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Supplement to “Optimal Bandwidth Selection for
Differences of Nonparametric Estimators with an

Application to the Sharp Regression Discontinuity
Design”

Yoichi Arai and Hidehiko Ichimura

A Introduction

In this supplemental material, we present omitted discussions, an algorithm to imple-

ment the proposed method for the sharp RDD and proofs for the main results.

B Uniqueness of the AFO Bandwidths for the Dif-

ference of Densities

In this section, we verify the uniqueness of the AFO bandwidths for the difference of

densities.

(i) When f (2)(x1)f
(2)(x2) < 0, the first-order conditions are given by

∂AMSE1n(h)

∂h1

∣∣∣∣
h1=h∗1,h2=h

∗
2

= µ2
2f

(2)(x1)h
∗
1

[
f (2)(x1)h

∗
1
2 − f (2)(x2)h

∗
2
2
]
− ν0
n

f(x1)

h∗1
2 = 0,

∂AMSE1n(h)

∂h2

∣∣∣∣
h1=h∗1,h2=h

∗
2

= −µ2
2f

(2)(x2)h
∗
2

[
f (2)(x1)h

∗
1
2 − f (2)(x2)h

∗
2
2
]
− ν0
n

f(x2)

h∗2
2 = 0.

Solving these gives the explicit forms of h∗1 and h∗2.

To show that h∗1 and h∗2 are global minimizers, it is sufficient to show that

AMSE1n(h) is strictly convex with respect to h1 and h2. For strict convexity, we
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must show that the Hessian matrix is positive definite; i.e. that

∂2AMSE1n(h)

∂h21
> 0,

∂2AMSE1n(h)

∂h21
· ∂

2AMSE1n(h)

∂h22
−
[
∂2AMSE1n(h)

∂h1∂h2

]2
> 0.

Given that f (2)(x1) and f (2)(x2) have different signs, it follows that

∂2AMSE1n(h)

∂h21
= µ2

2f
(2)(x1)

[
f (2)(x1)h

2
1 − f (2)(x2)h

2
2

]
+ 2

[
µ2f

(2)(x1)h1
]2

+
2ν0f(x1)

nh31
> 0,

because f(·), µ2, ν0, n, h1 and h2 are all positive. We can also show that

∂2AMSE1n(h)

∂h21
· ∂

2AMSE1n(h)

∂h22
−
[
∂2AMSE1n(h)

∂h1∂h2

]2
=

{
µ2
2f

(2)(x1)
[
f (2)(x1)h

2
1 − f (2)(x2)h

2
2

]
+ 2

[
µ2f

(2)(x1)h1
]2

+
2ν0f(x1)

nh31

}
×
{
−µ2

2f
(2)(x2)

[
f (2)(x1)h

2
1 − f (2)(x2)h

2
2

]
+ 2

[
µ2f

(2)(x2)h2
]2

+
2ν0f(x2)

nh32

}
−
[
2µ2

2f
(2)(x1)f

(2)(x2)h1h2
]2
.

Note that if we ignore the first and third terms in the two brackets of the first term on

the right-hand side, what is left coincides with the last term on the right-hand side.

However, both the first and third terms are positive as discussed earlier. Thus, the

difference of the two terms are positive.

(ii) Next, we consider the case where f (2)(x1)f
(2)(x2) > 0. With the restriction

that f (2)(x1)h
2
1 − f (2)(x2)h

2
2 = 0, AMSE2n(h) can be written as

AMSE2n(h) =
{µ4

4!

[
f (4)(x1)− λ∗∗4f (4)(x2)

]
h41

}2

+
ν0
nh1

{
f(x1) +

f(x2)

λ∗∗

}
.

The first-order condition becomes

dAMSE2n(h)

dh1

∣∣∣∣
h1=h∗∗1

=
1

72
µ2
4

{
f (4)(x1)− λ∗∗4f (4)(x2)

}2
h∗∗1

7− ν0

nh∗∗1
2

{
f(x1) +

f(x2)

λ∗∗

}
= 0.

