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This paper develops methodology for semiparametric panel data models in a

setting where both the time series and the cross section are large. Such set-

tings are common in finance and other areas of economics. Our model allows

for heterogeneous nonparametric covariate effects as well as unobserved time

and individual specific effects that may depend on the covariates in an arbitrary

way. To model the covariate effects parsimoniously, we impose a dimension-

ality reducing common component structure on them. In the theoretical part

of the paper, we derive the asymptotic theory of the proposed procedure. In

particular, we provide the convergence rates and the asymptotic distribution of

our estimators. In the empirical part, we apply our methodology to a specific

application that has been the subject of recent policy interest, that is, the effect

of trading venue fragmentation on market quality. We use a unique dataset that

reports the location and volume of trading on the FTSE350 companies from

2008 to 2011 at the weekly frequency. We find that the effect of fragmentation

on market quality is nonlinear and non-monotonic. The implied quality of the

market under perfect competition is superior to that under monopoly provision,

but the transition between the two is complicated.
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1 Introduction

In this paper, we develop estimation methodology for semiparametric panel models in

a setting where both the time series and the cross section dimension are large. Such

settings have become increasingly common over the last couple of years. In particular,

they are frequently encountered in finance and various areas of economics such as

industrial organization or labour economics.

We investigate a regression model which has a nonparametric covariate effect along

with individual and time specific fixed effects. The covariate effect is allowed to be

heterogeneous across individuals, which is feasible given the long time series we are

assuming. To restrict the heterogeneity to be of low dimension, we propose a common

component structure on the model. In particular, we assume the individual covariate

effects to be composed of a finite number of unknown functions that are the same across

individuals but loaded up differently for each cross-sectional unit. The covariate effects

are thus modelled as linear combinations of a small number of common functions.

The individual and time specific effects of the model are allowed to be related to the

covariate in quite a general way. This allows a potential channel for endogeneity, which

is important in many applications. A rigorous formulation of the model together with

a detailed description of its components is given in Section 2. The issue of identifying

the various model components is discussed in Section 3.

Our model can be regarded as an intermediate case between two extremes. The

one extreme is the homogeneous model, where the covariate effect is the same for each

cross-sectional unit. This is a very common framework which has been investigated

in various parametric and semiparametric studies, see for example Hsiao (1986). In a

wide range of applications, it is however rather unrealistic to assume that the covariate

effect is the same for all individuals. On the other extreme end, there is the fully

flexible model without any restrictions on the covariate effects. One example is the

classical SURE model. More recently, Chen, Gao, and Li (2010) among others have

studied a semiparametric version of this very general framework. Even though it is

highly flexible, it is however not well suited to many applications. In particular, if the

number of individuals is in the hundreds or thousands, the estimation output consists

of a huge number of individual functions. This makes the model hardly interpretable.

Furthermore, the estimation precision may be very low.

Our setting falls in the class of semiparametric panel data models for large cross-

section and long time series. Most of the models proposed in the literature for this type

of panel data are essentially parametric. Some important papers include Phillips and

Moon (1999), Bai and Ng (2002), Bai (2003, 2004), and Pesaran (2006). These authors

have addressed a variety of issues including nonstationarity, estimation of unobserved

factors, and model selection. Most of the work on semiparametric panel models is in

the context of short time series, see for example Kyriazidou (1997). Nonparametric
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additive models have been considered for instance in Porter (1996). More recent

articles include Mammen, Støve, and Tjøstheim (2009), Qian and Wang (2011), and

Hoderlein, Mammen, and Yu (2011).

Only recently, there have been a number of contributions to the non- and semi-

parametric literature on panels with large cross-section and time series dimension.

Linton, Nielsen, and Nielsen (2009) consider estimation of a fixed effect time series.

Atak, Linton, and Xiao (2011) are concerned with seasonality and trends in a panel

setting; see also Li, Chen, and Gao (2011). Connor, Hagmann, and Linton (2012)

consider a semiparametric additive panel model for stock returns driven by observable

covariates and unobservable “factor returns”. They allow weak dependence in both

time and cross-section direction, but the covariates are not time-varying and there is

no individual effect. This model is suited for their application but does not allow a

channel for endogeneity. The estimation method is made simpler by the fact that each

additive term has a different covariate, whereas the common functions in our model

all have the same covariate. Kneip, Sickles, and Song (2012) consider a model similar

to ours except that they focus on time as the key nonparametric covariate. Moreover,

they do not allow individual effects to be related to included covariates, i.e. there is

no endogeneity in their model.

In Section 8, we apply our methods to an empirical question of recent interest for

policy makers and in academic research, that is, the effect of trading venue fragmen-

tation on market quality. In 2007, the monopoly of primary European exchanges such

as the London stock exchange was ended by the “Markets in Financial Instruments

Directive”. Since then, various new trading platforms have emerged and competed for

trading volume. We investigate whether this competition has led to improved market

quality for participants. It has been argued that High Frequency Trading has been a

major beneficiary of the market fragmentation, and that this affects both the amount

of fragmentation as well as the quality of the market outcomes.1 Our model allows for

this endogeneity channel by treating this unobservable as part of the individual and

time effects. It also allows for heterogeneous nonlinear covariate effects of fragmenta-

tion on market quality, which we think are important for capturing the relationship

of interest in an adequate way. We use a unique weekly dataset on the location and

volume of trading for FTSE 100 and FTSE 250 companies over the period from 2008

to 2011, as well as publicly available measures of market quality. To summarize the

results, we find that the effect of fragmentation on market quality is nonlinear and

non-monotonic. The implied quality of the market under perfect competition is supe-

rior to that under monopoly provision, but the transition between the two regimes is

complicated.

1See the UK government project ”The Future of computer based trading in financial mar-
kets” for a full description of High Frequency Trading and related concepts. www.bis.gov.uk/

foresight/our-work/projects/current-projects/computer-trading.
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Our method to estimate the common functions and the parameter vectors which

constitute the individual covariate effects is introduced in Section 4. The asymptotic

properties of the estimators are described in Section 5. In Subsection 5.2, we derive the

uniform convergence rates as well as an asymptotic normality result for our estimators

of the common functions. Importantly, the estimators can be shown to converge to

the true functions at the uniform rate
√

log nT/nTh which is based on the pooled

number of data points nT with n being the cross-section dimension and T the length

of the time series. Intuitively, this fast rate is possible to achieve because the functions

are the same for all individuals. This allows us to base our estimation procedure on

information from the whole panel rather than on a single time series corresponding to

a specific individual. In Subsection 5.3, we investigate the asymptotic behaviour of

our parameter estimators. In particular, we show that they are asymptotically normal.

