
t is used, GE has ŜT1 = 0.1996 and the null hypothesis of (2) can

be rejected at α = 0.05 when b = 2000. Another example is IBM. When RV 1min
t and RG2 are used,

its ŜT5 are around 0.248 and 0.186 and the corresponding empirical p-values are around 0.062 and

0.074 as b = 2000. For the remaining cases, the results shown are consistent: the null hypothesis of

(2) cannot be rejected for each j at α = 0.1, which suggests that controlling for lagged volatility, the

strong leverage effect may still exist for the five DJIA stocks and the S&P500 index.

5.4 Robustness Checks

We conducted some robustness checks for our empirical results shown in the previous section. Due

to similar results from using different daily volatility estimators and lag length of returns, in the

following we only focus on results for the cases of RV 1min
t and j = 1.

In section 5.3 we show that the leverage effect may exist in our data over the full sample period

(from Jan-04-1993 to Dec-31-2009). To see whether our results still hold within other time periods,

we divide the sample into two subperiods: From Jan-04-1993 to Nov-30-2001 (2,248 trading days)

and Dec-03-2001 to Dec-31-2009 (2,035 trading days), and conduct the conditional test for each of
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them. The division of sample period is based on the U.S. recessions identified by the NBER: The

first subsample period spans the 2001 recession ending in Nov-2001, while the second one spans the

2007-2009 recession ending in June-2009. Due to a smaller sample size in each subperiod, here we set

b = 500 and 1000 for the subsampling scheme. We show the results in Table 6. It can be seen that

except for MSFT with b = 1000 (with p-value equal to 0.0753), the leverage hypothesis cannot be

rejected at the significant level 0.26. The results for the subperiods overall are consistent with those

for the whole sample period, and for the five DJIA stocks and S&P500 index, we conclude that the

leverage effects may still exist within the two subperiods.

In section 5.3 we simply set xt = h
(
σ2
t−1, . . . , σ

2
t−p
)

= σ2
t−1 instead of considering a more general

functional form of lagged daily volatility. To see whether a more complicated functional form of

h
(
σ2
t−1, . . . , σ

2
t−p
)

affects the test results, here we specify it as

h1
(
σ2
t−1, . . . , σ

2
t−p
)

=
2

p+ 1

p−1∑
i=0

(
p− 1

p+ 1

)i
σ2
t−1−i, (9)

which is an approximation for the exponential weighted moving average of the daily volatility on day

t up to day t− 1, EWMA
(
σ2
t−1
)
, i.e.,

EWMA
(
σ2
t−1
)

=
2

p+ 1
σ2
t−1 +

(
1− 2

p+ 1

)
EWMA

(
σ2
t−2
)
,

where the term 2/(p + 1) is called the smoothing ratio. We set the parameter p equal to 5, 10 and

22, which correspond to using daily observations in previous one week, two weeks and one month

respectively. Daily RV 1min
t−i , i = 1, . . . , p are used to replace σ2

t−i, i = 1, . . . , p in (9) in the test.

Upper panel of Table 7 shows results of the conditional leverage hypothesis test conditioning on

h1
(
RV 1min

t−1 , . . . , RV 1min
t−p

)
and one day lagged return Rt−1 with the window length b = 2000 for the

subsampling scheme. It can be seen that except for MSFT with p = 10 (which has empirical p-value

equal to 0.0039), the results still hold as in the previous section: The null hypothesis cannot be

rejected at a moderately significant level and there is evidence for the presence of the leverage effect.

We can also specify h
(
σ2
t−1, . . . , σ

2
t−p
)

as a predictive equation on σ2
t as σ2

t−1, . . . , σ
2
t−p are used,

i.e., h
(
σ2
t−1, . . . , σ

2
t−p
)

= Et−1
(
σ2
t |σ2

t−1, . . . , σ
2
t−p
)
. With the realized variances at hand, a practical

way to constructing the predictive equation is to estimate the HAR-RV (heterogeneous autoregressive

realized variance) regression

RVt = αD + βRDRVt−1 + βRWRVt−1,week + βRMRVt−1,month + εt, (10)
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The variables in the above regression

RVt−1,week =
1

5

4∑
i=0

RVt−1−i,

RVt−1,month =
1

22

21∑
i=0

RVt−1−i

are called normalized weekly and monthly realized variances. We run the HAR-RV regression (10)

in the fashion of real time forecasting with RV 1min
t as the inputs. The predictive regression at each

period t is estimated by using an expanding window scheme with initial window length equal to 22.

At time t − 1, the real time projected realized variance for time t, denote by R̂Vt
1min

, is a function

of RV 1min
t−1 , . . . , RV 1min

t−22 . The bottom panel of Table 7 shows the leverage effect test conditioning on

R̂Vt
1min

and one day lagged return Rt−1 with the subsample window length b = 2000. The values

of the test statistic are all small (with range from 0.0087 to 0.1433) and the empirical p-values are

all far larger than the frequently used rejection levels. The evidence shown here supports that the

leverage effect may exist even when we include information for predictions of future volatility.

In the Appendix we further consider three alternative methods on detecting the leverage effect

in our data: (1) Estimating HAR-RV type models with the leverage effect, and two methods for

estimating the leverage parameters proposed by (2) Wang and Mykland (2013) and (3) Aı̈t-Sahalia,

Fan and Li (2013). We find results from these methods still support our analysis. A detailed

discussion of these methods and their results can be found in Appendix C.

6 Conclusion and Extensions

We have found strong evidence in favour of a leverage effect in daily stock returns both at the

individual stock level and the index level. The null hypothesis we consider is quite strong, namely

first order distributional dominance. Therefore, it is quite powerful that the data do not reject

this hypothesis. Investors care not just about the level of volatility but also about the volatility of

volatility and indeed about its entire conditional distribution, which is why this result may be of

value. Our empirical evidence is robust along a number of directions. For example, our results still

hold for subperiods and for different specifications on the functional form of the aggregator of lagged

volatilities. In addition, several recently developed alternative methods are used on our data and

their results also support our findings.
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On the theoretical side, we have considered stationary processes, but this can be relaxed along the

lines of Dahlhaus (1997) and Dahlhaus and Subba Rao (2006). We may also weaken the restrictions

on the amount of dependence to be consistent with some evidence on the time series properties of

realized volatility, see for example Andersen, Bollerslev, Christoffersen, and Diebold (2011), although

to allow long memory processes would be technically challenging.

Our testing methodology may be useful for other applications, i.e., for other choices of yt, xt

and binary variable rt. The case of first order dominance between the conditional distributions

F−(y|x), F+(y|x) may be quite strong in other datasets or applications, and one might consider the

weaker concept of second order or third order dominance. The theory for these tests follows along

the lines considered here and in Linton, Maasoumi, and Whang (2005).

Appendix A: Proofs

Consider the empirical process ν̄T (y, g, π) indexed by (y, g, π) ∈ R× G × Π

ν̄T (y, g, π) =
√
T {m̄T (y, g, π)− Em̄T (y, g, π)} .

The following Lemma establishes stochastic equicontinuity of {ν̄T (·, ·, ·) : T ≥ 1}.
Lemma 1. Suppose that Assumption A holds. Then, for each ε > 0 and η > 0, there exists

δ > 0 such that

lim
T→∞

P ∗

[
sup

ρ((y1,g1,π1),(y2,g2,π2))<δ

|ν̄T (y1, g1, π1)− ν̄T (y1, g1, π1)| > η

]
< ε,

where Pr∗ denotes P -outer measure and

ρ ((y1, g1, π1), (y2, g2, π2)) = ρa ((y1, g1), (y2, g2)) ∨ ρb(π1, π2)

ρa ((y1, g1), (y2, g2)) =

(∫
Y

∫
Y
{[1(w1 ≤ y)− F (y|w2)] g (w2)

− [1(w1 ≤ y)− F (y|w2)] g (w2)} dw1dw2)
1/2

ρb(π1, π2) =
(
E (π1(xt)− π2(xt))2

)1/2
Proof of Lemma 1. The result of Lemma 1 follows from the stochastic equicontinuity results

of Andrews (1989, Theorem 7) that are applicable to classes of functions that are products of smooth

functions from an infinite dimensional class and a Type IV class of uniformly bounded functions.
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It suffices to verify Assumption E of the latter paper. (Assumption) E(i) holds by taking WaT t,

WbT t, τa(·), τb(·), ma(WaT t, τa), and mb(WbTb, τb) to be xt, (yt, xt), π(·), 1(· ≤ y)g (·) , π(xt) and 1(yt ≤
y)g (xt) , respectively. E(ii) holds by Assumption A1(ii) with W∗a given by X . E(iii) follows from

Assumptions A2-A3 and the definition of Π in (5). E(iv) is irrelevant to our case. E(v) holds since

{1(· ≤ y)g (·) : y ∈ Y , g ∈ G} is a type IV class of uniformly bounded functions with index p = 2,

constant ψ = 1/2, and dimension d = dx + 1. Finally, E(vi) holds by Assumption A1(i). �

Proof of Theorem 1. To prove Theorem 1, we first establish the following results:

T 1/4 sup
x∈X

∣∣π̂+(x)− π+
0 (x)

∣∣ p→ 0, (11)

T 1/4 sup
x∈Rdx

∣∣∣f̂(x)− f(x)
∣∣∣ p→ 0, (12)

sup
x∈Xε

∣∣Dµπ̂+(x)−Dµπ+
0 (x)

∣∣ p→ 0 ∀µ with 1 ≤ µ < q, (13)

sup
(y,g)∈Y×G

∣∣ν̄T (y, g, π̂+)− ν̄T (y, g, π+
0 )
∣∣ p→ 0, (14)

sup
(y,g)∈Y×G

∣∣∣√T Em̄T (y, g, π)|π=π̂+ −
√
TRT (y, g)

∣∣∣ p→ 0, (15)

where

RT (y, g) =
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}
F (y|xt)g (xt)

+
√
T

∫ [
F (y|x)− F+(y|x)

]
g (x)π+

0 (x)f(x)dx.

