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Abstract

In this paper we introduce a new approach to estimating differentiated product de-

mand system that allows for error in market shares as measures of choice probabilities.

In particular, our approach allows for products with zero sales in the data, which is a

frequent phenomenon that arises in product differentiated markets but lies outside the

scope of existing demand estimation techniques. Although we find that error in market

shares generally undermine the standard point identification of discrete choice models

of demand, we exploit shape restrictions on demand implied by discrete choice to gener-

ate a system of moment inequalities that partially identify demand parameters. These

moment inequalities are fully robust to the variability in market shares yet are also

adaptive to the information revealed by market shares in a way that allows for informa-

tive inferences. In addition, we construct a profiling approach for parameter inference

with moment inequalities, making it feasible to study models with a large number of

parameters (as typically required in demand applications) by focusing attention on a

profile of the parameters, such as the price coefficient. We use our approach to study

consumer demand from scanner data using the Dominick’s Finer Foods database, and

find that even for the baseline logit model, demand elasticities nearly double when the

full error in market shares is taken into account.

Keywords: Demand Estimation, Differentiated Products, Profile, Measurement

Error, Moment Inequality.
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1 Introduction

In this paper we introduce a new approach to demand estimation that allows for market

shares to be measured with sampling error of any magnitude. We show that the presence of

sampling error in market shares generally undermines the point identification of the popular

demand estimation techniques developed in Berry (1994), Berry, Levinsohn, and Pakes

(1995) and Berry, Linton, and Pakes (2004) (we use “BLP” to refer to these techniques).

A severe form of this problem that arises frequently in applications is the presence of zero

market shares in the data, which has remained outside the scope of aggregate discrete choice

demand analysis to date. We show that discrete choice demand models are informative

enough to imply a set of conditional moment inequalities which are fully robust to sampling

error in market shares. We use these moment inequalities as a basis for partial identification

and inference of demand parameters and counterfactuals. We apply our approach to widely

used scanner data, and find that accounting for the sampling error nearly doubles price

elasticities relative to existing techniques that must assume it away.

The key to our approach is that we relax the asymptotic framework used in BLP so as

to allow sampling error in market shares to remain present in the limit. The consistency of

the BLP estimator relies on letting both the number of products/markets and the number

of consumers with each market grow infinitely large in the asymptotic limit. However when

choice probabilities are close to zero, which is often the case in demand analysis, the number

of consumers n in the data will be too small for their asymptotic approximation to apply

(even if n is tens of thousands). Market shares that are zero in the data are an important

special case of this more general failure.

Our approach on the other hand only assumes the number of products/markets to grow

large but not the number of consumers within markets. Since the number of consumer

draws are allowed to remain finite, our asymptotics can readily explain zeroes in the data:

there is always a positive probability of a zero demand when the number of consumers is

finite. However the difficulty with this new asymptotic framework is that the sampling error

causes a loss of point identification of the model.

One main contribution is to show that the structure of the discrete choice model can be

used to construct moment inequalities that partially identify the model and are fully robust

to the sampling error in market shares. In addition to being fully robust to error in market

shares, the other key advantages of our empirical strategy are:

1. We only use the the standard instrumental variable (IV) assumptions that BLP also

use to address price endogeneity. In particular, we do not invoke alternative assump-

tions from the literature on nonlinear measurement error, which can be hard to justify
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in the context of demand estimation;1

2. Our approach provides informative inferences because the moment inequalities we

construct are adaptive to the revealed information in market shares; and

3. Our approach allows for arbitrary dependence among product unobservables within

a market, which permits any type of strategic dependence in the the design and

promotions of products competing in a market.

Another main contribution of our paper is to provide a profiling approach for inference

with moment inequality models. This procedure makes it feasible in practice to perform

inference in moment inequality models with many parameters and is critically needed for

our demand estimation problem. The existing approach to inference in a moment inequal-

ity setting such as ours – for example, Andrews and Shi (2013) – requires exhaustive grid

search over the parameter space to compute confidence sets. However, such computation is

infeasible for demand studies because at least a moderate number of control variables are

needed to ensure validity of the instrument for price, resulting in a moderate to large dimen-

sional parameter space.2 We circumvent this computational burden by performing inference

directly on a profile of the parameters, i.e., a function of the parameters that capture the

policy relevant objects of interest, such as elasticity and welfare. Although our profiling

procedure can be seen as the traditional profile likelihood idea applied to conditional mo-

ment inequality (CMI) models, there is a critical difference: the profiled quasi-likelihood

ratio statistic in CMI models has highly nonstandard asymptotic behavior due to the partial

identification of the parameter as well as the moment inequalities structure. An asymptotic

approximation of this statistic depends crucially not only on the unknown slackness of the

moment inequalities, but also on the unknown shape of the identified set of the nuisance

parameter. We overcome this difficulty and design a bootstrap-based critical value that is

robust to both sources of nonpivotalness and leads to uniformly valid confidence sets for

the true value of the profile.3

We apply our inference strategy to the Dominick’s Finer Foods (DFF) database which

1These alternative assumptions usually involve the classical measurement error assumption (Abrevaya
and Hausman (2004)) which does not hold in our context and the existence of a control function (Gutknecht
(2012)) which is hard to justify in our context.

2The dimension of the parameter vector can easily exceed 30 for standard specifications used in empirical
work.

3Two papers in the literature of partially identified models touch upon the idea of profiling without
using the term: Romano and Shaikh (2008) and Santos (2012). The former proposes a sub-sampling-based
confidence set for a point-identified profile of the parameters under high-level conditions, while we design
a bootstrap-based confidence set for a potentially partially-identified profile of the model parameter under
low-level conditions. The latter deals with a partially-identified nonparametric IV model and proposes a
method that can be extended to deliver inference for a profile of the nonparametric parameters of the model.
But his model involves no inequalities and his results are based on point-wise asymptotics.
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is a publicly available and heavily studied scanner data set. Scanner data has become

a central source for demand information in consumer product markets and is routinely

used by antitrust agencies to estimate demand elasticities in merger investigations (see e..g,

Hosken, O’Brien, Scheffman, and Vita (2002)). Scanner data exhibits a pattern that is very

commonly found in product differentiated industries: there exists a small number of popular

products and a much larger “long tail” of slower selling products that often exhibit a periods

of zero sales (see e.g., Anderson (2006)). The sparse demand for the large mass of products

in the long tail gives rises to a serious problem of error in market shares. In fact zeroes in

demand are quite rampant in the data: many products on the shelves of supermarkets don’t

actually sell in a given week. However it is the weekly variation in prices that is the critical

variation that identifies price elasticities. To date, the only empirical strategy for resolving

this tension is to simply “drop” the products in the long tail (or impute data for them) and

then apply standard BLP, which has now become standard in practice. But this “selection

on outcomes” induces a selection problem that can be can quite severe which we illustrate

with Monte Carlo simulations. In contrast zeroes do not pose a selection problem for our

empirical strategy because they are a predicted outcome of the demand model itself. We

apply our approach to the DFF data and find that demand becomes almost twice as elastic

when we instead include all the observations in the data and take the error in market shares

into account. This direction and magnitude of our results have significant implications for

policy analysis in consumer good industries.

The plan of the paper is the following. In Section 2, we describe the econometric problem

using a simplified binary choice setting without random coefficients to make the essential

matters transparent. In Section 3, we introduce the general multinomial discrete choice

model with random coefficients. In Section 4, we present our partial identification solution.

In Section 5, we present our profiling approach to inference with moment inequalities. In

Section 6, we systematically develop the application of our approach to the DFF data.

Section 7 concludes.

2 Discussion of Problem in a Simple Binary Choice Model

In this section we provide a discussion of the basic empirical problem we address in this

paper using a simplified binary choice model. This simplified setting avoids the notational

burden of the more general random coefficients multinomial choice model and thus makes

the key issue transparent. We then introduce the more general setup that is the focus of

this paper in the next section.

The discrete choice approach assumes that individuals have preferences over the char-

acteristics of products (observed and unobserved) and each individual chooses the product
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that maximizes utility. Market demand is then the aggregation of the individual discrete

choices. This approach provides a parsimonious representation of market demand that has

a link to microeconomic foundations. Herein however lies the key econometric problem

– the market level demand errors become non-separable and this frustrates the standard

application of instrumental variables to control for the endogeneity of prices.

To see the problem, consider a simple binary choice setting

uit = βxt + ξt − vit

where xt are the observed characteristics of the product under consideration in market

t (such as the price of a product), ξt is an unobserved choice characteristic (potentially

correlated with xt across markets) and vit is a random utility shock to consumer i in

market t. Consumer i in market t purchases the product if uit ≥ 0. A standard random

utility approach is that the random utility shock vit is independent of the characteristics

(xt, ξt) and follows a distribution vit ∼ G for some continuous and strictly increasing CDF

G. Thus, the probability πt that an individual drawn at random from the population G

purchases the product in market t is given by

πt = G (βxt + ξt) . (2.1)

As can be immediately seen, the unobserved characteristics ξt, potentially correlated with

xt, is nested inside the non-linear function G. This non-separability prevents the direct ap-

plication of instrumental variables methods (which we reference as IV for short) to estimate

β in (2.1).4

The key insight of BLP was to see that the model itself can be used to eliminate this

specific source of non-separability. In particular, this non-separability can be eliminated by

transforming both sides of (2.1) with G−1 to express the demand relationship equivalently

as

G−1 (πt) = βxt + ξt. (2.2)

If G is known (or alternatively known up to finite dimensional parameters), then the ex-

istence of instruments zt such that E [ξt | zt] = 0 allows standard instrumental variables

methods to identify β. Specifically, β is identified by

β =
E
[
G−1 (πt) zt

]
E [xtzt]

.

4See Blundell and Powell (2003) for deeper discussion of the failure of instrumental variable methods for
correcting endogeneity concerns in non-separable models and the contrast with control functions.
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The standard IV estimator replaces these expectations by their sample analogues

β̂T =

(
T∑
t=1

G−1(πt)zt

)
/

(
T∑
t=1

xtzt

)
(2.3)

and thus β̂T →p β by standard law of large numbers.

However there is a critical problem with this solution: choice probabilities πt cannot

actually be observed in the data, but rather only market shares st are observed. The

market share st is constructed as an average of the choices of a sample of i.i.d. individuals

in market t, i.e.,

st =

∑nt
i=1 dit
nt

(2.4)

and dit = 1 if the sampled individual i in market t consumes the product, and 0 otherwise.

The empirical strategy that BLP employed, which has become universal in the literature,

is to replace market shares st for choice probabilities πt in (2.3) and thus define the BLP

estimator as:

βBLPT =

(
T∑
t=1

G−1(st)zt

)
/

(
T∑
t=1

xtzt

)
. (2.5)

However for the estimator (2.5) to be consistent, we would need

T−1
T∑
t=1

G−1(st)zt →p E
[
G−1 (πt) zt

]
= βE[xtzt].

This requires that a new term introduced by market shares tends to zero in the limit,

namely:

T−1
T∑
t=1

[
G−1(st)−G−1(πt)

]
zt →p 0. (2.6)

To help understand what (2.6) means, observe that E [st | πt] = πt or equivalently

E [(st − πt) zt] = 0, i.e., the deviation (st − πt) is pure sampling error, and hence the law

of large numbers would imply that T−1
∑

t (st − πt) zt →p 0. However this does not imply

that (2.6) holds because of the non-linearity of G−1. Indeed, E
[(
G−1(st)−G−1(πt)

)
zt
]

does not even exist because G−1 is not defined at 0 and 0 is always an outcome of st with

positive probability mass. Thus standard law of large numbers arguments cannot justify

(2.6).

Instead, consistency of the BLP estimator requires taking (2.6) as a high level asymptotic

assumption.5 This asymptotic condition is not a standard one, and its applicability depends

5The only theoretical discussion of this sampling error problem is provided in Berry, Linton, and Pakes
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on whether it provides a good approximation to the data. In particular, its applicability

requires that the left-hand-side of (2.6) be reasonably close to zero at the actual T and nt

in the data. This is tantamount to assuming that the number of consumers nt is so large

in every market t that G−1 (st)−G−1 (πt) is nearly zero uniformly across all markets t.

While there are many settings where this assumption may be sensible, there are many

others where it is not and the left hand side of (2.6) is quite far from zero in the data. In

these cases, the demand estimates derived from using the BLP estimator (2.5) will no longer

be close to the BLP asymptotic limit (which is the true value) and can be economically

rather misleading. Two settings that arise frequently in practice and where this bias poses

a serious concern are:

1. When the data on demand arises from a national survey or national sales of many

consumers, but this demand information is broken into local markets. This creates a

small sample problem of consumers within markets, and hence sampling variability in

st tends to be large and makes the left-hand-side of (2.6) large. Many industries give

rise to this problem, such as demand for airlines (see e.g., Berry, Carnall, and Spiller

(1996); Berry and Jia (2010)), telecommunications (see e.g., Goolsbee and Petrin

(2004); Goolsbee and Klenow (2006)), and healthcare (see e.g., Brand, Gowrisankaran,

Nevo, and Town (2012)).6

2. When the data on demand arises from a large sample of consumers within a narrow

market, but the market is studied at the disaggregated product level. At this dis-

aggregated level, the narrowly defined product categories often exhibit a well known

“long tail” pattern where most products have very small choice probabilities (i.e, slow

moving items) relative to the top few sellers in the category (see Anderson (2006)).

These small choice probabilities cause G−1 (πt) to be incredibly sensitive to replacing

πt with st, even when the sampling error εt := πt − st is quite small.7 Thus we will

(2004) (BLintonP for short). Strictly speaking BLintonP focuses on the case of a large number of products
within a single market. But their key intermediate condition implies the convergence condition (2.6) in the
many market binary choice model without simulation error. See condition (i) on page 10 as well as the first
line of page 35 in BLintonP. Their primitive condition Assumption A3 is sufficient for and thus stronger
than this condition.

6In the case of airlines, the standard demand data comes from the Department of Transportation’s 10
percent sample of all ticket sales. While this national survey is quite large, when broken down to the local
market level, i.e., a particular origin-destination market, it is well known that it leaves a very small number
of observations within smaller market routes which typically have to be dropped from the analysis. Likewise
in the case of telecommunications, the national surveys that are used (such as the well known Forrester
surveys) are large at the national level but becomes incredibly thin at the local market level that demand
is studied. In the case of demand for health insurance plans and hospitals, the standard data come from
patient discharge records within a state that when broken down to the zip code level give rise to a small
number of consumers problem, which can be readily seen by the “zeroes” in demand for many hospitals.

7This is because the derivative of G−1 (z) approaches infinity when z approaches zero for typical choices
of G, and thus very small differences in st and πt will translate into large differences between G−1 (st) and
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have a large departure of the left-hand-side of (2.6) from zero for even a relatively

small sampling error in shares st.

3. A more serious manifestation of this latter problem is when some products exhibit

zero sales in a market, i.e., st = 0, in which case the left-hand-side of (2.6) is −∞ for

standard models (i.e. logit, probit, etc) of G and is thus clearly no where close to zero.

Scanner data, which has been a central source of information for demand studies, has

long been recognized to pose exactly this challenge for existing demand estimation

techniques. See e.g., Briesch, Dillon, and Blattberg (2008) and Park and Gupta

(2009) for a discussion. This severe form of the error in market shares problem has

been met with a variety of “tricks” in the applied literature, ranging from ignoring the

zeroes altogether from the data (and thus inducing a selection problem) to imputing

non-zero values for the zero observations.8 However, none of these tricks address the

actual source of the zeroes, which is the sampling error in market shares, and thus

none delivers consistent estimators.9

The contribution of this paper is to provide an approach that treats the sampling error

in market shares in a fully general way and thereby allows us to extend the domain of

demand estimation to the above environments that are important for applied work. That

is, while we maintain the standard asymptotic in the number of markets T , we impose

no asymptotic approximation involving the number of consumers within a market, i.e., we

relax the asymptotic assumption (2.6). This relaxation allows us to construct an asymptotic

theory that can address data with zeroes and error in shares more generally. Observe that

once we impose relax all restrictions on market shares beyond the sampling process (2.4),

the estimating equation becomes

G−1 (st + εt) = βxt + ξt. (2.7)

As can be seen in (2.7), the sampling error in market shares generates a non-separable error

εt, which once again undermines IV estimation.10

As we show, this new source of non-separability causes fundamental difficulties for iden-

tification and inference. Nevertheless, we show that we can address these difficulties using

the same instrumental variables assumptions that form the basis of BLP. We now detail

these developments in the subsequent sections using the general model.

G−1 (πt).
8The quantile regression also has been suggested to us to address the “zero” problem.
9We illustrate the poor performance of these tricks in Section 6.

10Interestingly, εt would enter as separable in the direct representation of demand (2.1), but of course ξt
would still be non-separable in that case.
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3 Identification

3.1 The Basic Environment

In this section, we describe the general demand model for product differentiated goods and

the basic identification problem.

Consider T markets. In each market, say t, has a set of Jt + 1 differentiated products.

The product labeled j = 0 in each market t is referred to as the “outside option”, and

the goods labeled j = 1, . . . , Jt are the “inside goods”. The inside goods in market t are

characterized by a vector of observable demand shifters xt = (x1t, . . . , xJtt) ∈ X, where

each xjt ∈ RK for j = 1, . . . , Jt is a vector of product attributes (typically including price)

corresponding to the inside products. Let ξt = (ξ1t, . . . , ξJtt) ∈ RJt denote a vector of

demand shocks, where each ξjt for j = 1, . . . , Jt is typically interpreted as the unobservable

(to the econometrician) attribute of each inside product.

The demand of a randomly drawn consumer i from market t is described by a random

utility model. For simplicity, we use the standard random coefficients model employed by

Berry (1994), but the ideas we present extend in a straightforward way to more general

specifications. The utility to consumer i for product j = 0, . . . , Jt in market t is

uijt = δjt + vijt, (3.1)

where

1. δjt = xjtβ0 + ξjt is the mean utility of product j > 0 in market t, and mean utility

of the outside good j = 0 is normalized to δ0t = 0. Let δt = (δ1t, . . . , δJtt) denote the

vector of mean utilities of the “inside” goods j > 0.

2. The vector vi·t = (vi0t, . . . , viJtt) ∼ F (· | xt;λ0) is the random vector of tastes in

market t. Notice that allowing xt and a parameter to enter F make our specification

encompass general random coefficients because one can then view β0 as the mean of the

random coefficients and vijt as the product of the error from the random coefficients

and the product characteristic xjt. We will assume for simplicity that the random

vector vi·t has full support on RJt+1, which is a property exhibited by all the standard

random utility models, For example, if one component of each random utility term

vijt is an idiosyncratic preference shock with full support (as in the logit, mixed logit

or probit models), then full support of vi·t holds.11

11The main role of the full support assumption is for expositional and computational convenience . We
could in principle proceed instead under the weaker “connected substitutes” structure of Berry, Gandhi, and
Haile (2011).
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3. The vector θ0 = (β0, λ0) ∈ Θ denotes the true value of the parameters, where Θ ⊂ Rdθ

where dθ is a positive integer is the parameter space.

Each consumer i in market t chooses product j if uijt ≥ uij′t for all j′ = 0, 1, ..., Jt. Then

the random utility model can be aggregated to yield a system of choice probabilities

πjt = σj(δt, xt;λ0) j = 1, . . . , Jt, (3.2)

where σj , j = 1, ..., Jt are known functions. Let πt = (π1t, . . . , πJtt)
′ denote the vector of

inside good choice probabilities predicted by the random utility model in market t. The

choice probability system can be inverted under general conditions as shown in Berry,

Gandhi and Haile (2011) to obtain

δjt = σ−1
j (πt, xt;λ0) j = 1, ..., Jt. (3.3)

We refer to σ−1
j (·, xt;λ0) as the inverse share function of product j.

For later use, we define ~πt = (π0t, π
′
t)
′

to denote the vector of choice probability for all

Jt + 1 goods. Clearly, π0t = 1− π′t1Jt and hence πt uniquely determines ~πt and vice versa.

We observe the aggregate demand of nt consumers who are sampled in market t,12 which

can be represented as the market share sjt for j = 0, 1, . . . , Jt where

sjt =

∑nt
i=1 dijt
nt

(3.4)

and

dijt =

1 ith consumer in market tchooses product j

0 otherwise.

Given that all consumers in the market are observationally identical (i.e., there are no in-

dividual specific covariates to distinguish different consumers in the sample), each observed

consumer in the market has identical choice probabilities πt. Thus the vectors of empirical

shares st = (s1t, ..., sJtt)
′ and ~st = (s0t, s

′
t) are the sample analogue of the underlying pop-

ulation choice probabilities πt and ~πt, respectively. In particular, conditional on πt and nt,

the vector nt~st follows a multinomial distribution MN(nt, ~πt).

Finally we impose the instrumental variable condition in the form of a conditional mean

restriction

E[ξjt | zjt] = 0 ∀j = 1, . . . , Jt a.s. [zt, Jt] (3.5)

12The number of consumers nt can equal the population size of a city or the number of consumers in a
survey from a city (where the city is defined as the market), or the number of consumers who enter a store
in a given week (where the store/week unit is defined as a market), among a variety of other possibilities
depending on the empirical context.
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where zjt is a vector of instruments for xjt and zt = (z1t, ..., zJtt)
′. We note here that

standard empirical work typically assumes that entry and exit of products across markets

is exogenous. This implies that Jt can join the instruments and gives us the conditional

mean restriction

E[ξjt | zjt, Jt] = 0 ∀j = 1, . . . , Jt a.s. [zt, Jt]. (3.6)

3.2 Identification Problem

We now consider what features of the model can be identified if we let the number of markets

T → ∞ but allow the observed number of consumers nt within each market t to be fixed.

In this new asymptotic limit, the distribution of (nt, st, xt, zt, Jt) rather than (πt, xt, zt, Jt)

is identified, i.e., we learn the joint distribution of observed market shares and the other

market observables rather than choice probabilities and market observables in the limit as

the number of markets grows large.

As this new asymptotic allows for sampling variability in market shares in the limit, a

fundamental problem arises: point identification is lost due to the sampling error and the

nonlinearity of the model. What we now show is that this problem in our setting is rather

severe – the identifying content of the conditional mean restriction (3.5) completely vanishes

in the absence of further restrictions. That is, without more information, the standard

instrumental variables restriction loses all of its empirical content when we treat market

shares st rather than choice probabilities πt as the relevant observable in the asymptotic

limit.