As will turn out, the parameters are estimated with the same precision as in the case

where the common functions are known. In particular, our estimators have the same

asymptotic distribution as the oracle estimators constructed under the assumption

that the functions are observed.

To keep the arguments and discussion as simple as possible, we derive our esti-

mation procedure as well as the asymptotic results under the simplifying assumption

that the number of common functions is known. In Sections 6 and 7, we explain how

to dispense with this assumption. In particular, we provide a simple rule to select the

number of unknown common functions. This complements our estimation procedure

and makes it ready to apply to real data.

2 The model

In this section, we provide a detailed description of our model framework. We observe

a sample of panel data {(Yit, Xit) : i = 1, . . . , n, t = 1, . . . , T}, where i denotes the

i-th individual and t is the time point of observation. To keep the notation as simple

as possible, we assume that both the variables Yit and Xit are real-valued and focus

on the case of a balanced panel.

The data are assumed to come from the model

Yit = µ0 + αi + γt +mi(Xit) + εit, (1)

where E[εit|Xit] = 0. Here, mi are nonparametric functions which capture the covariate

effects, µ0 is the model constant and the variables εit are idiosyncratic error terms. The

expressions αi and γt are unobserved individual and time specific effects, respectively,

which may depend on the regressors in an arbitrary way, e.g., αi = Gi(Xi1, . . . , XiT ; ηi)

and γt = Ht(X1t, . . . , Xnt; δt) for some deterministic functions Gi, Ht and random

errors ηi, δt that are independent of the covariates. Since E[αi+γt|{Xit}] 6= 0 in general,
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the unobserved effects αi and γt introduce a simultaneity between the covariates and

the dependent variable. To identify the nonparametric functions mi, we assume that

E[mi(Xit)] = 0 along with
∑n

i=1 αi =
∑T

t=1 γt = 0.

As the functions mi may differ across individuals, the covariate effect in our model

is allowed to be heterogeneous. However, rather than allowing the effect to vary com-

pletely freely, we impose some dimensionality reducing structure on it. In particular,

we assume the functions mi to have the common component structure

mi(x) =
K∑
k=1

βikµk(x), (2)

where µ = (µ1, . . . , µK) is a vector of nonparametric component functions and βi =

(βi1, . . . , βiK) are parameter vectors. Like the functions µ and the coefficient vectors

βi, the number of components K is unobserved. Identifying the functions µ together

with the coefficients βi in our setting is not completely straightforward and requires

some care. We thus devote a separate section to this issue. In particular, we provide

a detailed discussion in Section 3.

The elements θ = {µ0, αi, γt : i = 1, . . . , n, t = 1, . . . , T} play the role of nuisance

parameters in our framework. There is a large number of them which is increasing

with the sample size. Nevertheless, we have an even larger number of observations,

which enable us to estimate consistently all the unknown quantities of interest. We

thus do not face the ”incidental parameters problem” (Neyman and Scott (1948)) that

is of wide concern in other panel data settings; see Hsiao (2003) for some discussion

of this issue.

We take a pragmatic approach to estimation based on first eliminating the nuisance

parameters. To achieve this we make use of a fixed effect transformation. Denote the

time, cross sectional, and global averages by:

Y i =
1

T

T∑
t=1

Yit, Y t =
1

n

n∑
i=1

Yit, Y =
1

nT

n∑
i=1

T∑
t=1

Yit,

and define Y fe
it = Yit − Y i − Y t + Y . Now note that

Y fe
it = mi(Xit) + εit −

1

T

T∑
t=1

mi(Xit)−
1

T

T∑
t=1

εit −
1

n

n∑
i=1

mi(Xit)−
1

n

n∑
i=1

εit

+
1

nT

n∑
i=1

T∑
t=1

mi(Xit) +
1

nT

n∑
i=1

T∑
t=1

εit

= mi(Xit) + εit +Op(T
−1/2) +Op(n

−1/2), (3)

where we require the sample averages to converge to their population means at stan-

5



dard rates. (3) shows that the nuisance parameters θ can be eliminated by subtracting

sample means from the data, although this method introduces some additional small

error terms.

An alternative procedure is based on differencing, which is the most common

method in linear models, see Angrist and Pischke (2009). Specifically, let Y did
ijt =

Yit − Yit−1 − (Yjt − Yjt−1) denote the difference-in-difference transformation. Then we

have

Y did
ijt = mi(Xit)−mi(Xit−1)−mj(Xjt) +mj(Xjt−1) + uijt, (4)

where uijt = εit−εit−1− (εjt−εjt−1) is a serially dependent error term. This approach

also eliminates the nuisance parameters θ, but also not completely without cost. First

of all, the right-hand side of (4) is an additive regression function of the covariates

Xit, Xit−1, Xjt, Xjt−1. To estimate this function, either higher dimensional smoothing

must be employed, see Linton and Nielsen (1995), or iterative smoothing techniques

like backfitting, see Mammen, Linton, and Nielsen (1999). Second, the error term uijt

is dependent across time and cross-section, in particular it has a four term ”dyadic”

(Fafchamps and Gubert (2007)) structure that needs to be accounted for. Finally, one

needs stronger conditional moment restrictions on the original error terms to be able to

consistently estimate this model. Specifically, we require E[εit|Xit, Xit−1, Xjt, Xjt−1] =

0 rather than just the assumption E[εit|Xit] = 0 that will be needed for the fixed

effect method. Henderson, Carroll, and Li (2008) propose this method (with just time

differencing) in the homogeneous one way model, i.e., Yit = µ0 + αi +m(Xit) + εit.

3 Identification

The individual regression functions mi in our model are identified through the normal-

izations E[mi(Xit)] = 0 along with
∑n

i=1 αi =
∑T

t=1 γt = 0. We now describe how to

identify the vector of common component functions µ = (µ1, . . . , µK) and the param-

eter vectors βi = (βi1, . . . , βiK) which constitute the functions mi. Roughly speaking,

the idea is to characterize µ and the parameter vectors βi via an eigenvalue decom-

position of a matrix related to the functions mi. Exploiting the uniqueness properties

of this decomposition, we are able to identify µ and the parameter vectors up to sign.

Our strategy is thus very similar to the arguments usually used in factor analysis which

can for example be found in Connor and Korajczyk (1988) and Bai (2003).

