
Horowitz, Joel

Working Paper

Adaptive nonparametric instrumental variables
estimation: Empirical choice of the regularisation
parameter

cemmap working paper, No. CWP30/13

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Horowitz, Joel (2012) : Adaptive nonparametric instrumental variables estimation:
Empirical choice of the regularisation parameter, cemmap working paper, No. CWP30/13, Centre
for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2013.3013

This Version is available at:
https://hdl.handle.net/10419/79530

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2013.3013%0A
https://hdl.handle.net/10419/79530
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Adaptive nonparametric 
instrumental variables 
estimation: empirical choice of 
the regularisation parameter 
 
 

Joel Horowitz 

 

 

 
 

 

 

The Institute for Fiscal Studies 
Department of Economics, UCL 

 
cemmap working paper CWP30/13 



  

ADAPTIVE NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION:  
EMPIRICAL CHOICE OF THE REGULARIZATION PARAMETER 

 
 

by 
 
 

Joel L. Horowitz 
Department of Economics 
Northwestern University 

Evanston, IL 60208 
USA 

 
 

September 2012 
 
 
 

ABSTRACT 
 
 In nonparametric instrumental variables estimation, the mapping that identifies the 
function of interest, g  say, is discontinuous and must be regularized (that is, modified) to make 
consistent estimation possible.  The amount of modification is controlled by a regularization 
parameter.  The optimal value of this parameter depends on unknown population characteristics 
and cannot be calculated in applications.  Theoretically justified methods for choosing the 
regularization parameter empirically in applications are not yet available.  This paper presents 
such a method for use in series estimation, where the regularization parameter is the number of 
terms in a series approximation to g .  The method does not require knowledge of the smoothness 
of g  or of other unknown functions.  It adapts to their unknown smoothness.  The estimator of g  
based on the empirically selected regularization parameter converges in probability at a rate that 
is at least as fast as the asymptotically optimal rate multiplied by 1/ 2(log )n , where n  is the 
sample size.  The asymptotic integrated mean-square error (AIMSE) of the estimator is within a 
specified factor of the optimal AIMSE. 
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ADAPTIVE NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION:  
EMPIRICAL CHOICE OF THE REGULARIZATION PARAMETER 

1.  INTRODUCTION 

This paper is about estimating the unknown function g  in the model 

(1.1) ( ) ; ( | ) 0Y g X U E U W w= + = =  

for almost every w  or, equivalently, 

(1.2) [ ( ) | ] 0E Y g X W w− = =    

for almost every w .  In this model, g  is a function that satisfies regularity conditions but is 

otherwise unknown, Y  is a scalar dependent variable, X  is a continuously distributed 

explanatory variable that may be correlated with U  (that is, X  may be endogenous), W  is a 

continuously distributed instrument for X , and U  is an unobserved random variable.  The data 

are an independent random sample of ( , , )Y X W .  The paper presents a theoretically justified, 

empirical method for choosing the regularization parameter that is needed for estimation of g .  

 Existing nonparametric estimators of g  in (1.1)-(1.2) can be divided into two main 

classes:  sieve (or series) estimators and kernel estimators.  Sieve estimators have been developed 

by Ai and Chen (2003), Newey and Powell (2003); Blundell, Chen, and Kristensen (2007); and 

Horowitz (2012).  Kernel estimators have been developed by Hall and Horowitz (2005) and 

Darolles, Fan, Florens, and Renault (2011).  Florens and Simoni (2010) describe a quasi-Bayesian 

estimator based on kernels.  Hall and Horowitz (2005) and Chen and Reiss (2011) found the 

optimal rate of convergence of an estimator of g .  Horowitz (2007) gave conditions for 

asymptotic normality of the estimator of Hall and Horowitz (2005).  Horowitz and Lee (2012) 

showed how to use the sieve estimator of Horowitz (2012) to construct uniform confidence bands 

for g .  Newey, Powell, and Vella (1999) present a control function approach to estimating g  in 

a model that is different from (1.1)-(1.2) but allows endogeneity of X  and achieves identification 

through an instrument.  The control function model is non-nested with (1.1)-(1.2) and is not 

discussed further in this paper.  Chernozhukov, Imbens, and Newey (2007); Horowitz and Lee 

(2007); and Gagliardini, and Scaillet (2012) have developed methods for estimating a quantile-

regression version of model (1.1)-(1.2).  Chen and Pouzo (2008, 2009) developed a method for 

estimating a large class of nonparametric and semiparametric conditional moment models with 

possibly non-smooth moments.  This class includes the quantile-regression version of (1.1)-(1.2). 

 As is explained further in Section 2 of this paper, the relation that identifies g  in (1.1)-

(1.2) creates an ill-posed inverse problem.  That is, the mapping from the population distribution 
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of ( , , )Y X W  to g  is discontinuous.  Consequently, g  cannot be estimated consistently by 

replacing unknown population quantities in the identifying relation with consistent estimators.  

To achieve a consistent estimator it is necessary to regularize (or modify) the mapping that 

identifies g .  The amount of modification is controlled by a parameter called the regularization 

parameter.  The optimal value of the regularization parameter depends on unknown population 

characteristics and, therefore, cannot be calculated in applications.  Although there have been 

proposals of informal rules-of-thumb for choosing the regularization parameter in applications, 

theoretically justified empirical methods are not yet available.   

This paper presents an empirical method for choosing the regularization parameter in 

sieve or series estimation, where the regularization parameter is the number of terms in the series 

approximation to g .  The method consists of optimizing a sample analog of a weighted version 

of the integrated mean-square error of a series estimator of g .  The method does not require a 

priori knowledge of the smoothness of g  or of other unknown functions.  It adapts to their 

unknown smoothness.  The estimator of g  based on the empirically selected regularization 

parameter also adapts to unknown smoothness.  It converges in probability at a rate that is at least 

as fast as the asymptotically optimal rate multiplied by 1/ 2(log )n , where n  is the sample size.  

Moreover, its asymptotic integrated mean-square error (AIMSE) is within a specified factor of the 

optimal AIMSE.  The paper does not address question of whether the factor of 1/ 2(log )n  can be 

removed or is an unavoidable price that must be paid for adaptation.  This question is left for 

future research.  

 Section 2 provides background on the estimation problem and the series estimator that is 

used with the adaptive estimation procedure.  This section also reviews the relevant mathematics 

and statistics literature.  The problems treated in that literature are simpler than (1.1)-(1.2).  

Section 3 describes the proposed method for selecting the regularization parameter.  Section 4 

presents the results of Monte Carlo experiments that explore the finite-sample performance of the 

method.  Section 5 presents an empirical example, and Section 6 presents concluding comments.  

All proofs are in the appendix. 

2.  BACKGROUND 

 This section explains the estimation problem and the need for regularization, outlines the 

sieve estimator that is used with the adaptive estimation procedure, and reviews the statistics 

literature on selecting the regularization parameter. 
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2.1  The Estimation Problem and the Need for Regularization 

 Let X  and W  be continuously distributed random variables.  Assume that the supports 

of X  and W  are [0,1] .  This assumption does not entail a loss of generality, because it can be 

satisfied by, if necessary, carrying out monotone increasing transformations of X  and W .  Let 

XWf  and Wf , respectively, denote the probability density functions of ( , )X W  and W .  Define 

 ( ) ( | ) ( )Wm w E Y W w f w= = . 

Let 2[0,1]L  be the space of real-valued, square-integrable functions on [0,1] .  Define the operator 

A  from 2 2[0,1] [0,1]L L→  by 

 
[0,1]

( )( ) ( ) ( , )XWAh w h x f x w dx= ∫ , 

where h  is any function in 2[0,1]L .  Then g  in (1.1)-(1.2) satisfies Ag m= . 

 Assume that A  is one-to-one, which is necessary for identification of g .  Then 

1g A m−= .  If 2
XWf  is integrable on 2[0,1] , then zero is a limit point (and the only limit point) of 

the singular values of A .  Consequently, the singular values of 1A−  are unbounded, and 1A−  is a 

discontinuous operator.  This is the ill-posed inverse problem.  Because of this problem, g  could 

not be estimated consistently by replacing m  in 1g A m−=  with a consistent estimator, even if A  

were known.  To estimate g  consistently, it is necessary to regularize (or modify) A  so as to 

remove the discontinuity of 1A− .  A variety of regularization methods have been developed.  See, 

for example, Engl, Hanke, and Neubauer (1996); Kress (1999); and Carrasco, Florens, and 

Renault (2007), among many others.  The regularization method used in this paper is series 

truncation, which is a modification of the Petrov-Galerkin method that is well-known in the 

theory of integral equations.  See, for example, Kress (1999, pp. 240-245).  It amounts to 

approximating A  with a finite-dimensional matrix.  The singular values of this matrix are 

bounded away from zero, so the inverse of the approximating matrix is a continuous operator.  

The details of the method are described further in Section 2.2. 

2.2  Sieve Estimation and Regularization by Series Truncation 

 The adaptive estimation procedure uses a two-stage estimator that is a modified version 

of Horowitz’s (2012) sieve estimator of g .  The estimator is defined in terms of series 

expansions of g , m , and A .  Let { : 1,2,...}j jψ =  be a complete, orthonormal basis for 2[0,1]L .  

The expansions are  



 4 

1
( ) ( )j jj

g x b xψ
∞

=
=∑ ,  

1
( ) ( )k kk

m w m wψ
∞

=
=∑ ,  

and  

1 1
( , ) ( ) ( )XW jk j kj k

f x w c x wψ ψ
∞ ∞

= =
=∑ ∑ , 

where 

 
[0,1]

( ) ( )j jb g x x dxψ= ∫ , 

 
[0,1]

( ) ( )k km m w w dwψ= ∫ , 

and 

 
2[0,1]

( , ) ( ) ( )jk XW j kc f x w x w dxdwψ ψ= ∫ . 

To estimate g , we need estimators of km , jkc , m , and XWf .  Denote the data by 

{ , , : 1,..., }i i iY X W i n= , where n  is the sample size.  The estimators of km  and jkc , respectively, 

are 1
1

ˆ ( )n
k i k ii

m n Y Wψ−
=

= ∑  and 1
1

ˆ ( ) ( )n
jk j i k ii

c n X Wψ ψ−
=

= ∑ .  The estimators of m  and XWf , 

respectively, are 
1

ˆ ˆ( ) ( )nJ
k kk

m w m wψ
=

=∑  and 
1 1

ˆ ˆ( , ) ( ) ( )n nJ J
XW jk j kj k

f x w c x wψ ψ
= =

=∑ ∑ , where nJ  

is a series truncation point that, for now, is assumed to be non-stochastic.  It is assumed that as 

n →∞ , nJ →∞  at a rate that is specified in Section 3.1.  Section 3.3 describes an empirical 

method for choosing nJ .  Define the operator Â  that estimates A  by 

 
[0,1]

ˆˆ( )( ) ( ) ( , )XWAh w h x f x w dx= ∫ . 

The first-stage estimator of g  is defined as 

(2.2) 1ˆ ˆg A m−= .   