For the sake of clarity, we show this negative result in the context the simplest random

utility of demand, i.e., the simple logit model with a single product and no covariates. In

this simple model,

uit = c+ ξt + vit,

where vit
iid∼ EV is a standardized (type I) extreme value random variate and E [ξt] = 0.

The constant c is the only parameter to identify. In this case it is straightforward to see

that

c+ ξt = σ−1(πt, xt, λ0) ≡ log

(
πt

1− πt

)
,

and hence the constant c equals

E

[
log

(
πt

1− πt

)]
. (3.7)

Suppose that instead of observing πt we only observe market share st constructed from

the choices of n i.i.d. consumers in each market t.13 Since the consumers are i.i.d., we

13Here we treat nt as a fixed constant for all market but the results can be understood as conditional on
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have nst | πt ∼ BN (n, πt), the binomial distribution with parameters (n, πt). Clearly,

the expectation of st identifies E [πt] because E [st] = E [E [st | πt]] = E [πt] . However

we now show that the parameter c is completely not identified even with identification of

the entire distribution of the random variable st. This is because the distribution of st

severely under-identifies the distribution of πt, i.e., for a given distribution of st found in

the data there are a large number of distributions of πt that are compatible with it and these

multiple distributions of πt allow for all kinds of outcomes for the expectation of interest

E
[
log
(

πt
1−πt

)]
.

To see this more precisely, first observe that the probability mass function (pmf) of nst

given πt ∈ [0, 1] is

pnst|πt(l|π) =

(
n

l

)
πl(1− π)n−l, ∀l = 0, ..., n. (3.8)

Suppose that the true distribution of πt is Fπ : [0, 1]→ [0, 1]. Then the unconditional pmf

pnst(·;Fπ) of nst implied by Fπ is

pnst(l;Fπ) =

ˆ (
n

l

)
πl(1− π)n−ldFπ(π), ∀l = 0, . . . n. (3.9)

That is, the distribution of nst is a mixture of binomials with mixing probability Fπ. The

distribution pnst(·;Fπ) is identified from the data, but because pnst is a discrete distribution

with n + 1 support points, and Fπ is potentially continuous, Fπ is underidentified by the

equation (3.9). We show below that the knowledge of pnst(·) in general can only give trivial

bounds ((−∞,∞)) for E
[
log
(

πt
1−πt

)]
.

To state the result precisely, observe that the set of all possible mixture distributions

pnst that can be potentially observed in the data is geometrically constructed as follows.

Let ~ps(Fπ) = (pnst(0;Fπ), ..., pnst(n;Fπ))
′
, and let 14

Ps = {~ps(Fπ) : Fπ(t) = 1{t ≥ x} for some x ∈ [0, 1]} . (3.10)

Let ~p∗s = (p∗s(0), ..., p∗s(n))
′

where p∗s(·) is the true pmf of nst. Then the convex hull of Ps,

co(Ps), is the set of all possible values that ~p∗s can take. A point ~p∗s in the interior of co(Ps)

is called a generic point in the set because the boundary of co(Ps) has Lebesgue measure

zero and can be approximated arbitrarily closely by points in the interior.

Theorem 1. The distribution ~p∗s generically produces no informative restrictions on the

expectation (3.7), i.e., for any generic ~p∗s and any M > 0 there exists distributions of πt,

nt.
14The set Ps is the set of ~ps(Fπ) vectors generated by all Fπ that is degenerate at one point in [0, 1].
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FMπ : (0, 1) → [0, 1] and F−Mπ : (0, 1) → [0, 1] that are consistent with ~p∗s– ~p∗s = ~ps
(
FMπ

)
and ~p∗s = ~ps

(
F−Mπ

)
– and satisfy

EFMπ

[
log

(
πt

1− πt

)]
> M and EF−Mπ

[
log

(
πt

1− πt

)]
< −M

The proof is given in Appendix A and easily extends to the general demand model dis-

cussed above. The result has important implications for empirical work with differentiated

products. When only empirical shares rather than choice probabilities are identified in the

data, the conditional mean restriction (3.5) has zero empirical content, i.e., empirical shares

provide no restrictions on the expectation of interest

E
[
σ−1
j (πt, xt;λ0) | zjt

]
. (3.11)

Thus the instrumental variable assumptions applied to the data imposes no informative

restrictions on the model parameters.

4 Identification using Moment Inequalities

4.1 Constructing Product Level Moment Inequalities

The negative conclusion of Theorem 1 is driven by the fact that the distribution of empirical

shares st observed in the data can be rationalized by an underlying distribution of choice

probabilities Fπ that contains support points arbitrarily close to 0 or 1. Thus to avoid

this conclusion and restore empirical content to the instrumental variable assumption, it

is necessary to restrict the support of the true underlying (but un-observed) Fπ ex-ante

so that it is bounded away from zero. In the context of the general product differentiated

demand model, this restriction takes the form of Assumption 1 below. Letting ∆Jt be the

Jt dimensional unit simplex (the set of all possible choice probability vectors over the Jt+1

products), we assume the following:

Assumption 1. There exists ε (zt, Jt) = (ε0 (zt, Jt) , . . . , εJt (zt, Jt)) such that εj(zt, Jt) > 0

for all j, zt, Jt and the support of πt | zt, Jt is contained in ∆
ε(zt,Jt)
Jt

= {~π = (π0, π1, ..., πJt)
′ ∈

∆Jt : πj ≥ εj (zt, Jt) for j = 0, . . . , Jt}.

That is, there exists a vector of lower bounds εt := ε (zt, Jt) > 0 which bound from

below the value that the vector of choice probabilities πt can possibly take (conditional on

the instrument and number of products (zt, Jt)).
15 This is a necessary assumption in light

15We can think of Fπ|zt,Jt as the “ideal” reduced form that would point identify the model, but cannot
itself be identified. What the above Theorem 1 generally shows is that we must restrict the support of this
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of Theorem 1. The same assumption is also imposed in BLintonP to ensure estimation

consistency,16 but in our context we see that it is necessary even for identification. In

practice, one can set εjt := εj (zt, Jt) to be the same across all observations j, t and to be

equal, for example, to machine precision. Alternatively one can also set it according to ones

prior on the minimum choice probability to sustain the fixed costs of making the product

available in the market.

Our identification strategy is to exploit Assumption 1 along with the structure of the dis-

crete choice model to construct new inversion mappings σ−1
j,l (st, nt, xt;λ0) and σ−1

j,u (st, nt, xt;λ0)

that bound the expectation of interest (3.11):

E
[
σ−1
j,l (st, nt, xt;λ0) | zjt

]
≤ E

[
σ−1
j (πt, xt;λ0) | zjt

]
≤ E

[
σ−1
j,u (st, nt, xt;λ0) | zjt

]
(4.1)

We then can use the fact that σ−1
j (πt, xt;λ0) = β0xjt + ξjt along with the conditional mean

restriction E [ξjt | zjt] = 0 to express the empirical content of the model as a system of

conditional moment inequalities

E
[
σ−1
j,u (st, nt, xt;λ0)− β0xjt | zjt

]
≥ 0

E
[
β0xjt − σ−1

j,l (st, nt, xt;λ0) | zjt
]
≥ 0 (4.2)

that holds for all j = 1, . . . , Jt almost surely with respect to [zt, Jt]. Letting yt = (st, nt, xt, Jt),

we can express this system more succinctly as

E [mj (yt; θ0) | zjt] ≥ 0 ∀j = 1, . . . , Jt, a.s. [zt, Jt] (4.3)

where mj (yt; θ0) is a stacked vector of the two moments in (4.2). This system of conditional

moment inequalities partially identifies the true parameter vector θ0 and forms the basis

for our inference strategy.

To motivate our approach to constructing the bounds (4.1), observe that although st

is an unbiased estimator for πt, plugging the unbiased estimator into the inverse share

function, i.e., σ−1
j (·, xt;λ0), causes the expectation

E
[
σ−1
j (st, xt;λ0) | zjt

]
(4.4)

to no longer equal the expectation of interest (3.11) because the function σ−1 is nonlinear.

In fact, the situation is more complicated because the expectation (4.4) does not even exist.

true underlying reduced form Fπ|zt,Jt to be bounded away from the boundary of the simplex in order for
the reduced form we observe Fs|zt,Jt to have empirical content for the model parameters.

16Condition S of BLintonP.
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This is because there is always some positive probability that the empirical shares sjt can

be zero for any πjt ∈ (0, 1), but σ−1 is not defined on the boundary of the simplex (see

Berry, Gandhi, and Haile (2011) for further discussion of this latter fact). We solve the

problem in the following steps.

1. In the first step, we transform empirical shares so they move strictly to the interior

of the unit simplex. We do so using a natural transformation: the Laplace’s rule of

succession, which takes the form

s̃t =
ntst + 1

nt + Jt + 1
.

The transformed shares s̃t can be interpreted as a Bayesian posterior point estimate

of πt under a uniform prior on the Jt-dimensional unit simplex.17 Such a transformed

share will also be useful for counterfactuals when we must form such a point estimate.

Using s̃t in σ−1
j (·, xt;λ0) in place of st solves the existence problem of the expectation

(4.4). However, we still have that E
[
σ−1
j (s̃t, xt;λ0) | zjt

]
6= E

[
σ−1
j (πt, xt;λ0) | zjt

]
.

2. In the second step, which is the most important step, we exploit a monotonicity feature

of demand that was recently shown by Berry, Gandhi, and Haile (2011) but has not yet

been applied to empirical work. In particular, for a given product j and parameters

λ, we can show there exists a unique real valued function ηj(nt, πt, xt, Jt;λ) defined

as the unique η that solves

E
[
σ−1
j (s̃t + η · ej , xt;λ) |nt, πt, xt, Jt

]
= σ−1

j (πt, xt;λ), (4.5)

where ej is a vector whose jth element is one and all other elements are zeros, and the

expectation is taken with respect to the randomness in st. We show in Lemma B.1 of

Appendix B the existence and uniqueness of such a solution. The proof exploits the

monotonicity feature of inverse demand that Berry, Gandhi, and Haile (2011) showed

is satisfied in discrete choice models quite generally.

3. In the last step, we let

ηujt := ηuj (nt, zt, xt, Jt;λ) := sup
πt:~πt∈∆

ε(zt,Jt)
Jt

ηj(nt, πt, xt, Jt;λ). (4.6)

As the proof of Lemma B.1 makes clear, the function σ−1
j is monotone in the jth

17See e.g. Chapter 9.4 of Good (1983).
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share, which gives us the inequality

E
[
σ−1
j

(
s̃t + ηujt · ej , xt;λ

)
|nt, πt, xt, Jt

]
≥ σ−1

j (πt, xt;λ), (4.7)

for all πt such that ~πt ≡ (1−π′t1Jt , π′t)′ ∈ ∆
ε(zt,Jt)
Jt

. Hence taking expectations of both

sides of this inequality conditional on the instruments zjt and using Assumption 1

along with the the law of iterated expectation, we have18

E
[
σ−1
j

(
s̃t + ηujt · ej , xt;λ

)
| zjt

]
≥ E

[
σ−1
j (πt, xt;λ) | zjt

]
. (4.8)

Similarly, we let

ηljt := ηlj(nt, zt, xt, Jt;λ) := inf
πt:~πt∈∆

ε(zt,Jt)
Jt

ηj(nt, πt, xt, Jt;λ). (4.9)

and we have:

E
[
σ−1
j

(
s̃t + ηljt · ej , xt;λ

)
| zjt

]
≤ E

[
σ−1
j (πt, xt;λ) | zjt

]
.

In Appendix B, we show how ηujt and ηljt are explicitly computed in the case of the

work-horse logit and nested logit demand models. There we also provide computa-

tional guidance for more general models.

Now, letting

σ−1
j,l (st, nt, xt;λ0) : = σ−1

j

(
s̃t + ηljt · ej , xt;λ

)
σ−1
j,u (st, nt, xt;λ0) : = σ−1

j

(
s̃t + ηujt · ej , xt;λ

)
we have thus constructed the new inversion mappings that satisfy the bounding inequality

(4.1).19

Remark 1. Our bounds (4.1) have the key property of being “adaptive” to the observed

shares st in a way that makes them especially useful for applied work. To appreciate this

adaptivity property, consider instead a “naive bounding” approach that uses Assumption 1,

but does not exploit the monotonicity implied by the underlying discrete choice model. Such

18Formally we first take conditional expectations conditional on (zt, Jt) to establish that
E
[
σ−1
j

(
s̃t + ηujt · ej , xt;λ

)
| zt, Jt

]
≥ E

[
σ−1
j (πt, xt;λ) | zt, Jt

]
using Assumption 1. We then take condi-

tional expectations of both sides of this inequality conditional on just zjt.
19Note that in principle σ−1

j,l and σ−1
j,u also depend upon (zt, Jt) because the computation of ηujt and ηljt

in principle can depend upon (zt, Jt) (because we allow εt := ε (zt, Jt) to depend upon this vector). We
suppress this dependence both for notational simplicity and also, as noted above, in practice it is common
to simply let εjt = ε in which case the arguments (zt, Jt) drops out. We will slightly abuse notation in what
follows and leave out the dependence of a few other functions on (zt, Jt) for notational simplicity.
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a strategy would directly correct the difference between E
[
σ−1
j (s̃t, xt;λ) | nt, πt, xt, Jt

]
and

σ−1
j (πt, xt;λ) by constructing the linear correction factors:

µuj,naive (xt, nt;λ) = sup
πt:~πt∈∆

ε(zt,Jt)
Jt

{
σ−1
j (πt, xt;λ)− E

[
σ−1
j (s̃t, xt;λ) | nt, πt, xt, Jt

]}
µlj,naive (xt, nt;λ) = inf

πt:~πt∈∆
ε(zt,Jt)
Jt

{
σ−1
j (πt, xt;λ)− E

[
σ−1
j (s̃t, xt;λ) | nt, πt, xt, Jt

]}
.

(4.10)

The expectations E[σ−1
j (s̃t, xt;λ) + µlj,naive|zjt] and E[σ−1

j (s̃t, xt;λ) + µuj,naive|zjt] by con-

struction bound the expectation of interest (3.11). However these bounds will typically be

quite loose because the difference σ−1
j (πt, xt;λ) − E

[
σ−1
j (s̃t, xt;λ) | nt, πt, xt, Jt

]
is large

for πt such that ~πt is close to the boundary of ∆
ε(zt,Jt)
Jt

and thus the correction factors

µlj,naive (xt, nt;λ) and µuj,naive (xt, nt;λ) will also be large as a result. These large correc-

tion factors are then applied indiscriminately to all realizations of σ−1
j (s̃t, xt;λ), even when

~st ≡ (1− s′t1Jt , s′t)′ is far from the boundary.

The key novelty of our approach is taking advantage of the monotonicity implied by the

structure of the discrete choice model and correcting s̃jt rather than σ−1
j (s̃t, xt;λ) directly.

To see the advantage we gain, observe that the “linear correction factors” on σ−1
j (s̃t, xt;λ)

implied by our construction are

µlj (st, xt, nt;λ) = σ−1
j,l (st, nt, xt;λ)− σ−1

j (s̃t, xt;λ)

µuj (st, xt, nt;λ) = σ−1
j,u (st, nt, xt;λ)− σ−1

j (s̃t, xt;λ) .

These implied factors µuj (st, xt, nt;λ) and µlj (st, xt, nt;λ) are functions of st, unlike the

naive correction factors above. The implied factors are large for markets with ~st near the

boundary of the unit simplex (i.e., when the correction is most needed) and are negligible for

markets with ~st being well inside the interior of the unit simplex (i.e., when the correction

is least needed). The adaptiveness comes from the fact that our correction ηujt and ηljt enter

in the same way as the noise (s̃t − πt) and thus has large effect on σ−1
j (s̃t, xt;λ) when and

only when the noise does. This adaptiveness allows our approach to deliver informative

inferences as our empirical study to follow shall illustrate.

4.2 Aggregating Moment Inequalities to the Market Level

In (4.3), it is shown that the aggregate demand model can be written as

E [mj (yt; θ0) | zjt] ≥ 0 ∀j = 1, . . . , Jt a.s. [zt, Jt]. (4.11)
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The model (4.11) appears almost the same as the conditional moment inequality model

discussed extensively in, e.g., Andrews and Shi (2013) and Chernozhukov, Lee, and Rosen

(2008). However there is one essential difference that we need now address. The existing

methods of inference are designed for generic problems in which observations are inde-

pendent, or at least can be assumed to satisfy a special form of weak dependence (e.g.

mixing). Such assumptions are not readily satisfied in the aggregate demand model be-

cause the observations {xjt, zjt, ξjt} tend to be correlated across j within the same market

t in non-standard ways due to the strategic interaction between products in a market. 20

Instead of treating each (j, t) as an observation, we propose to aggregate the moments

up to the market level and use the pure market level variation as the basis for inference and

use the more standard independence or weak dependence assumption on the market level

variation.

The aggregation we seek needs to be done properly to preserve all the identification

information there is in (4.11) under acceptable assumptions on the data generating process.

The first step is to transform (4.11) into moments not conditioning on product level variables

– moments that can be aggregated. Let g(zjt) be a real-valued function where the function

g lies in the collection G . We take G to be a collection of indicator functions:

G = {1(z ∈ C) : C ∈ C}, (4.12)

where C is a collection of subsets of Z, the support of zjt. The following Lemma shows the

equivalent form of (4.11). The proof is the same as that of Lemma 3 in Andrews and Shi

(2013) and is omitted.

Lemma 1. Suppose that C ∪{∅} is a semi-ring of subsets of Z. Also suppose that Z can be

written as the union of countable disjoint sets in C and the sigma field generated by C ∪ {∅}
equals B(Z) – the Borel sigma field on Z ⊆ Rdz .21Then, (4.11) holds if and only if

E[mj(yt, θ0)g(zjt)] ≥ 0, ∀g ∈ G, ∀j = 1, ..., Jt a.s. [Jt]. (4.13)

20The dependence of mj(yt, θ0) on other products’ characteristics cannot be captured by a market level
fixed effect. Also it is not possible to stack up the mj : j = 1, ..., Jt and treat the model as a market level
model with a multi-dimensional moment condition because Jt varies across markets.

21A semi-ring, R, of subsets of a universal set Z is defined by three properties: (i) ∅ ∈ R, (ii) A,B ∈
R⇒A ∩ B ∈ R and (iii) if A ⊂ B and A,B ∈ R, then there exists disjoint sets C1, ..., CN ∈ R such that
B − A = ∪Ni=1Ci. An example of a C that satisfies the assumptions in Lemma 1 when Z is discrete is
Cd = {{z} : z ∈ Z}. An example when Z = [0, 1] is Cc = {[a, b) : a, b ∈ [0, 1]} ∪ {{b}}.

18



The second step is to aggregate up the moments in (4.13) to market level:

E

J−1
t

Jt∑
j=1

mj(yt, θ0)g(zjt)

 ≥ 0, ∀g ∈ G. (4.14)

The aggregated moment condition contains exactly the same information as (4.13) because

the model is agnostic about how products with different t but the same j index are linked

to each other, i.e. there is no ex ante information in the product index j. As a result of

this agnostic stand, we have for all j
′

= 1, 2, ..., Jt,

E

J−1
t

Jt∑
j=1

mj(yt, θ0)g(zjt)

 = E

E
J−1

t

Jt∑
j=1

mj(yt, θ0)g(zjt)|Jt


= E

[
mj′ (yt, θ0)g(zj′ t)

]
. (4.15)

It is then immediate that the market level moment condition (4.14) holds if and only if

(4.13) does.

Let wt = (yt, zt) and let

ρ(wt, θ, g) = J−1
t

Jt∑
j=1

mj(yt, θ)g(zjt). (4.16)

Then the model (4.14) can be written as

E[ρ(wt, θ0, g)] ≥ 0, ∀g ∈ G. (4.17)

The next section takes the model in (4.17) as the starting point and develop a profiling

method for the inference of any parameter that is identified through a (possibly set valued)

function of θ0.

The above aggregation allows Jt to be endogenous (or exogenous). However this ag-

gregation is different from the aggregation implied by the traditional BLP approach that

treats each (j, t) pair as an observation (and implicitly treats Jt as exogenous). To be more

comparable with the literature, we can define an alternative aggregation as

ρ(wt, θ, g) =

Jt∑
j=1

m(yt, θ)g(zjt). (4.18)

Similar arguments as those above can be used to show that (4.17) holds with ρ(wt, θ, g)

defined as in (4.18) provided that Jt is exogenous (i.e. (3.6) holds instead of (3.5)). Because
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the focus of this paper is on the bound construction rather than on the endogeneity of entry

and exit of products, in our empirical application, we use the ρ(wt, θ, g) in (4.18), which

is in direct analogue to the traditional BLP estimation to which our inference results are

compared.

5 Estimation and Inference

In this section, we introduce the estimation and inference procedure. To focus attention on

our main contribution – the profiling approach, we assume the markets are drawn from an

i.i.d. distribution. In Appendix G, we discuss how to allow for dependence among markets.

5.1 Profiling Confidence Set

The model (4.17) is a moment inequality model with many moment conditions. One could

use the method developed in Andrews and Shi (2013) to construct a confidence set for θ0.

However, Andrews and Shi (2013)’s confidence set is constructed by inverting an Anderson-

Rubin test: CS = {θ : T (θ) ≤ c(θ)} for some test statistic T (θ) and critical value c(θ).

Computing this set amounts to computing the 0-level set of the function T (θ)− c(θ), where

c(θ) typically is simulated quantiles and thus a non-smooth function of θ. Computing the

level set of a non smooth function is essentially a grid-search problem which is only feasible

if dθ is small. However, in demand estimation, dθ cannot be small because at least a

moderate number of covariates have to be controlled for the assumption E(ξjt|zjt) = 0 to

be reasonable.

On the other hand, in demand estimation the coefficients of the control variables are

nuisance parameters that often are of no particular interest. The parameters of interest

are the price coefficient or the price elasticities, which are small dimensional. Based on

this observation, we propose a profiling method to profile out the nuisance parameters and

only construct confidence sets for a parameter of interest. The profiling approach is an

old approach that has led to the well-known QLR (quasi-likelihood ratio) test for nonlinear

profiles of parameters in extremum estimation problems (see Newey and McFadden (1994)).