Solving this with respect to h∗∗1 yields the expression of Definition 1. To see that
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AMSE2n(h1) has a unique minimum, observe that

d2AMSE2n(h)

dh21
=

7

56
µ2
4

{
f (4)(x1)− λ∗∗4f (4)(x2)

}2
h61 +

2ν0
h31

{
f(x1) +

f(x2)

λ∗∗

}
.

Both terms on the right-hand side being positive proves strict convexity. �

C Implementation for the Sharp RDD

In this section, we provide a detailed procedure to implement the proposed method

for the sharp RDD. To obtain the proposed bandwidths, we need pilot estimates of

the density and its first derivative, the second and third derivatives of the regression

functions, and the conditional variances at the discontinuity point. We obtain these

pilot estimates in a number of steps. Before we describe them, note that the discon-

tinuity points for all designs are at x = 0. When the discontinuity point is at x = c

rather than x = 0, one proceeds by replacing Xi with Xi − c in the following steps.

C.1 Step 1: Obtain pilot estimates for the density f(0) and

its first derivative f (1)(0)

We calculate the density of the forcing variable at the discontinuity point f(0), which

is estimated by using the kernel density estimator with an Epanechnikov kernel.1 A

pilot bandwidth for kernel density estimation is chosen by using the normal scale rule,

given by σ̂ · (15φ(c)/(nφ(2)(c)2))1/5 evaluated at c = 0, where σ̂ is the square root of

the sample variance of Xi and φ(·) is the normal density (see Wand and Jones, 1994

for the normal scale rules). The first derivative of the density is estimated by using

the method proposed by Jones (1994). The kernel first derivative density estimator

is given by
∑n

i=1 L((c − Xi)/h)/(nh2), where L is the kernel function proposed by

Jones (1994), L(u) = −15u(1−u2)1{|u|<1}/4 and c is the evaluation point (zero in our

experiments). Again, a pilot bandwidth is obtained by using the normal scale rule,

1IK estimated the density in a simpler manner (see Section 4.2 of IK). We used the kernel density
estimator to be consistent with the estimation method used for the first derivative. Our unreported
simulation experiments produced similar results for both methods.
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given by σ̂ · (105φ(c/σ̂)/(nφ(3)(c/σ̂))1/7 evaluated at c = 0.1.2

C.2 Step 2: Obtain pilot bandwidths for estimating the sec-

ond and third derivatives m
(2)
j (0) and m

(3)
j (0) for j = 1, 2

We next estimate the second and third derivatives by using the third-order LPR.

We obtain pilot bandwidths for the LPR based on the estimated fourth derivatives

m
(4)
1 (0) = limx→0+m

(4)(x) and m
(4)
2 (0) = limx→0−m

(4)(x). Following IK, we use

estimates that are not necessarily consistent by fitting global polynomial regressions.

In doing so, we construct a matrix whose ith row is given by [1 Xi X
2
i X

3
i X

4
i ]. It

turns out that the matrix has an average condition number (the ratio of the largest

eigenvalue to the smallest.) of 28.80. This number suggests potential multicollinearity,

which typically makes the polynomial regression estimates very unstable. Hence, we

use the ridge regression proposed by Hoerl, Kennard, and Baldwin (1975). This is

implemented in two steps. First, using observations for which Xi ≥ 0, we regress

Yi on 1, Xi, X
2
i , X3

i and X4
i to obtain the standard OLS coefficients γ̂1 and the

variance estimate ŝ21. This yields the ridge coefficient proposed by Hoerl, Kennard,

and Baldwin (1975): r1 = (5ŝ21)/(γ̂
′
1γ̂1). Using the data with Xi < 0, we repeat

the procedure to obtain the ridge coefficient, r2. Let Y be a vector of Yi, and let