Equations (11)- (13) can be established using Theorem 1 of Andrews (1994) by verifying its

Assumptions NP1-NP5. Notice that NP1-NP3 are implied by Assumptions A1-A3 with η = β =∞
and |λ| = µ and Yt, Xt, ft(x), and g(x) given by 1(rt−1 ≥ 0), xt, f(x), and π+

0 (x), respectively.

NP4 (a) and (c) holds by Assumption A4 with Ω = Ω̂ = 1 and NP4(b) is not relevant in our case,

see Comment 5 to Theorem 1 of Andrews (1994). Finally NP5 is implied by Assumption A5. This

establishes (11) - (13).

Equation (14) holds by a standard argument (see p.2257 of Andrews (1994)) because {ν̄T (·, ·, ·) :

T ≥ 1} is stochastically equicontinuous by Lemma 1 and Pr (π̂+ ∈ Π)→ 1 and ρb(π̂
+, π+

0 )
p→ 0 using

(13) and Assumption A3.
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To establish (15), Write
√
T Em̄T (y, g, π)|π=π̂+ =

√
T E1(yt ≤ y)g (xt) {π(xt)− 1(rt−1 ≥ 0)}|π=π̂+

=
√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
]
f(x)dx (16)

+
√
T

∫ [
F (y|x)− F+(y|x)

]
g (x) π+

0 (x)f(x)dx,

where the second equality holds by rearranging terms and applying law of iterated expectations.

Consider the first term on the right hand side of (16). We have

√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
]
f(x)dx

=
√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
]
f̂(x)dx (17)

+
√
T

∫
F (y|x)g (x)

[
π̂+(x)− π+

0 (x)
] [
f(x)− f̂(x)

]
dx

= A1T + A2T , say.

The term A2T is asymptotically negligible because it is bounded uniformly over (y, g) ∈ Y × G by

T 1/4 sup
x∈X

∣∣π̂+(x)− π+
0 (x)

∣∣× T 1/4 sup
x∈Rdx

∣∣∣f(x)− f̂(x)
∣∣∣ p→ 0 (18)

using (11) and (12). Now, consider A1T . Write[
π̂+(x)− π+

0 (x)
]
f̂(x) =

1

T

∑
t

Kh (x− xt)
{

1(rt−1 ≥ 0)− π+
0 (xt)

}
+

1

T

∑
t

Kh (x− xt)
{
π+
0 (xt)− π+

0 (x)
}
.

Notice that

√
T

∫
F (y|x)g (x)

[
1

T

∑
t

Kh (x− xt)
{

1(rt−1 ≥ 0)− π+
0 (xt)

}]
dx

=
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}∫

F (y|x)g (x)Kh (x− xt) dx

=
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}

[F (y|xt)g (xt)

+

∫
{F (y|xt + uh)g (xt + uh)− F (y|xt)g (xt)}K (u) du

]
(19)

=
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}
F (y|xt)g (xt) + op(1),
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uniformly over (y, g) ∈ Y × G, where the last equality holds by the following argument. For each

(y, g) ∈ Y × G and some δ > 0, we have

E

(
1√
T

∑
t

{
1(rt−1 ≥ 0)− π+

0 (xt)
}

×
∫
{F (y|xt + uh)g (xt + uh)− F (y|xt)g (xt)}K (u) du

)2

≤ C

(
E

∣∣∣∣∫ {F (y|xt + uh)g (xt + uh)− F (y|xt)g (xt)}K (u) du

∣∣∣∣2+δ
)2/(2+δ)

→ 0, (20)

where the inequality follows by the moment inequality for sums of strong mixing random variables

(see Lemma 3.1 of Dehling and Philipp (2002)) and Assumption A1(i), and convergence to zero

holds by the fact that F (y|·)g (·) is a bounded function using a well known convergence result for

convolutions of functions in an Lp-space (with p = 2 + δ) (see Theorem 8.14 (a) of Folland (1984)).

Using a stochastic equicontinuity argument as in Lemma 1, we can show that the convergence to

zero holds uniformly over (y, g) ∈ Y × G. This establishes (19). Furthermore, we have

sup
(y,g)∈Y×G

∣∣∣∣∣√T
∫
F (y|x)g (x)

[
1

T

∑
t

Kh (x− xt)
{
π+
0 (xt)− π+

0 (x)
}]

dx

∣∣∣∣∣
= sup

(y,g)∈Y×G

∣∣∣∣∣ 1√
T

∑
t

∫
F (y|xt + uh)g (xt + uh)

{
π+
0 (xt)− π+

0 (xt + uh)
}
K(u)du

∣∣∣∣∣
≤ Op(T

1/2hω)
p→ 0, (21)

where the equality holds by a change of variables, the inequality holds by an ω-term Taylor expansion

using Assumptions A3 and A4, and the last convergence to zero holds by Assumption A5. Now, the

result (15) is established by combining (16)-(21).

We now establish Theorem 1. We have

√
Tm̄T (y, g, π̂+) = ν̄T (y, g, π̂+) +

√
T Em̄T (y, g, π)|π=π̂+

= ν̄T (y, g, π+
0 ) +

√
T Em̄T (y, g, π)|π=π̂+ + op(1) (22)

= νT (y, g) +
√
T

∫ [
F (y|x)− F+(y|x)

]
g (x) π+

0 (x)f(x)dx+ op(1), (23)

where the second equation hold by (14) and the last equality holds by (15). Notice that, under

the null hypothesis, we have
∫

[F (y|x)− F+(y|x)] g (x)π+
0 (x)f(x)dx = 0 for all (y, g) ∈ B, while
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∫
[F (y|x)− F+(y|x)] g (x) π+

0 (x)f(x)dx < 0 if (y, g) /∈ B. Furthermore, we can show that

νT (·, ·)⇒ ν(·, ·) (24)

with the sample paths of ν(·, ·) uniformly continuous with respect to pseudometric ρa on Y × G
with probability one. The latter holds by a standard argument because Lemma 1 implies that the

pseudometric space (Y ×G, ρa) is totally bounded, {νT (·, ·) : T ≥ 1} is stochastically equicontinuous,

and finite dimensional convergence in distribution holds using a CLT for bounded strong mixing

random variables (see Corollary 5.1 of Hall and Heyde (1980)). Therefore, using the same arguments

as those in Linton, Maasoumi and Whang (2005, Proof of Theorem 1) and continuous mapping

theorem, Theorem 1 is now established as desired. �

Proof of Theorem 2. The proof is similar to the proof of Theorem 2 of Linton, Maasoumi

and Whang (2005). �

Proof of Theorem 3. The proof is similar to the proof of Theorem 3 of Linton, Maasoumi

and Whang (2005). �

Appendix B: Data Descriptions and Constructions

The data for estimating the daily volatility come from different sources. For the realized variances of

S&P500, we use intraday high frequency data provided by tickdata.com, which consist of 1-minute

and 5-minute index prices in regular trading time. The squared intraday range RG2
t of S&P500 is

evaluated by using data of the highest and lowest trading prices during a day, which come from yahoo

finance. For the five DJIA stocks, their RG2
t are evaluated with daily highest and lowest price data

from the CRSP, and their RVt are evaluated with the intraday trade prices from the TAQ database.

The raw data of the high frequency observations from the TAQ database contain noises. In order

to obtain a more accurate realized variance estimation, we adopt the following procedures, which

are suggested by Barndorff-Nielsen et al. (2009), to clean the high frequency data of the individual

stocks:

(1) We keep the data points between 09:30AM to 16:00PM (regular trading time), and delete data

points with a time stamp outside this time interval.

(2) We delete the data points which prices are zero.
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(3) We keep data points which the trade occurred on AMEX (A), NYSE (N), NASD (T/Q), and

delete the rest data points.

(4) Data points which are corrected traded are deleted (their Correction Indicator is not zero,

CORR!= 0).

(5) Data points which trades are not in abnormal sale condition are kept (The entries with the

column COND which does not has a letter code,or has the letter ”F” or ”E”).

(6) If multiple trades have the same time stamp, we use their median price.