To lay out our strategy, we denote the vector of individual functions by m =

(m1, . . . ,mn)
ᵀ

and define B to be a n×K matrix with the entries βik for i = 1, . . . , n

and k = 1, . . . , K. With this notation at hand, we can represent the vector of functions

m as

m = Bµ. (5)

We now put some slight regularity conditions on B and µ. In particular, the func-
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tions µ are assumed to be orthonormal with respect to a weighting function w, i.e.,∫
µ(x)µ(x)

ᵀ
w(x)dx = IK . Moreover, the coefficient matrix B is supposed to have full

rank K. These assumptions are rather harmless. In particular, the rank condition on

B just makes sure that there is enough variation in the coefficients, i.e. in the linear

combinations of the µ-functions, across individuals.

The above two assumptions on µ and B can be replaced by a condition which

parallels the set of assumptions usually used in factor analysis. In particular, they are

equivalent to the following condition:

(I1) The matrix B is orthonormal, i.e. B
ᵀ
B = IK , and

∫
µ(x)µ(x)

ᵀ
dw(x) is a diagonal

matrix with non-zero diagonal entries.

To see this equivalence, assume that we start off with a matrix B(1) of rank K

and a vector of common component functions µ(1) which are orthonormal in the

sense specified above. Then consider the symmetric, positive definite K × K ma-

trix (B(1))
ᵀ
B(1) = ODO

ᵀ
, where OO

ᵀ
= O

ᵀ
O = IK and D is a diagonal matrix with

positive entries. Let

B(2) = B(1)OD−1/2 (6)

µ(2)(x) = D1/2O
ᵀ
µ(1)(x). (7)

Then

(B(2))
ᵀ
B(2) = D−1/2O

ᵀ
(B(1))

ᵀ
B(1)OD−1/2 = IK

and ∫
µ(2)(x)µ(2)(x)

ᵀ
dw(x) = D1/2O

ᵀ
OD1/2 = D.

Hence, the normalized versions B(2) and µ(2) satisfy (I1).

Let us now assume that the matrix B and the component functions µ are normal-

ized according to (I1). In addition, suppose that the functions µ satisfy the following

constraint:

(I2) The diagonal entries of the matrix
∫
µ(x)µ(x)

ᵀ
dw(x) are all distinct.

This assumption is needed to ensure that the eigenspaces in the spectral decomposition

below are one-dimensional, which in turn makes sure that the eigenvectors of the

decomposition are uniquely identified up to sign.

Given (I1) and (I2), the matrix B can be characterized via the “covariance” struc-

ture of the functions m. In particular, we have that

Ω :=

∫
m(x)m(x)

ᵀ
w(x)dx = B

∫
µ(x)µ(x)

ᵀ
w(x)dx B

ᵀ
= BDB

ᵀ
,
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where D is a diagonal matrix with the diagonal entries
∫
µ2
k(x)w(x)dx for k = 1, . . . , K.

These entries are the non-zero distinct eigenvalues of the matrix Ω. Moreover, the

columns of the matrix B are the corresponding orthonormal eigenvectors. This spectral

decomposition is unique up to the sign of the eigenvectors, i.e. up to the sign of the

columns of the matrix B. Thus, the coefficients contained in the matrix B are identified

up to sign as well.

Exploiting the fact that the columns of B are orthonormal, we can moreover rep-

resent the vector of functions µ by writing

µ = B
ᵀ
m.

This equation almost surely identifies the functions µ up to sign: The functions mi

contained in the vector m are identified almost surely by our normalizing assumptions.

Moreover, as seen above the columns of the matrix B are identified up to sign. As a

result, the functions µ are almost surely identified up to sign as well.

Rather than working with the system (5) of dimension n directly, we transform it

into a system of dimension K. Let W = (ωki) be a K×n weighting matrix of rank K.

Then we can write Wm = WBµ. Introducing the shorthands S = WB and g = Wm,

we obtain that

g = Sµ. (8)

Here, g = (g1, . . . , gK)
ᵀ

are weighted averages of the individual functions mi given

by gk =
∑n

i=1 ωkimi. Moreover, the K × K matrix S contains weighted averages of

the model parameters as its elements, in particular S = (skl) with skl =
∑n

i=1 ωkiβil

for k, l = 1, . . . , K. Note that the vectors m and g as well as the matrices B, W ,

and S depend on the cross-section dimension n. To keep the notation readable, this

dependence is suppressed throughout the paper.

Premultiplying the n-dimensional system (5) with the matrix W , we form K dif-

ferent weighted averages of the individual functions m. We thus replace the system (5)

which characterizes the individual functions m as linear combinations of the common

components µ by a system which represents weighted averages of these functions as

linear combinations of µ. The reason for this is twofold: Firstly, the system (8) has

a fixed dimension K rather than a growing dimension n, which is technically more

convenient. Secondly, the functions g being averages of the individual functions m,

they can be estimated much more precisely than the latter. In particular, g can be

estimated with a much faster convergence rate than the individual functions. This will

help us to achieve a fast convergence rate for our estimator of µ as well.

The elements of the system (8) can be normalized in an analogous way as those

of the system (5): To start with, we assume that the matrix S has full rank K and

that the functions µ are orthonormal, i.e.
∫
µ(x)µ(x)

ᵀ
w(x)dx = IK . By the same

arguments as before, this is equivalent to the following assumption:
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(IW1) The matrix S is orthonormal, i.e. S
ᵀ
S = IK , and

∫
µ(x)µ(x)

ᵀ
dw(x) is a diagonal

matrix with non-zero diagonal entries.

Note that the normalization of the functions µ in (IW1) depends on the matrix S

and thus on the chosen weighting matrix W . This becomes visible from equation (7)

which shows how the normalized version of µ is constructed. As before, we additionally

suppose that the normalized vector of functions µ has the following property:

(IW2) The diagonal entries of the matrix
∫
µ(x)µ(x)

ᵀ
dw(x) are all distinct.

We finally put a slight regularity condition on the weighting scheme W :

(IW3) The weights ωki are of the form ωki = vki/n with non-negative parameters

vki ≤ C <∞ for some sufficiently large constant C. For each k, the number nk

of nonzero weights is such that nk/n→ ck for some positive constant ck.

The above condition is satisfied by a wide range of weighting schemes, for example by

the simple choice

[n/K] times︷ ︸︸ ︷
W =


1
n
. . . 1

n
0

1
n
. . . 1

n
. . .

0 1
n
. . . 1

n

 . (9)

Note that by assuming nk/n to converge to a positive limit, we just make sure that the

averages which result from applying the weighting matrix W are composed of O(n)

terms. This allows us to apply asymptotic arguments to them later on.