X be the matrix whose ith row is given by [1 Xi X
2
i X

3
i X

4
i ] for observations with

Xi ≥ 0, and let Ik be the k × k identity matrix. The ridge estimator is given by

β̂r1 = (X ′X + r1I5)
−1X ′Y , and β̂r2 is obtained in the same manner. The estimated

fourth derivatives are m̂
(4)
1 (0) = 24 · β̂r1(5) and m̂

(4)
2 (0) = 24 · β̂r2(5), where β̂r1(5) and

β̂r2(5) are the fifth elements of β̂r1 and β̂r2, respectively. The estimated conditional

variance is σ2
r1 =

∑n1

i=1(Yi− Ŷi)2/(n1−5), where Ŷi denotes the fitted values, n1 is the

number of observations for which Xi ≥ 0, and the summation is over i with Xi ≥ 0.

σ2
r2 is obtained analogously. The plug-in bandwidths for the third-order LPR used to

2The normal scale rules do not work when the evaluation point is zero because the third derivative
of the normal density at zero is equal to zero. Hence, we use c = 0.1. The following results are robust
to the value of c, unless c differs greatly from zero.

4



estimate the second and third derivatives are calculated by

hν,j = Cν,3(K)

(
σ2
rj

f̂(0) · m̂(4)
j (0) · nj

)1/9

,

where j = 1, 2 (see Fan and Gijbels, 1996, Section 3.2.3 for information on plug-in

bandwidths and the definition of Cν,3). We use ν = 2 and ν = 3 for estimating the

second and third derivatives, respectively.

C.3 Step 3: Estimation of the second and third derivatives

m
(2)
j (0) and m

(3)
j (0) as well as the conditional variances

σ̂2
j (0) for j = 1, 2

We estimate the second and third derivatives at the threshold by using the third-

order LPR with the pilot bandwidths obtained in Step 2. Following IK, we use the

uniform kernel, which yields constant values of C2,3 = 5.2088 and C3,3 = 4.8227. To

estimate m̂
(2)
1 (0), we construct a vector Ya = (Y1, . . . , Yna)′ and an na × 4 matrix,

Xa, whose ith row is given by [1 Xi X
2
i X

3
i ] for observations with 0 ≤ Xi ≤ h2,3,

where na is the number of observations with 0 ≤ Xi ≤ h2,3. The estimated second

derivative is given by m̂
(2)
1 (0) = 2 · β̂2,1(3), where β̂2,1(3) is the third element of β̂2,1

and β̂2,1 = (Xa
′Xa)

−1XaYa. We estimate m̂
(2)
2 (0) in the same manner. Replacing h2,3

with h3,3 leads to an estimated third derivative of m̂
(3)
1 (0) = 6 · β̂3,1(4), where β̂3,1(4) is

the fourth element of β̂3,1, β̂3,1 = (Xb
′Xb)

−1XbYb, Yb = (Y1, . . . , Ynb
)′, Xb is an nb × 4

matrix whose ith row is given by [1 Xi X
2
i X

3
i ] for observations with 0 ≤ Xi ≤ h3,3,

and nb is the number of observations with 0 ≤ Xi ≤ h3,3. The conditional variance at

the threshold σ2
1(0) is calculated as σ̂1(0) =

∑n2

i=1(Yi− Ŷi)2/(n− 4), where Ŷi denotes

the fitted values from the regression used to estimate the second derivative.3 β̂2,2 and

β̂3,2 can be obtained analogously.

3One can use the fitted values from the regression used to estimate the third derivatives, having
replaced na with nb. However, because these values produce simulation results that are almost
identical to those produced by the fitted values described in the main text, we present the latter.
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C.4 Step 4

The final step is to plug the pilot estimates into the MMSE given by (10) and to

use numerical minimization over the compact region to obtain ĥ1 and ĥ2. Unlike

AMSE1n(h) and AMSE2n(h) subject to the restriction given in Definition 3, the

MMSE is not necessarily strictly convex, particularly when the sign of the product is

positive. In conducting numerical optimization, it is important to try optimization

with several initial values, so as to avoid finding only a local minimum. (ĥE1 , ĥ
E
2 ) and

(ĥR1 , ĥ
R
2 ) can be computed using the MMSE given by (11) and (13), respectively.