To obtain the second-stage estimator that is used with this paper’s adaptive estimation procedure, 

let ,⋅ ⋅  denote the inner product in 2[0,1]L .  For 1,..., nj J= , define ,j jb g ψ=  .  The jb ’s are 

the generalized Fourier coefficients of g  with the basis functions { }jψ .  Let nJ J≤  be a positive 

integer.  The second-stage estimator of g  is 

(2.3) 
1

ˆ
J

J j j
j

g b ψ
=

=∑  . 
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If J  is chosen to minimize the AIMSE of ˆ Jg , then ˆ Jg g−  converges  in probability to 0 at the 

optimal rate of Chen and Reiss (2011).  See Proposition A.1 of the appendix.  However, this 

choice of J  is not available in applications because it depends on unknown population 

parameters.  The adaptive estimation procedure consists of choosing J  in (2.3) to minimize a 

sample analog of a weighted version of the AIMSE of ˆ Jg .  This procedure is explained in 

Section 3.1.  Let Ĵ  denote the resulting value of  J .  The adaptive estimator of g  is ˆˆ Jg .  Under 

the regularity conditions of Section 3.2, ˆˆ Jg g−  converges in probability to 0 at a rate that is at 

least as fast as the optimal rate times 1/ 2(log )n .  Moreover, the AIMSE of ˆˆ Jg  is within a factor 

of 2 (4 / 3) log n+  of the AIMSE of the infeasible estimator that minimizes the AIMSE of ˆ Jg .  

Achieving these results does not require knowledge of the smoothness of g  or the rate of 

convergence of the singular values of A .  

 An alternative to the estimator (2.3) consists of using the estimator (2.2) with Ĵ  in place 

of nJ .  However, replacing nJ  with Ĵ  causes the lengths of the series in Â  and m̂  to be 

variables of the optimization problem.  The methods of proof of this paper do not apply in this 

case.  The asymptotic properties of g  with Ĵ  in place of nJ  are unknown.  

2.3  Review of Related Mathematics and Statistics Literature 

 Ill-posed inverse problems in models that are similar to but simpler than (1.1)-(1.2) have 

long been studied in mathematics and statistics.  Two important characteristics of (1.1)-(1.2) are 

that (1) the operator A  is unknown and must be estimated from the data and (2) the distribution 

of [ ( ) | ]V Y E g X W≡ − , is unknown.  The mathematics and statistics literatures contain no 

methods for choosing the regularization parameter in (1.1)-(1.2) under these conditions. 

 A variety of ways to choose regularization parameters are known in mathematics and 

numerical analysis.  Engl, Hanke, and Neubauer (1996), Mathé and Pereverzev (2003), Bauer and 

Hohage (2005), Wahba (1977), and Lukas (1993, 1998) describe many.  Most of these methods 

assume that A  is known and that the “data” are deterministic or that ( | )Var Y X x=  is known and 

independent of x .  Such methods are not suitable for econometric applications.   

 Spokoiny and Vial (2011) describe a method for choosing the regularization parameter in 

an estimation problem in which A  is known and V  is normally distributed.  The resulting 

estimator of g  converges at a rate that is within a factor of (log ) pn  of the optimal rate for a 
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suitable 0p > .  Loubes and Ludeña (2008) also consider a setting in which A  is known.  

Efromovich and Koltchinskii (2001), Cavalier and Hengartner (2005), Hoffmann and Reiss 

(2008), and Marteau (2006, 2009) consider settings in which A  is known up to a random 

perturbation and, possibly, a truncation error but is not estimated from the data.  Johannes and 

Schwarz (2010) treat estimation of g  when the eigenfunctions of *A A  are known to be 

trigonometric functions, where *A  is the adjoint of A .  Loubes and Marteau (2009) treat 

estimation of g  when the eigenfunctions of *A A  are known but are not necessarily trigonometric 

functions and the eigenvalues must be estimated from data.  Among the settings in the 

mathematics and statistics literature, this is the closest to the one considered here.  Loubes and 

Marteau obtain non-asymptotic oracle inequalities for the risk of their estimator and show that, 

for a suitable 1p > , their estimator’s rate of convergence is within a factor of (log ) pn  of the 

asymptotically optimal rate.  However, the eigenfunctions of *A A  are not known in econometric 

applications.  Section 3 describes a method for selecting J  empirically when neither the 

eigenvalues nor eigenfunctions of *A A  are known.  In contrast to Loubes and Marteau (2009), 

the results of this paper are asymptotic.  However, Monte Carlo experiments that are reported in 

Section 4 indicate that the adaptive procedure works well with samples of practical size.  Parts of 

the proofs in this paper are similar to parts of the proofs of Loubes and Marteau (2009). 

3.  MAIN RESULTS 

 This section begins with an informal description of the method for choosing J .  Section 

3.2 presents the formal results.   

3.1  Description of the Method for Choosing J  

 Define ( )AE ⋅  as the mean of the leading term of the asymptotic expansion of the random 

variable ( )⋅ .  Specifically, if n n nZ Z r= + , where nZ , nZ , and nr  are random variables, 

( )nE Z exists, and ( )n p nr o Z=   as n →∞ , then ( ) ( )A n nE Z E Z=  .  Define the asymptotically 

optimal J  as the value that minimizes the asymptotic integrated mean-square error (AIMSE) of 

ˆ Jg  as an estimator of g .  The AIMSE is 2ˆA JE g g− .  Denote the asymptotically optimal value 

of J  by optJ .  It is shown in Proposition A.1 of the appendix that under the regularity conditions 

of Section 3.2, 
2

ˆ
optA JE g g−  converges to zero at the fastest possible rate (Chen and Reiss 
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2011).  However, 2ˆA JE g g−  depends on unknown population parameters, so it cannot be 

minimized in applications.  We replace the unknown parameters with sample analogs, thereby 

obtaining a feasible estimator of a weighted version of 2ˆA JE g g− .  Let Ĵ  denote the value of 

J  that minimizes the feasible estimator.  Note that Ĵ  is a random variable.  The adaptive 

estimator of g  is ˆˆ Jg .  The AIMSE of the adaptive estimator is 
2

ˆˆA JE g g− .  Under the 

regularity conditions of Section 3.2, 

(3.1) 
22

ˆˆ ˆ[2 (4 / 3) log( )]
optA A JJE g g n E g g− ≤ + − . 

Thus, the rate of convergence in probability of ˆˆ Jg g−  is within a factor of 1/ 2(log )n  of the 

optimal rate.  Moreover, the AIMSE of ˆˆ Jg  is within a factor of 2 (4 / 3) log n+  of the AIMSE of 

the infeasible optimal estimator ˆ
optJg . 

The following notation is used in addition to that already defined.  For any positive 

integer J , let JA  be the operator on 2[0,1]L  that is defined by 

 
[0,1]

( )( ) ( ) ( , )J JA h w h x a x w dx= ∫ , 

where 

 
1 1

( , ) ( ) ( )
J J

J jk j k
j k

a x w c x wψ ψ
= =

=∑∑ . 

Let nJ  be the series truncation point defined in Section 2.2.  For any [0,1]x∈ , define 

 1

1
( , , , ) [ ( )] ( )( )( )

n

n n

J

n J k J k
k

x Y X W Y g X W A xδ ψ ψ−
=

= − ∑ , 

 1

1
( ) ( , , , )

n

n n i i i
i

S x n x Y X Wδ−

=

= ∑ , 

and 

 
1

J

J j j
j

g b ψ
=

=∑ . 

 The following proposition is proved in the appendix.   

 Proposition 1:  Let assumptions 1-6 of Section 3.2 hold.  Then, as n →∞ ,  

 
1

ˆ ,
J

J J n j j n
j

g g S rψ ψ
=

− = +∑ , 

where  



 8 

 
1

,
J

n p n j j
j

r o S ψ ψ
=

 
 =
 
 
∑  

for all nJ J≤ .    

Now for any nJ J≤ , 

 

2 2 2

2 22

ˆ ˆ

ˆ .

A J A J J J

A J J J

E g g E g g g g

E g g g g

− = − + −

= − + −

 

Therefore, it follows from Proposition 1 that 

 
22 22

1

ˆ ,
J

A J A n j J
j

E g g E S g gψ
=

− = + −∑ . 

Define 

 
2 2

1
( ) ,

J

n A n j J
j

T J E S gψ
=

= −∑ . 

Assume that n optJ J≥ .  Then because 2g  does not depend on J ,  

 
0

arg min ( )opt nJ
J T J

>
= . 

 We now put ( )nT J  into an equivalent form that is more convenient for the analysis that 

follows.  Observe that 

 1

1
( )( ) ( )

n

n

J
jk

J k j
j

A x c xψ ψ−

=

=∑ , 

where jkc  is the ( , )j k  element of the inverse of the n nJ J×  matrix [ ]jkc .  This inverse exists 

under the assumptions of Section 3.2.  Therefore, 

 

1

1 1 1

1 *

1

( )( )( ) ( ) ( )

( )[( ) ]( ),

n n n

n

n

n

J J J
jk

k J k k j
k j k

J

j J j
j

W A x c W x

x A W

ψ ψ ψ ψ

ψ ψ

−

= = =

−

=

=

=

∑ ∑∑

∑

 

where *  denotes the adjoint operator.  It follows that 

 1 *

1
( , , , ) [ ( )] ( )[( ) ]( )

n

n n

J

n J j J j
j

x Y X W Y g X x A Wδ ψ ψ−

=

= − ∑  
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and 

 1 *( , , , ), [ ( )][( ) ]( )
n nn j J J jY X W Y g X A Wδ ψ ψ−⋅ = − . 

Therefore, 

 
2

21 1 *

1 1
( ) [ ( )][( ) ]( )

n n

J n

n A i J i J j i J
j i

T J E n Y g X A W gψ− −

= =

  = − − 
  

∑ ∑ . 

It follows from lemma 3 of the appendix and the assumptions of Section 3.2 that 

 

2
1 1 *

1 1

1 2 1 * 2

1

[ ( )][( ) ]( )

[ ( )] {[( ) ]( )} .

n n

n n

J n

A i J i J j i
j i

J

A J J j
j

E n Y g X A W

n E Y g X A W

ψ

ψ

− −

= =

− −

=

  − 
  

= −

∑ ∑

∑

 

Therefore, 

 21 2 1 * 2

1
( ) [ ( )] {[( ) ]( )}

n n

J

n A J J j J
j

T J n E Y g X A W gψ− −

=

= − −∑ . 

This is the desired form of ( )nT J . 

( )nT J  depends on the unknown parameters 
nJg  and 

nJA  and on the operator AE .  

Therefore, ( )nT J  must be replaced by an estimator for use in applications.  One possibility is to 

replace 
nJg , 

nJA , Jg , and AE  with g , Â , ˆ Jg , and the empirical expectation, respectively.  

This gives the estimator 

 22 2 1 * 2

1 1

ˆ ˆ( ) [ ( )] {( ) ]( )}
n J

n i i j i J
i j

T J n Y g X A W gψ− −

= =

  ≡ − − 
  

∑ ∑


 . 