Given the normalization conditions (IW1) and (IW2) together with the assumption

on the weights (IW3), the functions µ can be represented as follows: As the columns

of the matrix S are orthonormal, we can write

µ = S
ᵀ
g. (10)

The matrix S in this equation can be characterized by a spectral decomposition of the

matrix Σ =
∫
g(x)g(x)

ᵀ
w(x)dx. In particular, it holds that

Σ = S

∫
µ(x)µ(x)

ᵀ
w(x)dx S

ᵀ
= SDS

ᵀ
,

where D = diag(λ1, . . . , λK) with λk =
∫
µ2
k(x)w(x)dx. The constants λ1, . . . , λK are

the non-zero distinct eigenvalues of Σ. Moreover, the columns of S are the correspond-

ing orthonormal eigenvectors, denoted by s1, . . . , sK in what follows.
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In the sequel, we shall assume throughout that the functions µ and the matrix

S are normalized to fulfill (IW1) and (IW2). Moreover, we suppose that the matrix

Σ converges to a full-rank matrix Σ∗. These seem like reasonable and innocuous as-

sumptions. Finally, note that given the existence of a limit Σ∗, the matrix S converges

to a limit S∗ as well. This is due to the fact that the eigenvectors s1, . . . , sK depend

continuously on the entries of the matrix Σ.

4 Estimation

We now describe our procedure to estimate the functions µ1, . . . , µK and the coefficient

vectors βi = (βi1, . . . , βiK). For simplicity of exposition, we assume throughout the

section that the number K of common components is known. In Sections 6 and 7,

we will dispense with this assumption and provide a procedure to estimate K. Our

approach splits up into four steps, each of which is described in a separate subsection.

To start with, we construct preliminary estimators of the individual regression func-

tions mi. These are used to obtain estimators of the µ-functions and the coefficient

vectors βi in a second and third step, respectively. In a final step, we exploit the model

structure to obtain improved estimators of the individual regression functions mi.

4.1 Preliminary estimators of the individual functions

We estimate the individual functions mi by applying nonparametric kernel techniques

to the time series data {(Y fe
it , Xit) : t = 1, . . . , T}. More specifically, Nadaraya-Watson

or local linear smoothers may be used. The Nadaraya-Watson estimator of the function

mi is defined as

m̂NW
i (x) =

∑T
t=1Kh(x−Xit)Y

fe
it∑T

t=1 Kh(x−Xit)
,

where h is a scalar bandwidth and K(·) denotes a kernel satisfying
∫
K(u)du = 1 and

Kh(·) = h−1K(h−1·). The local linear estimator of mi is given by the formula

m̂LL
i (x) =

∑T
t=1wi,T (x,Xit)Y

fe
it∑T

t=1 wi,T (x,Xit)
,

with

wi,T (x,Xit) = Kh(x−Xit)
(
Si,T,2(x)−

(x−Xit

h

)
Si,T,1(x)

)
and

Si,T,k(x) =
1

T

T∑
t=1

Kh(x−Xit)
(x−Xit

h

)k
for k = 1, 2; see Fan and Gijbels (1995) for a detailed account of the local linear

smoothing method. The procedure to estimate the functions µ and the parameter
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vectors βi is the same no matter whether we work with Nadaraya-Watson or local

linear smoothers. In what follows, we thus use the symbol m̂i to denote either the

local constant estimator m̂NW
i or the local linear smoother m̂LL

i .

4.2 Estimating the common component functions µ

We now use the characterization (10) of the functions µ to construct an estimator of

them. We proceed as follows:

Step 1: Construct estimators ĝ = (ĝ1, . . . , ĝh) of the functions g = (g1, . . . , gK) ac-

cording to

ĝk(x) =
n∑
i=1

ωkim̂i(x).

Step 2: Estimate the matrix Σ by

Σ̂ =

∫
ĝ(x)ĝ(x)

ᵀ
w(x)dx.

Step 3: Estimate the eigenvalues and eigenvectors by

Σ̂ = ŜD̂Ŝ
ᵀ
,

i.e. by performing an eigenvalue decomposition of the matrix Σ̂. Let λ̂1, . . . , λ̂K

be the eigenvalues of Σ̂ (i.e. the diagonal entries of the matrix D̂), and

ŝ1, . . . , ŝK the corresponding orthonormal eigenvectors (i.e. the columns of

the matrix Ŝ).

Step 4: Define the estimator of µ by replacing S and g in (10) with their respective

estimators, i.e.

µ̂ = Ŝ
ᵀ
ĝ.

4.3 Estimating the coefficients βi

Consider the time series data {(Yit, Xit) : t = 1, . . . , T} of the i-th individual. These

are assumed to come from the model

Yit = µ0 + αi + γt +
K∑
k=1

βikµk(Xit) + εit

for t = 1, . . . , T , which is linear in the parameters βi = (βi1, . . . , βiK). If the functions

µ1, . . . , µK were known, the coefficients βi could be estimated by standard least squares

methods from the time series data {(Y fe
it , Xit) : t = 1, . . . , T}. In particular, we could

11



use a weighted least squares estimator given by

β̃i =
( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1 1

T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it

with a weighting function π. As the functions µ are not known, we replace them by

the estimates µ̂, thus yielding the estimator

β̂i =
( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1 1

T

T∑
t=1

π(Xit)µ̂(Xit)Y
fe
it .

4.4 Re-estimating the functions mi and iterating the estima-

tion procedure

Exploiting the model structure, we can now define new estimators of the individual

functions mi which have better asymptotic properties than the preliminary estimators

m̂i. Specifically, we let

m̂e
i (x) = β̂

ᵀ

i µ̂(x).

As we will see later on, the estimators m̂e
i have a faster convergence rate than the

preliminary smoothers m̂i.

A possible extension of our estimation procedure is to iterate it. To do so, we first

re-estimate the component functions µ and the parameters βi by using m̂e
i instead

of the preliminary smoothers m̂i. This yields updated estimators of µ and βi. In

addition, we may update the estimated individual effects whose first round estimates

were implicitly given by α̂i = Y i − Y , γ̂t = Y t − Y , and µ̂0 = Y . Specifically, these

may be replaced by:

α̂ei =
1

T

T∑
t=1

{Yit − µ̂− m̂e
i (Xit)} ; γ̂et =

1

n

n∑
i=1

{Yit − µ̂− m̂e
i (Xit)} ;

µ̂e0 =
1

nT

n∑
i=1

T∑
t=1

{Yit − m̂e
i (Xit)} .

This process can be continued until some convergence criterion is satisfied, which is

likely to be achieved in practice quite quickly. Note that we can view this iterative

algorithm as a procedure to find the minimum of a least squares objective function

along the lines of Connor, Linton, and Hagmann (2012).