D Proof of Theorem 3

Recall that the objective function is:

M̂MSEn(h) =

{
b1
2

[
m̂

(2)
1 (x)h21 − m̂

(2)
2 (x)h22

]}2

+
[
b̂2,1(x)h31 − b̂2,2(x)h32

]2
+

ν

nf̂(x)

{
σ̂2
1(x)

h1
+
σ̂2
2(x)

h2

}
.

To begin with, we show that ĥ1 and ĥ2 satisfy Assumption 3. If we choose

a sequence of h1 and h2 to satisfy Assumption 3, then M̂MSEn(h) converges to 0.

Assume to the contrary that either one or both of ĥ1 and ĥ2 do not satisfy Assump-

tion 3. Since m
(2)
2 (x)3b2,1(x)2 6= m

(2)
1 (x)3b2,2(x)2 by assumption, m̂

(2)
2 (x)3b̂2,1(x)2 6=

m̂
(2)
1 (x)3b̂2,2(x)2 with probability approaching 1. Without loss of generality, we as-

sume this as well. Then at least one of the first-order bias term, the second-order bias

term and the variance term of M̂MSEn(ĥ) does not converge to zero in probability.

Then M̂MSEn(ĥ) > M̂MSEn(h) holds for some n. This contradicts the definition

of ĥ. Hence ĥ satisfies Assumption 3.

We first consider the case in which m
(2)
1 (x)m

(2)
2 (x) < 0. In this case, with

probability approaching 1, m̂
(2)
1 (x)m̂

(2)
2 (x) < 0, so that we assume this without loss of

generality. When this holds, note that the leading terms are the first term and the

last term of M̂MSEn(ĥ) since ĥ1 and ĥ2 satisfy Assumption 3. Define the plug-in
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version of AMSE1n(h) provided in Definition 3 by

ÂMSE1n(h) =

{
b1
2

[
m̂

(2)
1 (x)h21 − m̂

(2)
2 (x)h22

]}2

+
ν

nf̂(x)

{
σ̂2
1(x)

h1
+
σ̂2
2(x)

h2

}
.

Let the minimizer of ÂMSE1n(h) by h̃1 and h̃2. Also define

θ̂1 =

 vσ̂2
1(x)

b̂21f̂(x)m̂
(2)
1 (x)

[
m̂

(2)
1 (x)− λ̂21m̂

(2)
2 (x)

]


1/5

and λ̂1 =

{
− σ̂

2
2(x)m̂

(2)
1 (x)

σ̂2
1(x)m̂

(2)
2 (x)

}1/3

.

A calculation yields h̃1 = θ̂1n
−1/5 ≡ C̃1n

−1/5 and h̃2 = θ̂1λ̂1n
−1/5 ≡ C̃2n

−1/5. With

this choice, ÂMSE1n(h̃) and hence M̂MSEn(h̃) converges at the rate of n−4/5. Note

that if ĥ1 or ĥ2 converges at the rate slower than n−1/5, then the bias term converges

at the rate slower than n−4/5. If ĥ1 or ĥ2 converges at the rate faster than n−1/5,

then the variance term converges at the rate slower than n−4/5. Thus the minimizer

of M̂MSEn(h), ĥ1 and ĥ2 converges to 0 at rate n−1/5.

Thus we can write ĥ1 = Ĉ1n
−1/5 + op(n

−1/5) and ĥ2 = Ĉ2n
−1/5 + op(n

−1/5) for

some OP (1) sequences Ĉ1 and Ĉ2 that are bounded away from 0 and ∞ as n → ∞.