However, nT


 is unsatisfactory for two reasons.  First, it does not account for the effect on 

2
ˆˆA JE g g−  of the randomness of Ĵ .  This randomness is the source of the factor of log n  on 

the right-hand side of (3.1).  Second, some algebra shows that 

(3.2) 2 2 2ˆ ˆ ˆ2 ,J J J J J J Jg g g g g g g− = − + − . 

The right-hand side of (3.2) is asymptotically non-negligible, so the estimator of nT  must 

compensate for its effect.   

It is shown in the appendix that these problems can be overcome by using the estimator 
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(3.3) 22 2 1 * 2

1 1

ˆˆ ˆ( ) (2 / 3)(log ) [ ( )] {( ) ]( )}
n J

n i i j i J
i j

T J n n Y g X A W gψ− −

= =

  ≡ − − 
  

∑ ∑ . 

We obtain Ĵ  by solving the problem 

(3.4) 
:1

ˆminimize : ( )
n

n
J J J

T J
≤ ≤

, 

where nJ  is the truncation parameter used to obtain g , and nJ  satisfies assumption 6 of Section 

3.2.  Section 3.2 gives conditions under which ˆˆ Jg  satisfies inequality (3.1)  The problem of 

choosing nJ  in applications is discussed in Section 3.3. 

3.2  Formal Results 

 This section begins with the assumptions under which ˆˆ Jg  is shown to satisfy (3.1).  A 

theorem that states the result formally follows the presentation of the assumptions. 

Let *A  denote the adjoint operator of A .  Define ( )U Y g X= − .  For each positive 

integer J  and any positive, increasing sequence { : 1,2,...}j jν = , define the set of functions 

 1
2

1
[0,1]: ,

J

J j j J
j

h L h hν ψ ψ ν −

=

  = ∈ − ≤ 
  

∑ . 

For each positive integer J , define the set of functions 

2

1 1
: 1

J J

J j j j
j j

h h hψ
= =

  = = = 
  

∑ ∑ . 

and the scalar parameter 

 
1* 1/2sup ( )

J

J A A
ν

ρ ν
−

∈

 =  
. 

The parameter 2
J
−ρ  is the inverse of the smallest eigenvalue of the J J×  matrix whose ( , )j k  

element is 1 j kc c∞
=∑

 



.  In addition, Jρ  is a generalization of the sieve measure of ill-posedness 

defined by Blundell, Chen, and Kristensen (2007)1.      

 The assumptions are as follows. 

                                                      
1   Blundell, Chen, and Kristensen (2007) define the sieve measure of ill-posedness as 

1* 1/2

: 1
sup ( )

Jk h
A A h

−

∈ =

 
 

, where J J⊂   is a Sobolev space.  The sieve measure of ill-

posedness and Jρ  are the same if the eigenvectors of 1 j kc c∞
=∑

 



 ( , 1,...,j k J= ) are in J . 
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Assumption 1:  (i) The supports of X  and W  are [0,1] .  (ii) ( , )X W  has a bounded 

probability density function XWf  with respect to Lebesgue measure.  The probability density 

function of W , Wf , is non-zero almost everywhere on [0,1] .   

 Assumption 2:  (i) There is a finite constant YC  such that 2( | ) YE Y W w C= ≤  for each 

[0,1]w∈ .  (ii) There are finite constants 0UC > , 1 0Uc > , and 2 0Uc >  such that 

(| | | )jE U W w= ≤  2 2! ( | )j
UC j E U W w− =  and 2

1 2( | )U Uc E U W w c≤ = ≤  for every integer 2j ≥  

and [0,1]w∈ .   

Assumption 3:  (i) (1.1) has a solution 2 [0,1]g L∈  .  (ii) The estimators g  and ˆ Jg  are as 

defined in (2.2)-(2.3).   

 Assumption 4:  The operator A  is one-to-one.   

Assumption 5:  (i) The basis functions { }jψ  are orthonormal, complete on 2[0,1]L .  (ii)  

There is a non-decreasing, positive sequence { : 1,2,...}j jν =  such that s
jj ν−  is bounded away 

from 0 for all j  and some 3s > , and Jg ν∈ .  If jν  increases exponentially fast as j  increases, 

then s
jj ν− →∞  for any finite s .  (iii)  There are constants Cψ  and τ  with 0 Cψ< < ∞  and 

0 ( 3) / 2sτ≤ < −  such that 0 1sup | ( ) |x j x C jτψψ≤ ≤ ≤  for each 1,2,...j = .  (iv)  There are constants 

1 / 2α > , 0ε > , C < ∞  and D  with 2 2
1 jj

j b Dα∞

=
< < ∞∑  such that for all (1 / 2, )∈δ α ,  

1 1)
sup

J D

J
J

h

A A h
CJ

h
δ

ε ρ− − −

∈

−
≤


 and 1( )( )J J

J
J

A A g g
C

g g
−− −

≤
−

ρ , 

where { }2 2
1 1:J J

J D j j jj jh h j h Dδ
δ ψ

= =
= = ≤∑ ∑ .   

 Assumption 6:  As n →∞ , (i) 3 1/ 2( / ) 0
nJ nJ nρ → , (ii) 4 1/ 2( / )

nJ nJ nρ →∞ , and (iii) 

1 4 2/ 0
nn JJ τ ρ+ → .   

 Assumptions 1 and 2 are smoothness and boundedness conditions.  Assumption 3 defines 

the model and estimators of g .  Assumption 4 is required for identification of g .  Assumption 5 

specifies properties of the basis functions { }jψ .  Assumption 5(ii) specifies the accuracy of a 

truncated series approximation to g  and is similar to assumption 2.1 of Chen and Reiss (2011).  

Assumption 5(ii) is satisfied with s
j jν ∝  if g  has s  square-integrable derivatives and the basis 

functions belong to a class that includes trigonometric functions, Legendre polynomials that are 
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shifted and scaled to be orthonormal on [0,1] , and B-splines that have been orthonormalized by, 

say, the Gram-Schmidt procedure.  Assumption 5(iii) is satisfied by trigonometric functions 

( 0τ = ), shifted and scaled Legendre polynomials ( 1 / 2τ = ), and orthonormalized cubic B-

splines ( 3 / 2τ = ) if s  is large enough.  Legendre polynomials require 4s > , and cubic B-splines 

require 6s > .  Assumption 5(iv) requires the basis functions to be such that a truncated series 

approximation to A  is sufficiently accurate.  Assumption 5(iv) restricts the magnitudes of the off-

diagonal elements of the infinite dimensional matrix whose ( , )j k  component is jkc  and is 

analogous to the diagonality restrictions of Hall and Horowitz (2005).  Assumption 6 restricts the 

rate of increase of nJ  as n →∞  and further restricts the size of τ .  Assumption 5 implies that 

the function m  satisfies 

 1 1
1

1

J

j j J
j

m m C J εψ ρ− − −

=
− ≤∑  

for some constants 1C < ∞  and 0ε > .  See lemma 4 in the appendix for a proof. 

 For sequences of positive numbers { }na  and { }nb , define n na b  if /n na b  is bounded 

away from 0 and ∞  as n →∞ .  The problem of estimating g  is said to be mildly ill-posed if 

r
J Jρ   for some finite 0r >  and severely ill posed if J

J eβρ   for some finite 0β > .  

Suppose that s
j jν   and s < ∞ .  Then in the mildly ill-posed case, 1/(2 2 1)r s

optJ n + +∝  and 

/(2 2 1)ˆ [ ]
opt

s r s
J pg g O n− + +− =  (Blundell, Chen, and Kristensen 2007; Chen and Reiss 2011).  In 

the severely ill-posed case, (log )optJ O n=  and ˆ [(log ) ]
opt

s
J pg g O n −− = .  Rates approaching 

the parametric rate 1/2( )pO n−  are possible if s = ∞  but depend on the details of Jρ  and the jν ’s.  

The results of this section hold in the mildly and severely ill-posed cases and for finite and 

infinite values of s .   

 We now have the following theorem. 

 Theorem 3.1:  Let assumptions 1-6 hold.  Then ˆˆ Jg  satisfies inequality (3.1).    

3.3  Choosing nJ  in Applications 

 nJ  in problem (3.4) depends on Jρ  and, therefore, is not known in applications.  This 

section describes a way to choose nJ  empirically.  It is shown that inequality (3.1) holds with the 

empirically selected nJ .  The method for choosing nJ  has two parts.  The first part consists of 
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specifying a value for nJ  that satisfies assumption 6.  This value depends on the unknown 

quantity Jρ .  The second step consists of replacing Jρ  with an estimator.2   

 To take the first step, define 0nJ  by  

(3.6) 2 3.5 2 3.5
0 1,2,...

arg min { / : / 1 0}n J JJ
J J n J nρ ρ

=
= − ≥ . 

Because 2 3.5 /J J nρ  is an increasing function of J , 0nJ  is the smallest integer for which 

2 3.5 / 1J J nρ ≥ .  For example, if J J βρ =  for some 0β > , then 0nJ  is the integer that is closest to 

and at least as large as 1/(3.5 2 )n β+ .  If J
J eβρ =  for some 0β > , then 0 (log )nJ O n= .  

 0nJ  satisfies assumption 6 if τ  is not too large but is not feasible because it depends on 

Jρ .  We obtain a feasible estimator of 0nJ  by replacing 2
Jρ  in (3.6) with an estimator.  To 

specify the estimator, let ˆ
JA  ( 1,2,...J = ) be the operator on 2[0,1]L  whose kernel is 

 
1 1

ˆ ˆ( , ) ( ) ( ); , [0,1]
J J

J jk j k
j k

a x w c x w x wψ ψ
= =

= ∈∑∑ . 

The estimator of 2
Jρ  is denoted by 2ˆJρ  and is defined by 

 2 *ˆ ˆˆ inf
J

J J Jh
A A hρ−

∈
=


. 

Thus, 2ˆJρ
−  is the smallest eigenvalue of *ˆ ˆ

J JA A .  The estimator of 0nJ  is 

 2 3.5 2 3.5
0 1,2,...

ˆ ˆ ˆarg min { / : / 1 0}n J JJ
J J n J nρ ρ

=
= − ≥ . 

 The main result of this paper is given by the following theorem. 

 Theorem 3.2:  Let assumptions 1-6 hold.  Assume that either J J βρ   (mildly ill-posed 

case) or J
J eβρ   (severely ill-posed case) for some finite 0β > .  Then (i) 0 0

ˆ( ) 1n nP J J= →  as 

n →∞ .  (ii) Let ˆ
ˆ̂

Jg  be the estimator of g  that is obtained by replacing nJ  with 0
ˆ
nJ  in (3.4).  

Then  

 
2 2

ˆ
ˆ̂ ˆ[2 (4 / 3) log( )]

optA A JJE g g n E g g− ≤ + − .    