In conditional moment inequality (CMI) models, however, profile QLR-based inference has

not been explored much. On the other hand, such an inference approach is more crucially

needed in CMI models than in standard extremum estimation problems because Wald-

based confidence sets are no longer appropriate due to partial identification and inequality

constraints. Our contribution of this section therefore is to provide such an approach. We

show that the QLR test statistic (appropriately formed for the CMI models) combined

with a carefully designed simulated critical value overcomes the complicacy of conditional

moment inequality models and delivers uniformly asymptotically valid confidence sets.
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The profiling approach applies to general moment inequality models with many moment

inequalities. Thus from this point on, we treat ρ(wt, θ, g) as a generic moment function with

dimension k. In the demand model above, k = 2.

The parameter of interest, γ0, is related to θ0 through:

γ0 ∈ Γ(θ0) ⊆ Rdγ , (5.1)

where Γ : Θ→ 2R
dγ

is a known mapping where 2R
dγ

denotes the collection of all subsets of

Rdγ . Three examples of Γ are given below:

Example. Γ(θ) = {α}: γ0 is the price coefficient α0. In the simple logit model, the price

coefficient is all one needs to know to compute the demand elasticity.

Example. Γ(θ) = {ej(p, π, θ, x) = (αpj/πj)(∂σj(σ
−1(π, x, λ), x, λ)/∂δj)}: γ0 is the own-

price demand elasticity of product j at a given value of the price vector p, the choice

probability vector π and the covariates x.

Example. Γ(θ) = {ej(p, π, θ, x) : π ∈ [πl, πu]}: γ0 is the demand elasticity of product j at

a given value of the price vector p, the covariates x and at the choice probability vector that

is known to lie between πl and πu. This example is particularly useful when the elasticity

depends on the choice probability but the choice probability is only known to lie in an

interval.

Let Γ0 be the identified set of γ0: Γ0 = {γ ∈ Rdγ : ∃θ ∈ Θ0 s.t. Γ(θ) 3 γ}, where

Θ0 = {θ ∈ Θ : Eρ(wt, θ, g) ≥ 0}. The profiling approach constructs a confidence set for γ0

by inverting a test of the hypothesis:

H0 : γ ∈ Γ0, (5.2)

for each parameter value γ. The confidence set is the collection of values that are not

rejected by the test.

Let Γ−1(γ) = {θ ∈ Θ : Γ(θ) 3 γ}. The test to be inverted uses the profiled test statistic:

T̂T (γ) = T × min
θ∈Γ−1(γ)

Q̂T (θ), (5.3)

where Q̂T (θ) is an empirical measure of the violation to the moment inequalities. The

confidence set of confidence level p is the set of all points for which the test statistic does

not exceed a critical value cT (γ, p):
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CST = {γ ∈ Rdγ : T̂T (γ) ≤ cT (γ, p)}. (5.4)

Notice that the new confidence set only involves computing a dγ-dimensional level set, where

dγ is often 1. The profiling transfers the burden of searching (for low values) over the surface

of the non smooth function T (θ)−c(θ) to searching over the surface of the typically smooth

and often convex function Q̂T (θ).

We choose a critical value, cT (γ, p), of significance level 1− p ∈ (0, 0.5), to satisfy

lim
T→∞

inf
(γ,F )∈H0

Pr F (T̂T (γ) > cT (γ, p)) ≤ 1− p, (5.5)

where F is the distribution on (wt)
T
t=1 and H0 is the null parameter space of (γ, F ). The

definition of H0 along with other technical assumptions are given in Appendix C.22

As a result of (5.5), the confidence set asymptotically has the correct minimum coverage

probability:

lim inf
T→∞

inf
(γ,F )∈H0

PrF (γ ∈ CST ) ≥ p. (5.6)

The left hand side is called the “asymptotic size” of the confidence set in Andrews and Shi

(2013). We achieve the asymptotic size control by deriving an asymptotic approximation for

the distribution of the profiled test statistic T̂T (γ) that is uniformly valid over (γ, F ) ∈ H0

and simulating the critical value from the approximating distribution through either a

subsampling or a bootstrapping procedure.

In the rest of the section, we describe the test statistic and the critical value in detail

and show that (5.6) holds.

5.2 Test Statistic

The test statistic is the QLR statistic (i.e. a criterion-function-based statistic)23

T̂T (γ) = T × min
θ∈Γ−1(γ)

Q̂T (θ) with

Q̂T (θ) =

ˆ
GT
S(ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(g), (5.7)

22Note that we use F to denote the distribution of the full observed data vector and thus (γ, F ) captures
everything unknown in the expression PrF (T̂T (γ) > cT (γ, p)). This notation differs from the traditional
literature where the true distribution of the data is often indicated by the true value of θ, but is standard
in the recent partial identification literature. See Romano and Shaikh (2008) and Andrews and Shi (2013).

23Note that we do not follow the traditional QLR test exactly to define T̂T (γ) = T ×minθ∈Γ−1(θ) Q̂T (θ)−
T ×minθ∈Θ Q̂T (θ). This is because the validity of our critical value depends on certain monotonicity of the
asymptotic approximation of the test statistic and the monotonicity does not hold with this alternative test
statistic due to the subtraction of T ×minθ∈Θ Q̂T (θ).
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where GT is a truncated/simulated version of G such that GT ↑ G as T → ∞, µ(·) is a

probability measure on G, S(m,Σ) is a real-valued function that measures the discrepancy

of m from the inequality restriction m ≥ 0, and

ρ̄T (θ, g) = T−1
T∑
t=1

ρ(wt, θ, g),

Σ̂ι
T (θ, g) = Σ̂T (θ, g) + ι× Σ̂T (θ, 1)

Σ̂T (θ, g) = T−1
T∑
t=1

ρ(wt, θ, g)ρ(wt, θ, g)
′ − ρ̄T (θ, g)ρ̄T (θ, g)

′
. (5.8)

In the above definition, ι is a small positive number which is used because in some form

of S defined in Appendix C, the inverse of Σ̂ι
T (θ, g)’s diagonal elements enter, and the ι

prevents us from taking inverse of zeros. In some other forms of S, e.g. the one defined

below and used in the simulation and empirical section of this paper, the ι does not enter

the test statistic because S(m,Σ) does not depend on Σ.

Appendix C gives the assumptions that the user-chosen quantities S, µ, G and GT should

satisfy. Under those assumptions, we can show that minθ∈Γ−1(γ) Q̂T (θ) consistently estimate

minθ∈Γ−1(γ)QF (θ) where

QF (θ) =

ˆ
G
S(ρF (θ, g),Σι

F (θ, g))dµ(g), with

ρF (θ, g) = EF (ρ(wt, θ, g)),

ΣF (θ, g) = CovF (ρ(wt, θ, g)) and Σι
F (θ, g) = ΣF (θ, g) + ιΣF (θ, 1). (5.9)

The symbols “EF ” and “CovF ” denote expectation and covariance under the data distri-

bution F respectively. Notice that Γ0 depends on F . We make this explicit by changing

the notation Γ0 to Γ0,F for the rest of this paper.

We can also show that minθ∈Γ−1(γ)QF (θ) = 0 if and only if γ ∈ Γ0,F . This result

combined with the convergence result implies that T̂T (γ) diverges to infinity at γ /∈ Γ0,F .

That implies that there is no information loss in using such a test statistic.

Lemma 2 summarizes those two results. The parameter space H of (γ, F ) appearing in

the lemma is defined in Assumption C.2 in the appendix.

Lemma 2. Suppose that the conditions in Lemma 1 and Assumptions C.1,C.2, C.4, C.5(a)

and C.6 (a) and (d) hold. Then for any (γ, F ) ∈ H,

(a) minθ∈Γ−1(γ) Q̂T (θ)→p minθ∈Γ−1(γ)QF (θ) under F , and

(b) minθ∈Γ−1(γ)QF (θ) ≥ 0 and = 0 if and only if γ ∈ Γ0,F .

In the simulation and the empirical application of this paper, the following choices of
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S, G, GT and µ are used mainly for computational convenience. For G, we divide the

instrument vector zjt into discrete instruments, zd,jt, and continuous instruments zc,jt. Let

the set Zd be the discrete set of values that zd,jt can take. Normalize the continuous

instruments to lie in [0,1]: z̃c,jt = FN(0,1)(Σ̂
−1/2
zc zc,jt), where FN(0,1)(·) is the standard

normal cdf and Σ̂zc is the sample covariance matrix of zc,jt. The set G is defined as

G = {ga,r,ζ(zd, zc) = 1(z̃c ∈ Ca,r, zd = ζ) : Ca,r ∈ Ccc, ζ ∈ Zd}, where

Ccc = {×dzcu=1((au − 1)/(2r), au/(2r)] : au ∈ {1, 2, ..., 2r}, for u = 1, ..., dzc

and r = r0, r0 + 1, ...} (5.10)

where “cc” stands for “countable hyper-cube.” For GT , it is a truncated version of G. It is

defined the same as G except that in the definition of Ccc, we let r run from r0 to r̄T where

r̄T →∞ as T →∞.

For S , we use

S(m,Σ) =

k∑
j=1

[mj ]
2
−, (5.11)

where mj is the jth coordinate of m and [x]− = |min{x, 0}|. There may be efficiency loss

from not weighting the moments using the variance matrix, but this S function brings great

computational convenience because it makes the minimization problem in (5.3) a convex

one. For µ(·), we use

µ({ga,r,ζ}) ∝ (100 + r)−2(2r)−dzcK−1
d for g ∈ Gd,cc, (5.12)

where Kd is the number of elements in Zd. The same µ measure is used and seems to work

well in Andrews and Shi (2013).

5.3 Critical Value

We propose two types of critical values, one based on standard subsampling and the other

based on a bootstrapping procedure with moment shrinking. Both are simple to compute.

The bootstrap critical value may have better small sample properties, and is the procedure

we use in the empirical section.24 It is worth noting that we resample at the market level

for both the subsampling and the bootstrap.

Let us formally define the subsampling critical value first. It is obtained through the

standard subsampling steps: [1] from {1, ..., T}, draw without replacement a subsample of

market indices of size bT ; [2] compute T̂T,bT (γ) in the same way as T̂T (γ) except using the

24The bootstrap procedure here, like in most problems with partial identification, does not lead to higher-
order improvement.
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subsample of markets corresponding to the indices drawn in [1] rather than the original

sample; [3] repeat [1]-[2] ST times obtain ST independent (conditional on the original sam-

ple) copies of T̂T,bT (γ); [4] let c∗sub (γ, p) be the p quantile of the ST independent copies. Let

the subsampling critical value be

csubT (γ, p) = c∗sub (γ, p+ η∗) + η∗, (5.13)

where η∗ > 0 is an infinitesimal number. The infinitesimal number is used to avoid making

hard-to-verify uniform continuity and strict monotonicity assumptions on the distribution

of the test statistic. It can be set to zero if one is willing to make the continuity assumptions.

Such infinitesimal numbers are also employed in Andrews and Shi (2013). One can follow

their suggestion of using η∗ = 10−6.

Let us now define the bootstrap critical value. It is obtained through the following steps:

[1] from the original sample {1, ..., T}, draw with replacement a bootstrap sample of size T ;

denote the bootstrap sample by t1, ..., tT , [2] let the bootstrap statistic be

T ∗T (γ) = min
θ∈Θ:γ∈Γ(θ)

ˆ
G
S(ν̂∗T (θ, g) + κ

1/2
T ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(G), , (5.14)

where ν̂∗T (θ, g) =
√
T (ρ̄∗T (θ, g) − ρ̄T (θ, g)), ρ̄∗T (θ, g) = T−1

∑T
τ=1 ρ(Xtτ , θ, g), and κT is a

sequence of moment shrinking parameters: κT /T +κ−1
T → 0; [3] repeat [1]-[2] ST times and

obtain ST independent (conditional on the original sample) copies of T ∗T (γ); [4] let c∗bt(γ, p)

be the p quantile of the ST copies. Let the bootstrap critical value be

cbtT (γ, p) = c∗bt(γ, p+ η∗) + η∗, (5.15)

where η∗ > 0 is an infinitesimal number which has the same function as in the subsampling

critical value above.

Critical values that are not based on resampling are possible, too. For example, one

can define a critical value similar to the bootstrap one, except with ν̂∗T (θ, g) replaced by a

Gaussian process with covariance kernel that equals the sample covariance of ρ(wt, θ
(1), g(1))

and ρ(wt, θ
(2), g(2)) for (θ(j), g(j)) ∈ Θ × G, j = 1, 2. For lack of space, we do not discuss

such critical values in detail.

5.4 Coverage Probability

We show that the confidence sets defined in (5.4) using either csubT (γ, p) and cbtT (γ, p) have

asymptotically correct coverage probability uniformly over H0 under appropriate assump-

tions. The assumptions are given in the appendix for brevity.
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Theorem 2 (CP). Suppose that the conditions for Lemma 1 and Assumptions C.1-C.3 and

C.5-C.7 hold, then

(a) (5.6) holds with cT (γ, p) = csubT (γ, p), and

(b) (5.6) holds with cT (γ, p) = cbtT (γ, p).

The proof of Theorem 2 is quite lengthy and is given in Appendix E. Here we provide

some intuition how it works and why it is lengthy. To start, rewrite the test statistic as:

T̂T (γ) = min
θ∈Γ−1(γ)

ˆ
GT
S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(g)

= min
θ∈Γ−1(γ)

ˆ
GT
S(ν̂T (θ, g) +

√
TρF (θ, g), Σ̂ι

T (θ, g))dµ(g),

where

ν̂T (θ, g) =
√
T (ρ̄T (θ, g)− ρF (θ, g)). (5.16)

The asymptotic distribution of T̂T (γ) is difficult to derive because of the term
√
TρF (θ, g),

which typically does not converge as T → ∞. We note that the issue is more complicated

here than in Andrews and Shi (2013) and other existing papers dealing with moment in-

equality models where a similar term (i.e. the slackness parameter) also presents. In those

papers, one can fix a (sequence of) θ in the identified set Θ0. At that θ, the slackness

parameter is known to have a lower bound: zero. Thus, one can either replace it by zero

to obtain conservative (but valid) inference, or replace it by something asymptotically no

greater for less conservative inference. Those techniques work because the test statistic is

non-increasing in the slackness parameter. However, in the present context, we have to

minimize over θ ∈ Γ−1(γ), where Γ−1(γ) contains both points in Θ0 and points outside.

Points outside Θ0 are relevant for the asymptotic behavior of T̂T (γ) and thus cannot be

ignored. However, at those points,
√
TρF (θ, g) does not have a known lower bound — it

may diverge to −∞. As a result, the techniques in the literature do not guarantee valid

inference.

Nonetheless, we show that subsampling is a uniformly valid inference procedure, and we

also propose a bootstrap procedure that is in shape similar to that in Andrews and Soares

(2010) for a certain choice of their moment selection function. The essence of both our

subsampling and bootstrap procedures is to replace ν̂T (θ, g) by a random process ν̂∗T (θ, g)

that asymptotically approximate its distribution and to effectively replace
√
TρF (θ, g) by

a discounted version of it:
√
κTρF (θ, g) where κT → ∞ and κ−1

T T → ∞. Intuitively, the

procedure works for two reasons: (1) for θ ∈ Θ0, the discounting makes the term smaller

and thus the statistic bigger, and more importantly, (2) for θ /∈ Θ0,
√
κTρF,j(θ, g) might be

bigger than
√
TρF,j(θ, g) making

´
GT S(ν̂∗T (θ, g) +

√
κTρF (θ, g), Σ̂ι

T (θ, g))dµ(g) smaller, but

under appropriate conditions, there must be a θ† closer to Θ0 than θ, such that
√
TρF,j(θ

†, g)
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is similar to
√
κTρF,j(θ, g). In other words, the discounting does not create any new small

values
´
GT S(ν̂∗T (θ, g) +

√
κTρF (θ, g), Σ̂ι

T (θ, g))dµ(g) that minθ∈Γ−1(γ) has not taken account

of before the discounting. As a result, the discounting does not make the overall test statistic

smaller. The proof of Theorem 2 can be seen as formalization of (1) and (2). The formal

arguments involve detailed characterization and careful control of the behavior of various

components of T̂T (γ) in a (not necessarily T−1/2-) neighborhood of Θ0 ∩ Γ−1(γ) and thus

is quite lengthy.

6 Monte Carlo Simulation

In this section we present a Monte Carlo experiment that illustrates two key points: (1) the

large biases that the existing techniques experience even when nt is seemingly large and (2)

the performance of our inference strategy. We present another Monte Carlo in Appendix F

that is specifically designed to help us calibrate tuning parameters of the bootstrap for the

empirical application below. In that Appendix we also perform a repeated simulation study

which demonstrates that our profiling procedure attains the correct asymptotic coverage

probabilities and also exhibits good power for a data generating process that resembles the

structure of the data in our application. In this section, we focus on a simple yet informative

data generating process to highlight the contrast of controlling for error in market shares

versus ignoring it. We set T to be a large number, 5000, and only report results from one

simulation repetition.

We consider a simple binary choice logit model. Assume that each market has only one

inside good and an outside good. The utility of consumer i in market t from consuming

the inside good is uit = δt + vi1t and that from consuming the outside good is vi0t, where

vi0t and vi1t are independent type-I extremum value random variables that are independent

of δt. Let δt depend only on one single observed product characteristic xt in the form

δt = α0 + β0xt + ξt. Then

log

(
πt

1− πt

)
= α0 + β0xt + ξt. (6.1)

For simplicity we take xt and ξt to be independent so that xt is its own instrument. Let

the true value of the parameters be α0 = −1, β0 = −1. Let xt take three values 1, 4 and x̃

with probabilities .3, .5 and .2, respectively, where x̃ is a real number larger than 4. Let ξt

exhibit a simple form of heteroskedasticity: ξt ∼ N
(

0, σ2
ξ1{xt ≤ 4}+ 4σ2

ξ1{xt > 4}
)

. We

vary x̃ and σξ to get different proportions of zero st’s in the generated data.

The number of consumer draws in each market that determine market shares st are

taken to be 10,000, which is a very large number of consumer observations per product
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relative to most applications. The data only produce a small fraction of zero observations

- roughly 15 percent of the markets experience a zero share in the simulation for the range

of x̃ and σξ we consider.

We first implement our bounds estimator that formally deals with the problem of sam-

pling error in market shares, which is the underlying source for the zeroes in the data. The

confidence intervals we obtain for β0 (when we profiled out α0) are shown in the first two

rows of Table 1.25. As can be seen all the intervals cover the true value of −1, and our fifty

percent confidence interval (which is the partially identified analogue of a point estimate)

remains quite tight across treatments. 26

We next compare our approach with three potential alternatives that ignore the sampling

error in market shares but instead use informal “tricks” for dealing with zero shares in the

data. The first approach is to drop the zeroes from the data and using the standard BLP

estimator, which is a very common approach in practice as we discuss further below in

the application Section 7 (this strategy is labeled as “BLP Logit” in Table 1). The second

alternative is to modify the shares to eliminate the zeros and use the standard BLP estimator

on the resulting sample. In particular we add one consumer to each product in the data and

re-compute shares, which is the equivalence of using our Laplacian shares s̃t in BLP directly

(this is labeled below as “+1 Logit” in Table 1). The third informal strategy is to ignore

the real source of the zeros, treat the zeros as truncations in the dependent variable, and

then run quantile regressions (this is labeled as “QReg” below). The idea behind this third

trick is the general impression that quantile regressions are more robust to certain kinds of

truncation problems than mean regressions. 27Four different quantiles are considered: 50%

(median), 80%, 90% and 95%. For these alternative approaches, both point estimates and

95% confidence intervals are reported. The confidence intervals for the simple logit and the

+1 logit approaches use the heteroskedasticity robust formula.

The results are shown in the remaining rows of Table 1. As can be seen, all of these

informal attempts yield serious biases. This is a fairly natural outcome because none of

them deal with the fundamental source of sampling variability that drive the presence of

zero shares in the first place. In particular, the “Simple Logit” has a parameter value

25We follow the implementation instructions given in Section 5.2 and set r0 = 1 and r̄T = 50. Note that
we do not assume that the support of xt is known in the implementation. For the tuning parameter κT , we
use 1/

√
0.5 log T , which is a recommended choice from the Monte Carlo experiment in Appendix F.

26As mentioned above, what we report are results from one simulation repetition, but because we take
T to be 5000, which is quite large, changing the seed in the random number generating process varies the
results very little.

27When running the quantile regressions, we replace the zero shares by the minimum positive share in
the simulated data. Using some nonzero small numbers to replace the zeros is necessary because the invert
demand function evaluated at zero will be −∞ and for such markets, the quantile regression cannot give
finite estimates in our example. We find that the quantile regression results are very sensitive to what we use
to replace the zeros, suggesting our problem (which clearly is not a truncation problem) is not approximated
well by a truncation problem that the quantile regression can handle.
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attenuated towards zero, which is expected given the “selection on outcomes” that results

from dropping the zeroes from the sample. What is more interesting is that the other

alternative approaches that try to rescue the zeroes from being selected out of the sample

continue to suffer from the same attenuation bias. Thus we see that even in this simple

setting with a large number of consumers per product in each market, properly controlling

for the error in market shares is essential for recovering the true demand parameters in the

presence of zero shares in the data.