(7) We delete the data point in which the absolute difference between its price and median of 50

neighborhood observations is larger than five times mean absolute deviation from the median.

Note that (7) is to replace rule T4 in Barndorff-Nielsen et al. (2009) for cleaning outliers in the

high frequency trade data. The rule T4 uses the quote data to discipline the trade data: If the trade

prices are above the ask plus bid-ask spread or below the bid minus the bid-ask spread, they will be

deleted. However, it can be shown that such rule in practice is rarely activated. Since our raw data

are the trade data, in order to more efficiently implementing the cleaning procedures without using

the quote data, we use a more viable rule such as (7) for dealing with the outliers.

The time unit of the cleaned data is one second, but the data points are not equally-spaced. We

then transform the cleaned data to equally-spaced data. We set the time intervals for the equally-

spaced data equal to two frequently used choices: 1 minute and 5 minute. Then the last-tick method

is used to construct the equally-spaced data. Finally the equal-spaced data are used to calculate the

intraday log returns and realized variances.

Appendix C: Alternative Methods

In this appendix we consider three alternative methods on detecting the leverage effect to check

whether our results in the main text still hold. The first method is based on estimating HAR-RV

type models with the leverage effect. The other two methods are recently developed by Wang and

Mykland (2013) and Aı̈t-Sahalia, Fan and Li (2013), which are based on continuous time finance and

high frequency data estimations. We find results from these methods lend further support to our

previous analysis.
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C1: HAR-RV Type Models with the Leverage Effect

We first use a simple and direct way to test whether the level effects exist. Following Corsi and Renò

(2012), we incorporate the leverage effect into the HAR-RV model:

RVt = αD + βRDRVt−1 + βRWRVt−1,week + βRMRVt−1,month +

γ+R
2
t−1 × 1 {Rt−1 ≥ 0}+ γ−R

2
t−1 × 1 {Rt−1 < 0}+ εt. (25)

To see whether the leverage effect exists, we can test whether γ− > γ+. We specify the null hypothesis

as H0 : γ− ≤ γ+, and if it is rejected, we have evidence to say that there is the presence of leverage

effects.

It is well known that a realized variance can be decomposed into continuous (non-jump) and jump

components (Barndorff-Nielsen and Shephard, 2006). One of the most commonly used estimators

for the continuous component is the realized bi-power variation BVt:

BVt =
π

2

(
nt

nt − 1

) nt−1∑
i=1

|ri,t| |ri+1,t| .

With the realized bi-power variation BVt, the jump variation JVt is given by

JVt = RVt −BVt.

We thus can modify the right hand side of the above HAR-RV model as a linear combination of

BV and JV , and such modification may improve performances of the HAR-RV type regression on

predicting future realized variances (Andersen et al, 2007).The modified HAR-RV model is called

HAR-RV-CJ (heterogeneous autoregressive realized variance model controlling for the continuous

and jump components) model. With the leverage effect, the HAR-RV-CJ model has the following

form:

RVt = αD + βBDBVt−1 + βBWBVt−1,week + βBMBVt−1,month +

βJDJVt−1 + βJWJVt−1,week + βJMJVt−1,month +

γ+R
2
t−1 × 1 {Rt−1 ≥ 0}+ γ−R

2
t−1 × 1 {Rt−1 < 0}+ εt, (26)

where BVt−1,week (JVt−1,week) and BVt−1,month (JVt−1,month) are the normalized weekly and monthly

realized bi-power (jump) variation.
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For the terms of the leverage effects, besides R2
t−1, we also use |Rt−1| in the regressions. The OLS

estimation results for the HAR-RV and HAR-RV-CJ augmented with the leverage effects are shown

in Table 8 and 9. In the parenthesis under the estimated coefficients are t-statistics obtained with

Newey-West standard errors.The in-sample fittings have high adjusted R2 (all above 0.41), which is

one of the most documented features of the HAR-RV type models. In the Tables, it can be seen

that most of the estimated γ− show strong statistical significance. The estimated γ+, however, are

not statistically significant in most of the cases, and some of them are even negative. The results of

the statistical significance (or insignificance) of the estimated γ− and γ+ are consistent over different

specifications for the regressions when either R2
t−1 or |Rt−1| is used. Comparing the estimated γ−

under the HAR-RV and HAR-RV-CJ models, their values are very similar within each asset. The

same results also hold for the estimated γ+, but they have much smaller values than γ−. When R2
t−1

is used, the estimated γ− ranges from 0.0176 (PG) to 0.2016 (GE) under the HAR-RV model and

from 0.0197 (PG) to 0.2038 (GE) under the HAR-RV-CJ model. For the case of |Rt−1|, the same

estimates range from 0.0029 (IBM) to 0.0115 (GE) under the HAR-RV model and from 0.0032 (IBM)

to 0.0119 (GE) under the HAR-RV-CJ model. The results suggest that among the cases, realized

variance of GE reacts most when its lagged return receives a negative impact.

We show results of testing H0 : γ− ≤ γ+ in the last two columns of the Table 8 and 9. Except for

PG and MMM, the t test statistics are all above 2.37, which suggests the hypothesis can be rejected

at the significant level 0.009. As for PG and MMM, the hypothesis can also be well rejected at the

significant level 0.05. The evidence shown here indicates that the hypothesis at least can be rejected

at a moderate significant level. There is evidence to say that negative shocks to asset returns have

more impacts on the realized variances than do equal positive shocks, and the leverage effects may

exist.

C2: Wang and Mkyland (2013)

We then use the quadratic co-variation approach proposed by Wang and Mykland (2013) to verify

the existence of leverage effects in intraday log returns and volatilities. Considering the following

data generating process for the log price Xt := logPt and volatility σt:

dXt = µtdt+ σtdWt, (27)

dσt = atdt+ ftdWt + gtdBt,
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where Wt and Bt are two mutually independent Brownian motions. Wang and Mykland (2013)

propose to use the quadratic co-variation between Xt and F (σ2
t ) as a quantitative measure of the

contemporaneous leverage effect:〈
X,F

(
σ2
)〉

T
= 2

∫ T

0

F ′
(
σ2
t

)
σ2
t ftdt. (28)

The function F (.) is twice differentiable and monotonic on (0,∞), and in the following we assume

either F (x) = x or F (x) = 1/2 log (x) .

Recall that in this paper we define the leverage effects as negative shocks to prices/returns affect

volatility more than equal positive shocks, which is somehow different from the contemporaneous

leverage effect defined in (28). While (28) only evaluates covariation between Xt and F (σ2
t ), it does

not tell whether the negative or positive shocks have more effects on the volatility. One way to link

(28) and our definition of leverage effects is to require the parameter ft to be negative: If ft < 0,

negative (positive) shocks to the log returns increase (decrease) volatility.

Suppose within the time interval [0, T ], the log price process Xt is observed at equally spaced time

stamps; i.e., rt is observed every 4tn,i+1 = T/n units of time. To empirically estimate 〈X,F (σ2)〉T ,
we first divide the observed X ′ts into different blocks. Suppose the number of such blocks is Kn and

each block contains Mn = bc
√
nc observations, where c is some constant. Wang and Mykland (2013)

propose to use

̂〈X,F (σ2)〉T = 2
Kn−2∑
i=0

(
Xτn,i+1

−Xτn,i

) (
F
(
σ̂2
τn,i+1

)
− F

(
σ̂2
τn,i

))
to estimate 〈X,F (σ2)〉T , where τn,i, i = 0, . . . , Kn − 1 is the lower bound of the i th block, and

σ̂2
τn,i+1

=
n

Mn × T
∑

tn,j∈(τn,i,τn,i+1]

(
Xtn,j+1

−Xtn,j

)2
.

is an estimate for the integrate variance within the block (τn,i, τn,i+1] . They show that

n
1
4

(
̂〈X,F (σ2)〉T −

〈
X,F

(
σ2
)〉

T

)
converges in law to Z ×B (c, T ) , where Z is a standard normal random variable and independent of

any information up to time T and

B (c, T ) =

√
16

c

∫ T

0

(F ′ (σ2
t ))

2
σ6
t dt+ cT

∫ T

0

(F ′ (σ2
t ))

2
σ4
t

(
44

3
f 2
t +

22

3
g2t

)
dt.
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For empirically estimating B (c, T ) , one can use
√
G1
n +G2

n, where

G1
n = 2

√
n
∑
i

(
Xτn,i+1

−Xτn,i

)2 (
F
(
σ̂2
τn,i+1

)
− F

(
σ̂2
τn,i

))2
,

G2
n = 2

MnT√
n

∑
i

σ̂2
τn,i

(
F
(
σ̂2
τn,i+1

)
− F

(
σ̂2
τn,i

))2
.