12



5 Asymptotics

In what follows, we derive the asymptotic properties of our estimators. To start with,

we list the assumptions needed for our analysis. We then present the results on the

limiting behaviour of the estimators µ̂, β̂i, and m̂e
i . The proofs of our theoretical

results can be found in Appendix A.

5.1 Assumptions

We impose the following regularity conditions, which as usual are sufficient but not

necessary for our results. The expression T a � n� T b is used to mean that CT a+δ ≤
n ≤ CT b−δ for some positive constant C, a small δ > 0 and 0 < a < b. The symbol

� is used analogously.

(A1) The data {(Xit, εit) : i = 1, . . . , n, t = 1, . . . , T} are independent across i.

Moreover, they are strictly stationary and strongly mixing (Rosenblatt, 1956)

in the time direction. Let αi(k) for k = 1, 2, . . . be the mixing coefficients of

the time series {(Xit, εit), t = 1, . . . , T} of the i-th individual. It holds that

αi(k) ≤ α(k) for all i = 1, . . . , n, where the coefficients α(k) decay exponentially

fast to zero as k →∞.

(A2) The densities fi of the variables Xit exist and have bounded support, [0, 1] say.

Moreover, they are uniformly bounded away from zero and from above, i.e.

0 < c ≤ min1≤i≤n infx∈[0,1] fi(x) as well as maxi supx fi(x) ≤ C < ∞ for some

pair of constants 0 < c ≤ C < ∞. Finally, the joint densities fi;l of (Xit, Xit+l)

exist and are also uniformly bounded from above.

(A3) The functions µ1, . . . , µK are twice continuously differentiable. In addition, the

densities fi are continuously differentiable with uniformly bounded derivatives f ′i ,

i.e. max1≤i≤n supx∈[0,1] |f ′i(x)| ≤ C for some constant C. Finally, the coefficients

βik are bounded by some constant β < ∞, i.e. |βik| ≤ β for all i = 1, . . . , n and

k = 1, . . . , K, which ensures that the functions mi as well as the derivatives m′i
and m′′i are uniformly bounded as well.

(A4) It holds that E|εit|θ ≤ C <∞ for some θ > 5. Moreover,

max
1≤i≤n

sup
x∈[0,1]

E
[
|εit|θ

∣∣Xit = x
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εit|
∣∣Xit = x,Xit+l = x′

]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εitεit+l|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞

for all l ∈ Z and some sufficiently large constant C.
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(A5) The cross-section dimension n = n(T ) depends on T and satisfies T 2/3 � n �
T 3/2.

(A6) The bandwidth h is of the order (nT )−(1/5+δ) for some small δ > 0.

(A7) The kernel K is bounded, symmetric about zero and has compact support

([−C1, C1], say). Moreover, it fulfills the Lipschitz condition that there exists

a positive constant L with |K(u)−K(v)| ≤ L|u− v|. Let µ2(K) =
∫
K(ϕ)ϕ2dϕ

and ‖K‖2
2 =

∫
K2(ϕ)dϕ.

Note that we do not necessarily require exponentially decaying mixing rates as

assumed in (A1). These could alternatively be replaced by sufficiently high polynomial

rates. We nevertheless make the stronger assumption (A1) to keep the notation and

structure of the proofs as clear as possible.

The cross-sectional independence of the data is maintained for simplicity, one could

however allow some forms of dependence in the cross-section. For example, one could

allow the type of clustering structure used in Connor, Hagmann and Linton (2012).

Our results would go through with minimal changes in this case. An alternative

approach is to follow Connor and Koraczyk (1993) and to assume that there exists

some ordering of the observations with respect to which the data {(Xit, εit)} are mixing

across i. Jenish (2011) derives pointwise limit theorems for nonparametric regression

with near-epoch dependent mixing processes defined on a general lattice dimension

d, which includes that setting as a special case. Robinson (2009) has proposed an

alternative approach based on linear processes that does not need a measure of cross-

sectional distance. His framework allows for strongly dependent and nonstationary

regression disturbances. These types of cross-sectional dependence are much harder to

deal with in our framework and would involve a great deal of technical and notational

effort to cope with. Heuristically speaking, however, we expect these dependence

structures to have no effect on the asymptotic behaviour of our estimators provided

the dependence is weak. Specifically, the cross-sectional dependence should wash out

of the distribution for the nonparametric estimates and should not affect the univariate

asymptotics for the loading coefficients.

We may also allow for nonstationarity in {(Xit, εit)} of the type proposed in

Dahlhaus (1997). This nonstationarity may arise in the time direction, that is, den-

sities change smoothly in the argument t/T . In addition, it may arise in the cross-

section, that is, densities change smoothly in the argument i/n with respect to an

unknown ordering of the individuals. Vogt (2012) establishes a number of results for

nonparametric regression with locally stationary processes, and we anticipate that his

results can be extended to this case, although the technical effort to accomplish this

would be considerable.

Finally, note that there is a trade-off between the moment conditions in (A4) and

the conditions on the relative sample sizes in (A5). For example, if we restrict attention
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to the case n = O(T ), we can do with θ > 4 in condition (A4). The restrictions in (A5)

reflect two constraints on the relative sample sizes: Firstly, T needs to be large enough

relative to n such that the preliminary estimators are sufficiently precisely estimated.

Secondly, n needs to be large enough such that the error terms stemming from the

fixed effect transformation can be ignored.

5.2 Asymptotics for the estimator µ̂

Our first result characterizes the asymptotic behaviour of the estimator µ̂. In par-

ticular, it shows that µ̂ uniformly converges to µ and is asymptotically normal. To

formulate it, we define V (x) to be a K ×K matrix with the entries

Vk,l(x) = ‖K‖2
2 lim
n→∞

(
n

n∑
i=1

ωkiωli
σ2
i (x)

fi(x)

)
,

where σ2
i (x) = E[ε2

it|Xit = x].

Theorem 5.1. Let (A1)–(A7) together with (IW1)–(IW3) be satisfied. Then

sup
x∈Ih
‖µ̂(x)− µ(x)‖ = Op

(√ log nT

nTh

)
. (11)

Here, Ih = [C1h, 1−C1h] if our procedure is based on the Nadaraya-Watson smoothers

m̂NW
i and Ih = [0, 1] if it is based on the local linear smoothers m̂LL

i . Moreover, for

any fixed point x ∈ (0, 1),

√
nTh(µ̂(x)− µ(x))

d−→ N(0, ν(x)) (12)

with ν(x) = (S∗)
ᵀ
V (x)S∗ and S∗ being the limit of S.