Table 1: Monte Carlo Results for the Binary Logit Example
σξ = .5, x̃ = 9.5 σξ = 1, x̃ = 10.5 σξ = 1.5, x̃ = 11.5 σξ = 2, x̃ = 12.5

50% CS [-1.00, -.99] [-1.00, -.99] [-1.03, -.98] [-1.14, -.96]

95% CS [-1.01, -.98] [-1.03, -.96] [-1.08, -.93] [-1.24, -.89]

BLP Logit -.86 -.77 -.67 -.58
[-.87, -.85] [-.79, -.75] [-.70, -.65] [-.61, -.55]

“+1” Logit -.81 -.71 -.63 -.56
[-.81, -.80] [-.72, -.71] [-.64, -.62] [-.57, -.55]

50% QReg -.81 -.71 -.63 -.57
[-.82, -.81] [-.72, -.70] [-.64, -.62] [-.58, -.55]

80% QReg -.88 -.82 -.77 -.73
[-.88, -.87] [-.83, -.81] [-.78, -.76] [-.74, -.72]

90% QReg -.91 -.87 -.78 -.75
[-.91, -.90] [-.89, -.85] [-.81, -.76] [-.78, -.72]

95% QReg -.84 -.83 -.75 -.69
[-.86, -.83] [-.85, -.81] [-.77, -.72] [-.73, -.66]

% zeros overall 13.54% 15.12% 15.80% 16.90%

Note: True value = -1, T = 5, 000, κT = T/(0.5 · log(T )), εt =minimum true share ∀t.

7 Empirical Application

7.1 Introduction

We now turn to applying our inference approach to real data. We use supermarket scanner

data to examine the effects of taking sampling errors in market shares into account for

demand elasticity estimation and thus for policy analysis. Scanner data is an attractive area

of application to illustrate the usefulness of our approach for two key reasons. First, scanner

data from supermarkets have become a major source of information for demand estimation

in the literature, and is now routinely used by the DOJ and FTC in merger cases (see e.g.,

Hosken, O’Brien, Scheffman, and Vita (2002)). Second, scanner data very clearly exhibit the

problem of error in market shares: within even narrowly defined product categories, there

exists a very large selection of products stocked by the retailer, but only a small handful of
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these products reliably sell from week to week. The bulk of products are sparsely demanded.

This phenomenon has more generally been coined the “long tail” phenomenon (see e.g.,

Anderson (2006)). The “long tail” refers to the large mass of slower selling products that

typically drives characterizes most of the product variety in an industry, and has become

especially pronounced with internet retailing (and associated with the success of companies

such as Amazon and eBay). 28

Products in the long tail have especially small choice probabilities and thus naturally

produce many zero sales in the data, i.e., many products in a given store do not sell in a

given week. This indicates a significant sampling error in the market shares. Our approach

is the first solution to demand estimation with scanner data that does not require either

selecting out products that experience zero sales or aggregating across products to remove

the zeros. Selecting out the zeros generates a selection problem whereas aggregating prod-

ucts generates an aggregation bias well known in the scanner data literature (see Hosken,

O’Brien, Scheffman, and Vita (2002)). Our approach on the other hand allows researchers

to analyze the full range of product variety in the data, which is consistent with the choice

problem consumers actually face. As our results indicate, studying the scanner data at this

fully disaggregated product level and taking the sampling error in market shares into full

account lead to interesting and new insights about consumer demand elasticities.

7.2 The Dominick’s Finer Foods Data

We obtain data from Dominick’s Database through the Kilts center at the University of

Chicago, which covers weekly store-level scanner data at Dominick’s Finer Foods (DFF)

and has been used by many researchers as the basis of demand studies, e.g., Chintagunta

and Vishal (2003), Chen and Yang (2007), etc.29 The data comprises all Dominick’s Finer

Foods chain stores in the Chicago metropolitan area over the years from 1989 to 1997. Like

other scanner data sets, this data set provides information on demand at store/week/UPC

level, where a UPC is a unique bar code that identifies a product.

We follow the prevailing literature (see Nair and Chintagunta (2005), Chintagunta and

Vishal (2003)) and define a market in the data as a store/week pair, and define products

within a market to be the UPC’s that a store places on its shelf in a given week.30 These are

28Although the demand for any individual product in the tail is small, which may make it appear a “waste
of space” for retailers to carry, the tail as a whole is a significant fraction of total demand and has become
an increasingly profitable segment for retailers as inventory costs have fallen. For further discussion see
Anderson (2006).

29For a complete list of papers using this data set, see the website of Dominick’s Database:
http://research.chicagobooth.edu/marketing/databases/dominicks/index.aspx

30An ideal feature of the data is that a UPC is listed for a given store/week market if it actually is a
UPC the store carries that week. Thus the data enable us to identify true “zero sales” – no consumer who
entered the store demanded the product that week, and these are not confounded by the possibility that the
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the natural units of a market and product in the data, particularly because the key source

of the price variation in the data comes from the decision by an individual store to put an

individual UPC on sale.31 This is illustrated in Figure 1, which shows the time series of

price for a representative UPC at a representative store in the data. As can be seen, this

price variation largely takes the form of the product going on a temporary sale and then

reverting back to an “everyday” price.

Figure 1: Price Variation of a UPC

The data in principle provide about 40,000 store/week markets and nearly 180 million

store/week/UPC product level observations. We follow the literature and take the number

of consumers in a market to be given by the “Customer Count” variable, which gives us

the number of customers that entered the given store during the given week and made a

purchase.32

We display summaries of the different product categories in Table 2. The first column

shows the extent of products variety that is present in an average store/week - the number

of UPC’s can be seen varying from roughly 50 (e.g., oatmeal and bath tissue) to over four

hundred (e.g., cookies) within even these fairly narrowly defined categories. The second

column shows that, within each category, there are relatively few “hit” products and a

product simply was not stocked that week.
31Nair and Chintagunta (2005) shows that the time series variation rather than across store variation

accounts for the bulk of the price variation in the data.
32The mean of the “Customer Count” variable is 18,350 and its standard deviation is 5,226. The fact that

the literature takes the sample of consumers to be those who enter the store as the market size means that
what is being implicitly estimated is a “store” level demand system, i.e., part of the outside option is to buy
the same product at another store. This understanding will help us with the interpretation of our findings.
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“long tail” of slow moving products. In particular, the data appears consistent with the

well known “80/20” rule, which is a classic empirical regularity that finds roughly 80 percent

of sales in a market being driven by the top 20 percent of products (see Anderson (2006)).

The third column shows the key difficulty associated with this long tail pattern of sales for

demand estimation - many of the slow moving products are often not sold at all in a given

store/week market. In particular, we see that the fraction of observations with zero sales

can even exceed 60% for some categories.

Table 2: Product Categories in the Dominick’s Database

Category

Average

Number of

UPC’s in a

Store/Week

Pair

Percent of

Total Sale of

the Top 20%

UPC’s

Percent of

Zero Sales

Analgesics 224 80.12% 58.02%

Bath Soap 72 87.80% 74.51%

Beer 179 87.18% 50.45%

Bottled Juices 187 74.40% 29.87%

Cereals 212 72.08% 27.14%

Cheeses 283 80.41% 27.01%

Cigarettes 161 96.43% 66.21%

Cookies 407 81.40% 42.57%

Crackers 112 81.63% 37.33%

Canned Soup 218 76.25% 19.80%

Dish Detergent 115 69.04% 42.39%

Front-end-candies 199 76.24% 32.37%

Frozen Dinners 123 66.53% 38.32%

Frozen Entrees 346 74.65% 37.30%

Frozen Juices 94 75.16% 23.54%

Fabric Softeners 123 65.74% 43.74%

Grooming Products 461 80.04% 62.11%

Laundry Detergents 200 65.52% 50.46%

Oatmeal 51 71.37% 26.15%

Paper Towels 56 83.56% 48.27%

Refrigerated Juices 91 83.18% 27.83%

Soft Drinks 537 91.21% 38.54%

Shampoos 820 83.69% 69.23%

Snack Crackers 166 76.39% 34.53%

Soaps 140 77.26% 44.39%

Toothbrushes 137 73.69% 58.63%

Canned Tuna 118 82.74% 35.34%

Toothpastes 187 74.19% 51.93%

Bathroom Tissues 50 84.06% 28.14%
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7.3 Demand Estimation on the Bath Tissue Data

The preponderance of zero sales in the data poses a serious problem for demand estimation

because they are a direct reflection of a significant error in market shares as measures of

choice probabilities as has already been discussed above. In particular, as we have already

discussed above both theoretically and illustrated with the Monte Carlo, the standard BLP

estimator is no longer consistent when the error in market shares is not sufficiently small.

We now turn to applying our inference strategy to the DFF data.

We focus on the bathroom tissue category for our current analysis. Our choice is based

on a few different considerations. First, several authors have previously considered the

bathroom tissue category in the DFF data e.g., Israilevich (2004), Romeo (2005), Misra

and Mohanty (2008), and further the bathroom tissue industry has been a source of some

policy interest, see e.g., Hausman and Leonard (2002). These papers provide a point of

comparison for our demand estimates. Second, this category has a smaller fraction of

zeroes as compared to some other product categories (as can be seen in Table 2), and thus

is far from a “worst case” scenario for the selection bias that zero sales pose for the BLP

approach.

As has been mentioned, markets are naturally formed by store/week pairs. A number of

papers analyzing the DFF data have focused on the interaction between market demograph-

ics and consumer preferences because there is rich demographic variation associated with

the locations of different stores (see e.g., Hoch, Kim, Montgomery, and Rossi (1995)). We

respect this concern by focusing attention on a single store.33 Given our choice of bathroom

tissue, we will focus on the first two years of data from this store, which are 1991-1992. This

choice reflects the fact that a major change in the bathroom tissue industry took place in

1993 when one of the major brands Charmin brand introduced its “ultra” line of products

(see Hausman and Leonard (2002) for a discussion), which very likely had a large impact on

brand preferences due at the very least to the big changes in advertising campaigns across

brands that ensued. The period 1991-1992 thus represents a more stable demand period.

This leaves us with a sample size of 4428 observations (UPC/week), which consists of 104

weeks with an average number of UPC’s in each week being 43.

To gain a better picture of the long tail pattern in our subsample of the data, we separate

products into two separate groups, namely those that experience a zero sale during some

period in the data (we shall refer to this first group as the “zeroes”) and those that did not

(we shall refer to this second group as the “non-zeroes”). Out of 51 total UPC’s in our data,

25 UPC’s fall into the “zeroes” group, i.e., roughly half the UPC’s experience a zero during

33The store we select is number 134 in the dataset, located at the city of West Chicago. It is the only
store in a pricing zone (zone number is 13), which belongs to “medium” price tier and is one of the 16 DFF’s
reported zones. Our results are in no way dependent upon the selection of this particular store.
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at least one week of sales. Demand for an average product in the “non-zeroes” group is

roughly four times as high as for the “zeroes” category overall. Even conditional on selling

in a given week, the average product in the “non-zeroes” group has roughly three times

higher demand than an average product in the “zeroes” group, which is consistent with

the fact that products in the “zeroes” group have significantly smaller choice probabilities.

However the “zeroes” products as a whole are a significant component of total sales: roughly

20 percent of the total sales arise from sales from these UPC’s.

We will focus on estimating the logit demand model. The logit remains the workhorse

of demand analysis for differentiated products both because of its computational simplicity

and the transparency of its policy implications (see e.g., Werden and Froeb (1994)). It is

also a fundamental starting point that serves to motivate potentially richer specifications.

Our strategy in isolating the logit is also intentional: we wish to demonstrate that even

for this widely recognized and seemingly well understood model, and even using workhorse

data (i.e., the DFF data), the problem of error in market shares still poses serious empirical

problems and that our inference strategy can actually reveal new insights in this context.34

Observe that in the logit case, the price elasticity of a set of products It (possibly a

single UPC, or a brand) is simply εItt = αpItt (1− πItt) (where pItt is a price index of the

set and πItt is the choice probability of the set), and hence inference on α is sufficient to

construct price elasticities.

We define the covariates xjt to include indicator variables for package size, brand, pro-

motion, holiday, year and a flexible set of interactions between these variables. There are

11 brands, 9 package sizes, and promotion of UPC indicates that the store is marketing

a promotion on the UPC. The nature of the price variation in the data was depicted in

Figure 1, which draws attention to the potential endogeneity problem between price pjt and

the unobservable ξjt, where the latter could reflect unobserved shelving and/or advertising

choice by the store. In particular, because stores are likely to advertise or shelf the product

in a more prominent way during weeks when the product is on a price sale, we might expect

a negative correlation between price and the unobservable.35 We construct instruments

for price by inverting DFF’s data on gross margin to calculate the chain’s wholesale costs,

34Our general approach of course allows for random coefficients.
35The usual concern that price is positively correlated with the intrinsic product quality is being offset in

this scanner data environment by the fact we have a rich way to proxy for a UPC’s intrinsic product quality
in the form of brand, package, and brand/package interactions. An alternative strategy for controlling the
intrinsic product quality is to use UPC fixed effects. However given that we are including all the UPC’s
in this analysis (indeed one of our main empirical points is to highlight the importance of not selecting
out UPC’s when doing demand studies on scanner data), UPC fixed effects regression exhibit high degree
of instability and sensitivity stemming from colinearity among the UPC dummies and the time varying
covariates. Our current strategy appears to control for much of what a UPC fixed effect strategy seems to
empirically offer.
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which is the standard price instrument in the literature that has studied the DFF data.36

7.4 Implementation

We now move to performing inference on demand elasticities using our moment inequality

approach. An important goal is to quantify the importance of accounting for the sampling

error in market shares that is evident from the sparse demand we observe in the data. There

are a few implementation details we briefly discuss.

First, in comparison to the Monte Carlos, we now must profile out many more coefficients

besides the constant term because the specification in Section 7.3 includes many more

control variables. Indeed, to our knowledge, such a high dimensional model as the one

we here consider has not been empirically examined in the moment inequality literature,

and our ability to do so is due to the focus on a subset of parameters (namely the price

coefficient) that the profiling procedure allows. This expanded set of covariates also requires

a larger set Gt of instrumental variable functions. 37 38

Second, because our markets unfold over time there is potential time dependence across

different markets. Our profiling inference theory presented in Section 5 was derived under

the assumption that different markets are independent. Nevertheless, we can modify the

theory in a relatively straightforward way to account for such serial dependence between

markets by generalizing our bootstrap procedure to a block bootstrap. We presented this

modification in Appendix G, where a formal analogue of Theorem 2 is given for the block

bootstrap. We use this block bootstrap procedure (for different choices of the block length)

to profile out the nuisance parameter α and employ obtain confidence sets for β0. Ob-

serve that a special case of the block bootstrap with block length of 1 is identical to the

independence bootstrap we presented in Section 5.3.

Third, the bootstrapping procedure for both the independence and dependence cases

requires the choice of the tuning parameter κT , which balances the power and the size.

For any κT = o(T ), the asymptotic power of our test increases with κT . However, for the

36The gross margin is defined as (retail price - wholesale cost)/retail price, so we get wholesale cost using
retail price×(1 - gross margin).

37We construct the set GT as described in (5.10). Our discrete instruments are “brand”, “size”, “pro-
motion”, “holiday”, and “year” each taking 11, 9, 2, 2 and 2 values, respectively. Our only continuous
instrument is whole sale cost and we use r0 = 1 and r̄T = 5. The GT thus constructed potentially contain a
total number of (2 + 4 + ...+ 10)× 11× 9× 2× 2× 2 = 23760 g functions and following (5.12), the weight
for a g function indexed by r is (100 + r)−2(2r × 11× 9× 2× 2× 2)−1.

38Determining the number of hypercubes (g functions) will depend upon the empirical application - too
few g functions leads to information loss while too many of them increases sample noise. And we haven’t
found a general theoretical rule for choosing it. From our own (somewhat limited) Monte Carlo and empirical
experience, choosing the number such that, on average, each smallest cube contains 10 to 50 sample points
usually “works”. In this example, the number of smallest cubes is 10× 11× 9× 2× 2× 2 = 7920. But we
find most of them contains no sample points and only 401 of them are “nonempty”. So, on average, each of
the 401 nonempty cubes contains about 11 ≈ 4438/401 sample points.
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asymptotic theory to provide a good approximation, (κT /T )1/2 needs to be reasonably small

in order to kill a non-estimable (asymptotically Gaussian) term in the bootstrap statistic.39

We choose κT = T/(c log T ) because (κT /T )1/2 = 1/
√
c log T goes to zero reasonably fast.

The shrinking rate log T is the same as its counterpart suggested in Andrews and Soares

(2010) and Andrews and Shi (2013). We choose the constant c by designing a simulation

study with a data generating process that matches many key elements of our data and

studying the power properties of different c. The details are described in Appendix F. We

find there that c = .5 and c = .6 had the most desirable power properties (all values of c

we tried leads confidence intervals that cover the true value with probability greater than

the significance level under the DGP’s we consider) and these are the values we use for the

empirical analysis. Note that we use a block length of 5 for the block bootstrap, which is a

commonly accepted level in the literature. Given the evidence shown in Appendix F, this

represents a conservative choice.

Finally, we take the minimum bound on choice probabilities εjt to be the same across j, t

and to equal to the smallest observed share in the data. Given how shares are constructed,

this is simply one over the maximum customer count observed in the data. This has a

simple interpretation as a weak supply side constraint that the retailer makes its marketing

decision so that each product is expected to sell at least one unit (on its busiest week).

7.5 Results

The results of our inference is shown in Table 3. As can be seen the tuning parameter c = .6

gives a tighter confidence interval than c = .5. Our Monte Carlo analysis found that for

both choices of the tuning parameter the coverage probability of the confidence interval was

respected, suggesting both are valid confidence intervals. Choosing either set of results will

not affect our analysis below.

Table 3: 95% Confidence Intervals of Price Coefficient
and Average Own Price Elasticity

c Price Coefficient
Average Own Price

Elasticity

0.5 [-5.60, -2.63] [-10.38, -4.86]
0.6 [-4.14, -3.62] [-7.67, -6.70]

Note: κT = T/(c · log(T )) and εjt =1/maximum customer count ∀j, t.

We compare our approach to a BLP estimation of the parameters with the same data.

Our Monte Carlo analysis in both Section 6 and Section F suggests that BLP will produce

biased estimator that gives the impression of too inelastic demand. This prediction is

39see e.g. (E.73) in the proof of Theorem 2(b).
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confirmed by the results in Table 4. Notice that the IV estimate leads to an even more

inelastic demand than the OLS estimates, which is consistent with the direction of the

endogeneity problem in the scanner data as discussed above.

Table 4: Point Estimates and 95% Confidence Intervals of the Logit Models
IV OLS

Price Coefficient -1.50

[-2.25, -0.75]

-2.17

[-2.55, -1.80]

Average Own Price Elasticity -2.40

[-3.60, -1.20]

-3.47

[-4.08, -2.88]

Note: The confidence intervals are constructed using the Driscoll-Kraay

standard error (see Driscoll and Kraay (1998)) which is robust to

very general forms of cross-sectional as well as temporal dependence.

To better understand our estimates in comparison with the BLP estimates above, we

translate our price coefficient from the UPC level demand system into average brand level

elasticities (where the average is taken for each brand with respect to all weeks in the data).

The results are given in Table 5. This allows us to compare our findings against the brand

level elasticities estimated by Hausman and Leonard (2002) (HL for short) using city wide

aggregate data from a different source for this industry. Because the HL estimates were

formed using aggregate city wide data on brand monthly consumption with a representative

agent model of aggregate demand, the elasticities we derive should be at least as large as

the HL estimates because: (1) our data reflects store level purchases (hence there can be

substitution to other stores), and (2) our data is at a weekly level and hence captures

purchase behavior rather than consumption behavior.40 Observe that the brand elasticities

derived under the BLP logit are all considerably less elastic than the HL estimates, which is

contrary to the economic intuition. We note that these BLP elasticities at the brand level

are similar in magnitude to the brand elasticities derived in other papers for other product

categories that start from a UPC level demand system see for example Chintagunta (2000)).

We also note that the BLP logit approach still generate elasticities that are too low

if instead of dropping the UPC with zero demand, we form “aggregate” products from

the UPC level data, i.e., brands, and estimate a BLP brand level logit (this is exhibited

in the last column of the table). Similar biases emerge from other aggregation strategies,

consistent with the aggregation bias discussed by Hosken, O’Brien, Scheffman, and Vita

(2002).

A key advantage of our approach is the ability to produce consistent inferences directly

on the disaggregated data. Our estimates reveal elasticities that are at least as elastic,

40See e.g., Hosken, O’Brien, Scheffman, and Vita (2002) for a further discussion of these distinctions.
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and often times clearly more elastic than the HL estimates. Our finding of more elastic

demand when the error in market shares is fully taken into account has some significant

policy implications. A standard “complaint” against logit-type models (including mixed

logit models) for demand for differentiated products is that it tends to produce elasticities

that are unrealistically inelastic compared to standard intuitions about an industry. Our

empirical exercise suggests that error in market shares could be a general source of this

problem and that our moment inequality approach offers a practical solution.

Table 5: Own Price Elasticity Comparison

Brand
Our 95% CI

1
(c = 0.5)

Our 95% CI
2

(c = 0.6)

BLP IV
Logit

95% CI

Hausman
and

Leonard

Brand-Level
BLP IV

Logit
95% CI

Angel Soft [-6.56, -3.08] [-4.85, -4.24] [-2.23, -1.30] -4.07 [-1.89, -1.48]
Charmin [-10.65, -5.00] [-7.88, -6.89] [-3.61, -2.11] -2.29 [-3.21, -2.52]

Cottonelle [-9.21, -4.32] [-6.81, -5.95] [-3.12, -1.83] -3.29 [-2.65, -2.08]
Kleenex [-6.26, -2.94] [-4.63, -4.05] [-2.12, -1.24] -3.29 [-1.80, -1.42]

Quilted Northern [-8.03, -3.77] [-5.94, -5.19] [-2.73, -1.59] -3.08 [-2.31, -1.82]
Scott [-3.65, -1.71] [-2.70, -2.36] [-1.24, -0.72] -1.80 [-1.05, -0.83]

8 Conclusion

We have shown that when there are errors in market shares in general, the standard condi-

tional mean restriction that BLP exploit as the basis for their empirical strategy lacks any

identifying power. When the true underlying choice probabilities can be bounded away from

zero, we show that the consumer choice model has enough content to construct a system of

moment inequalities that have the property of being adaptive to the information revealed

by the observed market shares. We also construct a profiling approach to inference with

moment inequalities; this allows us to study demand models with a potentially high dimen-

sional parameter vector because the counterfactual implications of such models typically

rely on a lower dimensional profile of the parameters, such as the price coefficient or a price

elasticity. Our application to scanner data reveals that taking the error in market shares

in the data into account has economically important implications for inferences about price

elasticities.