                                                      
2   Blundell, Chen, and Kristensen (2007) proposed estimating the rate of increase of Jρ  as J  
increases by regressing an estimator of log( )Jρ  on log J  or J  for the mildly and severely ill-
posed cases, respectively.  Blundell, Chen, and Kristensen (2007) did not explain how to use this 
result to select a specific value of J  for use in estimation of g . 
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Thus the estimator ˆ
ˆ̂

Jg  that is based on the estimator 0
ˆ
nJ  satisfies the same inequality as the 

estimator ˆˆ Jg  that is based on a non-stochastic but infeasible nJ .3 

4.  MONTE CARLO EXPERIMENTS 

This section describes the results of a Monte Carlo study of the finite-sample 

performance of ˆˆ Jg .  There are 1000 Monte Carlo replications in each experiment.  The basis 

functions { }jψ  are Legendre polynomials that are centered and scaled to be orthonormal on 

[0,1] .  nJ  is chosen using the empirical method that is described in Section 3.3. 

The Monte Carlo experiments use two different designs.  There are 5 experiments with 

Design 1 and 2 experiments with Design 2.  In Design 1, the sample size is 1000.  Realizations of 

( , )X W  were generated from the model 

(4.1) 
1

( , ) 1 2 cos( )cos( )XW j
j

f x w c j x j wπ π
∞

=

= + ∑ , 

where 10.7jc j−=  in experiment 1, 20.6jc j−=  in experiment 2, 40.52jc j−=  in experiment 3, 

1.3exp( 0.5 )jc j= −  in experiment 4, and 2exp( 1.5 )jc j= −  in experiment 5.  In all experiments, 

the marginal distributions of X  and W  are [0,1]U , and the conditional distributions are 

unimodal with an arch-like shape.  The estimation problem is mildly ill-posed in experiments 1-3 

and severely ill-posed in experiments 4-5.   

The function g  is 

(4.2) 0
1

( ) 2 cos( )j
j

g x b b j xπ
∞

=

= + ∑ , 

where 0 0.5b =  and 4
jb j−=  for 1j ≥ .  This function is plotted in Figure 1.  The series in (4.1) 

and (4.2) were truncated at 100j =  for computational purposes.  Realizations of Y  were 

generated from 

 [ ( ) | ]Y E g x W V= + , 

where ~ (0,0.01)V N .   

                                                      
3   It is possible that the efficiency of ĝ  can be improved by re-estimating its Fourier coefficients 
using a series length of Ĵ  instead of truncating the series of length 0

ˆ
nJ  that is g .  We do not 

investigate this possibility here.  The resulting estimator, like ˆ
ˆ̂

Jg , would have an AIMSE that is 
within a factor of log n  of the optimal AIMSE.  
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 Monte Carlo Design 2 mimics estimation of an Engel curve from the data used in the 

empirical example of Section 5.  The data consist of  household-level observations from the 

British Family Expenditure Survey (FES), which is a popular data source for studying consumer 

behavior.  See Blundell, Pashardes, and Weber (1993), for example.  We use a subsample of 1516 

married couples with one or two children and an employed head of household.  In these data, X  

denotes the logarithm of total income, and W denotes the logarithm of annual income from wages 

and salaries of the head of household.  Blundell, Chen, and Kristensen (2007) and Blundell and 

Horowitz (2007) discuss the validity of W  as an instrument for X .  In the Monte Carlo 

experiment, the dependent variable Y  is generated as described below. 

 The experiment mimics repeated sampling from the population that generated the FES 

data.  The data { , : 1,...,1516}i iX W i =  were transformed to be in 2[0,1]  by using the 

transformations  

 1 1516 1 1516 1 1516( min ) /(max min )i i j j j j j jX X X X X≤ ≤ ≤ ≤ ≤ ≤→ − −   

and 

 1 1516 1 1516 1 1516( min ) /(max min )i i j j j j j jW W W W W≤ ≤ ≤ ≤ ≤ ≤→ − − . 

The transformed data were kernel smoothed using the kernel 2 2( ) (15/16)(1 ) (| | 1)K v v I v= − ≤  to 

produce a density ( , ; )FESf x w σ , where σ  is the bandwidth parameter.  The bandwidths are 

0.05σ =  and 0.10 , respectively, in experiments 6 and 7.  This range contains the cross-

validation estimate, 0.07σ = , of the optimal bandwidth for estimating the density of the FES 

data.  Numerical evaluation of Jρ  showed that J
J eβρ ∝  with 3.1β =  when 0.05σ =  and 

3.4β =  when 0.10σ = .  Thus, the estimation problem is severely ill-posed in the Design 2 

experiments.  The experiments use ( ) [( 0.5) / 0.24]g x x= Φ − , which mimics the share of 

household expenditures on some good or service.  The dependent variable Y  is 

(4.3) [ ( ) | ]Y E g X W V= + , 

where ( , )X W  is randomly distributed with the density ( , ; )FESf x w σ  and ~ (0,0.01)V N  

independently of ( , )X W .   

 Each experiment consisted repeating the following procedure 1000 times.  A sample of 

1516n =  observations of ( , )X Z  was generated by independent random sampling from the 

distribution whose density is ( , ; )FESf x w σ .  Then 1516 corresponding observations of Y  were 

generated from (4.3).  Finally, g  was estimated using the methods described in this paper.   
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 The results of the experiments are displayed in Table 1, which shows the empirical means 

of 
2

ˆ
optJg g−  and 

2
ˆ

ˆ̂
Jg g− , the ratio  

 

2
ˆ

2

ˆ̂

ˆ
opt

J

J

Empirical mean of g g
R

Empirical mean of g g

−
≡

−
, 

and 2 (4 / 3) logB n≡ + , which is the theoretical asymptotic upper bound on R  from inequality 

(3.1).  The results show that the differences between the empirical means of 
2

ˆ
optJg g−  and 

2

ˆ
ˆ̂

Jg g−  are small and that the ratio R  is well within the theoretical bound B  in all of the 

experiments.  In experiments 3 and 7, 1R =  because ˆ
optJ J=  in all Monte Carlo replications. 

5.  AN EMPIRICAL EXAMPLE 

 This section presents the estimate of an Engel curve for food that is obtained  by applying 

the methods of Section 3 to the FES data described in Section 4.  As in Section 4, the basis 

functions are Legendre polynomials that are shifted and scaled to be orthonormal on [0,1] .  nJ  is 

chosen using the empirical method of Section 3.3, and Ĵ  is chosen by solving problem (3.4) after 

replacing nJ  with 0
ˆ
nJ .  Computation of ˆJρ  showed that 3.3ˆ J

J eρ ∝ , so the estimation problem 

is severely ill posed.  

 The estimated Engel curve is shown in Figure 2.  It is nearly linear.  This may be 

surprising, but a test of the hypothesis that the true Engel curve is linear against a nonparametric 

alternative (Horowitz 2006) does not reject the hypothesis of linearity ( 0.1p > ).  Similarly, in 

parametric instrumental variables estimation under the assumption that g  is a polynomial 

function of X , it is not possible to reject the hypothesis that the coefficients of terms of degree 

higher that one are zero.  The result of the specification test of Horowitz (2006) implies that a 

90% confidence region centered on the true Engel curve would contain a linear function.4  

 

                                                      
4  The hypotheses that Engel curves for services and other goods are linear also cannot be 
rejected.  The inability to reject linearity of several Engel curves is likely due to the severe ill-
posedness of the estimation problem, which prevents estimation of the curves with sufficient 
accuracy to discriminate between linearity and nonlinearity. 
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6.  CONCLUSIONS 

 This paper has presented a theoretically justified, empirical method for choosing the 

regularization parameter in nonparametric instrumental variables estimation.  The method does 

not require a priori knowledge of smoothness or other unknown population parameters.  The 

method and the resulting estimator of the unknown function g  adapt to the unknown smoothness 

of g  and the density of ( , )X W .  The results of Monte Carlo experiments indicate that the 

method performs well with samples of practical size. 

 It is likely that the ideas in this paper can be applied to the multivariate model 

( , )Y g X Z U= + , ( | , ) 0E U W Z = , where Z  is a continuously distributed, exogenous 

explanatory variable or vector and W  is an instrument for the endogenous variable X .  This 

model is more difficult than (1.1)-(1.2), because it requires selecting at least two regularization 

parameters, one for X  and one or more for the components of Z .  The multivariate model will 

be addressed in future research. 

APPENDIX 

 This appendix presents proofs of Proposition 1 and A.1, Theorems 3.1 and 3.2, and 

several lemmas that are used in the proofs of the propositions and theorems.  Assumptions 1-6 

hold throughout.  Define { :1 }n nJ J J= ≤ ≤ .  For nJ ∈ , define  

 1 2 1 * 2

1
( ) [ ( )] {( ) ]( )}

n n

J

n J J j
j

S J n E Y g X A Wψ− −

=

≡ − ∑ , 

2 2 1 * 2

1 1
( ) [ ( )] {( ) ]( )}

n n

n J

n i J i J j i
i j

S J n Y g X A Wψ− −

= =

  ≡ − 
  

∑ ∑ , 

and 

2 2 1 * 2

1 1

ˆ ˆ( ) [ ( )] {( ) ]( )}
n J

n i i j i
i j

S J n Y g X A Wψ− −

= =

  = − 
  

∑ ∑ . 

Define ( )i i iU Y g X= −  ( 1,..., )i n= . 

 We begin with five lemmas that are used in the proof of Proposition 1.  Then 

Propositions 1  and A.1 are proved.  Four additional lemmas that are used in the proof of 

Theorem 3.1 are presented after the proofs of the propositions.  Finally, Theorems 3.1 and 3.2 are 

proved.  

 Lemma 1:  Let nJ J≤ .  Then 
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(A.1) 1sup
n

J

J J
h

A h ρ−

∈
=


 

and 

(A.2) 1 *sup ( )
n

J

J J
h

A h ρ−

∈
=


 . 

 Proof:  Only (A.1) is proved.  The proof of (A.2) is similar.  Let I  denote the identity 

operator in 
nJ .  Note that 

nJ J⊂  .  For Jh∈ , 

 1 1 1 1 1 1( ) [ ( )] ( )
n n n n n nJ J J J J JA A h I A A A A A A A h− − − − − −− = − + − − . 

But 1 1( ) 0
n n nJ J JA A A A h− −− =  for Jh∈ .  Therefore,  

 

(A.3) 1 1
nJA h A h− −= .   

Now, 

 1sup
J

J
h

A hρ −

∈
=


, 

so it follows from (A.3) that 

 1sup
n

J

J J
h

A hρ −

∈
=


. 

Q.E.D. 

 Lemma 2:   The following hold as n →∞ : 

(A.4) 1/2 1/2

, 1

ˆsup ( ) ( )
n

J D

J n p
h h

A A h J O n
δ

−

∈ =
− =


 

and 

(A.5) * 1/2 1/2

, 1

ˆsup ( ) ( )
n

J D

J n p
h h

A A h J O n
δ

−

∈ =
− =


. 

 Proof:  Only (A.4) is proved.  The proof of (A.5) is similar.  Let ,j jh hψ= .  