The first part of the theorem shows that our estimator µ̂ converges to the functions

µ at a fast rate based on the pooled number of observations nT . If we set up our

estimation procedure with the local linear smoothers m̂LL
i , the rate is uniform over

the whole support [0, 1]. For the Nadaraya-Watson based procedure in contrast, the

rate is only uniform on the subinterval [C1h, 1− C1h] which converges to the support

[0, 1] as the sample size increases. This is due to the fact that the Nadaraya-Watson

estimators m̂NW
i suffer from slow convergence rates at the boundary of the support.

The second part of the theorem specifies the asymptotic distribution of µ̂. The

asymptotic covariance matrix ν(x) can be seen to depend on the weights ωki. The

reason for this is as follows: The normalization of the functions µ depends on the

choice of the weighting matrix W . In particular, different choices of W generally

result in different eigenvalues λk =
∫
µ2
k(x)w(x)dx, i.e. in different values of the L2-

norm of the functions µk. This becomes reflected in the covariance matrix ν(x) through
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its dependence on the weights ωki. Moreover, note that ν(x) need not be diagonal in

general: If the weighting matrix W is diagonal, then V (x) is a diagonal matrix as

well. However, even then the matrix S∗ may have a more complicated non-diagonal

structure. Hence, the components of µ̂ are asymptotically mutually correlated in

general.

Regarding inference, we propose a simple plug-in method. Let ε̂it = Y fe
it − m̂i(Xit)

and

V̂k,l(x) = ‖K‖2
2 n

n∑
i=1

ωkiωli
σ̂2
i (x)

f̂i(x)
,

where σ̂2
i (x) is a local constant or local linear time series regression smoother of ε̂ 2

it

on Xit and f̂i(x) = T−1
∑T

t=1 Kh(Xit − x) is the time series kernel density estimator

of fi(x). Then, ν̂(x) = Ŝ
ᵀ
V̂ (x)Ŝ consistently estimates ν(x), and pointwise confidence

intervals based on this are consistent under our assumptions, see Härdle (1991).

To derive the results of Theorem 5.1, we work with the undersmoothing assumption

(A6) on the bandwidth h. Moreover, we use the same bandwidth both to estimate the

average functions g and the matrix Σ. It is however also possible to employ different

bandwidths. In particular, one may use a slightly undersmoothed bandwidth hΣ of

the order (nT )−(1/5+δ) to construct the estimate Σ̂ and a bandwidth hg of the optimal

order (nT )−1/5 to set up the estimator ĝ. Inspecting the proof of Theorem 5.1, it is

easily seen that in this case√
nThg(µ̂(x)− µ(x)) = S

ᵀ[√
nThg

(
ĝ(x)− g(x)

)]
+ op(1).

with √
nThg

(
ĝ(x)− g(x)

) d−→ N(B(x), V (x)),

where the variance V (x) has already been defined above and the bias term B(x) is

given by BNW(x) and BLL(x) in the Nadaraya-Watson and the local linear based case,

respectively. The latter two expressions are defined by

BNW
k (x) =

c0µ2(K)

2
lim
n→∞

n∑
i=1

ωki
(
2m′i(x)f ′i(x) +m′′i (x)

)
BLL
k (x) =

c0µ2(K)

2
lim
n→∞

n∑
i=1

ωkim
′′
i (x)

for k = 1, . . . , K, where c0 is the limit of the sequence values
√
nTh5

g.

Given the above remarks, we suggest a straightforward rule of thumb for band-

width selection. In particular, we first select the bandwidth hg and then choose the

bandwidth hΣ simply by picking a value slightly smaller than the choice of hg. To

select the bandwidth hg (or rather hg,k if we allow a different bandwidth for each
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function µk), we optimize the integrated mean-squared error criterion

IMSE(hg,k) = h4
g,k

∫
B2
k(x)dx+

1

nThg,k

∫
Vk,k(x)dx

for k = 1, . . . , K. Minimizing with respect to hg,k, the optimal bandwidth turns out

to be given by

h∗g,k =

( ∫
Vk,k(x)dx

4
∫
B2
k(x)dx

) 1
5

(nT )−1/5.

This expression still depends on some unknown quantities which have to be replaced by

estimators. To do so, we apply a simple plug-in rule similar to the methods discussed

in Fan and Gijbels (1994).

5.3 Asymptotics for the parameter estimators β̂i

The next theorem describes the asymptotic properties of the parameter estimates β̂i

for a fixed individual i. To state the asymptotic distribution of β̂i, we introduce the

shorthands

Γi = E[π(Xi0)µ(Xi0)µ(Xi0)
ᵀ
] and Ψi =

∞∑
l=−∞

Cov(χi0, χil),

where χit = {π(Xit)µ(Xit) − E[π(Xit)µ(Xit)]}εit − E[π(Xit)µ(Xit)]mi(Xit) and π is a

bounded weighting function.

Theorem 5.2. Suppose that all the assumptions of Theorem 5.1 are fulfilled and let

Γi have full-rank. Then for any fixed i,

√
T (β̂i − βi)

d−→ N
(
0,Γ−1

i Ψi(Γ
−1
i )

ᵀ)
.

If our procedure is based on Nadaraya-Watson smoothers, we have to restrict the

weighting function π to equal zero within the boundary region [0, C1h) ∪ (1−C1h, 1].

This is necessary because the convergence rate of µ̂ is only uniform over the interval

[C1h, 1 − C1h] in this case. If the local linear based procedure is applied, we do not

have to impose any restrictions on π.

From the proof of Theorem 5.2, we can see that our parameter estimators β̂i have

some type of oracle property. In particular, it holds that
√
T (β̂i − β̃i) = op(1). Our

estimators β̂i thus have the same asymptotic distribution as the oracle estimators β̃i

which are constructed under the assumption that the functions µ1, . . . , µK are known.

To estimate the asymptotic variance Ψi, we may apply standard long-run variance

estimation procedures to the residuals χ̂it given by

χ̂it = {π(Xit)µ̂(Xit)− π̂µ}ε̂it − π̂µm̂e
i (Xit),
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where we define π̂µ = T−1
∑T

t=1 π(Xit)µ̂(Xit), ε̂it = Y fe
it −m̂e

i (Xit) and m̂e
i (x) = β̂

ᵀ

i µ̂(x).