It can be shown that G1
n +G2

n converges in probability to B (c, T )2. One also can use

σ̃2
τn,i+1

=
n

Mn × T
∑

tn,j∈(τn,i,τn,i+1]

(
Xtn,j+1

−4Xτn,i+1

)2
.

to replace σ̂2
τn,i+1

in the estimation, where 4Xτn,i+1
= 1/Mn

(
Xτn,i+1

−Xτn,i

)
is an average of log

return changes within the time interval (τn,i, τn,i+1] . Let ˜〈X,F (σ2)〉T denote the leverage estimate

when σ̃2
τn,i+1

is used. As shown in Wang and Mykland (2013), σ̂2
τn,i+1

and σ̃2
τn,i+1

are asymptotic

equivalent, and therefore ̂〈X,F (σ2)〉T and ˜〈X,F (σ2)〉T are also asymptotic equivalent. Furthermore,

the following two test statistics can be used to detect local leverage effects,

L1 :=
n

1
4

(
̂〈X,F (σ2)〉T − 〈X,F (σ2)〉T

)
√
G1
n +G2

n,
, (29)

L2 :=
n

1
4

(
˜〈X,F (σ2)〉T − 〈X,F (σ2)〉T

)
√
G1
n +G2

n,
. (30)

It can be shown that L1 and L2 both converge in law to standard normal.

We use 1-min equally spaced data, and set T = one day and Mn = 30 for the estimations. Figure

6 shows time series plots of daily standardized quadratic co-variations, which are just daily L1 and L2

with 〈X,F (σ2)〉T = 0. Table 10 reports some statistics of these standardized quadratic co-variations.

It can be seen that except MMM, all the rest four DJIA stocks and S&P500 index on average have

negative L1 and L2. Without considering signs of the estimates, we compare absolute values of the

daily L1 and L2 with two critical values 1.96 and 2.58 (corresponding to significant levels α = 0.05

and 0.01 of standard normal). We find very few days have significant L1 and L2: Among the 4,283

days, the number of significant days ranges from 18 to 257 for α = 0.05 and 0 to 13 for α = 0.01.

If considering significant negativity only, the numbers of significant days range from 60 to 392 for

α = 0.05 and 0 to 42 days α = 0.01 (with critical values equal to -1.64 and -2.33 of standard normal).

S&P500 index on average has lower standardized quadratic co-variations and more significant days

28



than the five DJIA stocks. Overall, the results suggest that the leverage effects may still exist in the

five DJIA stocks and S&P500 index when log returns and volatilities are estimated at the intraday

level, but only in certain periods, these leverage effects are strong enough to be detected by the

quadratic co-variation approach.

C3: Aı̈t-Sahalia, Fan and Li (2013)

We finally turn to the method in Aı̈t-Sahalia, Fan and Li et al. (2013). In their paper, the following

CIR process are considered for the squared volatility:

dvt = αv (θ − vt) + κ
√
vtdBt,

where vt := σ2
t , and 2αvθ > κ2. For the log price process, they assume it follows the same process as

in (27) except now E (dBtdWt) = fdt, where f is a constant. It can be shown that the parameter f

is the limit of correlation between vt+l − vt and Xt+l −Xt when the time interval l approaches zero,

i.e.,

f = lim
l→0

Corr (vt+l − vt, Xt+l −Xt) . (31)

Aı̈t-Sahalia, Fan and Li (2013), use the limit correlation above as a measure for the leverage effect,

which is different from Wang and Mykland (2013) and our definition. To link the limit correlation

(31) to our definition of the leverage effect, again we may assume f to be negative.

Let f̂k and fk be the sample and true correlations between the difference of the estimated inte-

grated variances and difference of log prices at time t + k4 and t. Here 4 is the time unit and we

follow Aı̈t-Sahalia, Fan and Li (2013), to assume it as one day for our cases3. Under some regular

conditions, Aı̈t-Sahalia, Fan and Li (2013) show that fk and f satisfy the following linear relationship:

fk = f + b× k + o (k4) ,

which provides an easily-implemented way to identify the limit correlation f : That is, running a

linear regression of fk (or f̂k if fk is unknown) on the intercept term and k, and the estimated

intercept term can be used as an estimate of f . Furthermore, Aı̈t-Sahalia, Fan and Li (2013) propose

the following data driven procedures for practically estimate the linear regression:

3Note that in Aı̈t-Sahalia, Fan and Li (2013), the basic time unit for t is one year, so 4 =one day= 1/252.
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1. For each k = 1, . . . , K, we calculate f̂k, and rank the f̂ ′ks for k = k0, . . . , bK/2c. Then we

take the three smallest values of these ranked f̂k
′
s. Let k(1), k(2), and k(3) be the corresponding

indices k′s that the three smallest f̂ ′ks have. Let k∗ = max
(
k(1), k(2), k(3)

)
.

2. Regressing f̂k on k with k = k∗, . . . , k∗ + m, where m = a0, . . . , K − k∗. Let m∗ denote the

value of m that the regression yields the highest (unadjusted) R2. Then let k
∗

= k∗+m∗. The

estimated intercept term of the regression with the data
{
k, f̂k

}k∗
k=k∗

is the final estimate of f .

We follow Aı̈t-Sahalia, Fan and Li (2013) to set K = 252, k0 = 6 and a0 = 11. As shown in

Aı̈t-Sahalia, Fan and Li (2013), the sample correlation f̂k is a bias estimation for the true fk. To

improve performance of the data driven approach above, we can replace the sample correlation f̂k

with the following bias corrected estimation in the above data driven procedures:

f̂ bck = γ
2
√
k2 − k/3

2k − 1
f̂k, (32)

where

γ =

(
1− 442E (v2t )

nV ar (RVt+k4 −RVt)

)− 1
2

.

Here the parameter n is the number of log return observations used to estimate the realized variance.

For estimating 42E (v2t ) , we can first estimate the realized quarticity:

QVt =
nt
3

nt∑
i=1

r4i,t,

and then calculate its sample mean. In the following we use

γ̂ =

(
1− 4× sample mean of QVt

sample mean of nt × sample variance of RVt

)− 1
2

(33)

to replace γ for f̂ bck .

All the following empirical analysis is in daily basis: We use daily RV 1min
t and Rt to calculate

f̂k, and the 1-min log returns to estimate the daily realized quarticities in γ̂. Figure 7 plots f̂k and

f̂ bck against k for the five DJIA stocks and S&P500 index. We use 1-min log returns to estimate

the realized quarticities. For all the cases, the two estimated correlations are negative over k, and

the bias corrected correlations are constantly lower than the uncorrected ones. Except for small

k, the two correlation estimations follow extremely similar patterns within each case. Comparing
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the results over different cases, however, the patterns of the correlation estimations are somehow

different, but they often have a higher value as k = 1 and then suddenly drop to a lower value as k

deviates from one. It also can be seen that as k > 100, the estimations gradually become stable and

all of them steadily move either up or down as k becomes large. Overall, the estimated correlations

vary substantially as the time interval k changes, no matter whether they are bias corrected or not;

and the smaller the time interval k, the more possible that we will get a higher estimated correlation.

To estimate f , we may use f̂1 or f̂ bc1 . As shown above, however, it is very likely that we get

a higher estimated correlation with k = 1 than with k > 1, and the high f̂1 or f̂ bc1 perhaps is an

upward bias estimate for the limit correlation f . To obtain a more accurately estimated f , we use

the data driven procedures introduced above. In Table 11 we report the final estimate of f based on

the estimated intercept term from running linear regressions of f̂k (or f̂ bck ) on k ∈
[
k∗, k

∗
]
, and the

unadjusted R2 of the regression. The R2 is very high for all of the six cases, and k∗ and k
∗

in each

case are similar when either f̂k or f̂ bck is used. For all the six cases, the estimated f is moderately

negative, with range from -0.24 (IBM) to -0.48 (GE)4. The negativity of the estimated f implies that

on average a positive shock to the log price has a smaller impact on the volatility than does an equal

negative shock, and the leverage effects may exist. It also can be seen that the estimated f from

using f̂ bck and f̂k are qualitatively similar, but the former is slightly lower than the later.