A key message from our analysis is that it is critical to not ignore the sampling variability

in shares when estimating discrete choice models with disaggregated market data. In many

empirical settings, such as airlines (see e.g., Berry, Carnall, and Spiller (1996)), television

(see e.g., Goolsbee and Petrin (2004)), and scanner data (Chintagunta, Dube, and Goh

(2005)), sampling error in shares is a first order concern since the number of consumers
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sampled in each market is not large enough for the sparsity of demand.

A potentially fruitful area for future research is the application of our approach is to

individual level choice data, such as a household panel. Aggregating over households is

still necessary to control for price endogeneity, such as described by Berry, Levinsohn, and

Pakes (2004) and Goolsbee and Petrin (2004), and thus sampling variability in market shares

when we aggregate over limited sample of households the data is a clear problem for many

contexts. Nevertheless the demographic richness in the household panel provides additional

identifying power for random coefficients. The approach we describe offers a novel solution

to address the joint problem of endogenous prices and flexible consumer heterogeneity with

micro data that we plan to pursue in future work.
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Appendix

In this appendix, we give proofs for the results in the main text and other supporting

material. In Section A, we prove Theorem 1 given in Section 3.2. In Section B, we give

and prove a lemma that ensures that the correction factors ηl and ηu in Section 4.1 are

well-defined. We also describe a way for computing them. Sections C–E are devoted to

establishing the formal results in Section 5. Section C collects all the assumptions. Section

D proves Lemmas 2 and C.1. Section E proves Theorem 2. Section F discusses the details

of our Monte Carlo design. Finally, Section G shows how to handle weak dependence across

markets.

A Proof of Theorem 1

Let int(A) denote the interior points of a subset A of ∆n – the n dimensional unit simplex

– and let br(A) denote the boundary points of A and br(A) = A\int(A). Theorem 1 is

immediately implied by the following lemma:

Lemma A.1. (a) If ~p∗s ∈ br(co(Ps)), then Fπ is point identified and Fπ has discrete support

which contains at most (n+ 2)/2 points.

(b) If ~p∗s ∈ int(co(Ps)), then there exists a sequence {F−π,1/i}
∞
i=1 such that ~p∗s = ~ps(F

−
π,1/i)

and limi→∞
´

[log x − log(1 − x)]dF−π,1/i(x) = −∞ and a sequence {F+
π,1/i}

∞
i=1 such that

~p∗s = ~ps(F
+
π,1/i) and limi→∞

´
[log x− log(1− x)]dF+

π,1/i(x) =∞.

(c) Any point in br(co(Ps)) is arbitrarily close to a point in int(co(Ps)).

Lemma A.2 is useful for proving Lemma A.1 and its own proof is given at the end of this

section. For Lemma A.2, define Ps: P
ζ
s = {~ps(Fπ) : Fπ(t) = 1{t ≥ x} for some x ∈ (ζ, 1− ζ)}

for ζ ∈ [0, 1/2).

Lemma A.2. (a) For any ζ ∈ [0, 1/2), int(co(P ζs )) 6= ∅.
(b) co(Ps) ⊆ cl(co(P 0

s )).

(c) int(co(Ps)) ⊆ ∪∞m=1int(co(P
1/m
s )).

(d) For any m, there exists a constant B such that, for any ~ps ∈ co(P 1/m
s ), there is a Fπ

such that ~ps = ~ps(Fπ) and |
´

[log(π)− log(1− π)]dFπ(π)| ≤ B.

Proof of Lemma A.1. (a) Part (a) is a corollary of Theorem 1(ii) of Wood (1999).

(b) Suppose that ~p∗s ∈ int(co(Ps)); then there exists a positive integer m∗ such that

~ps ∈ int(co(P 1/m∗
s )) by Lemma A.2(c). Then there exists ε1 > 0 small enough such that for

any ~ps ∈ ∆n such that ||~ps − ~p∗s|| ≤ ε1, we have ~ps ∈ int(co(P 1/m∗
s )).
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Let ε2 be a small positive number and F ε2π (π) = 1{π ≥ ε2} — F ε2π puts all probability

mass on the point ε2. Let ~pε2s = ~ps(F
ε2
π ) and

~p†s = (1 + ε1/
√

4n)× ~p∗s − (ε1/
√

4n)× ~pε2s . (A.1)

Then ~p†s ∈ int(co(P 1/m∗
s )) because ‖~p†s − ~p∗s‖ = (ε1/

√
4n)‖(~p∗s − ~pε2s )‖ ≤ (ε1/

√
4n)‖1n+1‖ =

ε1
√
n+ 1/

√
4n < ε1. By definition, we have

~p∗s =
1

1 + ε1/
√

4n
~p†s +

ε1/
√

4n

1 + ε1/
√

4n
~pε2s . (A.2)

Because ~p†s ∈ int(co(P 1/m∗
s )), there exists F †π such that ~p†s = ~ps(F

†
π) and |

´
[log(π)− log(1−

π)]dF †π(π)| < B by Lemma A.2(d). Let

F−π,ε2(π) =
1

1 + ε1/
√

4n
F †π(π) +

ε1/
√

4n

1 + ε1/
√

4n
F ε2π (π).

Then clearly, ~p∗s = ~ps(F
−
π,ε2) and

ˆ
[log(π)− log(1− π)]dF−π,ε2(π) =

1

1 + ε1/
√

4n

ˆ
[log(π)− log(1− π)]dF †π(π)+

ε1/
√

4n

1 + ε1/
√

4n

ˆ
[log(π)− log(1− π)]dF ε2π (π).

We know that 1
1+ε1/

√
4n
|
´

[log(π) − log(1 − π)]dF †π(π)| < B
1+ε1/

√
4n

and it does not depend

on ε2. Also, limε2↓0
´

[log(π)− log(1− π)]dF ε2π (π) = limε2↓0− log((1− ε2)/ε2) = −∞. Thus,

lim
ε2↓0

ˆ
[log(π)− log(1− π)]dF−π,ε2(π) = −∞. (A.3)

Similarly, we can find F+
π,ε2(π) that is consistent with ~p∗s and

lim
ε2↓0

ˆ
[log(π)− log(1− π)]dF+

π,ε2(π) =∞. (A.4)

Thus part (b) is proved.

(c) By Lemma A.2(a), int(co(Ps)) 6= ∅. This combined with the convexity of co(Ps)

implies that co(Ps) ⊆ cl(int(co(Ps))). Thus, part (c) is proved.

Proof of Lemma A.2. (a) To show that int(co(P ζs )) 6= ∅, it suffices to show that the dimen-

sion of co(P ζs ) is n. To show the later, it suffices to find n independent vectors in P ζs . Let
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x1, ..., xn be n distinct points in (ζ, 1−ζ). For j = 1, ..., n, define the vector ~pjs = (~pjs(j′))nj′=0,

where

pjs(j
′) =

(
n

j′

)
(xj)

j′(1− xj)n−j
′
. (A.5)

The matrix formed by the n vectors are:

(
n

0

)
(x1)0(1− x1)n

(
n

1

)
(x1)1(1− x1)n−1 ...

(
n

n

)
(x1)n(1− x1)0(

n

0

)
(x2)0(1− x2)n

(
n

1

)
(x2)1(1− x2)n−1 ...

(
n

n

)
(x2)n(1− x2)0

... ... ... ...(
n

0

)
(xn)0(1− xn)n

(
n

1

)
(xn)1(1− xn)n−1 ...

(
n

n

)
(xn)n(1− xn)0


.

The matrix has same rank as
((1− x1)/x1)n ((1− x1)/x1)n−1 ... 1

((1− x2)/x2)n ((1− x2)/x2)n−1 ... 1

... ... ... ...

((1− xn)/xn)n ((1− xn)/xn)n−1 ... 1

 . (A.6)

We know that the matrix in (A.6) has full rank by the property of polynomial sequences.

Therefore, the matrix formed by the vectors ~p1
s, ..., ~p

n
s has rank n, implying that the vectors

are independent. Thus, part (a) is proved.

(b) Consider an arbitrary point in ~ps ∈ co(Ps). Then there exists Fπ such that

~ps = ~ps(Fπ).

Let Fπ,ε(x) be defined as:

Fπ,ε(x) = Fπ((x− ε)/(1− 2ε)).

Let

~ps,ε = ~ps(Fπ,ε)

Then ~ps,ε ∈ co(P 0
s ) because Fπ,ε(x) ’s support is a subset of (0, 1). However, because

limε↓0 Fπ,ε(x) = Fπ(x) for any x that is a continuity point of Fπ(x), we have

lim
ε↓0

~ps,ε = ~ps.
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Thus, ~ps ∈ cl(co(P 0
s )). Because ~ps is an arbitrary point in co(Ps), this implies that co(Ps) ⊆

cl(co(P 0
s )).

(c) Given part (b), in order to show part (c), it suffices to show

co(P 0
s ) ⊆ cl

(
∪∞m=1int(co(P

1/m
s ))

)
, (A.7)

because ∪∞m=1int(co(P
1/m
s )) is an open set and interior of the closure of an open set is the

open set itself. To show (A.7), it suffices to show

co(P 0
s ) ⊆ ∪∞m=1co(P

1/m
s ) and (A.8)

∪∞m=1co(P
1/m
s ) ⊆ cl

(
∪∞m=1int(co(P

1/m
s ))

)
. (A.9)

Next, we show (A.8) and (A.9).

Consider an arbitrary point ~ps ∈ co(P 0
s ). By the Carathéodory’s theorem for convex

hull (see, for example, (Rockafellar (1970, p.155)), there exists n+ 1 points in P 0
s such that

~ps is a mixture of these n+ 1 points. In other words, there exists F ∗π that has at most n+ 1

support points in (0, 1) such that ~ps = ~ps(F
∗
π ). Let ζ∗1 be the minimum of the n+ 1 support

points of F ∗π , let ζ∗2 be one minus the maximum of the n + 1 support points of F ∗π and let

ζ∗ = min{ζ∗1 , ζ∗2}/2. Then ζ∗ > 0. This implies that ~ps is also a mixture of n+ 1 points in

P ζ
∗

s . Or in other words:

~ps ∈ co(P ζ
∗

s ). (A.10)

Then, ~ps ∈ co(P 1/m
s ) for all m > 1/ζ∗. Thus, ~ps ∈ ∪∞m=1co(P

1/m
s ). This shows (A.8).

Consider an arbitrary point ~ps ∈ ∪∞m=1co(P
1/m
s ). Then there exists m∗ such that

~ps ∈ co(P
1/m∗
s ) . Because co(P

1/m∗
s ) is convex by definition and has nonempty interior

by part (a), every point in co(P
1/m∗
s ) is the limit of a sequence of points in int(co(P

1/m∗
s )).

Thus, ~ps is the limit of a sequence of points in ∪∞m=1int(co(P
1/m
s )). This shows that

~ps = cl
(
∪∞m=1int(co(P

1/m
s ))

)
and (A.9) is proved.

(d) For any ~ps ∈ co(P 1/m
s ), there exists Fπ with support on [1/m, 1 − 1/m] such that

~ps = ~ps(Fπ). Therefore,

ˆ
[log(x)− log(1− x)]dFπ(x) ≤ sup

x∈Supp(Fπ)
[log(x)− log(1− x)] = log(m− 1)

and

ˆ
[log(x)− log(1− x)]dFπ(x) ≥ inf

x∈Supp(Fπ)
[log(x)− log(1− x)] = − log(m− 1).

Thus, part (d) holds with B = log(m− 1).
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B Existence and Example of the Implicit Function ηj(nt, πt, xt;λ)

Lemma B.1. The function f(η) := E
[
σ−1
j (s̃t + η · ej , xt;λ) |nt, πt, xt, Jt

]
is continuous and

strictly increasing in η. Furthermore, f(η)→ −∞ as η → −1/(nt + Jt + 1) and f (η)→∞
as η → 1/(nt + Jt + 1).

Proof. Recall that s̃t = ntst+1
nt+Jt+1 . Consider any j ∈ {1, . . . , Jt} and any given realization of

s̃t. Observe that s̃t+η
′·ej ≥ s̃t+η·ej for η′ > η. Thus using the fact σ−1(·, xt;λ) is an inverse

isotone mapping as shown by Theorem 1 in Berry, Gandhi, and Haile (2011), we have that

σ−1
j (s̃t + η′ · ej , xt;λ) ≥ σ−1

j (s̃t + η · ej , xt;λ). Also because the jth element of s̃t + η′ · ej is

strictly greater than the jth element of s̃t+η ·ej and all the other elements of these two vec-

tors are equal, which combined with the fact σ−1 (s̃t + η′ · ej , xt;λ) 6= σ−1 (s̃t + η · ej , xt;λ)

(because inverse isotone implies σ is invertible), implies via Lemma 2 in Berry, Gandhi,

and Haile (2011) that σ−1
j (s̃t + η′ · ej , xt;λ) > σ−1

j (s̃t + η · ej , xt;λ). Because this holds for

all possible realizations of s̃t, strict monotonicity also hold for the expectation taken with

respect to realizations of s̃t, i.e., f(η) is strictly monotone in η.

Observe finally that as η → −1/(nt + Jt + 1) the share of good j in the vector s̃t + η · ej
approaches 0 for a realization of st such that sjt = 0, and thus σ−1

j (s̃t + η · ej , xt;λ) must

approach −∞ for this realization of st as a consequence of the full support assumption

on vijt. However, because all other realizations of st are such that σ−1
j (s̃t + η · ej , xt;λ) is

decreasing as established above, then the expectation taken with respect to realizations of

st approaches −∞. A similar argument can be made for η → 1/(nt + Jt + 1) based on the

recognition that the share of good 0 in the share vector s̃t + η · ej is approaching zero at the

realization of st such that sjt = 1.

Example: Logit Demand

For each j and t, ηujt can be computed by solving the following constraint optimization

problem:

max
~πt:πt∈∆

εt
Jt
,η∈[−1/(nt+Jt+1),1/(nt+Jt+1)]

η

s.t. E

[
σ−1
j

(
ntst + 1

nt + Jt + 1
+ η · ej , xt;λ0

)
|nt, πt, xt, zt, Jt

]
= σ−1

j (πt, xt;λ0) , (B.1)

where st satisfies nt~st|nt, πt, xt, zt, Jt ∼ MN(nt, ~πt). Similarly, ηljt can be computed by

solving the same optimization problem but with max replaced by min.

In the case of simple logit model: σ−1
j (πt, xt, λ0) = log(πjt/π0t), where π0t = 1− π′t1Jt .
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Then, the constraint in the above problem is simplified to

E

[
log

(
ntsjt + 1 + (nt + Jt + 1)η

nts0t + 1− (nt + Jt + 1)η

)
|πt, nt, Jt

]
= log

(
πjt
π0t

)
, (B.2)

where nt(sjt, s0t, 1− sjt − s0t)|nt, πt, Jt ∼MN(nt, (πjt, π0t, 1− πjt − π0t)). This is a major

simplification numerically because (1) the constraint in the above optimization problem

only depends on the three dimensional parameter (πjt, π0t, η) regardless of Jt and thus the

dimension of the optimization problem does not increase with Jt; and (2) ηujt = −ηljt because

πjt and π0t appear symmetrically in the equation and thus there is no need to solve both

the max and the min problems. The numerical simplicity of the simple logit model easily

extends to nested logit models.

C Assumptions for Profiling Inference

In this section, we list all the technical assumptions required for the profiling approach.

The assumptions are grouped into seven categories. Assumption C.1 restricts the space of

θ; Assumption C.2 restricts the space of (γ, F ), i.e. the parameters that determines the

true data generating process. Assumption C.3 further restricts the space of (γ, F ) to satisfy

the null hypothesis γ ∈ Γ0. Assumption C.4 is the full support condition on the measure

µ on G. Assumption C.5 regulates how GT approaches G as T increases. Assumption

C.6 restricts the function S(m,Σ) to satisfy certain continuity, monotonicity and convexity

conditions. Assumption C.7 regulates the subsample size bT and the moment shrinking

parameter κT in the bootstrap procedure. Throughout, we let E∗ and E∗ denote outer and

inner expectations respectively and Pr∗ and Pr∗ denote outer and inner probabilities.

Assumption C.1. (a) Θ is compact, (b) Γ is upper hemi-continuous, and (c) Γ−1(γ) is

either convex or empty for any γ ∈ Rdγ .

To introduce Assumption C.2 we need the following extra notation. Let νF (θ, g) :

(θ, g) ∈ Θ× G denote a tight Gaussian process with covariance kernel

ΣF (θ(1), g(1), θ(2), g(2)) = CovF

(
ρ(wt, θ

(1), g(1)), ρ(wt, θ
(2), g(2))

)
. (C.1)

Notice that ΣF (θ, g) = ΣF (θ, g, θ, g).

Let the derivative of ρF (θ, g) with respect to θ be GF (θ, g).

For any γ ∈ Rdγ , let the set Θ0,F (γ) be

Θ0,F (γ) = {θ ∈ Θ : QF (θ) = 0 & Γ(θ) 3 γ}, (C.2)
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We call Θ0,F (γ) the zero-set of QF (θ) under (γ, F ). Note that for any γ ∈ Rdγ , γ ∈ Γ0,F if

and only if Θ0,F (γ) 6= ∅.
Let the distance from a point to a set be the usual mapping:

d(a,A) = inf
a∗∈A

‖a− a∗‖, (C.3)

where ‖ · ‖ is the Euclidean distance.

Let F denote the set of all probability measures on (wt)
T
t=1. Let Ḡ = G ∪ {1}. Let M

denote the set of all positive semi-definite k×k matrices. The following assumption defines

the parameter space H for the pair (γ, F ).

Assumption C.2. The parameter space H of the pairs (γ, F ) is a subset of Rdγ ×F that

satisfies:

(a) under every F such that (γ, F ) ∈ H for some γ ∈ Rdγ , the markets are independent

and ex ante identical to each other, i.e. {ρ(wt, θ, g)}Tt=1 is an i.i.d. sample for any θ, g;

(b) limM→∞ sup(γ,F )∈HE
∗
F [sup(θ,g)∈Γ−1(γ)×Ḡ ||ρ(wt, θ, g)||21{||ρ(wt, θ, g)||2 > M}] = 0;

(c) the class of functions {ρ(wt, θ, g) : (θ, g) ∈ Γ−1(γ) × Ḡ} is F -Donsker and pre-

Gaussian uniformly over H;

(d) the class of functions {ρ(wt, θ, g)ρ(wt, θ, g)
′

: (θ, g) ∈ Γ−1(γ) × Ḡ} is Glivenko-

Cantelli uniformly over H;

(e) ρF (θ, g) is differentiable with respect to θ ∈ Θ, and there exists constants C and

δ1 > 0 such that, for any (θ(1), θ(2)), sup(γ,F )∈H,g∈Ḡ ||vec(GF (θ(1), g))− vec(GF (θ(2), g))|| ≤
C × ||θ(1) − θ(2)||δ1, and

(f) Σι
F (θ, g) ∈ Ψ for all (γ, F ) ∈ H and θ ∈ Γ−1(γ) where Ψ is a compact subset of M,

and {vec(ΣF (·, g(1), ·, g(2))) : (Γ−1(γ))2 → Rk
2

: (γ, F ) ∈ H, g(1), g(2) ∈ Ḡ} are uniformly

bounded and uniformly equicontinuous.

Remark. Part (a) is the i.i.d. assumption, which can be replaced with appropriate weak

dependence conditions at the cost of more complicated derivation in the uniform weak

convergence of the bootstrap empirical process. Part (b) is standard uniform Lindeberg

condition. Part (c)-(d) imposes restrictions on the complexity of the set G as well as on the

shape of ρ(wt, θ, g) as a function of θ. A sufficient condition is (i) ρ(wt, θ, g) is Lipschitz

continuous in θ with the Lipschitz coefficient being integrable and (ii) the set C in the

definition of G forms a Vapnik-Červonenkis set and Jt is bounded. The Lipschitz continuity

is also a sufficient condition of part (f).

The following assumptions defines the null parameter space, H0, for the pair (γ, F ).

Assumption C.3. The null parameter space H0 is a subset of H that satisfies:

(a) for every (γ, F ) ∈ H0, γ ∈ Γ0,F , and
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(b) there exists C, c > 0 and 2 ≤ δ2 < 2(δ1+1) such that QF (θ) ≥ C ·(d(θ,Θ0,F (γ))δ2∧c)
for all (γ, F ) ∈ H0 and θ ∈ Γ−1(γ).

Remark. Part (b) is an identification strength assumption. It requires the criterion function

to increase at certain minimum rate as θ is perturbed away from the identified set. This

assumption is weaker than the quadratic minorant assumption in Chernozhukov, Hong,

and Tamer (2007) if δ2 > 2 and as strong as the latter if δ2 = 2. Putting part (b) and

Assumption C.2(e) together, we can see that there is a trade-off between the minimum

identification strength required and the degree of Hölder continuity of the first derivative of

ρF (·, g). If ρF (·, g) is linear, δ2 can be arbitrarily large – the criterion function can increase

very slowly as θ is perturbed away from the identified set.

The following assumption is on the measure µ. For any θ, let a pseudo-metric on G be:

||g(1)−g(2)||θ,F = ||ρF,j(θ, g(1))−ρF,j(θ, g(2))||. This assumption is needed for Lemma 2 and

not needed for the asymptotic size result Theorem 2.

Assumption C.4. For any θ ∈ Θ, µ(·) has full support on the metric space (G, || · ||θ,F ).

Remark. Assumption C.4 implies that for any θ ∈ Θ, F and j, if ρF,j(θ, g0) < 0 for some g0 ∈
G, then there exists a neighborhood N (g0) with positive µ-measure such that ρF,j(θ, g) < 0

for all g ∈ N (g0).

The following assumption is on the set GT .

Assumption C.5. (a) GT ↑ G as T →∞ and

(b)lim supT→∞ sup(γ,F )∈H0
supθ∈Γ−1(γ)

´
G\GT S(

√
TρF (θ, g),ΣF (θ, g))dµ(g) = 0.

The following assumptions are imposed on the function S. For a ξ > 0, let the ξ-

expansion of Ψ be Ψξ = {Σ ∈M : infΣ1∈Ψ ||vech(Σ)− vech(Σ1)|| ≤ ξ}.

Assumption C.6. (a) S(m,Σ) : (−∞,∞]k ×Ψξ → R is continuous for some ξ > 0.