For any J Dh δ∈ ,  
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2
2

1 1

2

1 1

2
2 2

2
1 1

ˆ ˆ(A.6) ( ) ( )

ˆ
( )

ˆ( )
,

n n

n

n n

n n n

J J

J j jk jk
k j

J J
jk jk

j
k j

J J J
jk jk

j
k j j

A A h h c c

c c
j h

j

c c
j h

j

δ
δ

δ
δ

= =

= =

= =

 
 − = −
  

 − 
 =      

  −
 ≤
 
 

∑ ∑

∑ ∑

∑ ∑ ∑

, 

where the last line follows from the Cauchy-Schwarz inequality.  But 2 2
1 jj

j h Dδ∞

=
<∑ . 

Therefore, 

 
22

2
1 1

ˆ( )ˆ( )
n n

n

J J
jk jk

J
k j

c c
A A h D

j δ
= =

−
− ≤ ∑∑  

for any J Dh δ∈ .  In addition, 2 1ˆ( )jk jkE c c Cn−− ≤  for some constant C < ∞ , every ( , )j k  and 

every sequence of Fourier coefficients { }jkc .  Therefore 1/ 2ˆ ( )jk jk pc c O n−− =  for every ( , )j k  

and sequence { }jkc , where . 1/2( )pO n−  does not depend on the sequence.  It follows that, 

 

2 1 2

1 1

1
2

1

1

ˆsup ( ) ( )

1( )

( ).

n n

n
J D

n

J J

J p
h k j

J

n p
j

n p

A A h O n j

J O n
j

J O n

δ

δ

δ

− −

∈ = =

−

=

−

− ≤

=

=

∑∑

∑



 

Q.E.D. 

 Lemma 3:  As n →∞ , 

 
2

2 1 1 *

1 1 1
, [( ) ]( )

n

J J n

n j i J j i n
j j i

S n U A W rψ ψ− −

= = =

  = + 
  

∑ ∑ ∑ , 

where 2| | /n n Jr b nρ= , (1)n pb o= , and nb  does not depend on J .  Moreover, there are finite 

constants 1M  and 2M  such that 
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2

2 1 1 * 2
1 2

1 1
/ [( ) ]( ) ( / )

n

J n

J i J j i J
j i

M n E n U A W M J nρ ψ ρ− −

= =

  ≤ ≤ 
  

∑ ∑  

for every nJ ∈ . 

 Proof:  We have 

 1

1
( ) ( , , , )

n

n n i i i
i

S x n x Y X Wδ−

−

= ∑  

 1 1 *

1 1
( ) [ ( )][( ) ]( ) .

n

n n

J n

j i J i J j i
j i

x n Y g X A Wψ ψ− −

= =

  = − 
  

∑ ∑  

Therefore, 

 
2

2 1 1 *

1 1 1
, [ ( )][( ) ]( )

n n

J J n

n j i J i J j i
j j i

S n Y g X A Wψ ψ− −

= = =

  = − 
  

∑ ∑ ∑ . 

But 

 1 1 *
1 2

1
[ ( )][( ) ]( )

n n

n

i J i J j i nj nj
i

n Y g X A W R Rψ− −

=

− = +∑ , 

where 

 1 1 *
1

1
[( ) ]( )

n

n

nj i J j i
i

R n U A Wψ− −

=

= ∑  

and 

 1 1 *
2

1
[ ( ) ( )][( ) ]( ).

n n

n

nj J i i J j i
i

R n g X g X A Wψ− −

=

= − −∑  

1( ) 0njE R = , and  

1 2 1 * 2
1

1 1
( ) ( ){[( ) ]( )] }

J J

nj U J j
j j

Var R n E W A Wσ ψ− −

= =

=∑ ∑ , 

where 2 2( ) ( | )U w E U W wσ = = .  But 2
Uσ  and Wf  are bounded from above  Therefore, use of 

lemma 1 yields 

1 2
1 2

1
( )

J

nj J
j

Var R M n Jρ−

=

≤∑  

for some finite constant 2M .  Similarly, 2
Uσ  and Wf  are bounded. away from 0, so 
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 1 2
1 1

1
( )

J

nj J
j

Var R M n ρ−

=

≥∑ . 

for finite constant 1 0M > .  Therefore, 

(A.6) 1 2 1 2
1 1 2

1
( )

J

J nj J
j

M n Var R M n Jρ ρ− −

=

≤ ≤∑  

for every j J≤ .  In addition,  

 

2

1 *
2 [0,1]

1 *

1 *

( ) ( , )[ ( ) ( )][( ) ]( )

( ),( )

( )( ),( ) .

n n

n n

n n n

nj XW J J j

J J j

J J J j

E R f x w g x g x A w dxdw

A g g A

A A g g A

ψ

ψ

ψ

−

−

−

= − −

= − −

= − − −

∫

 

Therefore, the Cauchy-Schwarz inequality gives 

 1 *
2( ) ( )( ) ( )

n n nnj J J J jE R A A g g A ψ−≤ − − . 

But 1( )( ) ( )
n n

s
J n J nA A g g O J− −− − = ρ  for some 3s >  by assumption 5, and 1 *( )

nJ j JA ψ ρ− ≤  by 

lemma 1.  Therefore, 1 1/2
2| ( ) | ( ) ( / )

n

s
nj J J n JE R O J o n− −= =ρ ρ ρ  for every nJ J≤ .  Also 

2 2
2( ) /s

nj n JVar R J nρ−≤ .  It follows from Markov’s inequality and assumption 6 that for some 

positive sequence { }nb  with 0nb →  as n →∞ , 

(A.7) 2 2
2

1
/

J

nj n J
j

R b nρ
=

≤∑  

for every j J≤  with probability arbitrarily close to 1.  The lemma follows by combining (A.6) 

and (A.7).  Q.E.D.  

 Lemma 4:  There are constants 1C < ∞  and 0ε >  such that  

1 1
1

1

J

j j J
j

m m C J εψ ρ− − −

=
− ≤∑ . 

 Proof:  Define  1
J

J k kkm m ψ
=

=∑ .  Then 

 
1 1

J j jk k
k J j

m m b c ψ
∞ ∞

= + =
− = ∑ ∑ . 

But 
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1 1 1 1

1 1

( )

( ) .

J

J j jk k j jk k
k J j k j J

J

J j jk k
k j J

A A g b c b c

m m b c

ψ ψ

ψ

∞ ∞ ∞

= + = = = +

∞

= = +

− = +

= − +

∑ ∑ ∑ ∑

∑ ∑

 

Therefore, it follows from the triangle inequality that 

 
1 1

( )
J

J J j jk k
k j J

m m A A g b c ψ
∞

= = +
− ≤ − + ∑ ∑ . 

But 

 

2 2

1 1 1 1

2
2

1 1
( ) .

J J

j jk k j jk
k j J k j J

j jk n
k j J

b c b c

b c A g g

ψ
∞ ∞

= = + = = =

∞ ∞

= = =

 
 =
 
 

 
 ≤ = −
 
 

∑ ∑ ∑ ∑

∑ ∑

 

Therefore, 

 
( ) ( )

( ) 2 ( )( ) .

J J n

J n J n

m m A A g A g g

A A g A A g g

− ≤ − + −

= − + − −

 

The lemma now follows from assumption 5.  Q.E.D. 

Lemma 5:  Let 0ε >  be as in assumption 5(iii).  Then 1 /2 (1)n pJ g g oε+ − = . 

 Proof:  Let δ  be such that 1 / 2 1 / 2 / 2δ ε< < +  and assumption 5(iii) holds.  Define  

 ˆ ˆ ˆarg min
J Dn

h
h Ah m

δ∈
= −


. 

We show that 1 /2 ˆ (1)n pJ h g oε+ − = .  We further show that this implies that with probability 

approaching 1 as n →∞ , the constraint 
nJ Dh δ∈  is not binding.  Therefore, ĥ g=   with 

probability approaching 1.  It follows that 1 /2 (1)n pJ g g oε+ − = . 

By assumption 5 and the triangle inequality 

1

ˆ ˆ(A.10)

ˆ ( ).

n n

n J

h g h g g g

h g O ν −

− ≤ − + −

= − +
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Now 

 

ˆ ˆ( )

ˆ ˆˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆˆ ˆˆ ˆ( ) ( ) ( ) ( )

ˆ ˆˆ ˆˆ ˆ( ) ( ) ( ) .

n

n

n

n n n n

n J n

J n

J n

J J J J n

h g A h g

Ah m A A h m m A g g Ag m

Ah m A A h m m A g g

Ah m A A h m m A g g

ρ

ρ

ρ

ρ ρ ρ ρ

− ≤ −

= − − − + − − − − −

= − − − + − − −

≤ − + − + − + −

 

Now 

 
1/2 1 1

ˆ ˆ ˆˆ ˆ( ) ( ) ( )

( / ) ( )

n n

n

J J

p n n J

A A h A A h A A h

O J n O J ε ρ− − −

− ≤ − + −

= +

 

by lemma 2 and assumption 5.  In addition, standard arguments combined with lemma 4 show 

that 
1

1/2 1 1ˆ [( / ) ] ( )p n n Jm m O J n O J ε ρ− − −− = + .  Therefore, 

 1/2 1ˆ ˆˆ ˆ ( ) [ ( / ) ] ( )
n n nn J J n p J n nh g Ah m A g g O J n O J ερ ρ ρ − −− ≤ − + − + + . 

Now assumption 5 implies that 

1 1( ) ( )( ) ( )
n n nn J n J JA g g A A g g O − −− = − − = ν ρ . 

Therefore, 

 1/2 1ˆ ˆˆ ˆ [ ( / ) ] ( )
n nn J p J n nh g Ah m O J n O J ερ ρ − −− ≤ − + + . 

Now 

 

1/2 1 1

ˆˆ ˆˆ ˆ

ˆ ˆ( ) ( ) ( )

ˆ ˆ( )

[( / ) ] ( ).
np n n J

Ah m Ag m

A A g Ag m m m

A A g m m

O J n O J ε ρ− − −

− ≤ −

= − + − − −

≤ − + −

= +

 

Therefore, 

 1/2 1ˆ [ ( / ) ] ( )
nn p J n nh g O J n O J ερ − −− = +  
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and 
1/2 1 1ˆ [ ( / ) ] ( ) ( )

n np J n n Jh g O J n O J Oερ ν− − −− = + + . 

It follows by combining this result with assumption 5 and 6 that 

(A.9) 1 /2 ˆ (1)n pJ h g oε+ − = . 

 We now show that the constraint ˆ
nJ Dh δ∈  does not bind.  Let ˆ ˆ,j jh h ψ=  

( 1,..., nj J= ).  Then 

 
1

ˆ ˆ
nJ

j j
j

h h ψ
=

=∑ . 

We show that as n →∞ ,  

(A.10) ( )2 2
1

ˆ 1nJ
jj

P j h Dδ
=

< →∑ . 