4One thing worth to note is that, the estimated f of MSFT and S&P500 shown here are different from those

shown in Aı̈t-Sahalia, Fan and Li (2013). It is mainly because we use different sample periods and different realized

variance estimators. In Aı̈t-Sahalia, Fan and Li (2013), they used the pre-averaging approach (Jacod et al., 2009) to

estimate the integrated variances. With RV 1min
t , we re-estimate the f of MSFT with the data driven method over

the same sample period as theirs (Jan-2005 to June-2007). The estimated f from using f̂ bck (f̂k) is -0.90 (-0.87) and[
k∗, k

∗]
= [125, 165] ([125, 165]). As for S&P500 (sample period is from Jan-2004 to Dec-2007), the estimated f from

using f̂ bck (f̂k) is -0.62 (-0.60), and
[
k∗, k

∗]
= [22, 101] ([24, 101]).
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Table 1: The table shows summary statistics of daily 1-min realized volatility
√
RV 1min

t , 5-min

realized volatility
√
RV 5min

t , intraday range estimator RGt, and stock return Rt for S&P500 index
and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). We

scale
√
RV 1min

t ,
√
RV 5min

t , and RGt by 100 before we calculate the statistics. The sample period is
from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

MSFT
Min. Mean Max. Std. Skew. Kurt. ACF(1)√

RV 1min
t 0.3643 2.0820 9.2090 1.0199 1.1783 1.5501 0.9126√

RV 5min
t 0.3528 1.7520 7.7680 0.7936 1.3869 4.0803 0.8020

RGt 0.2814 1.6050 9.9750 0.9070 1.9047 7.1083 0.5422
Rt -0.1560 0.0008 0.1957 0.0221 0.2258 5.8996 -0.0333

IBM
Min. Mean Max. Std. Skew. Kurt. ACF(1)√

RV 1min
t 0.3694 1.6720 10.5900 0.7748 1.7240 7.8765 0.8480√

RV 5min
t 0.3282 1.5190 8.6820 0.7358 2.0632 8.7406 0.7626

RGt 0.1758 1.4250 9.8130 0.8503 2.1492 8.4899 0.5345
Rt -0.1554 0.0007 0.1316 0.0198 0.3747 6.3703 -0.0328

GE
Min. Mean Max. Std. Skew. Kurt. ACF(1)√

RV 1min
t 0.3737 1.7840 12.7800 0.9724 2.9976 17.9588 0.8709√

RV 5min
t 0.3319 1.5630 13.4200 0.9483 3.5067 21.6421 0.8158

RGt 0.1952 1.4130 14.1500 1.0491 3.2342 17.1989 0.6692
Rt -0.1279 0.0004 0.1970 0.0196 0.3141 8.7333 -0.0127

PG
Min. Mean Max. Std. Skew. Kurt. ACF(1)√

RV 1min
t 0.3809 1.5520 10.7800 0.6875 1.7891 13.0114 0.8341√

RV 5min
t 0.3284 1.3890 8.9300 0.6449 2.2713 12.7597 0.7711

RGt 0.2144 1.1830 8.3060 0.7112 2.7397 14.1404 0.5479
Rt -0.3138 0.0005 0.1021 0.0160 -1.8188 38.2772 -0.0546

MMM
Min. Mean Max. Std. Skew. Kurt. ACF(1)√

RV 1min
t 0.4162 1.4730 10.2100 0.6253 2.3454 15.7073 0.8057√

RV 5min
t 0.2834 1.3790 9.8280 0.6366 2.6075 15.3994 0.7498

RGt 0.1392 1.2220 10.7400 0.7326 2.5815 13.8397 0.5137
Rt -0.0959 0.0004 0.1107 0.0159 0.1628 4.3600 -0.0348

S&P500
Min. Mean Max. Std. Skew. Kurt. ACF(1)√

RV 1min
t 0.1276 0.6726 8.5770 0.4972 3.9649 30.9178 0.8797√

RV 5min
t 0.1649 0.7788 7.6050 0.5303 3.2613 19.9993 0.8385

RGt 0.1066 0.8304 6.5490 0.6139 3.1255 16.7762 0.6363
Rt -0.0904 0.0003 0.1158 0.0122 -0.0024 9.1608 -0.0668

32



Table 2: The table shows the subsample critical values for the conditional leverage hypothesis test
at four different significant levels α for S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). We set lag lengths of daily returns j = 1 and 5 and
subsample sizes b = 500, 1000 and 2000. Daily volatility is estimated by the daily realized variance
with 1-min log returns. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

j = 1 j = 5
α α

b 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
MSFT 500 0.2612 0.2810 0.3515 0.3735 0.3550 0.3727 0.4182 0.4598

ŜT1 = 0.0825 1000 0.2085 0.2345 0.2553 0.2683 ŜT5 = 0.0823 0.2776 0.2857 0.3017 0.3170
2000 0.1557 0.1641 0.1758 0.1807 0.1890 0.1944 0.2055 0.2069

IBM 500 0.2669 0.2966 0.3415 0.3585 0.4320 0.4743 0.5836 0.6580

ŜT1 = 0.0138 1000 0.2406 0.2550 0.2741 0.2991 ŜT5 = 0.2479 0.3759 0.4355 0.4874 0.5087
2000 0.1452 0.1539 0.1627 0.1671 0.2306 0.2551 0.2661 0.2813

GE 500 0.3275 0.3596 0.4135 0.4445 0.3314 0.3830 0.4819 0.5294

ŜT1 = 0.1996 1000 0.2939 0.3365 0.4402 0.4707 ŜT5 = 0.1885 0.2953 0.3223 0.3406 0.3556
2000 0.1779 0.1853 0.2185 0.2471 0.3167 0.3248 0.3496 0.3989

PG 500 0.2813 0.3021 0.3311 0.3506 0.2896 0.3231 0.3917 0.4121

ŜT1 = 0.0622 1000 0.2318 0.2795 0.3575 0.3769 ŜT5 = 0.1073 0.2453 0.2748 0.3274 0.3833
2000 0.1554 0.1887 0.2155 0.2240 0.177 0.1897 0.2127 0.2157

MMM 500 0.3360 0.3872 0.5014 0.5454 0.3548 0.4010 0.4813 0.5120

ŜT1
= 0.0595 1000 0.3256 0.3529 0.3823 0.4055 ŜT5

= 0.1242 0.2773 0.3074 0.3552 0.3660
2000 0.1813 0.1927 0.2062 0.2245 0.1695 0.1802 0.1947 0.2038

S&P500 500 0.2203 0.2615 0.3288 0.3547 0.3675 0.4464 0.498 0.5252

ŜT1
= 0.0096 1000 0.1997 0.2152 0.2371 0.2508 ŜT5

= 0.1480 0.3481 0.3777 0.4177 0.4689
2000 0.2041 0.2140 0.2241 0.2292 0.2613 0.3255 0.3958 0.4243
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Table 3: The table shows the subsample critical values for the conditional leverage hypothesis test
at four different significant levels α for S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). We set lag lengths of daily returns j = 1 and 5 and
subsample sizes b = 500, 1000 and 2000. Daily volatility is estimated by the daily realized variance
with 5-min log returns. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

j = 1 j = 5
α α

b 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
MSFT 500 0.3407 0.3635 0.3981 0.4522 0.3825 0.4282 0.4821 0.4996

ŜT1 = 0.0916 1000 0.2622 0.2829 0.3106 0.3228 ŜT5 = 0.1101 0.2911 0.3148 0.3548 0.3709
2000 0.1454 0.1590 0.1630 0.1692 0.1845 0.1966 0.2085 0.2136

IBM 500 0.2849 0.3361 0.3875 0.4905 0.4443 0.4936 0.5745 0.6150

ŜT1 = 0.0247 1000 0.2510 0.3144 0.3687 0.3881 ŜT5 = 0.1970 0.3549 0.4161 0.4809 0.5051
2000 0.1096 0.1130 0.1214 0.1438 0.2238 0.2347 0.2572 0.2764

GE 500 0.3433 0.3776 0.4344 0.4622 0.3466 0.3785 0.4565 0.4803

ŜT1 = 0.0940 1000 0.2465 0.2699 0.3045 0.3220 ŜT5 = 0.1342 0.2931 0.3240 0.3624 0.3769
2000 0.1531 0.1823 0.2342 0.2489 0.1953 0.2104 0.2212 0.2279

PG 500 0.2646 0.2963 0.3311 0.3535 0.2862 0.3252 0.3718 0.3859

ŜT1 = 0.0544 1000 0.1785 0.2019 0.2547 0.2967 ŜT5 = 0.0776 0.2079 0.2359 0.2843 0.291
2000 0.1287 0.1402 0.1539 0.1601 0.1438 0.1669 0.2002 0.2185

MMM 500 0.3679 0.5158 0.6259 0.7201 0.3430 0.3817 0.4175 0.4508

ŜT1
= 0.0637 1000 0.4355 0.5008 0.5299 0.5677 ŜT5

= 0.1058 0.2587 0.3023 0.3734 0.3938
2000 0.2514 0.2727 0.3131 0.3401 0.1412 0.1509 0.1660 0.1741

S&P500 500 0.1903 0.2110 0.2739 0.2947 0.3524 0.4850 0.5389 0.5830

ŜT1
= 0.0000 1000 0.1158 0.1242 0.1556 0.1922 ŜT5

= 0.1160 0.3561 0.3858 0.4409 0.4660
2000 0.0897 0.0953 0.1146 0.1248 0.1886 0.2116 0.2571 0.2706
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Table 4: The table shows the subsample critical values for the conditional leverage hypothesis test
at four different significant levels α for S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). We set lag lengths of daily returns j = 1 and 5
and subsample sizes b = 500, 1000 and 2000. Daily volatility is estimated by the intraday range
estimator. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).

j = 1 j = 5
α α

b 0.1 0.05 0.01 0.001 0.1 0.05 0.01 0.001
MSFT 500 0.4644 0.5648 0.7774 0.8167 0.4478 0.5330 0.5944 0.6220

ŜT1 = 0.0940 1000 0.4412 0.4959 0.5720 0.5954 ŜT5 = 0.1534 0.3699 0.4190 0.5083 0.5238
2000 0.3001 0.3102 0.3308 0.3403 0.3140 0.3222 0.3328 0.3389