Using this expression,

M̂MSEn(ĥ) = n−4/5
{
b1
2

[
m̂

(2)
1 (x)Ĉ2

1 − m̂
(2)
2 (x)Ĉ2

2

]}2

+
ν

n4/5f̂(x)

{
σ̂2
1(x)

Ĉ1

+
σ̂2
2(x)

Ĉ2

}
+ op(n

−4/5).

Note that

M̂MSEn(h̃) = n−4/5
{
b1
2

[
m̂

(2)
1 (x)C̃2

1 − m̂
(2)
2 (x)C̃2

2

]}2

+
ν

n4/5f̂(x)

{
σ̂2
1(x)

C̃1

+
σ̂2
2(x)

C̃2

}
+OP (n−8/5).
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Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

{
b1
2

[
m̂

(2)
1 (x)Ĉ2

1 − m̂
(2)
2 (x)Ĉ2

2

]}2

+ ν

f̂(x)

{
σ̂2
1(x)

Ĉ1
+

σ̂2
2(x)

Ĉ2

}
+ op(1){

b1
2

[
m̂

(2)
1 (x)C̃2

1 − m̂
(2)
2 (x)C̃2

2

]}2

+ ν

f̂(x)

{
σ̂2
1(x)

C̃1
+

σ̂2
2(x)

C̃2

}
+OP (n−4/5)

≤ 1.

Note that the denominator converges to

{
b1
2

[
m

(2)
1 (x)C∗21 −m

(2)
2 (x)C∗22

]}2

+
ν

f(x)

{
σ2
1(x)

C∗1
+
σ2
2(x)

C∗2

}
,

where C∗1 and C∗2 are the unique optimizers of

{
b1
2

[
m

(2)
1 (x)C2

1 −m
(2)
2 (x)C2

2

]}2

+
ν

f(x)

{
σ2
1(x)

C1

+
σ2
2(x)

C2

}
,

with respect to C1 and C2. This implies that Ĉ1 and Ĉ2 also converge to the same

respective limit C∗1 and C∗2 because the inequality will be violated otherwise.

Next we consider the case with m
(2)
1 (x)m

(2)
2 (x) > 0. In this case, with prob-

ability approaching 1, m̂
(2)
1 (x)m̂

(2)
2 (x) > 0, so that we assume this without loss of

generality.

When these conditions hold, define

θ̂2 =


v
[
σ̂2
1(x) + σ̂2

2(x)/λ̂2

]
6f̂(x)

[
b̂2,1(x)− λ̂32b̂2,2(x)

]2


1/7

and λ̂2 =

{
m̂

(2)
1 (x)

m̂
(2)
2 (x)

}1/2

.

and let h2 = λ̂2h1. This sets the first-order bias term of M̂MSEn(h) equal to 0.

Define the plug-in version of AMSE2n(h) by

ÂMSE2n(h) =
{
b̂2,1(x)h31 − b̂2,2(x)h32

}2

+
v

nf̂(x)

{
σ̂2
1(x)

h1
+
σ̂2
2(x)

h2

}

Choosing h1 to minimize ÂMSE2n(h), we define h̃1 = θ̂2n
−1/7 ≡ C̃1n

−1/7 and h̃2 =

8



λ̂2h̃1 ≡ C̃2n
−1/7. Then M̂MSEn(h̃) can be written as

M̂MSEn(h̃) = n−6/7
{
b̂2,1(x)C̃3

1 − b̂2,2(x)C̃3
2

}2

+ n−6/7
ν

f̂(x)

{
σ̂2
1(x)

C̃1

+
σ̂2
2(x)

C̃2

}
.