To do this, observe that 

 2 2 2 2

1 1

ˆ ˆ[ ( )]
n nJ J

j j j j
j j

j h j b h bδ δ

= =

= + −∑ ∑ . 

It follows from Minkowski’s inequality and assumption 5 that 

 
1/2 1/2 1/2

2 2 2 2 2 2

1 1 1

ˆ ˆ[ ( )] ( )
n n nJ J J

j j j j j j
j j j

j b h b j b j h bδ δ δ

= = =

          + − ≤ + −           
∑ ∑ ∑ . 

But 
1/2 1/2

2 2 2 2

1 1

1 /2

ˆ ˆ( )

(1)

(1).

n nJ J

j j j n
j j

n p

p

j b j h b D J h g

D J o

D o

δ δ δ

ε δ

= =

− − +

   
   + − < + −
      

= +

= +

∑ ∑

 

It follows that as n →∞ , 

(A.11) ˆ( ) 1P g h= → . 

Q.E.D. 

 Proof of Proposition 1:  We have 

 ˆ ˆ( ) .
n nJ JA g A A g m+ − =   

Therefore 
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1 1

1 1 1

ˆˆ ( )

ˆ ˆˆ ( ) ( )( ).

n n n

n n n n n n n

J J J

J J J J J J J

g A m A A A g

A m A A A g A A A g g

− −

− − −

= − −

= − − − − −

 



 

It follows that 
1 1 ˆˆ ,

n n n nJ J J J ng g A m A Ag R− −− = − −  

where 1 ˆ( )( )
n n nn J J JR A A A g g−= − − .  Some algebra shows that 1 1 ˆˆ

n n nJ J J nA m A Ag S− −− = .  Therefore, 

 
1 1

ˆ , ,
J J

J J n j j n j j
j j

g g S Rψ ψ ψ ψ
= =

− = −∑ ∑ , 

and 

 
1

,
J

n n j j
j

r R ψ ψ
=

= −∑  

Now  

 

1

1 *

ˆ, , ( )( )

ˆ( ) ,( )( ) .

n n n

n n n

j n j J J J

J j J J

R A A A g g

A A A g g

ψ ψ

ψ

−

−

= − −

= − −





 

The Cauchy-Schwarz inequality gives 

 1 * ˆ, ( ) ( )( )
n n nj n J j J JR A A A g gψ ψ−≤ − − . 

Therefore,  

 1/2, [( / ) ]
nj n J p n JR O J n g gψ ρ= −  

by lemmas 1 and 2 and (A.11).  It follows that 

 

1/2
2

1

1/2 1/2 1/2

,

( )
n

J

n n j
j

J p n J

r R

J O n J g g

ψ

ρ

=

−

 
 =
 
 

= −

∑



 

for every nJ ∈ .  But 1/2 1/2 (1)
nn J pJ J g g o− =  for every nJ ∈  by lemma 5.  Therefore,  

 1/ 2( ) (1)n J p pr O n oρ −= . 

The proposition follows by combining this result with lemma 3.  Q.E.D. 

 Proposition A.1:  For any nJ J≤ , 2 2 2ˆ ( / )J p J Jg g O J nρ ν −− = + . 
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 Proof:  It follows from Proposition 1 that for or any nJ J≤ ,  

(A.12) 
22

1

ˆ ,
J

A J J n j
j

E g g E S ψ
=

− = ∑ . 

Applying Lemma 3 to the right-hand side of (A.12) yields 

 
22 2

2
1

ˆ , /
J

A J J n j J
j

E g g E S M J nψ ρ
=

− = ≤∑  

In addition, 

 2 2 2ˆ ˆA J A J J JE g g E g g g g− = − + − . 

By assumption 4, 2 2
J Jg g ν −− ≤ .  Therefore, 

 2 2 2ˆ ( / )A J J JE g g O J nρ ν −− = + . 

Choosing J  to optimize this rate gives Chen’s and Reiss’s (2011) minimax optimal rate for 

functions in Jν .  The conclusion of the lemma follows from Markov’s inequality.  Q.E.D. 

 Lemma 6:  Given any 0ε > , 

 ( ) ( )
( )

n n

n

S J S J
S J

ε
−

≤


 

for each nJ ∈  with probability approaching 1 as n →∞ . 

 Proof:  Define  

 2 2 1 * 2
1

1 1
( ) {[( ) ]( )}

n

n J

n i J j i
i j

S J n U A Wψ− −

= =

= ∑ ∑ , 

 2 1 * 2
2

1 1
( ) 2 [ ( ) ( )] {[( ) ]( )}

n n

n J

n i J i i J j i
i j

S J n U g X g X A Wψ− −

= =

= − −∑ ∑ , 

and 

 2 2 1 * 2
3

1 1
( ) [ ( ) ( )] {[( ) ]( )}

n n

n J

n J i i J j i
i j

S J n g X g X A Wψ− −

= =

= −∑ ∑ . 

Then 

 1 2 3( ) ( ) ( ) ( )n n n nS J S J S J S J= + +    . 

 Consider, first, convergence of 1( ) / ( )n nS J S J .  By Lemma 1,  

 
21 * 2( )

nJ j JA ψ ρ− ≤  
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for every j J≤ , nJ ∈ .  This result together with assumption 5(iii) implies that 

1 * 2 1 2 2
1{[( ) ]( )}

nJ j n JA w c J τψ ρ− +≤  for some constant 1c < ∞  and every j J≤  and nJ ∈ .    Define 

 1 * 2( ) {[( ) ]( )}
nj J jK w A wψ−= . 

Then 

 2 2
1

1 1
( ) ( )

n J

n i j i
i j

S J n U K W−

= =

= ∑ ∑  

for every nJ ∈ .  Moreover, 

 
12

1 1 2
1

1
( ) ( )

J
J

nJ j n
j

K w n K w c J
n

τρ
−

− +

=

 
≡ ≤  
 

∑ . 

Now let d
na n=  for some constant 0d >  such 1 2 4 4/d

nn J τ− + →∞  as n →∞ .  Such a d  exists 

under assumption 6.  Let nB  denote the event 2
1max i n i nU a≤ ≤ ≤ .  Let nB  denote the complement 

of nB .  It follows from Markov’s inequality that ( ) 0nP B →  as .n →∞   We have 

 
12

1 2 1 2
1

1 1
( ) ( ) ( ) ( ) ( )

n n
J

n i nJ i n i nJ i n
i i

S J n U K W I B n U K W I B
n
ρ

−
− −

= =

 
= +  

 
∑ ∑ , 

where I  is the indicator function.  Define 

 1 2
1

1
( ) ( ) ( )

n

n a i nJ i n
i

S J n U K W I B−

=

= ∑  

and 

 1 2
1

1
( ) ( ) ( )

n

n b i nJ i n
i

S J n U K W I B−

=

= ∑ . 

For any 0ε > , 

 

12

1 1 1 1

1 1

max | ( ) ( ) | 2 max | ( ) ( ) |

max | ( ) ( ) | .

n n

n

J
n n n a n a

J J

n b n b
J

P S J ES J P S J ES J
n

P S J ES J

ρ
ε ε

ε

−

∈ ∈

∈

     − > ≤ − >         

 + − >  

   

 

 



 

 Now 

(A.13) 1 1max | ( ) ( ) | 0
n

n b n b
J

P S J ES J ε
∈

 − > →  
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as n →∞  because ( ) 0nP B → .  Now consider 1n aS .  By Hoeffding’s inequality 

 

2 2 4 4 2
1 1 1

2 1 2 2 4 4
1

[| ( ) ( ( ) | ) | | ] 2exp[ 2 / ( )]

2exp[ 2 / ( )]

n a n a n n n n

d
n

P S J E S J B B n c J a

n c J

τ

τ

ε ε

ε

+

− +

− > ≤ −

≤ −

 

 

for every nJ ∈ .  Therefore, 

 2 1 2 2 4 4
1 1 1max | ( ) ( ( ) | | 2 exp[ 2 / ( )]

n

d
n a n a n n n

J
P S J E S J B J n c J τε ε − +

∈

 − > ≤ −  
 


. 

In the mildly ill-posed case, 1/(2 2)r
nJ o n + =    with 2r ≥ .  In the severely ill-posed case, 

(log )nJ o n= .  Therefore,  

(A.14) 1 1max | ( ) ( ( ) | | 0
n

n a n a n
J

P S J E S J Bε
∈

 − > →  
 


 

as n →∞ .  Because ( ) 1nP B → , it follows from (A.13) and (A.14) that 

 
12

1 1max | ( ) ( ) | 0
n

J
n n

J
P S J E S

n
ρ

ε
−

∈

   − > →     

 


. 

But 1( ) ( )[1 (1)]n nES J S J o= +  and 2( ) /n JS J C nρ≥  for some finite constant C  uniformly over 

nJ ∈ .  Therefore,  

(A.15) 1( ) ( )
( )

n n

n

S J S J
S J

ε
−

≤


 

with probability approaching 1 as n →∞  for any 0ε >  and every nJ ∈ . 

 Now consider 2 ( ) / ( )n nS J S J .  Assumption 5 implies that 2 2| ( ) ( ) | ( )
nJ ng x g x o J τ− −− =  as 

n →∞  uniformly over [0,1]x∈  for some constant 2c < ∞ .  Therefore, 

 2 2 2 1 * 2
2

1 1
| ( ) | ( ) | | {[( ) ]( )}

n

n J

n n i J j i
i j

S J o J n U A Wτ ψ− − − −

= =

≤ ∑ ∑ . 

Now 1 * 2 1 2 2
3{[( ) ]( )}

nJ j n JA w c J τψ ρ− +≤  for every j J≤  and some constant 3c < ∞ .  Therefore, 

 2 2
2

1
| ( ) | (1) | |

n

n J i
i

S J o n Uρ −

=

≤ ∑  

uniformly over J ∈ .  It follows from the strong law of large numbers that 

 2 1
2| ( ) | (1) [ (| |) (1)]n J pS J o n E U oρ −≤ +  
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for every nJ ∈ .  Therefore, 

(A.16) 2
4

| ( ) | (1)[ (| |) (1)] (1)
( )

n
p p

n

S J c o E U o o
S J

= + =


 

for every nJ ∈ .  A similar argument gives 

 2 1
3| ( ) | (1)n JS J o nρ −=  

for some constant C < ∞  for every nJ ∈ , so  

(A.17) 3| ( ) | (1)
( )

n

n

S J o
S J

=


 

for every nJ ∈ .  The lemma follows by combining (A.15)-(A.17).  Q.E.D. 

 Lemma 7:  Given any 0ε > , 

 
ˆ ( ) ( )

( )
n n

n

S J S J
S J

ε
−

≤


 

for each nJ ∈  with probability approaching 1 as n →∞ . 