IBM 500 0.2890 0.3374 0.3864 0.4246 0.3381 0.3781 0.4443 0.4841

ŜT1 = 0.1354 1000 0.2349 0.2517 0.2879 0.3031 ŜT5 = 0.1855 0.2573 0.2841 0.3264 0.3433
2000 0.1853 0.1916 0.2055 0.2092 0.1809 0.1923 0.2090 0.2301

GE 500 0.5426 0.6059 0.7410 0.8486 0.3487 0.4119 0.5107 0.5821

ŜT1 = 0.0575 1000 0.4323 0.4668 0.5725 0.5999 ŜT5 = 0.0912 0.2726 0.2891 0.3174 0.3351
2000 0.2902 0.3095 0.3328 0.3493 0.2197 0.2472 0.3121 0.3254

PG 500 0.2644 0.3006 0.3464 0.3733 0.3586 0.3913 0.4558 0.5071

ŜT1 = 0.0837 1000 0.1468 0.1595 0.1762 0.1865 ŜT5 = 0.1117 0.3018 0.3405 0.3952 0.4364
2000 0.1110 0.1175 0.1265 0.1281 0.1986 0.2075 0.2201 0.2233

MMM 500 0.3645 0.4466 0.6223 0.6821 0.4895 0.536 0.5965 0.6332

ŜT1
= 0.0773 1000 0.2584 0.2792 0.3107 0.3545 ŜT5

= 0.0609 0.3465 0.3777 0.4176 0.4383
2000 0.2150 0.2213 0.2315 0.2383 0.1694 0.1856 0.2193 0.2291

S&P500 500 0.3126 0.3525 0.4024 0.4240 0.4060 0.4707 0.5518 0.5825

ŜT1
= 0.0392 1000 0.2606 0.2812 0.3033 0.3144 ŜT5

= 0.0751 0.3203 0.4497 0.4980 0.5078
2000 0.1843 0.1980 0.2301 0.2416 0.1216 0.1741 0.2233 0.2340
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Table 5: The table shows the empirical p-values of the conditional test statistic ŜTj for S&P500 index
and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM).
Three different estimated daily volatilities are used. We set lag lengths of daily returns j = 1 and 5
and subsample sizes b = 500, 1000 and 2000. The sample period is from Jan-04-1993 to Dec-31-2009
(4,283 trading days).

RV 1min
t RV 5min

t RG2
t

b b b
j 500 1000 2000 500 1000 2000 500 1000 2000

MSFT 1 0.9101 0.9138 0.8608 0.8956 0.7914 0.3936 0.9160 0.8916 0.9698
5 1.0000 0.9936 1.0000 0.9849 0.9662 0.8507 0.7389 0.6653 0.9343

IBM 1 0.9834 0.9769 0.8643 1.0000 0.9568 0.8958 0.6847 0.4674 0.4435
5 0.2994 0.1687 0.0617 0.5938 0.4141 0.2421 0.6155 0.4562 0.0744

GE 1 0.5264 0.2500 0.0201 0.8356 0.6544 0.6975 0.9884 0.8952 0.8148
5 0.6580 0.4568 0.3914 0.8597 0.9354 0.7329 0.9318 0.9814 0.9186

PG 1 0.9625 0.9656 0.8481 0.9765 0.7667 0.8117 0.7149 0.5356 0.4374
5 0.8776 0.8441 0.6856 0.9284 0.7174 0.5416 0.8198 0.5627 0.4247

MMM 1 0.9730 0.9900 0.8643 0.9514 0.9650 0.8783 0.9236 0.9062 0.8927
5 0.9086 0.7485 0.3827 0.8338 0.7211 0.4002 0.9374 0.7619 0.9387

S&P500 1 0.9860 0.9939 1.0000 0.9987 0.9915 1.0000 0.9323 0.9178 0.7877
5 0.6786 0.5612 0.8494 0.8890 0.6559 0.4952 0.9294 0.7555 0.5066
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Table 6: The table shows value of test statistic ŜTj , empirical p-value and the subsample critical
values for the conditional leverage hypothesis test at four different levels of α for SP500 index and
five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business Machines
Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). Daily volatility
is estimated by the daily realized variance with 1-min log returns. We set lag lengths of stock returns
j = 1 and subsample sizes b = 500 and 1000. The sample period is divided into two subperiods: 1)
from Jan-04-1993 to Nov-30-2001 (2,248 trading days). 2) from Dec-03-2001 to Dec-31-2009 (2,035
trading days).

α

Period ŜT1 b p-value 0.1 0.05 0.01 0.0001
MSFT Jan.93-Nov.01 0.1401 500 0.6049 0.2257 0.2662 0.3446 0.3610

1000 0.0753 0.1370 0.1434 0.1647 0.1724
Dec.01-Dec.09 0.0754 500 0.9150 0.2722 0.2839 0.3566 0.3780

1000 0.9828 0.2284 0.2430 0.2584 0.2703
IBM Jan.93-Nov.01 0.1458 500 0.8834 0.3014 0.3251 0.3461 0.3634

1000 0.8343 0.2576 0.2652 0.2829 0.3008
Dec.01-Dec.09 0.0214 500 0.9651 0.2140 0.2340 0.2541 0.2725

1000 0.9445 0.1517 0.1662 0.1880 0.1997
GE Jan.93-Nov.01 0.1622 500 0.7216 0.3519 0.3900 0.4354 0.4448

1000 0.2562 0.3391 0.3980 0.4555 0.4738
Dec.01-Dec.09 0.1472 500 0.6388 0.3157 0.3342 0.3652 0.3810

1000 0.5155 0.2464 0.3204 0.3389 0.3448
PG Jan.93-Nov.01 0.1075 500 0.8159 0.2597 0.2878 0.3207 0.3329

1000 0.7150 0.1814 0.1881 0.2002 0.2047
Dec.01-Dec.09 0.0470 500 0.9764 0.2942 0.3075 0.3339 0.3511

1000 0.9695 0.2712 0.3285 0.3621 0.3803
MMM Jan.93-Nov.01 0.1459 500 0.9989 0.3949 0.4506 0.5296 0.5523

1000 1.0000 0.3584 0.3720 0.3949 0.4069
Dec.01-Dec.09 0.0238 500 0.9951 0.2018 0.2294 0.2776 0.2971

1000 1.0000 0.1995 0.2282 0.2501 0.2549
S&P500 Jan.93-Nov.01 0.0902 500 0.5638 0.2712 0.3069 0.3406 0.3603

1000 0.4516 0.2111 0.2243 0.2386 0.2526
Dec.01-Dec.09 0.0598 500 0.9391 0.2025 0.2200 0.2401 0.2574

1000 0.8634 0.1839 0.2045 0.2333 0.2454

37



Table 7: The table shows the test statistic ŜTj , the empirical p-values, and the subsample critical
values for the conditional leverage hypothesis test at four different levels of α for S&P500 index
and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter& Gamble (PG) and 3M (MMM). In
addition to the lagged one day return Rt−1, the test is also conditioning on more general forms of
h
(
σ2
t−1, . . . , σ

2
t−p
)
. Upper panel shows results of the test conditioning on h (.) as a finite approximation

for the exponential moving average in (9) and bottom panel shows results of the test conditioning on
h (.) as a real time forecast for RV 1min

t from the HAR-RV model in (10). Daily volatility is estimated
by daily realized variance with 1-min log returns. We set lag lengths of stock returns j = 1 and
subsample size b = 2000. The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading
days).

Finite Exponential Moving Average
α

p ŜT1 p-value 0.1 0.05 0.01 0.001
MSFT 5 0.1078 0.5236 0.1804 0.1961 0.2059 0.2107

10 0.2082 0.0039 0.1886 0.1928 0.1985 0.2162
22 0.2027 0.2194 0.2129 0.2214 0.2284 0.2291

IBM 5 0.0817 0.9098 0.1784 0.2181 0.2381 0.2525
10 0.0716 0.8717 0.1543 0.1736 0.1959 0.2043
22 0.0636 0.8126 0.1913 0.1954 0.2186 0.2230

GE 5 0.1274 0.4882 0.2332 0.2416 0.2452 0.2455
10 0.1194 0.4593 0.2271 0.2490 0.2714 0.2788
22 0.1401 0.4286 0.2604 0.2918 0.3162 0.3254

PG 5 0.0281 0.9904 0.1099 0.1147 0.1409 0.1530
10 0.0450 0.7412 0.1168 0.1416 0.1468 0.1504
22 0.0537 0.6668 0.1247 0.1293 0.1396 0.1443

MMM 5 0.1329 0.5263 0.1731 0.1877 0.1981 0.2161
10 0.1163 0.6734 0.2279 0.2340 0.2443 0.2650
22 0.1220 0.9934 0.2009 0.2160 0.2237 0.2260

S&P500 5 0.0361 0.7601 0.0947 0.1022 0.1235 0.1336
10 0.0086 1.0000 0.1001 0.1033 0.1178 0.1193
22 0.0148 0.9834 0.1415 0.1449 0.1501 0.1812

Real Time Forecast from the HAR-RV model
α

p ŜT1 p-value 0.1 0.05 0.01 0.001
MSFT 22 0.1166 0.6607 0.1349 0.1658 0.1719 0.1912
IBM 22 0.0710 0.7469 0.1189 0.1405 0.1522 0.1672
GE 22 0.1433 0.3529 0.0928 0.2152 0.2269 0.2458
PG 22 0.0117 0.9400 0.0596 0.1057 0.1151 0.1236
MMM 22 0.0442 0.9308 0.0901 0.1795 0.1925 0.2111
S&P500 22 0.0087 1.0000 0.0502 0.1182 0.1258 0.1456
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Table 8: The Table shows the OLS estimation results of the HAR-RV model augmented with the
terms for the leverage effects (25) and results of testing the hypothesis H0 : γ− ≤ γ+. The 1-
min realized variance RV 1min

t is used in the OLS fittings. In the parenthesis under the estimated
coefficients are t-statistics obtained with Newey-West standard errors with 18 lag periods. The cases
considered here are S&P500 index and five stocks from Dow Jones Industrial Averages: Microsoft
(MSFT), International Business Machines Corporation (IBM), General Electric (GE), Procter &
Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading
days).