In order to match this rate of convergence, both ĥ1 and ĥ2 need to converge at

the rate slower than or equal to n−1/7 because the variance term needs to converge at

the rate n−6/7 or faster. In order for the first-order bias term to match this rate,

m̂
(2)
1 (x)ĥ21 − m̂

(2)
2 (x)ĥ22 ≡ B1n = n−3/7b1n,

where b1n = OP (1) so that under the assumption that m
(2)
2 (x) 6= 0, with probability

approaching 1, m̂
(2)
2 (x) is bounded away from 0 so that assuming this without loss

of generality, we have ĥ22 = λ̂22ĥ
2
1 − B1n/m̂

(2)
2 (x). Substituting this expression to the

second term and the third term, we have

M̂MSEn(ĥ) =

{
b1
2
B1n

}2

+
{
b̂2,1(x)ĥ31 − b̂2,2(x){λ̂22ĥ21 −B1n/m̂

(2)
2 (x)}3/2

}2

+
ν

nf̂(x)

{
σ̂2
1(x)

ĥ1
+

σ̂2
2(x)

{λ̂22ĥ21 −B1n/m̂
(2)
2 (x)}1/2

}
.

Suppose ĥ1 is of order slower than n−1/7. Then because m̂
(2)
2 (x)3b̂2,1(x)2 6= m̂

(2)
1 (x)3b̂2,2(x)2

and this holds even in the limit, the second-order bias term is of order slower than

n−6/7. If ĥ1 converges to 0 faster than n−1/7, then the variance term converges at the

rate slower than n−6/7. Therefore we can write ĥ1 = Ĉ1n
−1/7 + op(n

−1/7) for some

OP (1) sequence Ĉ1 that is bounded away from 0 and ∞ as n → ∞ and as before

ĥ22 = λ̂22ĥ
2
1 −B1n/m̂

(2)
2 (x). Using this expression, we can write

M̂MSEn(ĥ) = n−6/7
{
b1
2
b1n

}2

+ n−6/7
{[
b̂2,1(x)Ĉ3

1 + op(1)− b̂2,2(x){λ̂22Ĉ2
1 + op(1)− n−1/7b1n/m̂(2)

2 (x)}3/2
]}2

+ n−6/7
ν

f̂(x)

{
σ̂2
1(x)

Ĉ1 + op(1)
+

σ̂2
2(x)

{λ̂22Ĉ2
1 + op(1)− n−1/7b1n/m̂(2)

2 (x)}1/2

}
.
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Thus b1n converges in probability to 0. Otherwise the first-order bias term remains

and that contradicts the definition of ĥ1.

Since ĥ is the optimizer, M̂MSEn(ĥ)/M̂MSEn(h̃) ≤ 1. Thus

op(1) +
{[
b̂2,1(x)Ĉ3

1 − b̂2,2(x){λ̂22Ĉ2
1 + op(1)}3/2

]}2

+ ν

f̂(x)

{
σ̂2
1(x)

Ĉ1+op(1)
+

σ̂2
2(x)

{λ̂22Ĉ2
1+op(1)}1/2

}
{
b̂2,1(x)C̃3

1 − b̂2,2(x)C̃3
2

}2

+ ν

f̂(x)

{
σ̂2
1(x)

C̃1
+

σ̂2
2(x)

C̃2

} ≤ 1.

If Ĉ1 − C̃1does not converge to 0 in probability, then the ratio is not less than 1 at

some point. hence Ĉ1 − C̃1 = op(1). Therefore ĥ2/h̃2 converges in probability to 1 as

well.

The result above also shows that M̂MSEn(ĥ)/MSEn(h∗) converges to 1 in

probability in both cases. �

References

Fan, J., and I. Gijbels (1996): Local polynomial modeling and its applications.

Chapman & Hall.

Hoerl, A. E., R. W. Kennard, and K. F. Baldwin (1975): “Ridge regression:

some simulations,” Communications in Statistics, Theory and Methods, 4, 105–123.

Jones, M. C. (1994): “On kernel density derivative estimation,” Communications

in Statistics, Theory and Methods, 23, 2133–2139.

Wand, M. P., and M. C. Jones (1994): Kernel Smoothing. Chapman & Hall.

10