(b) There exists a constant C > 0 and ξ > 0 such that for any m1,m2 ∈ Rk and Σ1,Σ2 ∈
Ψξ, we have |S(m1,Σ1)−S(m2,Σ2)| ≤ C

√
(S(m1,Σ1) + S(m2,Σ2))(S(m2,Σ2) + 1)∆, where

∆ = ||m1 −m2||2 + ||vech(Σ1 − Σ2)||.
(c) S is non-increasing in m.

(d) S(m,Σ) ≥ 0 and S(m,Σ) = 0 if and only if m ∈ [0,∞]k.

(e) S is homogeneous in m of degree 2.

(f) S is convex in m ∈ Rdm for any Σ ∈ Ψξ.

Remark. We show in the lemma below that Assumption C.6 is satisfied by the example in

(5.11) (which is used in our empirical section) as well as the SUM and MAX functions in
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Andrews and Shi (2013):

SUM: S(m,Σ) =

k∑
j=1

[mj/σj ]
2
−, and

MAX: S(m,Σ) = max
1≤j≤k

[mj/σj ]
2
−, (C.4)

where σ2
j is the jth diagonal element of Σ. Assumptions C.6(b) and (f) rule out the QLR

function in Andrews and Shi (2013): S(m,Σ) = mint≥0(m− t)′Σ−1(m− t).

Lemma C.1. (a) Assumption C.6 is satisfied by the S function in (5.11) for any set Ψ.

(b) Assumption C.6 is satisfied by the SUM and the MAX functions in (C.4) if Ψ is a

compact subset of the set of positive semi-definite matrix with diagonal elements bounded

below by some constant ξ2 > 0.

The following assumptions are imposed on the tuning parameters in the subsampling

and the bootstrap procedures.

Assumption C.7. (a) In the subsampling procedure, b−1
T + bTT

−1 → 0 and ST →∞, and

(b)In the bootstrap procedure, κ−1
T + κTT

−1 → 0 and ST →∞.

D Proof of Lemmas 2 and C.1

Proof of Lemma 2. (a) Assumptions C.2(c)-(d) imply that under F ,

∆ρ,T ≡ sup
θ∈Γ−1(γ),g∈Ḡ

||ρ̄T (θ, g)− ρF (θ, g)|| →p 0, and

sup
θ∈Γ−1(γ),g∈Ḡ

||vech(Σ̂T (θ, g)− ΣF (θ, g))|| →p 0. (D.1)

The second convergence implies that

∆Σ,T ≡ sup
θ∈Γ−1(γ),g∈G

||vech(Σ̂ι
T (θ, g)− Σι

F (θ, g))|| →p 0. (D.2)

By Assumption C.2(b), supθ∈Γ−1(γ),g∈G ||ρF (θ, g)|| < M∗ for some M∗ < ∞. Thus,

{(ρF (θ, g),Σι
F (θ, g)) : (θ, g) ∈ Γ−1(γ)×G} is a subset of the compact set [−M∗,M∗]k×Ψ. By

Assumption C.2(f) and Equations (D.1) and (D.2), we have {(ρ̄T (θ, g), Σ̂ι
T (θ, g)) : (θ, g) ∈

Γ−1(γ) × G} ⊆ [−M∗ − ξ,M∗ + ξ]k × Ψξ with probability approaching one for any ξ > 0.

By Assumption C.6(a), S(m,Σ) is uniformly continuous on [−M∗,M∗]k × Ψ. Therefore,
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for any ε > 0,

Pr F

(∣∣∣∣ min
θ∈Γ−1(γ)

Q̂T (θ)− min
θ∈Γ−1(γ)

ˆ
GT
S(ρF (θ, g),Σι

F (θ, g))dµ(g)

∣∣∣∣ > ε

)
≤Pr F

(
sup

θ∈Γ−1(γ),g∈G
|S(ρ̄t(θ, g), Σ̂ι

t(θ, g))− S(ρF (θ, g),Σι
F (θ, g))| > ε

)
→0. (D.3)

Now it is left to show that minθ∈Γ−1(γ)

´
GT S(ρF (θ, g),Σι

F (θ, g))dµ(g)→ minθ∈Γ−1(γ)QF (θ)

as T →∞. Observe that

0 ≤ min
θ∈Γ−1(γ)

QF (θ)− min
θ∈Γ−1(γ)

ˆ
GT
S(ρF (θ, g),Σι

F (θ, g))dµ(g)

≤ sup
θ∈Γ−1(γ)

ˆ
G/GT

S(ρF (θ, g),Σι
F (θ, g))dµ(g)

≤
ˆ
G/GT

sup
θ∈Γ−1(γ)

S(ρF (θ, g),Σι
F (θ, g))dµ(g). (D.4)

We have supθ∈Γ−1(γ) S(ρF (θ, g),Σι
F (θ, g)) <∞, because ρF (θ, g) ∈ [−M∗,M∗]k and Σι

F (θ, g) ∈
Ψ and Assumption C.6(a). Thus the last line of (D.4) converges to zero under Assumption

C.5(a). This and (D.3) together show part (a).

(b) The first half of part (b), minθ∈Γ−1(γ)QF (θ) ≥ 0, is implied by Assumption C.6(d).

Suppose γ ∈ Γ0,F . Then there exists a θ∗ ∈ Γ−1(γ) such that ρF (θ∗, g) ≥ 0 for all g ∈ G
by Lemma 1. This implies that S(ρF (θ∗, g),ΣF (θ∗, g)) = 0 for all g ∈ G by Assumption

C.6(d). Thus, QF (θ∗) = 0. Because minθ∈Γ−1(γ)QF (θ) ≤ QF (θ∗) = 0, this shows the “if”

part of the second half.

Suppose that minθ∈Γ−1(γ)QF (θ) = 0. By Assumptions C.1(a)-(b), Γ−1(γ) is compact.

By Assumptions C.2(e) and (f), QF (θ) is continuous in θ. Thus, there exists a θ∗ ∈ Γ−1(γ)

such that QF (θ∗) = minθ∈Γ−1(γ)QF (θ) = 0. We show by contradiction that this implies γ ∈
Γ0,F . Suppose that γ /∈ Γ0,F . Then for any θ ∈ Γ−1(γ), in particular, for θ∗, ρF,j(θ

∗, g∗) < 0

for some g∗ ∈ G and some j ≤ dm by Lemma 1. Then by Assumption C.4, there exists a

neighborhood N (g∗) with positive µ-measure, such that ρF,j(θ
∗, g) < 0 for all g ∈ N (g∗).

This implies that QF (θ∗) > 0, which contradicts QF (θ∗) = 0. Thus, the “only if” part is

proved.

Proof of Lemma C.1. We prove part (b) only. Part (a) follows from the arguments for part

(b) because the S function in part (a) is the same as the SUM S function with Σ = I. Let

ξ be any positive number less than ξ2. Then the diagonal elements of all matrices in Ψξ are
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bounded below by ξ2 − ξ.
We prove the SUM part first. Assumptions C.6(a), (c)-(f) are immediate. It suffices to

verify Assumptions C.6(b). To verify Assumption C.6(b), observe that

|S(m1,Σ1)− S(m2,Σ2)| =

∣∣∣∣∣∣
k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ2,j ]−)([m1,j/σ1,j ]− + [m2,j/σ2,j ]−)

∣∣∣∣∣∣
≤

2

k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ2,j ]−)2(S(m1,Σ1) + S(m2,Σ2))


1/2

≡{2A(S(m1,Σ1) + S(m2,Σ2))}1/2 , (D.5)

where the inequality holds by the Cauchy-Schwartz inequality and the inequality (a +

b)2 ≤ 2(a2 + b2), and the ≡ holds with A :=
∑k

j=1([m1,j/σ1,j ]− − [m2,j/σ2,j ]−)2. Now we

manipulate A in the following way:

A =

k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ1,j ]− + [m2,j/σ1,j ]− − [m2,j/σ2,j ]−)2

≤ 2

k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ1,j ]−)2 + 2

k∑
j=1

([m2,j/σ1,j ]− − [m2,j/σ2,j ]−)2

= 2

k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ1,j ]−)2 + 2

k∑
j=1

(σ2,j − σ1,j)
2[m2,j/σ2,j ]

2
−/σ

2
1,j

≤ 2‖m1 −m2‖2/(ξ2 − ξ) + 2{‖vech(Σ1 − Σ2)‖/(ξ2 − ξ)}S(m2,Σ2)

≤ 2(ξ2 − ξ)−1(S(m2,Σ2) + 1)(||m1 −m2||2 + ||vech(Σ1 − Σ2)||), (D.6)

where the first inequality holds by the inequality (a + b)2 ≤ 2(a2 + b2) and the second

inequality holds because (σ2,j − σ1,j)
2 ≤ |σ2

2,j − σ2
1,j | ≤ ||vech(Σ1 − Σ2)|| and because

σ2
1,j , σ

2
2,j ≥ ξ2 − ξ. Plug (D.6) in (D.5), and we obtain Assumptions C.6(b).

The proof for the MAX part is the same as the SUM part except some minor changes.

The first and obvious change is to replace all
∑k

j=1 involved in the above arguments by

maxj=1,...,k . The second change is to replace the Cauchy-Schwartz inequality used in (D.5)

by the inequality |maxj ajbj | ≤ (maxj a
2
j × maxj b

2
j )

1/2. The rest of the arguments stay

unchanged.
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E Proof of Theorem 2

We first introduce the approximation of T̂T (γ) that connects the distribution of T̂T (γ) with

those of the subsampling statistic and the bootstrap statistic. For any θ ∈ Θ0,F (γ), let

ΛT (θ, γ) = {λ : θ+λ/
√
T ∈ Γ−1(γ), d(θ+λ/

√
T ,Θ0,F (γ)) = ||λ||/

√
T}. In words, ΛT (θ, γ)

is the set of all deviations from θ along the fastest paths away from Θ0,F (γ). With this

notation handy, we can define the approximation of T̂T (γ) as follows:

T apprT (γ) = (E.1)

min
θ∈Θ0,F (γ)

min
λ∈ΛT (θ,γ)

ˆ
G
S(νF (θ, g) +GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))dµ(g).

Theorem E.1 shows that T apprT (γ) approximates T̂T (γ) asymptotically.

Theorem E.1. Suppose that the conditions in Lemma 1 and Assumptions C.1-C.3 and

C.5-C.6 hold. Then for any real sequence {xT } and scalar η > 0 ,

lim inf
T→∞

inf
(γ,F )∈H0

[
Pr F (T̂T (γ) ≤ xT + η)− Pr(T apprT (γ) ≤ xT )

]
≥ 0 and

lim sup
T→∞

sup
(γ,F )∈H0

[
Pr F (T̂T (γ) ≤ xT )− Pr(T apprT (γ) ≤ xT + η)

]
≤ 0.

Theorem E.1 is a key step in the proof of Theorem 2 and is proved in the next sub-

subsection. The remaining proof of Theorem 2 is given in the subsection after that.

E.1 Proof of Theorem E.1

The following lemma is used in the proof of Theorem E.1. It is a portmanteau theorem

for uniform weak approximation, which is an extension of the portmanteau theorem for

(pointwise) weak convergence in Chapter 1.3 of van der Vaart and Wellner (1996). Let

(D, d) be a metric space and let BL1 denote the set of all real functions on D with a

Lipschitz norm bounded by one.

Lemma E.1. (a) Let (Ω,B) be a measurable space. Let {X(1)
T : Ω→ D} and {X(2)

T : Ω→ D}
be two sequences of mappings. Let P be a set of probability measures defined on (Ω,B).

Suppose that supP∈P supf∈BL1
|E∗P f(X

(1)
T ) − E∗,P f(X

(2)
T )| → 0. Then for any open set

G0 ⊆ D and closed set G1 ⊂ G0, we have

lim inf
T→∞

inf
P

[
Pr ∗,P (X

(1)
T ∈ G0)− Pr ∗P (X

(2)
T ∈ G1)

]
≥ 0 and

(b) Let (Ω,B) be a product space: (Ω,B) = (Ω1 × Ω2, σ(B1 × B2)). Let P1 be a set
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of probability measures defined on (Ω1,B1) and P2 be a probability measure on (Ω2,B2).

Suppose that supP1∈P1
Pr ∗P1

(supf∈BL1
|E∗P2

f(X
(1)
T ) − E∗,P2f(X

(2)
T )| > ε) → 0 for all ε > 0.

Then for any open set G0 ⊆ D and closed set G0 ⊂ G1, we have for any ε > 0,

lim sup
T→∞

sup
P1∈P1

Pr ∗P1
(Pr ∗P2

(X
(1)
T ∈ G1)− Pr ∗,P2(X

(2)
T ∈ G0) > ε) = 0.

Proof of Lemma E.1. (a) We first show that there is a Lipschitz continuous function sand-

wiched by 1(x ∈ G0) and 1(x ∈ G1). Let fa(x) = (a · d(x,Gc0)) ∧ 1, where Gc0 is the

complement of G0. Then fa is a Lipschitz function and fa(x) ≤ 1(x ∈ G0) for any a > 0.

Because G1 is a closed subset of G0, infx∈G1 d(x,Gc0) > c for some c > 0. Let a = c−1 + 1.

Then fa(x) ≥ 1(x ∈ G1). Thus, the function fa(x) is sandwiched between 1(x ∈ G0) and

1(x ∈ F1). Equivalently,

a−11(x ∈ G1) ≤ a−1fa(x) ≤ a−11(x ∈ G0), ∀x ∈ D. (E.2)

By definition, a−1fa(x) ∈ BL1. Using this fact and (E.2), we have

a−1 lim inf
T→∞

inf
P∈P

[
Pr ∗,P (X

(1)
T ∈ G0)− Pr ∗P (X

(2)
T ∈ G1)

]
= lim inf

T→∞
inf
P∈P

[a−1 Pr ∗,P (X
(1)
T ∈ G0)− E∗,Pa−1fa(X

(1)
T )+

E∗,Pa
−1fa(X

(1)
T )− E∗Pa−1fa(X

(2)
T ) + E∗Pa

−1fa(X
(2)
T )− a−1 Pr ∗P (X

(2)
T ∈ G1)]

≥ lim inf
T→∞

inf
P∈P

[
E∗,Pa

−1fa(X
(1)
T )− E∗Pa−1fa(X

(2)
T )
]

= 0. (E.3)

Therefore, part (a) is established.

(b) Use the same a and fa(x) as above, we have

Pr ∗P2
(X

(1)
T ∈ G1)− Pr ∗,P2(X

(2)
T ∈ G0) ≤ a

[
E∗P2

a−1fa(X
(1)
T )− E∗,P2a

−1fa(X
(2)
T )
]

≤ a sup
f∈BL1

|E∗,P2f(X
(1)
T )− E∗P2

f(X
(2)
T )|. (E.4)

This implies part (b).

Proof of Theorem E.1. We only need to show the first inequality because the second one

follows from the same arguments with T̂T (γ) and T apprT (γ) flipped.

The proof consists of four steps. In the first step, we show that the truncation of G has
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asymptotically negligible effect: for all ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F (|T̂T (γ)− T̄T (γ)| > ε) = 0, (E.5)

where T̄T (γ) is the same as T̂T (γ) except that the integral is over G instead of GT .

In the second step, we define a bounded version of T̄T (γ): T̄T (γ;B1, B2) and a bounded

version of T apprT (γ): T̄ apprT (γ;B1, B2) and show that for any B1, B2 > 0 and any real

sequence {xT },

lim inf
T→∞

inf
(γ,F )∈H0

[
Pr F (T̄T (γ;B1, B2) ≤ xT + η)− Pr(T̄ apprT (γ;B1, B2) ≤ xT )

]
≥ 0. (E.6)

In the third step, we show that T̄T (γ;B1, B2) is asymptotically close in distribution to

T̄T (γ) for large enough B1, B2: for any ε > 0, there exists B1,ε and B2,ε such that

lim sup
T→∞

sup
(γ,F )∈H0

Pr F (T̄T (γ;B1,ε, B2,ε) 6= T̄T (γ)) < ε. (E.7)

In the fourth step, we show that T̄ apprT (γ;B1, B2) is asymptotically close in distribution to

T apprT (γ) for large enough B1, B2: for any ε > 0, there exists B1,ε and B2,ε such that

lim sup
T→∞

sup
(γ,F )∈H0

Pr F (T̄ apprT (γ;B1,ε, B2,ε) 6= T apprT (γ)) < ε. (E.8)

The four steps combined proves the Theorem. Now we give detailed arguments of the four

steps.

STEP 1. First we show a property of the function S that is useful throughout all steps:

for any (m1,Σ1) and (m2,Σ2) ∈ Rk ×Ψξ,

|S(m1,Σ1)− S(m2,Σ2)| ≤ C2 × (S(m2,Σ2) + 1)(∆ +
√

∆2 + 8∆)/2, (E.9)

for the ∆ and C in Assumption C.6(b). Let ∆S := |S(m1,Σ1) − S(m2,Σ2)|. Assumption

C.6(b) implies that

∆2
S ≤ C2 × (S(m1,Σ1) + S(m2,Σ2))(S(m2,Σ2) + 1)∆

≤ C2 × (∆S + 2S(m2,Σ2))(S(m2,Σ2) + 1)∆. (E.10)
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Solve the quadratic inequality for ∆S , we have

∆S ≤
C2

2

[
(S(m2,Σ2) + 1)∆ +

√
(S(m2,Σ2) + 1)2∆2 + 8S(m2,Σ2)(S(m2,Σ2) + 1)∆

]
≤ C2

2
(S(m2,Σ2) + 1)(∆ +

√
∆2 + 8∆) (E.11)

This shows (E.9).

Now observe that

0 ≤ T̄T (γ)− T̂T (γ)

≤ sup
θ∈Γ−1(γ)

ˆ
G/GT

S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(g)

≤ sup
θ∈Γ−1(γ)

ˆ
G/GT

S(
√
TρF (θ, g),Σι

F (θ, g))dµ(g)+

sup
θ∈Γ−1(γ)

ˆ
G/GT

|S(
√
TρF (θ, g),Σι

F (θ, g))− S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))|dµ(g)

= o(1) + sup
θ∈Γ−1(γ)

ˆ
G/GT

|S(
√
TρF (θ, g),Σι

F (θ, g))− S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))|dµ(g)

≤ o(1) + sup
θ∈Γ−1(γ)

ˆ
G/GT

C2 ×
(
S(
√
TρF (θ, g),Σι

F (θ, g)) + 1
)
dµ(g)×

sup
θ∈Γ−1(γ),g∈G/GT

c
(
||ν̂T (θ, g)||2 + ||vech(Σι

F (θ, g)− Σ̂ι
T (θ, g))||

)
= o(1) + o(1)× c(Op(1))

= op(1), (E.12)

where c(x) = x+
√
x2 + 8x/2, the third inequality holds by the triangle inequality, the first

equality holds by Assumption C.5(b), the fourth inequality holds by (E.9) and the second

equality holds by Assumptions C.5(a)-(b) and C.2(c)-(d). The o(1), op(1) and Op(1) are

uniform over (γ, F ) ∈ H. Thus, (E.5) is shown.

STEP 2. We define the bounded versions of T̄T (γ) as

T̄T (γ;B1, B2) = min
θ∈Θ0,F (γ)

min
λ∈Λ

B2
T (θ,γ)ˆ

G
S(ν̂B1

T (θ + λ/
√
T , g) +GF (θ̃T , g)λ+

√
TρF (θ, g), Σ̂ι

T (θ + λ/
√
T , g))dµ(g)

(E.13)

where ΛB2
T (θ, γ) = {λ ∈ ΛT (θ, γ) : TQF (θ + λ/

√
T ) ≤ B2}, the process ν̂B1

T (·, ·) =

max{−B1,min{B1, ν̂T (·, ·)}} and θ̃T is a value lying on the line segment joining θ and
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θ + λ/
√
T satisfying the mean value expansion:

ρF (θ + λ/
√
T , g) = ρF (θ, g) +GF (θ̃T , g)λ/

√
T . (E.14)

Define the bounded version of T apprT (γ) as

T̄ apprT (γ;B1, B2) = (E.15)

min
θ∈Θ0,F (γ)

min
λ∈Λ

B2
T (θ,γ)

ˆ
G
S(νB1

F (θ, g) +GF (θ, g)λ+
√
TρF (θ, g),Σι

F (θ, g))dµ(g),

where νB1
F (·, ·) = max{−B1,min{B1, νF (·, ·)}}.

First we show a useful result: there exists some constant C̄ > 0 such that for all

(γ, F ) ∈ H0 and λ ∈ ΛB2
T (θ, γ) and for the δ2 in Assumption C.3(b), we have

||λ|| ≤ C̄ × T (δ2−2)/(2δ2). (E.16)

This is shown by observing, for all (γ, F ) ∈ H0 and λ ∈ ΛB2
T (θ, γ),

B2 >TQF (θ + λ/
√
T )

≥C · ((T × d(θ + λ/
√
T ,Θ0,F (γ))δ2) ∧ (c× T )). (E.17)

The second inequality holds by Assumption (C.3)(b). Because c × T is eventually greater

than B2 as T →∞, we have for large enough T ,

B2 ≥ C × T × (||λ||/
√
T )δ2 . (E.18)

This implies (E.16).