H0 : γ− ≤ γ+
αD βRD βRW βRM γ+ γ− Adj R2 t-statistic p-value

MSFT R2
t−1 0.0000 0.3080 0.4009 0.2520 0.0054 0.0463 0.7996 2.88 0.0020

(1.5109) (3.4832) (3.4076) (4.8492) (1.0721) (3.1394)
|Rt−1| -0.0000 0.2982 0.4043 0.2530 0.0007 0.0040 0.8017 5.38 0.0000

(-2.1753) (3.3179) (3.4144) (4.8945) (1.9027) (5.5406)
IBM R2

t−1 0.0000 0.1908 0.5788 0.1399 -0.0131 0.0361 0.5970 3.00 0.0014
(3.1423) (1.2951) (2.7290) (2.1214) (-1.4009) (2.9700)

|Rt−1| 0.0000 0.1953 0.5534 0.1459 0.0000 0.0029 0.5974 3.67 0.0001
(1.8065) (1.4204) (2.9082) (2.4100) (-0.0355) (3.9841)

GE R2
t−1 0.0000 0.2581 0.4724 0.1006 -0.0140 0.2016 0.6300 3.42 0.0003

(2.7765) (3.7433) (6.0651) (1.5677) (-0.7284) (3.4924)
|Rt−1| -0.0000 0.2739 0.4597 0.0999 0.0011 0.0115 0.6175 3.44 0.0003

(-0.7339) (3.6260) (5.8477) (1.6040) (1.0789) (3.8243)
PG R2

t−1 0.0000 0.2021 0.2902 0.3967 -0.0123 0.0176 0.4187 1.91 0.0282
(3.5922) (1.9651) (2.7418) (4.4417) (-1.1327) (0.8961)

|Rt−1| 0.0000 0.1732 0.2616 0.3915 0.0014 0.0065 0.4433 2.33 0.0101
(0.5923) (1.7321) (2.3486) (4.6627) (1.1906) (1.9860)

MMM R2
t−1 0.0000 0.1103 0.5569 0.1881 0.0074 0.1306 0.5429 1.66 0.0490

(2.5989) (0.8507) (3.8863) (2.8876) (0.7038) (1.6649)
|Rt−1| 0.0000 0.1142 0.5667 0.1707 0.0012 0.0056 0.5360 2.02 0.0215

(0.0432) (0.8813) (3.5723) (2.4630) (1.6301) (2.0489)
S&P500 R2

t−1 0.0000 0.1014 0.5021 0.1377 0.0199 0.1952 0.6496 2.75 0.0030
(1.1027) (0.8112) (3.3468) (2.6276) (1.2872) (2.8746)

|Rt−1| -0.0000 0.0935 0.5880 0.1207 0.0011 0.0063 0.5995 2.37 0.0089
(-1.6314) (0.6226) (3.1857) (1.7781) (1.6719) (2.3395)

39



Table 9: The Table shows the OLS estimation results of the HAR-RV-CJ model augmented with
the terms for the leverage effects (26) and results of testing the hypothesis H0 : γ− ≤ γ+. The
1-min realized variance RV 1min

t is used in the OLS fittings. In the parenthesis under the estimated
coefficients are t-statistics obtained with Newey-West standard errors with 18 lag periods. The cases
considered here are S&P500 index and five stocks from Dow Jones Industrial Averages: Microsoft
(MSFT), International Business Machines Corporation (IBM), General Electric (GE), Procter &
Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading
days).

H0 : γ− ≤ γ+
αD βBD βBW βBM βJD βJW βJM γ+ γ− Adj R2 t-statistic p-value

MSFT R2
t−1 0.0000 0.2999 0.4329 0.2525 -0.0313 0.3389 0.9365 0.0055 0.0475 0.7950 2.86 0.0021

(2.1119) (2.8715) (3.5586) (4.2595) (-0.3367) (2.0899) (4.7025) (1.0799) (3.0443)
|Rt−1| 0.0000 0.2883 0.4362 0.2451 -0.0287 0.3450 0.9789 0.0009 0.0042 0.7974 5.29 0.0000

(0.0322) (2.7402) (3.5820) (4.1166) (-0.3086) (2.1076) (4.8550) (1.8815) (5.1591)
IBM R2

t−1 0.0000 0.1845 0.5967 0.1408 0.0011 0.2239 0.7517 -0.0106 0.0387 0.5869 2.94 0.0016
(3.9448) (1.1346) (2.6655) (2.1168) (0.0159) (0.5862) (2.0366) (-1.1125) (3.0450)

|Rt−1| 0.0000 0.1875 0.5739 0.1412 0.0123 0.1320 0.8368 0.0003 0.0032 0.5881 3.65 0.0001
(2.5105) (1.2241) (2.8251) (2.2809) (0.1824) (0.2948) (2.0337) (0.5110) (4.1115)

GE R2
t−1 0.0000 0.2816 0.4995 0.0842 0.0133 0.4664 0.5403 -0.0107 0.2038 0.6373 3.37 0.0004

(3.6073) (4.3197) (6.1839) (1.5749) (0.0515) (1.1606) (1.8748) (-0.5542) (3.4998)
|Rt−1| -0.0000 0.2981 0.4864 0.0805 -0.0098 0.3522 0.7051 0.0016 0.0119 0.6256 3.43 0.0003

(-1.4288) (4.3399) (5.8685) (1.5416) (-0.0373) (0.8862) (2.4516) (1.6488) (3.9520)
PG R2

t−1 0.0000 0.1727 0.3839 0.3571 0.1209 -0.0834 0.8698 -0.0090 0.0197 0.4118 1.74 0.0412
(3.8307) (1.2404) (6.7152) (2.6765) (3.6550) (-0.3955) (4.1265) (-0.7830) (0.9524)

|Rt−1| 0.0000 0.1349 0.3530 0.3350 0.1376 -0.1197 0.8877 0.0018 0.0070 0.4394 2.32 0.0101
(0.6036) (1.0996) (5.8374) (2.9011) (4.2783) (-0.5279) (4.1579) (1.4862) (2.0842)

MMM R2
t−1 0.0000 0.1089 0.6092 0.1477 0.0130 -0.0012 0.8853 0.0094 0.1376 0.5459 1.72 0.0430

(3.9076) (0.7835) (4.0426) (2.2613) (0.0624) (-0.0069) (3.0911) (0.9267) (1.7609)
|Rt−1| 0.0000 0.1016 0.6302 0.1309 0.1073 -0.0501 0.8321 0.0014 0.0059 0.5386 2.07 0.0191

(0.0660) (0.7176) (3.7460) (1.8819) (0.7681) (-0.2799) (3.5467) (1.9428) (2.1791)
S&P500 R2

t−1 0.0000 0.1096 0.4774 0.1542 0.0212 -0.4703 1.4289 0.0220 0.1972 0.6479 2.78 0.0027
(1.1751) (0.9227) (3.3274) (2.9598) (0.0974) (-0.6704) (1.1810) (1.4051) (2.8945)

|Rt−1| -0.0000 0.0978 0.5675 0.1374 0.0702 -0.5867 1.5699 0.0012 0.0064 0.5971 2.39 0.0084
(-1.5487) (0.7030) (3.3248) (2.0635) (0.3511) (-0.7494) (1.1615) (1.7194) (2.3504)

40



Table 10: The table shows minimum, mean and maximum values of daily standardized quadratic
co-variations between intraday log price Xt and function of spot variance F (σ2

t ) obtained by using
the method in Wang and Mykland (2013), and number of significant days when comparing the
daily standardized quadratic co-variations with different critical values. The standardized quadratic
co-variations are defined as L1 and L2 in (29) and (30) with 〈X,F (σ2)〉T = 0. We use 1-min
equally spaced data, and set T = one day and Mn = 30 for the estimations. We assume F (x) = x
and F (x) = 1/2 log (x). The cases considered here are S&P500 index and five stocks from Dow
Jones Industrial Averages: Microsoft (MSFT), International Business Machines Corporation (IBM),
General Electric (GE), Procter & Gamble (PG) and 3M (MMM). The sample period is from Jan-
04-1993 to Dec-31-2009 (4,283 trading days).