 Proof:  Define 

 1 * 2( ) {[( ) ]( )}
nj J jK w A wψ−= , 

 1 * 2ˆˆ ( ) {[( ) ]( )}j jK w A wψ−= , 

 ( ) ( ) ( )
nJg x g x g x∆ = − , 

 ˆ( ) ( ) ( )j j jK w K w K w∆ = − , 

 2
1

1 1
( ) 2 [ ( )] ( ) ( )

n

n J

n i J i i j i
i j

S J n Y g X g X K W−

= =

∆ = − − ∆∑ ∑ , 

 2 2
2

1 1
( ) [ ( )] ( )

n J

n i j i
i j

S J n g X K W−

= =

∆ = ∆∑ ∑ , 

 2 2
3

1 1
( ) [ ( )] ( )

n

n J

n i J i j i
i j

S J n Y g X K W−

= =

∆ = − ∆∑ ∑ , 

 2
4

1 1
( ) 2 [ ( )] ( ) ( )

n

n J

n i J i i j i
i j

S J n Y g X g X K W−

= =

∆ = − − ∆ ∆∑ ∑ , 

and 

 2 2
5

1 1
( ) [ ( )] ( )

n J

n i j i
i j

S J n g X K W−

= =

∆ = ∆ ∆∑ ∑ . 



 30 

Then 

 
5

1

ˆ ( ) ( ) ( )n n nk
k

S J S J S J
=

− = ∆∑ . 

Because 2( ) /n JS J C nρ≥  for some constant C < ∞ ,  it suffices to prove that 

 2 1 ˆmax( / ) | ( ) ( ) |J n n
J

n S J S Jρ ε−

∈
− ≤


 

with probability approaching 1 as n →∞ . 

 Consider 1nS∆ .  We have 1/2 1[ ( / ) ]
n n nJ p J n Jg g O J nρ ν −− = +  1/ 2[ ( / ) ]

np J nO J nρ=  

under assumption 6.  In addition, by 1 * 2 1 2 2
2{[( ) ]( )}

nJ j n JA w c J τψ ρ− +≤  for some constant 2c < ∞  

and each nJ ∈  and [0,1]w∈ .  Moreover, 2
3[ ( )]j JE K W c ρ≤  for some constant 3c < ∞ .  

Therefore, 

1/2 2
1

1 1

1/2 2

1 1

1/2 2 1 2

1 1 1 1

( ) [ ( / ) ] | ( ) | ( )

[ ( / ) ] | [ ( ) ( )] | ( )

[ ( / ) ] | | ( ) ( ) ( ) .

n n

n n

n n

n J

n p J n i J i j i
i j

n J

p J n i J i i j i
i j

n J n J

p J n i j i p J j i
i j i j

S J O J n n Y g X K W

O J n n U g X g X K W

O J n n U K W O n K W

ρ

ρ

ρ ν

−

= =

−

= =

− − −

= = = =

∆ = −

= − −

  = + 
  

∑ ∑

∑ ∑

∑ ∑ ∑∑

 

Using 2
3[ ( )]j JE K W c ρ≤ , it follows from Markov’s inequality that 

 1/ 2 2
1( ) [ ( / ) ]( / )[1 (1)]

nn p J n J pS J O J n J n oρ ρ∆ = +  

for every nJ ∈ , where (1)po  does not depend on J .  But 1/ 2( / ) (1)
nJ nJ n oρ =  by assumption 

6.  Therefore,  

 

2 1 1/ 2
1

3 1/ 2

( / ) ( ) [ ( / ) ] [1 (1)]

[ ( / ) ]

n

n

J n p J n p

p J n

n S J O J n J o

O J n

ρ ρ

ρ

− ∆ = +

=

 

for every nJ ∈ .  It follows that for any 0ε >  

(A.18) 2 1
1( / ) | ( ) |J nn S Jρ ε− ∆ <  

with probability approaching 1 as n →∞ .  A similar argument shows that 



 31 

(A.19) 2 1
2( / ) ( )J nn S Jρ ε− ∆ <  

with probability approaching 1 for every nJ ∈ . 

 Now consider 3( )nS J∆ .  We have 

 2 2
3

1 1
( ) { [ ( ) ( )]} ( )

n

n J

n i J i i j i
i j

S J n U g X g X K W−

= =

∆ = − − ∆∑ ∑  

 

2 2 2

1 1 1 1

2 2

1 1

3 3 3

( ) 2 [ ( ) ( )] ( )

[ ( ) ( )] ( )

( ) ( ) ( ).

n

n

n J n J

i j i i J i i j i
i j i j

n J

J i i j i
i j

n a n b n c

n U K W n U g X g X K W

n g X g X K W

S J S J S J

− −

= = = =

−

= =

= ∆ − − ∆

+ − ∆

≡ ∆ + ∆ + ∆

∑ ∑ ∑ ∑

∑ ∑  

Some algebra shows that 

 1 * 1 * 1 * 1 * 1 * 2ˆ ˆ2[( ) ]{[( ) ( ) ] } {[( ) ( ) ] }
n n nj J j J j J jK A A A A Aψ ψ ψ− − − − −∆ = − + − . 

Moreover, 

 1 * 1 * 1 * * 1 1 * * 1 *ˆ( ) ( ) [ ( ) ] ( ) ( )( )
n n n nJ J J JA A I A A A A A− − − − − −− = − + ∆ ∆ , 

where I  is the identity operator in 
nJ  and * * *ˆ

nJA A A∆ = − .  Now 

 

*

1/ 2

ˆ

[( / ) ]

nJ

p n

A A A

O J n

∆ = −

=

 

for every nJ ∈  by lemma 2.  Therefore, it follows from Lemma 1 and Markov’s inequality that 

 1 * 1 * 2 1/ 2ˆ[( ) ( ) ] [( / ) ]
nJ j J p nA A O J nψ ρ− −− = , 

 3 1/ 2[( / ) ]j J p nK O J nρ∆ = , 

and 

 3 1/ 2 3/ 2
3 ( ) ( )n a J p nS J JO J nρ −∆ =  

for every nJ ∈ .  It follows that 2 1 3 1/ 2
3( / ) ( ) [ ( / ) ] (1)J n a p J n pn S J O J n oρ ρ− ∆ = = , where (1)po  

does not depend on J  and the last equality follows from assumption 6.  Similar arguments apply 

to 3n bS∆ , 3n cS∆ , 4nS∆ , and 5nS∆ .  The lemma follows by combining these results with (A.18) 

and (A.19).  Q.E.D.   
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 Lemma 6:  The following inequality holds for every nJ ∈  as n →∞ . 

 2ˆ (4 / 3)(log ) ( )[1 (1)]J J n pg g n S J o− ≤ + , 

where (1)po  does not depend on J . 

 Proof:  Let nJs  denote the leading term of the asymptotic expansion of 2ˆ J Jg g− .  By  

Proposition 1 and lemma 3,  

(A.20) 
2

1 1 *

1 1
[( ) ]( )

n

J n

nJ i J j i
j i

s n U A Wψ− −

= =

  =  
  

∑ ∑ . 

Define 

 2 1 * 2{ [( ) ]( )}
nj i J j iE U A Wσ ψ−= , 

 1 *[( ) ]( )
nij i J j iV U A Wψ−= , 

 1

1

n

nj ij
i

R n V−

=

= ∑ , 

and 

 2 1 1/ 2[(4 / 3) log ]nj j n nξ σ −= . 

Then 

 2

1

J

nJ nj
j

s R
=

=∑ . 

By Bernstein’s inequality 

 
2

2 (1 2 )/2(| | ) 2exp
4 2

nj
nj nj

j nj

n
P R

cJ τ

ξ
ξ

σ ξ+

 
 > ≤ −
 + 

 

for some finite constant 0c >  that does not depend on j .  But 2
jσ  is bounded away from 0 for 

all j .  Therefore, 

 4 /(12 )(4 / 3) log(| | ) 2exp 2
4 / 3nj nj

nP R n εξ
ε

− + > ≤ − = + 
 

for any 0ε > , all sufficiently large n , and all j J≤ .  Therefore, 
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11

4 /(12 )

| | (| | )

2 0

n nJ J

nj nj nj nj
jj

n

P R P R

J n ε

ξ ξ
==

− +

 
 > ≤ >
 
 

≤ →

∑

 

as n →∞  if ε  is sufficiently small, where the last relation follows from assumption 6 and the 

observation that 
nJρ  increases at least as fast as nJ β  for some 0β > .  Combining this result with 

(A.20) gives  

 

2

1

1 2

1
(4 / 3) (log )

(4 / 3)(log ) ( )[1 (1)]

J

nJ nj
j

J

j
j

n p

s

n n

n S J o

ξ

σ

=

−

=

≤

=

= +

∑

∑  

for every nJ ∈ , where (1)po  does not depend on J .  Q.E.D. 

 Lemma 9:  The following inequality holds.  

 

22 2 2 2
ˆ ˆ ˆ ˆ ˆ

2

ˆ ˆ3 0.5 0.5

ˆ ˆ2 2 , .

opt

opt opt opt opt opt

JJ J J J J

J J J J J

g g g g g g g g

g g g g g

− ≤ − + − + −

+ − + −

 

 Proof:  The proof of this lemma is similar to the proof of lemma 3.4(ii) of Loubes and 

Marteau (2009).  We have 

 

2 2
ˆ ˆ ˆ ˆ

2 2
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ( )

ˆ ˆ2 , .

J J J J

J J J J J J

g g g g

g g g g g g

= − +

= − + − +

 

Therefore, 

 
2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ2 ,J J J J J J Jg g g g g g g− = − + − . 

Define ˆ
ˆ 1: optopt

J
j JJ J = +Σ = Σ , if ˆ

optJ J> , ˆ 1
optJ

j J= +
−Σ  if ˆ

optJ J< , and 0 if ˆ
optJ J= .  Then, 
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ˆ

ˆ ˆ ˆ
1

ˆ1 :

ˆ:

ˆ2 , 2 ( )

2 ( ) 2 ( )

ˆ2 , 2 ( )

opt

opt

opt opt opt

opt

J

j j jJ J J
j

J

j j j j j j
j J J

J J J j j j
J J

g g g b b b

b b b b b b

g g g b b b

=

=

− = −

= − + −

= − + −

∑

∑ ∑

∑



 



 

and 

(A.21) 
2 2 2

ˆ ˆ ˆ ˆ
ˆ:

ˆ ˆ ˆ2 ( ) 2 ,
opt opt opt

opt

j j j J J JJ J J J
J J

g g g g b b b g g g− = − + − + −∑  . 

 Define  

nR =
ˆ:

2 ( )
opt

j j j
J J

b b b−∑  . 

Then 

 
1

ˆ| | 2 | ( ) ( ) || ( ) |n opt j j j
j

R I j J I j J b b b
∞

=

≤ ≤ − ≤ −∑  , 

where ( )I ⋅ is the indicator function.  But 

 

ˆ ˆ ˆ| ( ) ( ) | [ ( ) ( )] | ( ) ( ) |

ˆ ˆ( ) ( ) ( ) ( ).

opt opt opt

opt opt

I j J I j J I j J I j J I j J I j J

I j J I j J I j J I j J

≤ − ≤ = ≤ + ≤ ≤ − ≤

≤ ≤ > + ≤ >

 

Therefore, 

 
1 1

ˆ ˆ| | 2 ( ) ( ) | ( ) | 2 ( ) ( ) | ( ) |n opt j j j opt j j j
j j

R I j J I j J b b b I j J I j J b b b
∞ ∞

= =

≤ ≤ > − + ≤ > −∑ ∑  . 