Equation (E.16) implies two results:

(1) sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ)

sup
λ∈Λ

B2
T (θ,γ)

‖λ‖/
√
T ≤ O(T−1/δ2) = o(1)

(2) sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ)

sup
λ∈Λ

B2
T (θ,γ)

sup
g∈G
‖GF (θ +O(‖λ‖)/

√
T , g)λ−GF (θ, g)λ‖

≤ O(1)× ‖λ‖δ1+1T−δ1/2 ≤ O(T (δ2−2(δ1+1))/(2δ2)) = o(1). (E.19)

The first result holds immediately given (E.16) and the second result holds by Assumption

C.2(e).
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Define an intermediate statistic

T̄medT (γ;B1, B2) = min
θ∈Θ0,F (γ)

min
λ∈Λ

B2
T (θ,γ)ˆ

G
S(ν̂B1

T (θ, g) +GF (θ, g)λ+
√
TρF (θ, g),Σι

F (θ, g))dµ(g). (E.20)

Then T̄medT (γ;B1, B2) and T̄ apprT (γ;B1, B2) are respectively the following functional evalu-

ated at νF (·, ·) and ν̂T (·, ·):

h(ν) = min
θ∈Θ0,F (γ)

min
λ∈Λ

B2
T (θ,γ)

ˆ
G
S(νB1(θ, ·) +GF (θ, ·)λ+

√
TρF (θ, ·),Σι

F (θ, ·))dµ. (E.21)

The functional h(ν) is uniformly bounded for all large enough T because for any fixed

θ ∈ Θ0,F (γ) and λ ∈ ΛB2
T (θ, γ),

h(ν) ≤ 2

ˆ
G
S(GF (θ, ·)λ+

√
TρF (θ, ·),Σι

F (θ, ·))dµ+ 2

ˆ
G
S(νB1(θ, ·),Σι

F (θ, ·))dµ

≤ 2 sup
Σ∈Ψ

S(−B11k,Σ) + 2

ˆ
G
S(GF (θ, ·)λ+

√
TρF (θ, ·),Σι

F (θ, ·))dµ

≤ 2 sup
Σ∈Ψ

S(−B11k,Σ) + 2T ×QF (θ + λ/
√
T )+

C2 × (T ×QF (θ + λ/
√
T ) + 1) sup

g∈G
(∆T (g) +

√
∆T (g)2 + 8∆T (g))

≤ 2 sup
Σ∈Ψ

S(−B11k,Σ) + 2B2 + C2(B2 + 1)× o(1), (E.22)

where ∆T (g) := ‖GF (θ, g)λ+
√
TρF (θ, g)−

√
TρF (θT , g)‖2 + ‖vech(Σι

F (θ, g)−Σι
F (θT , g))‖

and θT = θ + λ/
√
T . The first inequality holds by Assumptions C.6(e)-(f), the second

inequality holds by Assumptions C.2(f) and Assumptions C.6(c), the third inequality holds

by (E.9) and the last inequality holds by (E.19).

The functional h(ν) is Lipschitz continuous for all large enough T with respect to the

uniform metric because

|h(ν1)− h(ν2)| ≤ 2C sup
θ∈Θ0,F (γ)

sup
λ∈Λ

B2
T (θ,γ)

sup
g∈G
‖ν1(θ, g)− ν2(θ, g)‖ · (1 + h(ν1) + 2h(ν2))

≤ C̄ sup
θ∈Γ−1(γ),g∈G

‖ν1(θ, g)− ν2(θ, g)‖, (E.23)

where C̄ is any constant such that C̄ > 2C × (6 supΣ∈Ψ S(−B11k,Σ) + 6B2 + 1), the first

inequality holds by Assumption C.6(b) and the second holds by (E.22).

Therefore, for any f ∈ BL1 and any real sequence {xT }, the composite function f ◦
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(C̄−1h(·) + xT ) ∈ BL1. By AssumptionC.2(c), we have

lim sup
T→∞

sup
(γ,F )∈H0

sup
f∈BL1

|EF f(T̄medT (γ;B1, B2)+xT )−Ef(T̄ apprT (γ;B1, B2)+xT )| = 0. (E.24)

This combined with Lemma E.1(a) (with G0 = (−∞, η) and G1 = (−∞, 0]) gives

lim inf
T→∞

inf
(γ,F )∈H0

[
Pr F (T̄medT (γ;B1, B2) ≤ xT + η)− Pr(T̄ apprT (γ;B1, B2) ≤ xT )

]
≥ 0.

(E.25)

Now it is left to show that T̄medT (γ;B1, B2) and T̄T (γ;B1, B2) are close. First, we have

|T̄T (γ;B1, B2)− T̄medT (γ;B1, B2)|

≤ sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ)

ˆ
G

∣∣∣S(ν̂B1
T (θ + λ/

√
T , g) +GF (θ̃T , g)λ+

√
TρF (θ, g), Σ̂ι

T (θ + λ/
√
T , g))

−S(ν̂B1
T (θ, g) +GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))
∣∣∣ dµ(g)

≤C2 × sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ)

max
g∈G

c(∆T (θ, λ, g))×
ˆ
G
(1 +MT (θ, λ, g))dµ(g), (E.26)

where c(x) = (x+
√
x2 + 8x)/2, C is the constant in (E.9),

∆T (θ, λ, g) =‖ν̂B1
T (θ + λ/

√
T , g)− ν̂B1

T (θ, g) +GF (θ̃T , g)λ−GF (θ, g)λ‖2+

‖vech(Σ̂T (θ + λ/
√
T , g)− ΣF (θ, g))‖ and

MT (θ, λ, g) =S(ν̂B1
T (θ, g) +GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g)). (E.27)

Below we show that for any ε > 0, and some universal constant C̄ > 0,

sup
(γ,F )∈H0

Pr F

 sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ),g∈G

∆T (θ, λ, g) > ε

→ 0 and (E.28)

sup
T

sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ)

ˆ
G
MT (θ, λ, g)dµ(g) < C̄. (E.29)

Once (E.28) and (E.29) are shown, it is immediate that for any ε > 0,

sup
(γ,F )∈H0

Pr F

(
|T̄T (γ;B1, B2)− T̄medT (γ;B1, B2)| > ε

)
→ 0. (E.30)

This combined with (E.25) shows (E.6).

Now we show (E.28) and (E.29). The convergence result (E.28) is implied by the fol-
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lowing results: for any ε > 0,

sup
(γ,F )∈H0

Pr F

 sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ),g∈G

||ν̂B1
T (θ + λ/

√
T , g)− ν̂B1

T (θ, g)|| > ε

→ 0

sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ),g∈G

||GF (θ̃T , g)λ−GF (θ, g)λ|| → 0 and

sup
(γ,F )∈H0

Pr F

 sup
θ∈Θ0,F (γ),λ∈Λ

B2
T (θ,γ),g∈G

||vech(Σ̂T (θ + λ/
√
T , g)− ΣF (θ, g))|| > ε

→ 0.

(E.31)

The first result in the above display holds by the first result in equation (E.19) and the

uniform stochastic equicontinuity of the empirical process ν̂T (·, g) : Γ−1(γ) → Rdm with

respect to the Euclidean metric. The uniform equicontinuity is implied by Assumptions

C.2(b), (c) and (f) by Theorem 2.8.2 of van der Vaart and Wellner (1996). The second

result in the above display holds by the second result in (E.19). The third result in (E.31)

holds by Assumption C.2(d) and (f).

Result (E.29) holds because for any θ ∈ Θ0,F (γ) and λ ∈ ΛB2
T (θ, γ),

ˆ
G
MT (θ, λ, g)dµ(g)

≤2

ˆ
G
S(ν̂B1

T θ, g),Σι
F (θ, g))dµ(g) + 2

ˆ
G
S(GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))dµ(g)

≤ sup
Σ∈Ψ

S(−B11k,Σ) + 2

ˆ
G
S(GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))dµ(g)

≤ sup
Σ∈Ψ

S(−B11k,Σ) + 2B2 + C2(B2 + 1)× o(1), (E.32)

where the first inequality holds by Assumptions C.6(f), the second inequality holds by

Assumption C.6(c) and the last inequality holds by the second and third inequality in

(E.22) and the o(1) is uniform over (θ, λ).

STEP 3. In order to show (E.7), first extend the definition of T̄T (γ;B1, B2) from Step

1 to allow B1 and B2 to take the value ∞ and observe that T̄T (γ;∞,∞) = T̄T (γ).

Assumptions C.2 (c) and Lemma E.1 imply that for any ε > 0, there exists B1,ε large

enough such that

lim sup
T→∞

sup
(γ,F )∈H0

Pr F

(
sup

θ∈Θ,g∈G
‖ν̂T (θ, g)‖ > B1,ε

)
< ε. (E.33)
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Therefore we have for all B2,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F
(
T̄T (γ,∞, B2) 6= T̄T (γ;B1,ε, B2)

)
< ε. (E.34)

To show that T̄ T (γ) and T̄T (γ;∞, B2) are close for B2 large enough, first observe that:

T̄ T (γ) ≤ sup
θ∈Θ0,F (γ)

ˆ
G
S(ν̂T (θ, g) +

√
TρF (θ, g), Σ̂ι

T (θ, g))dµ(g)

≤ sup
θ∈Θ0,F (γ)

ˆ
G
S(ν̂T (θ, g), Σ̂ι

T (θ, g))dµ(g)

= Op(1) (E.35)

where the first inequality holds because 0 ∈ ΛT (θ, γ), the second inequality holds because

ρF (θ, g) ≥ 0 for θ ∈ Θ0,F (γ) and by Assumption C.6(c), the equality holds by Assumption

C.6(a)-(c) and Assumptions C.2 (c), (d) and (f). The Op(1) is uniform over (γ, F ) ∈ H0.

For any T , γ, B2, if T̄ T (γ) 6= T̄T (γ;∞, B2), then there must be a θ∗ ∈ Γ−1(γ) such that

T ×QF (θ∗) > B2 and

ˆ
G
S(ν̂T (θ∗, g) +

√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g) < Op(1). (E.36)

But

ˆ
G
S(ν̂T (θ∗, g) +

√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)

≥2−1

ˆ
G
S(
√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)−
ˆ
G
S(−ν̂T (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)

≥2−1

ˆ
G
S(
√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)−Op(1)

≥2−1

[
TQF (θ∗)−

ˆ
G
|S(
√
TρF (θ∗, ·), Σ̂ι

T (θ∗, ·))− S(
√
TρF (θ∗, ·),Σι

F (θ∗, ·))|dµ
]
−Op(1)

≥2−1

[
TQF (θ∗)− C2 sup

g∈G
c(||vech(Σ̂ι

T (θ∗, g)− Σι
F (θ∗, g))||)× (1 + TQF (θ∗))

]
−Op(1)

=B2/2− o(1)− op(1)× C2 ×B2/4−Op(1), (E.37)

where c(x) = (x+
√
x2 + 8x)/2 and C is the constant in (E.9). The first inequality holds by

Assumptions C.6(e)-(f), the second inequality holds by Assumption C.6(c) and Assumptions

C.2(c)-(d) and (f), the third inequality holds by the triangle inequality, the fourth inequality

holds by (E.9) and the equality holds by Assumption C.2(d). The terms o(1), op(1) and

Op(1) terms are uniform over θ∗ ∈ Γ−1(γ) and (γ, F ) ∈ H0.
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Then

sup
(γ,F )∈H0

Pr F

(
T̂ T (γ) 6= T̄T (γ;∞, B2)

)
≤ sup

(γ,F )∈H0

Pr F
(
2−1(1− op(1))×B2 − o(1)−Op(1) ≤ Op(1)

)
= sup

(γ,F )∈H0

Pr F (Op(1) ≥ B2) , (E.38)

where the first inequality holds by (E.36) and (E.37). Then for any ε, there exists B2,ε such

that

lim
T→∞

sup
(γ,F )∈H0

Pr F (T̂T (γ) 6= T̄T (γ;∞, B2,ε)) < ε. (E.39)

Combining this with (E.34), we have (E.7).

STEP 4. In order to show (E.8), first extend the definition of T̄ apprT (γ;B1, B2) from

Step 1 to allow B1 and B2 to take the value∞ and observe that T̄ apprT (γ;∞,∞) = T apprT (γ).

By the same arguments as those for (E.34), for any ε and B2, there exists B1,ε large

enough so that

lim sup
n→∞

sup
(γ,F )∈H0

Pr F
(
T̄ apprT (γ;∞, B2) 6= T̄ apprT (γ;B1,ε, B2)

)
< ε. (E.40)

Also by the same reasons as those for (E.35), we have

T apprT (γ) ≤ sup
θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g), (E.41)

where the right hand side is a real-valued random variable.

For any T and B2, if T apprT (γ) 6= T̄ apprT (γ;∞, B2,ε), then there must be a θ∗ ∈ Θ0,F (γ),

a λ∗∗ ∈ {λ ∈ ΛT (θ∗, γ) : T ×QF (θ∗ + λ/
√
T ) > B2} such that

I(λ∗∗) < sup
θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g), (E.42)

where I(λ) =
´
G S(νF (θ∗, g) + GF (θ∗, g)λ +

√
TρF (θ∗, g),Σι

F (θ∗, g))dµ(g). Next we show

that if λ∗∗ exists, then there must exists a λ∗ such that

λ∗ ∈ {λ ∈ ΛT (θ∗, γ) : T ×QF (θ∗ + λ/
√
T ) ∈ (B2, 2B2]} and

I(λ∗) < sup
θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g). (E.43)

If T × QF (θ∗ + λ∗∗/
√
T ) ∈ (B2, 2B2], then we are done. If T × QF (θ∗ + λ∗∗/

√
T ) > 2B2,
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there must be a a∗ ∈ (0, 1) such that T×QF (θ∗+a∗λ∗∗/
√
T ) ∈ (B2, 2B2] because TQF (θ∗+

0× λ∗∗/
√
T ) = 0 and TQF (θ∗ + aλ∗∗/

√
T ) is continuous in a (by Assumptions C.2(e) and

C.6(a)). By Assumption C.6(f), I(λ) is convex. Thus I(a∗λ∗∗) ≤ a∗I(λ∗∗)+(1−a∗)I(0). For

the same arguments as those for (E.35), I(0) ≤ supθ∈Θ0,F (γ)

´
G S(νF (θ, g),Σι

F (θ, g))dµ(g).

Thus, I(a∗λ∗∗) < supθ∈Θ0,F (γ)

´
G S(νF (θ, g),Σι

F (θ, g))dµ(g). Assumption (C.1)(c) and the

definition of ΛT (θ, γ) guarantee that a∗λ∗∗ ∈ ΛT (θ∗, γ). Therefore, λ∗ = a∗λ∗∗ satisfies

(E.43).

Similar to (E.19) we have

(1) ||λ∗||/
√
T ≤ B2 × 2C × T−1/δ2 = B2 × o(1)

(2) sup
g∈G
||GF (θ∗ +O(||λ∗||)/

√
T , g)λ∗ −GF (θ∗, g)λ∗||

≤ O(1)×B(δ1+1)/δ2
2 ||λ||δ1+1T−δ1/2 = B

(δ1+1)/δ2
2 o(1), (E.44)

where the o(1) terms do not depend on B2. Then,

I(λ∗) ≥ 2−1

ˆ
G
S(GF (θ∗, g)λ∗ +

√
TρF (θ∗, g),Σι

F (θ∗, g))dµ(g)−
ˆ
G
S(−νF (θ∗, g),Σι

F (θ∗, g))dµ(g)

≥ TQF (θ∗ + λ∗/
√
T )/2− C2 × (TQF (θ∗ + λ∗/

√
T ) + 1)× c(∆T )/2 +Op(1)

= TQF (θ∗ + λ∗/
√
T )/2− C2 × (2B2 + 1)× c(∆T )/4 +Op(1), (E.45)

where the Op(1) term is uniform over (γ, F ) ∈ H0, c(x) = (x+
√
x2 + 8x)/2 and

∆T := ‖GF (θ∗, g)λ∗ +
√
TρF (θ∗, g)−

√
TρF (θ∗ + λ∗/

√
T , g)‖2

+ ‖vech(Σι
F (θ∗ + λ∗/

√
T , g)− Σι

F (θ∗, g))‖. (E.46)

The first inequality in (E.45) holds by Assumptions C.6(e)-(f), the second inequality holds

by (E.9) and the equality holds by (E.43). By (E.44) and Assumption C.2(f), for any fixed

B2, limT→∞∆T = 0. Therefore, for each fixed B2,

I(λ∗) ≥ TQF (θ∗ + λ∗/
√
T )/2−Op(1) ≥ B2/2−Op(1). (E.47)
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Thus

sup
(γ,F )∈H0

Pr(T apprT (γ) 6= T̄ apprT (γ;∞, B2))

≤ sup
(γ,F )∈H0

Pr

(
sup

θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g) ≥ B2/2−Op(1)

)
= sup

(γ,F )∈H0

Pr(Op(1) ≥ B2). (E.48)

For any ε > 0, there exists B2,ε large enough so that limT→∞ sup(γ,F )∈H0
Pr(Op(1) ≥ B2) <

ε. Thus,

lim
T→∞

sup
(γ,F )∈H0

Pr(T apprT (γ) 6= T̄ apprT (γ;∞, B2,ε) < ε. (E.49)

Combining this with (E.40), we have (E.8).

E.2 Proof of Theorem 2

The following lemma is used in the proof of Theorem 2. It shows the convergence of

the bootstrap empirical process ν̂∗T (θ, g). Let WT,t be the number of times that the tth

observation appearing in a bootstrap sample. Then (WT,1, ...,WT,T ) is a random draw

from a multinomial distribution with parameters T and (T−1, ..., T−1), and ν̂∗T (θ, g) can be

written as

ν̂∗T (θ, g) = T−1/2
T∑
t=1

(WT,t − 1)ρ(wt, θ, g). (E.50)

In the lemma, the subscripts F and W for E and Pr signify the fact that the expectation and

the probabilities are taken with respect to the randomness in the data and the randomness

in {WT,t} respectively.

Lemma E.2. Suppose that Assumption C.2 holds. Then for any ε > 0,

(a)lim supT→∞ sup(γ,F )∈H Pr ∗F (supf∈BL1
|EW f(ν̂∗T (·, ·))− Ef(νF (·, ·))| > ε) = 0,

(b) there exists Bε large enough such that

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
PrW

(
sup

θ∈Γ−1(γ),g∈Ḡ
||ν̂∗T (θ, g)|| > Bε

)
> ε

)
= 0, and

(c) there exists δε small enough such that

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
PrW

(
sup
g∈Ḡ

sup
||θ(1)−θ(2)||≤δε

||ν̂∗T (θ(1), g)− ν̂∗T (θ(2), g)|| > ε

)
> ε

)
= 0.
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Proof of Lemma E.2. (a) Part (a) is proved using a combination of the arguments in Theo-

rem 2.9.6 and Theorem 3.6.1 in van der Vaart and Wellner (1996). Take a Poisson number

NT with mean T and independent from the original sample. Then {WNT ,1, ...,WNT ,T } are

i.i.d. Poisson variables with mean one. Let the Poissonized version of ν̂∗T (θ, g) be

ν̂poiT (θ, g) = T−1/2
T∑
t=1

(WNT ,t − 1)ρ(wt, θ, g). (E.51)

Theorem 2.9.6 in van der Vaart and Wellner (1996) is a multiplier central limit theorem that

shows that if {ρ(wt, θ, g) : (θ, g) ∈ Θ × Ḡ} is F -Donsker and pre-Gaussian, then ν̂poiT (θ, g)

converges weakly to νF (θ, g) conditional on the data in outer probability. The arguments

of Theorem 2.9.6 remain valid if we strengthen the F -Donsker and pre-Gaussian condition

to the uniform Donsker and pre-Gaussian condition of Assumption C.2(c) and strengthen

the conclusion to uniform weak convergence:

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
sup
f∈BL1

|EW f(ν̂poiT (·, ·))− Ef(νF (·, ·))| > ε

)
= 0, (E.52)

In particular, the extension to the uniform versions of the first and the third displays in the

proof of Theorem 2.9.6 in van der Vaart and Wellner (1996) is straightforward. To extend

the second display, we only need to replace Lemma 2.9.5 with Proposition A.5.2 – a uniform

central limit theorem for finite dimensional vectors.

Theorem 3.6.1 in van der Vaart and Wellner (1996) shows that, under a fixed (γ, F ),

the bounded Lipschitz distance between ν̂poiT (θ, g) and ν̂∗T (θ, g) converge to zero conditional

on (outer) almost all realizations of the data. The arguments remain valid if we strengthen

the Glivenko-Cantelli assumption used there to uniform Glivenko-Cantelli (which is implied

by Assumption C.2(c)) and strengthen the conclusion to: for all ε > 0

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
sup
f∈BL1

|EW f(ν̂poiT (·, ·))− EW f(ν̂∗T (·, ·))| > ε

)
= 0, (E.53)

Equations (E.52) and (E.53) together imply part (a).

(b) Part (b) is implied by part (a), Lemma E.1(b) and the uniform pre-Gaussianity

assumption (Assumption C.2(c)). When applying Lemma E.1(b), consider X
(1)
T = ν̂∗T ,

X
(2)
T = νF , G1 = {ν : supθ,g ‖ν(θ, g)‖ ≥ Bε}, and G2 = {ν : supθ,g ‖ν(θ, g)‖ > Bε − 1}

where Bε satisfies:

sup
(γ,F )∈H

Pr

(
sup

θ∈Θ,g∈Ḡ
‖νF (θ, g)‖ > Bε − 1

)
< ε/2. (E.54)
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Such a Bε exists because {ρ(wt, θ, g) : (θ, g) ∈ Θ × Ḡ} is uniformly pre-Gaussian by As-

sumption C.2(c).

(c) Part (c) is implied by part (a), Lemma E.1(b) and the uniform pre-Gaussianity

assumption (Assumption C.2(c)). When applying Lemma E.1(b), consider X
(1)
T = ν̂∗T ,

X
(2)
T = νF , G1 = {ν : sup||θ(1)−θ(2)||≤∆ε,g

‖ν(θ(1), g) − ν(θ(2), g)‖ ≥ ε}, and G0 = {ν :

sup||θ(1)−θ(2)||≤∆ε,g
‖ν(θ(1), g)− ν(θ(2), g)‖ > ε/2}, where ∆ε satisfies:

sup
(γ,F )∈H

Pr

(
sup

‖θ(2)−θ(2)‖≤∆ε,g

‖νF (θ(1), g)− νF (θ(2), g)‖ > ε/2

)
< ε/2. (E.55)

Such a ∆ε exists because {ρ(wt, θ, g) : (θ, g) ∈ Θ× Ḡ} is uniformly pre-Gaussian.

Proof of Theorem 2. (a) Let qapprbT
(γ, p) denotes the p quantile of T̄ apprbT

(γ). Let η2 = η∗/3.