5.4 Asymptotics for the estimators m̂e
i and a parameter of

interest

We finally discuss the asymptotic properties of the estimator m̂e
i (x) = β̂

ᵀ

i µ̂(x). It holds

that

m̂e
i (x)−mi(x) = (β̂i − βi)

ᵀ
µ(x) + β

ᵀ

i (µ̂(x)− µ(x)) + op

( 1√
nT

)
. (13)

The first term on the right-hand side is of the order T−1/2, while the second one has

the (pointwise) order (nTh)−1/2 under our conditions. Given assumption (A5) on the

relationship between the dimensions n and T , the leading term is the first one of order

T−1/2. It follows that m̂e
i (x) is asymptotically normal at the rate T−1/2, i.e. at a faster

rate than the preliminary estimator m̂i(x) which converges at the (pointwise) rate

(Th)−1/2.

In our application below, we are interested in the parameter ci = mi(1) −mi(0),

which measures the difference between monopoly and competition. Defining ĉi =

m̂e
i (1)− m̂e

i (0), we obtain that

ĉi − ci = (β̂i − βi)
ᵀ
(µ(1)− µ(0)) + β

ᵀ

i (µ̂(1)− µ(1))− βᵀ

i (µ̂(0)− µ(0)) + op

( 1√
nT

)
.

Under the null hypothesis that ci = 0, we should observe that

√
T ĉi

d−→ N (0, τi) with τi = (µ(1)− µ(0))
ᵀ
Γ−1
i Ψi(Γ

−1
i )

ᵀ
(µ(1)− µ(0)),

which could form the basis of a test. Specifically, we can use the strategy to estimate

the covariance matrix Γ−1
i Ψi(Γ

−1
i )

ᵀ
from the previous subsection together with the

estimators µ̂ to obtain a consistent estimator τ̂i of the asymptotic variance τi and let

ti =
ĉi√
τ̂i/T

,

which is asymptotically standard normal.

6 Robustness of the estimation method

So far, we have worked under the simplifying assumption that the number K of com-

mon component functions µ1, . . . , µK is known. We now drop this assumption and

take into account that K is usually not observed in applications. We only suppose

that there is some known upper bound K of the number of component functions. In

what follows, we investigate how our procedure behaves if we work with this upper
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bound instead of the true number of components.

To do so, let W = (ωki) be a K × n weighting matrix satisfying (IW3). Writing

g = Wm and S = WB, we obtain that

g = S µ.

Using an analogous normalization as in Section 3, we can assume that (i) the matrix∫
µ(x)µ(x)

ᵀ
w(x)dx is diagonal with positive and distinct diagonal entries and that

(ii) S is a K ×K matrix with orthonormal columns. Note that this normalization is

somewhat different from that used in the previous sections as we have replaced the

weighting scheme W by W . For simplicity, we suppress this difference in the notation

in what follows and again denote the normalized component functions by µ. We thus

obtain that

µ = S
ᵀ

g.

As in the case with known K, the matrix S can be characterized by an eigenvalue

decomposition of the K ×K matrix

Σ =

∫
g(x)g(x)

ᵀ
w(x)dx.

In particular, it holds that Σ = SDS
ᵀ

with D =
∫
µ(x)µ(x)

ᵀ
w(x)dx. Note that this

way of writing the spectral decomposition implicitly presupposes that K is known.

For this reason, it is more appropriate to rewrite the decomposition as Σ = U DU
ᵀ

.

Here, U is an orthonormal K ×K matrix with the first K columns being equal to S.

Moreover, D =
∫
µ(x)µ(x)

ᵀ
w(x)dx is a diagonal K ×K matrix with µ = (µ, 0, . . . , 0)

being a vector of length K. Similarly to the case with known K, we assume that Σ

converges to a matrix Σ
∗

of rank K.

To estimate the vector of functions µ = (µ, 0, . . . , 0), we mimic the estimation

procedure from Subsection 4.2. In particular, we proceed as follows:

Step 1: Estimate the function gk(x) by g̃k(x) =
∑n

i=1 ωkim̂i(x) for k = 1 . . . , K.

Step 2: Estimate the matrix Σ by Σ̃ =
∫
g̃(x)g̃(x)

ᵀ
w(x)dx.

Step 3: Perform an eigenvalue decomposition of Σ̃ to obtain estimators of U and D. In

particular, write Σ̃ = ŨD̃Ũ
ᵀ

with D̃ being diagonal and Ũ being orthonormal.

Step 4: Estimate the vector of functions µ = (µ, 0, . . . , 0) by

µ̃ = Ũ
ᵀ
g̃.

Inspecting the proof of Theorem 5.1, it is straightforward to see that for k = 1, . . . , K,

the estimator µ̃k has analogous asymptotic properties as µ̂k. In particular, it uniformly
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converges to µk and is asymptotically normal. The next theorem summarizes the

properties of µ̃k for k = 1, . . . , K. To formulate it, we let V (x) be a K × K matrix

with the entries

V k,l(x) = ‖K‖2
2 lim
n→∞

(
n

n∑
i=1

ωkiωli
σ2
i (x)

fi(x)

)
,

where ωki are the elements of the weighting matrix W .

Theorem 6.1. Let (A1)–(A7) be fulfilled. Then it holds that

sup
x∈Ih

∣∣µ̃k(x)− µk(x)
∣∣ = Op

(√ log nT

nTh

)
(14)

for all k = 1, . . . , K. As before, Ih = [C1h, 1 − C1h] for the Nadaraya-Watson based

case and Ih = [0, 1] for the local linear based procedure. Moreover, for any fixed point

x ∈ (0, 1), √
nTh [µ̃(x)− µ(x)]

d−→ N(0, ν(x)), (15)

where ν(x) = (S
∗
)
ᵀ
V (x)S

∗
and S

∗
is the limit of S.

In addition, we can show that for k = K + 1, . . . , K, the estimators µ̃k converge in an

L2-sense to zero.

Theorem 6.2. Let (A1)–(A7) be fulfilled. Then it holds that∫
µ̃2
k(x)w(x)dx = op

( 1√
nTh

)
(16)

for all k = K + 1, . . . , K.

The proof of Theorem 6.2 is given in Appendix A. Taken together, Theorems 6.1 and

6.2 show that our procedure is robust to overestimating the number of component

functions K. In particular, applying it with the upper bound K instead of K, the first

K components of the estimator µ̃ still uniformly converge to the vector of functions µ.

Moreover, the remaining components converge to zero in an L2-sense and thus become

negligible as the sample size grows.

7 Selecting the number of components K

In this section, we propose a simple method to estimate the unknown number of com-

ponents K. To define our estimator, let λ = (λ1, . . . , λK) be the vector of eigenvalues

of the matrix Σ arranged in descending order. Analogously, let λ̃ be the eigenvalues

of the estimator Σ̃. Finally, let {δn,T} be any null sequence which converges to zero at

the order O(1/
√
nTh) or at a slower rate. With this notation at hand, our estimator
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of K is defined as

K̂ = min

{
k ∈ {1, . . . , K}

∣∣∣∣∣ λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
≥ 1− δn,T

}
.