MSFT IBM
L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x) L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x)

Min. -2.807 -2.561 -2.906 -2.520 -2.421 -2.691 -2.509 -2.709
Mean -0.059 -0.065 -0.058 -0.065 -0.014 -0.017 -0.015 -0.019
Max. 2.224 2.498 2.429 2.716 2.584 2.728 2.763 2.728
|.| ≥ 1.96 29 46 32 47 39 51 40 54
. ≤ −1.64 85 102 88 98 66 94 70 99
|.| ≥ 2.58 2 0 1 1 1 2 1 3
. ≤ −2.33 2 3 3 5 1 3 1 3

GE PG
L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x) L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x)

Min. -2.322 -2.613 -2.51 -2.601 -2.416 -2.354 -2.426 -2.403
Mean -0.038 -0.039 -0.042 -0.042 -0.037 -0.038 -0.041 -0.043
Max. 2.815 2.765 2.790 2.851 2.263 2.475 2.260 2.501
|.| ≥ 1.96 42 63 42 70 18 35 20 37
. ≤ −1.64 83 108 86 109 60 95 66 101
|.| ≥ 2.58 1 2 1 2 0 0 0 0
. ≤ −2.33 0 1 1 2 1 2 1 2

MMM S&P500
L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x) L1 − x L1 − 1

2
log (x) L2 − x L2 − 1

2
log (x)

Min. -2.362 -2.638 -2.383 -2.646 -2.605 -2.735 -2.620 -2.987
Mean 0.001 0.003 0.000 0.003 -0.191 -0.186 -0.186 -0.186
Max. 2.496 2.471 2.504 2.434 2.850 2.785 2.781 2.969
|.| ≥ 1.96 43 64 50 71 148 244 157 257
. ≤ −1.64 88 99 87 101 308 379 307 392
|.| ≥ 2.58 0 1 0 1 2 8 4 13
. ≤ −2.33 1 6 1 6 15 39 19 42
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Table 11: The table shows estimated f = liml→0Corr (vt+l − vt, Xt+l −Xt) by using the data driven
method in Aı̈t-Sahalia, Fan and Li (2013). Here Xt := logPt and vt := σ2

t . The estimates are based
on sample correlation and bias corrected sample correlation (denoted by f̂k and f̂ bck ) between daily
returns Rt and the difference of the realized variances RV 1min

t . We also report the upper and lower

bounds k
∗

and k∗ for
{
k, f̂k

}k∗
k=k∗

used for estimating the regression, and the (unadjusted) R2 of the

regression. The cases considered here are S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-
2009 (4,283 trading days).

Uncorrected f̂k
IBM MSFT GE PG MMM S&P500

f -0.24 -0.31 -0.48 -0.32 -0.28 -0.36

k
∗

15 21 44 29 17 17
k∗ 55 53 87 91 54 94
R2 0.97 0.92 0.96 0.98 0.94 0.89

Bias Corrected f̂ bck
IBM MSFT GE PG MMM S&P500

f -0.25 -0.32 -0.48 -0.34 -0.30 -0.37

k
∗

15 20 31 29 17 15
k∗ 55 53 88 88 54 93
R2 0.97 0.93 0.97 0.98 0.95 0.91
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Figure 1: Time series plots of daily
√
RV 1min

t ,
√
RV 5min

t , RGt, and Rt for S&P500 index and five
stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business Machines
Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). The quantities

of
√
RV 1min

t ,
√
RV 5min

t , and RGt shown here are scaled by 100. The sample period is from Jan-04-
1993 to Dec-31-2009 (4,283 trading days).

43



−0
.0

6
−0

.0
2

0.
02

Cr
os

s−
co

r o
f R

V_
1m

in
 a

nd
 R

MSFT

−0
.1

0
−0

.0
5

0.
00

0.
05

Cr
os

s−
co

r o
f R

V_
5m

in
 a

nd
 R

−10 −5 0 5 10

−0
.0

8
−0

.0
4

0.
00

0.
04

Lag

Cr
os

s−
co

r o
f R

G
^2

 a
nd

 R

−0
.0

8
−0

.0
4

0.
00

0.
04

Cr
os

s−
co

r o
f R

V_
1m

in
 a

nd
 R

IBM

−0
.0

8
−0

.0
4

0.
00

0.
04

Cr
os

s−
co

r o
f R

V_
5m

in
 a

nd
 R

−10 −5 0 5 10

−0
.0

8
−0

.0
4

0.
00

0.
04

Lag

Cr
os

s−
co

r o
f R

G
^2

 a
nd

 R

−0
.1

0
−0

.0
5

0.
00

0.
05

Cr
os

s−
co

r o
f R

V_
1m

in
 a

nd
 R

GE

−0
.1

0
0.

00
0.

05

Cr
os

s−
co

r o
f R

V_
5m

in
 a

nd
 R

−10 −5 0 5 10

−0
.1

0
−0

.0
5

0.
00

0.
05

Lag

Cr
os

s−
co

r o
f R

G
^2

 a
nd

 R

−0
.1

5
−0

.1
0

−0
.0

5
0.

00

Cr
os

s−
co

r o
f R

V_
1m

in
 a

nd
 R

PG
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

Cr
os

s−
co

r o
f R

V_
5m

in
 a

nd
 R

−10 −5 0 5 10

−0
.1

5
−0

.0
5

Lag

Cr
os

s−
co

r o
f R

G
^2

 a
nd

 R

−0
.0

5
0.

00
0.

05

Cr
os

s−
co

r o
f R

V_
1m

in
 a

nd
 R

MMM

−0
.0

8
−0

.0
4

0.
00

0.
04

Cr
os

s−
co

r o
f R

V_
5m

in
 a

nd
 R

−10 −5 0 5 10

−0
.0

6
−0

.0
2

0.
02

Lag

Cr
os

s−
co

r o
f R

G
^2

 a
nd

 R

−0
.1

5
−0

.0
5

0.
05

Cr
os

s−
co

r o
f R

V_
1m

in
 a

nd
 R

S&P500

−0
.2

0
−0

.1
0

0.
00

Cr
os

s−
co

r o
f R

V_
5m

in
 a

nd
 R

−10 −5 0 5 10

−0
.1

5
−0

.0
5

0.
05

Lag

Cr
os

s−
co

r o
f R

G
^2

 a
nd

 R

Figure 2: Cross correlations of daily RV 1min
t , RV 5min

t , RG2
t , and Rt−j for S&P500 index and five

stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business Machines
Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). We set lag
length j = −10, . . . , 10, and the sample period for the calculations is from Jan-04-1993 to Dec-31-2009
(4,283 trading days).
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Figure 3: Plots of surfaces ˆ̄mT (y, g, π̂+) (left), τ̂ 1T (y, g, π̂+) (middle) and τ̂ 2T (y, g, π̂−) (left) of MSFT.
Note that ˆ̄mT (y, g, π̂+) = τ̂ 1T (y, g, π̂+) − τ̂ 2T (y, g, π̂−). Upper: j = 1. Bottom: j = 5. Here RV 5min

t

is the estimated daily volatility.
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t is

the estimated daily volatility.
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Figure 6: Time series plots of daily standardized quadratic co-variations between intraday log re-
turn Xt and function of spot variance F (σ2

t ) obtained by using the method in Wang and Mykland
(2013). The standardized quadratic co-variations are defined as L1 and L2 in (29) and (30) with
〈X,F (σ2)〉T = 0. We use 1-min equally spaced data, and set T = one day and Mn = 30 for the
estimations. We assume F (x) = x and F (x) = 1/2 log (x). The cases considered here are S&P500
index and five stocks from Dow Jones Industrial Averages: Microsoft (MSFT), International Business
Machines Corporation (IBM), General Electric (GE), Procter & Gamble (PG) and 3M (MMM). The
sample period is from Jan-04-1993 to Dec-31-2009 (4,283 trading days).
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Figure 7: Plots of sample correlation between returns and difference of the daily realized variances,
f̂k and bias corrected sample correlation f̂ bck in (32) against k. The bias corrected sample correlation

f̂ bck is obtained by using method in Aı̈t-Sahalia, Fan and Li (2013). We replace γ in (32) with γ̂ in
(33) which is estimated with mean of the realized quarticities and sample variance of the realized
variances. We use 1-min equally spaced log returns to estimate the daily realized variances and
quarticities. The cases considered here are S&P500 index and five stocks from Dow Jones Industrial
Averages: Microsoft (MSFT), International Business Machines Corporation (IBM), General Electric
(GE), Procter & Gamble (PG) and 3M (MMM). The sample period is from Jan-04-1993 to Dec-31-
2009 (4,283 trading days).
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