Below we show that,

lim sup
T→∞

sup
(γ,F )∈H0

PrF,sub(c
sub
T (γ, p) ≤ qapprbT

(γ, p) + η2) = 0. (E.56)

where Pr ∗F,sub signifies the fact that there are two sources of randomness in csubT (γ, p) one

from the original sampling and the other from the subsampling. Once (E.56) is established,

we have,

lim inf
T→∞

inf
(γ,F )∈H0

PrF,sub

(
T̂T (γ) ≤ csubT (γ, p)

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

PrF

(
T̂T (γ) ≤ qapprbT

(γ, p) + η2

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

[
PrF

(
T̂T (γ) ≤ qapprbT

(γ, p) + η2

)
− Pr

(
T apprT (γ) ≤ qapprbT

(γ, p)
)]

+ lim inf
T→∞

inf
(γ,F )∈H0

[
Pr
(
T apprT (γ) ≤ qapprbT

(γ, p)
)
− Pr

(
T apprbT

(γ) ≤ qapprbT
(γ, p)

)]
+ lim inf

T→∞
inf

(γ,F )∈H0

Pr
(
T apprbT

(γ) ≤ qapprbT
(γ, p)

)
(E.57)

≥ p,

where the first inequality holds by (E.56). The third inequality holds because the first two

lim infs after the second inequality are greater than or equal to zero and the third is greater

than or equal to p. The first lim inf is greater than or equal to zero by Theorem E.1. The

second lim inf is greater than or equal to zero T apprbT
(γ) ≥ T apprT (γ) for any γ and T which

holds because
√
T ≥

√
bT and ΛbT (θ, γ) ⊆ ΛT (θ, γ) for large enough T by Assumptions
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C.1(c) and C.7(c).

Now it is left to show (E.56). In order to show (E.56), we first show that the c.d.f. of

T̄ apprbT
(γ) is close to the following empirical distribution function:

L̂T,bT (x; γ) = S−1
T

ST∑
s=1

1
(
T̂ sT,bT (γ) ≤ x

)
. (E.58)

Define an intermediate quantity first:

L̃T,bT (x; γ) = q−1
T

qT∑
l=1

1
(
T̃ lT,bT (γ) ≤ x

)
, (E.59)

where qT = ( TbT ) and (T̃ lT,bT (γ))qTl=1 are the subsample statistics computed using all qT

possible subsamples of size bT of the original sample. Conditional on the original sample,

(T̂ sT,bT (γ))STs=1 is ST i.i.d. draws from L̃T,bT (·; γ). By the uniform Glivenko-Cantelli theorem,

for any ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,sub

(
sup
x∈R

∣∣∣L̃T,bT (x; γ)− L̂T,bT (x; γ)
∣∣∣ > ε

)
= 0 (E.60)

It is implied by a Hoeffding’s inequality (Theorem A on page 201 of Serfling (1980)) for

U-statistics that for any real sequence {xT }, and ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

PrF

(
L̃T,bT (xT ; γ)− PrF

(
T̃ lT,bT (γ) ≤ xT

)
> ε
)

= 0. (E.61)

Equations (E.60) and (E.61) imply that, for any real sequence {xT } and ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

PrF,sub

(
L̂T,bT (xT ; γ)− PrF

(
T̃ lT,bT (γ) ≤ xT

)
> ε
)

= 0. (E.62)

Apply Theorem E.1 on the subsample statistic T̃ lT,bT (γ), and we have for any ε > 0 and

any real sequence {xT },

lim sup
T→∞

sup
(γ,F )∈H0

[
PrF

(
T̃ lT,bT (γ) ≤ xT − ε

)
− Pr

(
T apprbT

(γ) ≤ xT
)]

< 0. (E.63)

Equations (E.62) and (E.63) imply that for any real sequence {xT },

sup
(γ,F )∈H0

PrF,sub

(
L̂T,bT (xT ; γ) >

(
η2 + Pr

(
T apprbT

(γ) ≤ xT + η2

)))
→ 0. (E.64)
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Plug xT = qapprbT
(γ, p)− 2η2 into the above equation and we have:

lim sup
T→∞

sup
(γ,F )∈H0

Pr∗F,sub

(
L̂T,bT (qapprbT

(γ, p)− 2η2; γ) > η2 + p
)

= 0. (E.65)

However, by the definition of csubT (γ, p), L̂T,bT (csubT (γ, p)−η∗; γ) ≥ p+η∗ > η2 +p. Therefore

lim sup
n→∞

sup
(γ,F )∈H0

Pr∗F,sub

(
L̂T,bT (qapprbT

(γ, p)− 2η2; γ) ≥ L̂T,bT (csubT (γ, p)− η∗; γ)
)

=0, (E.66)

which implies (E.56).

(b) Let qbtκT (γ, p) be the p quantile of T apprκT (γ) conditional on the original sample. Below

we show that for η2 = η∗/3,

lim sup
T→∞

sup
(γ,F )∈H0

PrF,W (cbtT (γ, p) < qbtκT (γ, p) + η2) = 0. (E.67)

where Pr F,W signifies the fact that there are two sources of randomness in cbtT (γ, p), that from

the original sampling and that from the bootstrap sampling. Once (E.67) is established, we

have,

lim inf
T→∞

inf
(γ,F )∈H0

PrF,W

(
T̂T (γ) ≤ cbtT (γ, p)

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

PrF

(
T̂T (γ) ≤ qbtκT (γ, p) + η2

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

Pr
(
T apprT (γ) ≤ qbtκT (γ, p)

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

Pr
(
T apprκT

(γ) ≤ qbtκT (γ, p)
)

= p, (E.68)

where the first inequality holds by (E.67), the second inequality holds by Theorem E.1 and

the third inequality holds because T apprκT (γ) ≥ T apprT (γ) for any γ and T which holds because√
T ≥ √κT and ΛκT (θ, γ) ⊆ ΛT (θ, γ) for large enough T by Assumptions C.1(c) and C.7(c).

Now we show (E.67). First, we show that the c.d.f. of T apprκT (γ) is close to the following

empirical distribution:

FST (x, γ) = S−1
T

ST∑
l=1

1{T ∗T,l(γ) ≤ x}, (E.69)

where {T ∗T,1(γ), ..., T ∗T,ST (γ)} are the ST conditionally independent copies of the bootstrap

test statistics. By the uniform Glivenko-Cantelli Theorem, FST (x, γ) is close to conditional
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c.d.f. of T ∗T (γ): for any η > 0

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W

(
sup
x∈R
|FSn(x, γ)− PrW (T ∗T (γ) ≤ x)| > η

)
= 0. (E.70)

The same arguments as those for Theorem E.1 can be followed to show that T ∗T (γ) is

close in law to T apprκT (γ) in the following sense: for any real sequence {xT },

lim sup
T→∞

sup
(γ,F )∈H0

Pr F
([

PrW (T ∗T (γ) ≤ xT − η2)− Pr(T apprκT
(γ) ≤ xT )

]
≥ η2

)
= 0. (E.71)

When following the arguments for Theorem E.1, we simply need to observe the resemblance

between T̂T (γ) and T ∗T (γ) in the following form:

T ∗T (γ) = min
θ∈Θ0,F (γ)

min
λ∈ΛκT (θ,γ)ˆ

G
S(ν̂∗+T (θ + λ/

√
T , g) +GF (θ̃T , g)λ+

√
κTρF (θ, g), Σ̂n(θ + λ/

√
T , g))dµ(g),

(E.72)

where

ν̂∗+T (θ, g) = ν̂∗T (θ, g) + κ
1/2
T n−1/2ν̂T (θ, g), (E.73)

and use Lemma E.2 in conjunction with Assumptions C.2(c) and use Lemma E.1(b) in place

of E.1(a).

Equations (E.70) and (E.71) together imply that for any real sequence {xT },

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W
([
FST (xT − η2, γ)− Pr(T apprκT

(γ) ≤ xT )
]
≥ 2η2

)
= 0. (E.74)

Plug in xT = qapprκT (γ, p)− η2 and we have

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W
(
FST (qapprκT

(γ, p)− 2η2, γ) ≥ p+ 2η2

)
= 0. (E.75)

But by definition, FST (cbtT (γ, p)− η∗, γ) ≥ p+ η∗ > p+ 2η2. Therefore,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W

(
FST (qapprκT

(γ, p)− 2η2, γ) ≥ FST (cbtT (γ, p)− η∗, γ)
)

= 0, (E.76)

which implies (E.67).
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F Monte Carlo Analysis for Selecting Tuning Parameters in

Application

In this section we conduct a Monte Carlo simulation that exhibits the same pattern of

sparse demand as we observe in the scanner data with the goal of helping to guide our

choice of the tuning parameters required by the bootstrap in our profiling approach for

our empirical study. In particular, we design a data generating process for the simulated

data that reproduces the main stylized features of interest from the data. Recall that our

empirical analysis focused on data from a single stores, and hence different markets are

indexed by different weeks. We simulate Jt = 50 products and nt = 15000 consumers for

each of t = 1, . . . , T = 100, which closely matches the structure of the data we will study in

the next subsection. Each product is characterized by a single observable product attribute

x (quality or negative of price) and an unobserved attribute ξ. Consumer i = 1, . . . , nt in

market t has utility for a product j given by

uijt = α0 + β0xjt + ξjt + vijt j = 1, . . . , Jt

and ui0t = vi0t, where vijt are i.i.d. type-I extreme value. The parameter of interest is β0,

which has a true value of 1.

The data generating process for the observable xjt and the unobservable ξjt were de-

signed to replicate several important patterns from the data. There are three main elements

to the data generating process, which were designed to match key features of the data.

1. There are two types of dependence across product/week in our data set: products in

the same market (i.e., products marketed on the same week at the store) are affected by

common market level features, and both the market level features and product specific

characteristics may persist over weeks. We capture the within market dependence by

letting xjt to have two components: xjt = x̄jt + et, where x̄jt is the product specific

characteristic that is independent across j and et is the market level feature. We

capture the intertemporal dependence by a stationary AR(2) structure on both x̄jt

and et with the AR coefficients being 0.5 and 0.4 for the first and the second lag terms

respectively. We also impose an AR(2) structure with the same AR coefficients on

a component of the unobserved product characteristics ξjt which is discussed below.

The AR coefficients roughly matches the intertemporal dependence in the data.41

2. As discussed above, the scanner data generally exhibits two groups of products: the

first group being products that have larger choice probabilities and more certain to

41The AR(2) coefficient estimates for the time series
∑
j≤Jt:sjt,s0t∈(0,1)(log sjt−log s0t)/

∑
j≤Jt 1{sjt, s0t ∈

(0, 1)} are roughly 0.5 and 0.4.
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have positive sales across all markets; the second group being the “long tail” of prod-

ucts with smaller choice probabilities and are more sparsely demanded. In particular,

because the data for the category we study below shows that roughly half the products

are susceptible to zero sales whereas the other half is not, we incorporate this feature

into the simulation by setting the stationary mean of x̄jt for the first j = 1, . . . , 25

products to be 8 and the stationary mean of the last j = 26, . . . , 50 products to be

4. The innovation terms in the AR process for x̄jt of the first 25 products are set to

be N(0, 0.2) and those for the last 25 are set to be N(0, 0.4). The stationary mean of

the common shock et is set at 0 and its innovation terms N(0, 0.1).42

3. Finally, for the products in our “long tail” category, we want to control the extent

of zero sales to match what we observe in the sub-sample of the data we study. We

accomplish this last goal using heteroskedasticity in ξjt that is natural to our setting.

We take ξjt = ξ̄jtẽjt where ξ̄jt is a constant representing the standard deviation and

ẽjt is a normalized stochastic error term. The heteroskedastic standard deviation of

ξjt is set to be ξ̄jt = 0.1 × 1{xjt > 5} + ξc × 1{xjt < 5}, where ξc fully control the

extent of zero sales. We find that ξc = 4 − 10 generates proportion of zero shares

similar to our real data. The random (conditional on xjt) component, ẽjt, of ξjt

follows the same distribution as the series et above for each j and is independent

across j. This construction of the error distribution and the distribution of xjt imply

that an observation of a “zero” sale among the long tail products is largely driven

by a bad ξjt shock, which accords with the interpretation of ξjt in our application

(namely the unobserved promotion of a product through advertising and shelf space).

The persistence of ẽjt means these bad shocks can be persistent, i.e., bad shelf space

can persist for a few weeks. It also implies that the products are segmented into “hit”

products that rarely experience zero sales and the tail products that often do. Our

design enables us to produce 17 to 24 products (across different specifications) that

never experience zero sales, which matches the structure of our real data.

We choose the constant c in the tuning parameter κT = T/(c log T ) for the bootstrap by,

for different values of c, replicating the above simulation 1000 times and computing the

coverage probability (CP) of the true value β0 = 1 and the false coverage probability (FCP)

of a point outside the identified set of β. We find that the CP’s are always 1, showing that

our confidence set does not under cover, even for the independence bootstrap (despite the

fact there is temporal dependence in the simulated data). The FCP’s are shown in Table 6

42To generate a stationary AR(2) process Yt with stationary mean E(Yt) and innovation term ut, we start
with Y−1 = Y0 = E[Yt] and generate Yt for t > 0 according to the AR(2) equation. We burn the first 20,000
terms in the process and take the 20, 001th term to the 20, 100th term as our Monte Carlo data set. For
repetition study, we repeat the whole process.
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below. As the table shows, at c = 0.5 − 0.6 our confidence sets appear to exhibit the best

FCP’s and we will thus focus on these values of the tuning parameter for the remainder of

paper.43

Table 6: False Coverage Probabilities (FCP) of the 95% Confidence Interval
Block

Length
1 (i.i.d.) 3 5

c\ξc 4 6 8 10 4 6 8 10 4 6 8 10

.3 .908 .959 .990 .980 .939 .972 .991 .990 .953 .984 .991 .990

.4 .387 .567 .583 .593 .528 .709 .776 .779 .610 .772 .830 .839

.5 .318 .443 .407 .396 .469 .611 .593 .607 .560 .711 .703 .710

.6 .348 .474 .403 .402 .504 .635 .579 .600 .619 .753 .714 .725

.7 .432 .541 .470 .476 .584 .705 .642 .677 .715 .822 .779 .789

.8 .500 .633 .553 .575 .689 .797 .732 .753 .812 .880 .850 .846

.9 .578 .711 .635 .658 .763 .875 .810 .834 .874 .936 .910 .926

Note: The FCPs are computed at .95, .94, .91, .89 for ξσ = 4, 6, 8, 10, respectively. These

numbers are chosen to yield nontrivial FCPs.

We produce one additional replication of the DGP above for different values of the

heteroskedasticity parameter ξc and present the confidence intervals obtained using our

moment inequalities method in the second column of Table 7 below.

Table 7: Monte Carlo Results: Point and Bound Estimates

Percent of
Positive
Shares

Bounds Estimate Using Block Bootstrap: BLP Point
Estimate
and 95%
CS

ξc 50% (top) and 95% (bottom) CS’s
Block Length

1(i.i.d.) 3 5

4 83.20% [.97, 1.02] [.97, 1.03] [.97, 1.03] .70
[.96, 1.05] [.95, 1.06] [.95, 1.06] [.66, .74]

6 80.38% [.96, 1.03] [.96, 1.03] [.96, 1.03] .50
[.93, 1.06] [.93, 1.07] [.92, 1.07] [.44, .55]

8 78.46% [.93, 1.10] [.93, 1.10] [.93, 1.10] .32
[.89, 1.26] [.89, 1.26] [.88, 1.26] [.24, .39]

10 76.06% [.89, 1.10] [.89, 1.11] [.89, 1.12] .15
[.85, 1.29] [.84, 1.38] [.84, 1.35] [.08, .23]

Note: True value = 1, J = 50, T = 100, κT = T/(0.5 · log(T )), εjt =minimum true

share ∀j, t. The confidence intervals of the BLP estimates are constructed using the

Driscoll-Kraay standard errors.

43Another implementation details for our inference strategy are the set of g functions, We follow the
suggestions in Section 5.2 and let r̄T = 50, which yields on average 50 product/markets in each of the
smallest hyperboxes. Lastly, we use the true value of the minimum choice probability in each replication
of the simulated data as our value of the lower bound on choice probabilities εt for our moment inequality
method.
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As can be seen, our confidence intervals based on the moment inequalities always contain

the true value and for the whole range of ξc. Moreover, our confidence intervals are fairly

informative even when the degree of heteroskedasticity and hence selection in the data as

determined by ξc is large. Also these results mimic a key finding from our empirical analysis

- the BLP point estimates from dropping the zeroes have price coefficients severely biased

towards zero.

G Handling Dependence

The inference theory presented so far assumes that the data {wt} are i.i.d. We show that it

is straightforward to generalize to stationary and weakly-dependent time series data. The

modifications needed are as follows.

First, with time-series data, the variance estimator Σ̂T (θ, g) in (5.8) is no longer appro-

priate. One can replace it with, for example, the kernel estimator proposed in Andrews

(1991):

Σ̂n(θ, g) =
T

T − 1

T−1∑
j=−T+1

K

(
j

BT

)
Γ̂(j), where

Γ̂(j) =

 1
T

∑T
t=j+1(ρ(wt, θ, g)− ρ̄T (θ, g))(ρ(wt−j , θ, g)− ρ̄T (θ, g))

′
j ≥ 0

1
T

∑T
t=−j+1(ρ(wt+j , θ, g)− ρ̄T (θ, g))(ρ(wt, θ, g)− ρ̄T (θ, g))

′
j < 0,

(G.1)

where K(·) is a kernel function and BT is a bandwidth parameter. The optimal choice

of both are given in Andrews (1991). One can also use the prewhitening and recoloring

procedure to obtain less biased estimator following Andrews and Monahan (1992). The

kernel estimator Σ̂n(θ, g) converges to the long-run variance of {ρ(wt, θ, g)} :

ΣF (θ, g) = lim
T→∞

Var

(
T−1/2

T∑
t=1

(ρ(wt, θ, g)− ρF (θ, g))

)
. (G.2)

In addition, the Gaussian process νF (θ, g) to which the process ν̂T (θ, g) ≡
√
T (ρ̄T (θ, g) −

ρF (θ, g)) now converges weakly has covariance kernel

ΣF (θ(1), g(1), θ(2), g(2)) := lim
T→∞

Cov
(√

T ρ̄T (θ(1), g(1)),
√
T ρ̄T (θ(2), g(2))

)
, (G.3)

instead of the covariance kernel defined in (C.1).

Second, the subsampling and bootstrap procedures described in Section 5.3 may not be

consistent. One needs to change the resampling procedure to accommodate the dependence.

For subsampling, in step [1], instead of taking draw a subsample of size bT , one draws
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randomly from the following T−bT +1 possible “block” subsamples: {{1, ..., bT }, {2, ..., bT +

1}, ..., {T − bT + 1, ..., T}}. The other steps stay the same. For bootstrap, one can use the

block bootstrap procedure, i.e., in step [1], instead of drawing an i.i.d. sample of size T , first

divide the time series into blocks of subsamples: {{1, ..., bT }, {2, ..., bT + 1}, ..., {T − bT +

1, ..., T}}, drawdT/bT e i.i.d. blocks from this set of blocks, assemble these blocks one after

another to form a sample of size bT × dT/bT e and finally truncate the last bT × dT/bT e − T
terms to form a sample of size T .

Third, some of the assumptions also need to be changed to accommodate the depen-

dence. Specifically, we delete part (a) of Assumption C.2 and change parts (c) and (d)

to:

(c) limT→∞ sup(γ,F )∈H supf∈BL1
|E∗F f(ν̂T (·, ·))− Ef(νF (·, ·))| = 0,

sup(γ,F )∈HE
∗ sup(θ,g)∈Θ×Ḡ ‖νF (θ, g)‖ <∞ and

limδ↓0 sup(γ,F )∈HE
∗ supg,||θ−θ∗||≤δ ‖νF (θ, g)− νF (θ∗, g)‖ = 0.

(d) limT→∞ sup(γ,F )∈H Pr∗F (sup(θ,g)∈Θ×Ḡ ‖Σ̂T (θ, g)− ΣF (θ, g)‖ > ε) = 0 for any ε > 0.

In addition, for the subsampling critical value, the Hoeffding’s inequality used to show

(E.61) no longer applies. We change qT in (E.59) to T − bT + 1, which now is the number

of all possible subsamples and add the following assumption:

Assumption G.1. lim supT→∞ sup(γ,F )∈H0
PrF

(
L̃T,bT (xT ; γ)− PrF

(
T̃ lT,bT (γ) ≤ xT

)
> ε
)

=

0.

For the bootstrap critical value, Lemma E.2 no longer goes through. We thus add the

following assumption:

Assumption G.2. (a)lim supT→∞ sup(γ,F )∈H Pr ∗F (supf∈BL1
|EW f(ν̂∗T (·, ·))−Ef(νF (·, ·))| >

ε) = 0,

(b) there exists Bε large enough such that

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
PrW

(
sup

θ∈Γ−1(γ),g∈Ḡ
||ν̂∗T (θ, g)|| > Bε

)
> ε

)
= 0, and

(c) there exists δε small enough such that

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
PrW

(
sup
g∈Ḡ

sup
||θ(1)−θ(2)||≤δε

||ν̂∗T (θ(1), g)− ν̂∗T (θ(2), g)|| > ε

)
> ε

)
= 0.

Then we replace Assumption C.2 in the statement of Theorems 2 and E.1 by its modified

version and add Assumption G.1 to the conditions for Theorem 2(a) and Assumption G.2

to the conditions of Theorem 2(b).

Lastly, we adapt the proofs of Theorems 2 and E.1. The following adaptions are suffi-

cient:
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(1) In the fourth line below equation (E.31), change “Theorem 2.8.2” to “the (i)→(ii)

part of the proof of Theorem 2.8.2”.

(2) In the proof for Theorem 2(a), instead of using the Hoeffding’s inequality to show

(E.61), use Assumption G.1 directly.

(3) In the proof for Theorem 2(a), instead of using Lemma E.2, use Assumption G.2

directly.

Assumptions G.1 and G.2 appear to be high-level, but they are easy to verify under

standard time series assumptions. To verify Assumption G.1, one can use Theorem 3.1 of

Politis and Romano (1994) under the assumption that {wt} is stationary and α-mixing. To

verify Assumption G.2, one can use Theorem 4.1 of Bühlmann (1996) under the assumption

that {wt} is β-mixing and {ρ(w, θ, g) : (θ, g) ∈ Θ × G} is a Vapnik-Červonenkis class with

an envelope function that has exponentially decaying tail. For brevity, we omit the details.
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