By the Cauchy-Schwarz inequality, 

 

1/ 21/ 2 1/ 2 1/ 2ˆ
2 2 2 2

ˆ 1 1
| | 2 ( ) 2 ( )

opt

opt

J J

n j j j j j j
j j J jj J

R b b b b b b
∞ ∞

= = ==

      
      ≤ − + −

           
∑ ∑ ∑ ∑  . 

In addition, 2 22 / 2 2ab a b≤ +  for any real numbers a  and b .  Therefore, 

 
ˆ

2 2 2 2

ˆ 1 1
| | 0.5 0.5 2 ( ) 2 ( )

opt

opt

J J

n j j j j j j
j J j jj J

R b b b b b b
∞ ∞

= = ==

≤ + + − + −∑ ∑ ∑ ∑   
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2 22 2
ˆ ˆ ˆˆ ˆ(A.22) 0.5 0.5 2 2 .

opt opt optJ J JJ J Jg g g g g g g g= − + − + − + −  

The lemma follows by substituting (A.22) into (A.21).  Q.E.D. 

 Proof of Theorem 3.1:  Define (2 / 3) log( )na n=  and 

 

2

22

ˆ ˆ( ) ( )

ˆ ˆ( ) .

n n

n n J

Q J T J g

a S J g g

= +

= + −

 

Then Ĵ  minimizes ˆ ( )nQ J  over nJ ∈ .  By lemmas 6 and 7, 

 22ˆ ˆ( ) ( )[1 (1)]n n n p JQ J a S J o g g= + + −  

for all nJ ∈ , where (1)po  does not depend on J , so 

 
22

ˆ
ˆ ˆ ˆ ˆ( ) ( )[1 (1)]n n n p JQ J a S J o g g= + + − . 

It follows that  

 
2 2 22

ˆ ˆ ˆ
ˆˆ ˆ ˆ( )[1 (1)] ( )n n p nJ J Ja S J o g g Q J g g+ + − = + − . 

An application of lemma 9 gives 

 

2 2 22 2
ˆ ˆ ˆ ˆ

2 2

ˆˆ ˆ ˆ( )[1 (1)] ( ) 3 0.5( )

ˆ ˆ.5 2 2 , .
opt opt opt opt opt opt

n n p nJ J J J

J J J J J J

a S J o g g Q J g g g g

g g g g g g g

+ + − ≤ + − + −

+ − + − + −

 

In addition, it follows from Proposition 1 that ˆ( )n na S J  dominates 
2

ˆ ˆˆ J Jg g−  as n →∞ .  

Therefore, 

 

2 22
ˆ ˆ ˆ

2 2

ˆ ˆ( )[1 (1)] 0.5( ) 3

ˆ ˆ ˆ ˆ( ) .5 2 2 , .
opt opt opt opt opt opt

n n p J J J

n J J J J J J

a S J o g g g g

Q J g g g g g g g

+ + − − −

≤ + − + − + −

 

By lemma 8,  

 
21

ˆ ˆ
ˆˆ[(4 / 3) log ] ( )[1 (1)]n n n pJ Ja n g g a S J o− − ≤ + , 

where (1)po  does not depend on Ĵ .  Therefore, 
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22
ˆ

2

ˆ ˆˆ0.5 [1 (1)] ( ) .5

ˆ ˆ2 2 , ,

opt

opt opt opt opt opt

p n JJ

J J J J J

g g o Q J g g

g g g g g

− + ≤ + −

+ − + −

 

where (1)po  does not depend on Ĵ .  But ˆ ˆˆ( ) ( )n n optQ J Q J≤ , so 

 

22
ˆ

2

ˆˆ0.5 [1 (1)] ( ) .5

ˆ ˆ2 2 , .

opt

opt opt opt opt opt

p n opt JJ

J J J J J

g g o Q J g g

g g g g g

− + ≤ + −

+ − + −

 

In addition,  
22ˆ ˆ ˆ( ) ( )

optn opt n n opt JQ J a S J g g= + − .   

Therefore, by lemmas 6 and 7, 

 
22ˆ ˆ( ) ( )[1 (1)]

optn opt n n opt p JQ J a S J o g g= + + − . 

But 

 
2 2 2

ˆ ˆ ˆ2 ,
opt opt opt opt opt opt optJ J J J J J Jg g g g g g g= − + + − , 

so 

 
2 22

ˆ ( )

ˆ ˆ( )[1 (1)] 2 ,
opt opt opt opt opt opt

n opt

n n opt p J J J J J J

Q J

a S J o g g g g g g g= + + − − − − −

 

and 

 
2 22

ˆˆ ˆ0.5 [1 (1)] ( )[1 (1)] 1.5
opt opt optp n n opt p J J JJg g o a S J o g g g g− + ≤ + + − + − . 

Now, 
2

ˆ ( )
opt optA J J n optE g g S J− = .  Therefore, for any 1n > , 

 

22
ˆ

2

ˆ0.5 ( 1) ( ) 1.5

ˆ( 1) ,

opt

opt

A n n opt JJ

n A J

E g g a S J g g

a E g g

− ≤ + + −

≤ + −

 

and  

 
22

ˆˆ ˆ2( 1)
optA n A JJE g g a E g g− ≤ + − .   Q.E.D. 
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 Proof of Theorem 3.2:  We first prove part (ii) of the theorem.  0nJ  satisfies the 

assumptions of Theorem 3.1, so the conclusion of Theorem 3.1 holds with 0nJ  in place of nJ .  

Therefore, part (ii) of the theorem follows from the fact that, by part (i),  0 0
ˆ
n nJ J=  with 

probability approaching 1 as n →∞ . 

 We now prove part (i) of the theorem.  For 1,2,...J = Define 2 3.5( ) /n JL J J nρ=  and 

2 3.5ˆ ˆ( ) /n JL J J nρ= .  Let 2C >  be a finite constant.  Define 0{ 1,2,... : | | }n nJ J J CΘ = = − ≤ .  We 

first show that  

(A.23) 
0

1/2
0

ˆ ( ) ( )max ( ) (1)
( ) n

n

n n
J n p p

J n

L J L J J O n o
L J

ρ −

∈Θ

−
= = , 

as n →∞ .  To do this, observe that 

 2 2ˆ ˆ( ) / ( ) /n n J JL J L J ρ ρ− −= , 

 1 inf
J

J
A

ν

ν
ρ

ν
−

∈
=


, 

and 

 1
ˆ

ˆ inf
J

J

A

ν

ν
ρ

ν
−

∈
=


. 

For any Jν ∈ , 

 

ˆ ˆ( )

ˆ( )

ˆ( )
sup .

J

A A A A

A AA

A AA

ν

ν ν ν

ν ν

νν
ν ν

νν
ν ν∈

+ −
=

−
≤ +

−
≤ +



 

Similarly 
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ˆ ˆ( )

ˆ( )
sup .

J

A A AA

A AA

ν

ν νν
ν ν ν

νν
ν ν∈

−
≥ −

−
≥ −



 

A slight modification of the proof of lemma 2 shows that 

 1/2
ˆ( )

sup ( )
J

p

A A
JO n

ν

ν

ν
−

∈

−
=


. 

Therefore, for 1/ 2( )n pr JO n−= , 

 
ˆ

inf inf
J J

n

A A
r

ν ν

ν ν
ν ν∈ ∈

≤ +
 

. 

Similarly 

 
ˆ

inf inf
Js J

n

A A
r

ν ν

ν ν
ν ν∈ ∈

≥ −
 

. 

It follows that 

 1 1ˆJ J nrρ ρ− −≤ +  

and 

 1 1ˆJ J nrρ ρ− −≥ − . 

Therefore, 1 1ˆ| / 1|J J J nrρ ρ ρ− − − ≤  and 

(A.24) 1/2ˆ ( ) ( ) ( )
( )

n n
J p

n

L J L J JO n
L J

ρ −−
= . 

(A.23) follows from (A.24) and the observation that 
0nJ Jρ ρ  for nJ ∈Θ . 

 Now define  

 2 3.5 2 3.5
0 1,2,...;

ˆarg min { / : / 1 0}
n

n J JJ J
J J n J nρ ρ

= ∈Θ
= − ≥  

We show that 0 0lim ( ) 1n n nP J J→∞ = = .  It follows from  (A.23) that  

 
0

1/2
0 0 0

ˆ ( ) ( ) 1 ( )
nn n n n J n pL J L J J O nρ − < +   

and 

 
0

1/2
0 0 0

ˆ( ) ( ) 1 ( )
nn n n n J n pL J L J J O nρ − < + 
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In addition 0 0
ˆ ˆ( ) ( )n n n nL J L J≤ .  Therefore, 

(A.25) 
0

1/2
0 0 0( ) ( ) 1 ( )

nn n n n J n pL J L J J O nρ − < + 
 . 

Now let 0n nJ= Θ − .  Then 

 0 1 min{ ( ) : ( ) 1 0}n n nJ
J L J L J

∈
+ = − >


. 

But 0 0( 1) ( )n n n nL J L J+ > .  Therefore, it follows from (A.25) that 0 0n nJ J∉ −  , so 0 0n nJ J= .  

 If 0 0
ˆ
n nJ J C< − , then 0 0

ˆ ˆ ˆ( ) 1 ( ) 1n n n nL J L J C− < − − .  Therefore, by (A.23) 

 
0

1/2
0 0 0

ˆ0 ( ) 1 ( )[1 ( )] 1
nn n n n J n pL J C L J C J O nρ −< − − < − + − , 

which is impossible because 0nJ  minimizes ( )nL J  subject to ( ) 1 0nL J − ≥ .  Therefore, 

0 0
ˆ

n nJ J C< −  cannot happen when n  is large.  In addition, it follows from (A.23) that 

0
ˆ ( 1) 1 0n nL J + − >  with probability approaching 1 as n →∞ .  Therefore, with probability 

approaching 1 as n →∞ , 0 0
ˆ 1n nJ J≤ +  and 0 0

ˆ
n nJ J C> +  cannot happen.  Q.E.D. 
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TABLE 1:  RESULTS OF MONTE CARLO EXPERIMENTS 

 

Exp’t No. Design Empirical 

mean of 
2

ˆ
optJg g−  

Empirical 

mean of 
2

ˆ
ˆ̂

Jg g−  

Ratio of 

empirical 

means, 

R  

Theoretical 

asymptotic 

upper 

bound on 

R  

1 1 0.0957 0.100 1.045 11.2 

2 1 0.0983 0.138 1.400 11.2 

3 1 0.100 0.100 1.000 11.2 

4 1 0.0940 0.0978 1.040 11.2 

5 1 0.103 0.203 1.977 11.2 

6 2 0.0020 0.0039 1.999 11.8 

7 2 0.0029 0.0029 1.000 11.8 
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