The intuition behind this estimator is simple: Under our assumptions, the matrix

Σ has K non-zero eigenvalues, i.e. the first K entries of λ are non-zero. The first K

entries of the estimator λ̃ thus converge to some positive values, whereas the other

ones approach zero as the sample size increases. Hence, the ratio

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K

should converge to a number strictly smaller than 1 for k < K and to 1 for k ≥ K.

This suggests that K̂ consistently estimates the true number of components K.

This intuition can easily be turned into a formal argument: First of all, it can

be shown that the convergence rate of λ̃ is at least op(1/
√
nTh), i.e. ‖λ̃ − λ‖ =

op(1/
√
nTh). As a consequence, it holds that

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
=
λ1 + . . .+ λk
λ1 + . . .+ λK

+ op

( 1√
nTh

)
.

for any k ∈ {1, . . . , K}. In particular,

λ̃1 + . . .+ λ̃K

λ̃1 + . . .+ λ̃K
= 1 + op

( 1√
nTh

)
.

Using these two equations together with some straightforward arguments, it is easily

seen that K̂ is indeed a consistent estimator of the true number of components K, i.e.

K̂ = K + op(1).

When implementing the estimator K̂ in practice, an important question is how to

choose the constant δn,T . We suggest to pick it by a rule of thumb which is similar to

the procedure usually used in principal component analysis for selecting the number

of factors. To understand the intuitive idea behind the rule, first note that λk =∫
µ2
k(x)w(x)dx for k = 1, . . . , K and λk = 0 for k = K + 1, . . . , K. The eigenvalues

λk are thus equal to (the square of) a weighted L2-norm of the component functions

µ = (µ, 0, . . . , 0). Put differently, they measure the variation of these functions. As a

result, the ratio
λ1 + . . .+ λk
λ1 + . . .+ λK

can be interpreted to capture the percentage of the overall variation in the functions µ

that stems from the first k components. Hence, by picking a certain value of δn,T , we
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select the number of component functions such that at least a certain percentage of

the overall variation is explained by the chosen number of components. For instance,

if we let δn,T = 0.05, we pick the number of components to capture at least 95% of the

total variation. Keeping in mind that our estimation procedure is robust to picking

the number of components too large, we propose to choose the constant δn,T rather

small (e.g. δn,T = 0.01 or δn,T = 0.05). This results in a conservative rule which tends

to overestimate the true number K rather than to underestimate it. As already noted

above, this way of selecting the number of components is very similar to the usual

approach in factor analysis (see e.g. Zhu & Ghodsi (2006) or Chapter 6 of Jolliffe

(2002)).

8 Application

The implementation of the “Markets in Financial Instruments Directive (MiFID)”

ended the monopoly of primary security exchanges in Europe and served as a catalyst

for the soaring of competition between marketplaces we observe today. The first

round of MiFID was implemented on November 1st, 2007, but fragmentation of the

UK equity market began sometime before that, and by 13th July, 2007, Chi-X was

actively trading all of the FTSE 100 stocks. In October 2012, the volume of the FTSE

100 stocks traded via the London Stock Exchange had declined to 64%.2

There are theoretical reasons why the current trend towards fragmentation of order

flow can improve market quality. Higher competition generally promotes technological

innovation, improves efficiency and reduces the fees that have to be paid by investors.

On the other hand, there are reasons to think that security exchanges are natural

monopolies. Consolidated exchanges enjoy economies of scale because establishing a

new exchange requires the payment of high fixed costs. Every additional trade lowers

the average cost of the exchange. In addition, a single, consolidated exchange market

creates network externalities. The larger the market, the more trading opportunities

exist that attract even more traders.3

In view of these ambiguous theoretical predictions about the effect of order flow

fragmentation on market quality, many researchers have approached this question with

empirical methods. Gresse (2011) finds that increased competition between trading

venues creates more liquidity – measured by spreads and best-quote depth – in a

sample of stocks listed on the LSE and Euronext exchanges in Amsterdam, Paris and

Brussels. The results of Degryse et al. (2011) suggest that fragmentation on trading

venues with a visible order book improves global liquidity, but has a negative effect

on local liquidity. On “dark” platforms with an invisible order book, liquidity is

2www.batstrading.co.uk/market data/market share/index, assessed on October 20, 2012
3These network externalities, however, are weakened as traders can now simultaneously access

multiple markets via Smart Order Routing Technologies.
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Figure 1: The Herfindahl index for the FTSE 100 and FTSE 250 stock indices. Data
source: Fidessa.

lower in more fragmented markets. O’Hara and Ye (2011) study the effect of market

fragmentation on market quality in US equity markets and find that more fragmented

stocks are associated with lower transaction costs and higher volatility.

However, the previous literature is subject to several methodological caveats. First,

both Gresse (2011) and Degryse et al. (2011) assume that the conditional expectation

of market quality on fragmentation is homogenous across all stocks. However, O’Hara

and Ye (2011) provide evidence that the effect of fragmentation on market quality

varies significantly across stocks. If there is indeed heterogeneity in the conditional

expectation of market quality on fragmentation, the estimates are biased and policy

implications can be misleading (Pesaran and Smith, 1995). In addition, previous

studies use a parametric econometric model that presupposes a functional form for

the effect of fragmentation on market quality. Gresse (2011) and O’Hara and Ye

(2011) assume a linear functional form, while Degryse et al. (2011) specify a quadratic

relationship. If the true regression model has a different functional form, then these

studies suffer from misspecification which questions the validity of the results. The

semiparametric model for heterogenous panel data we develop in this paper can address

these limitations of previous work.

8.1 Data

Data on the volume of the individual FTSE 100 and FTSE 250 stocks traded on each

equity venue was supplied to us by Fidessa. The data is recorded on a weekly basis and

covers the period from May 2008 to June 2011. We use the volume traded on different
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Figure 2: Share of volume traded by venue category. Data source: Fidessa.

venues to compute the Herfindahl index as a measure of market fragmentation.4 In

May 2008, equity trading in the UK was consolidated at the LSE as reflected by a

Herfindahl index of 0.6 (Figure 1). By June 2011, the entry of new trading venues has

changed the structure of the UK equity market dramatically: The Herfindahl index

has fallen by about half over the sample period.

The data allows us to distinguish between public exchanges with a visible order

book (“lit venues”), venues with an invisible order book (“dark pools”), over the

counter (“OTC”) venues, and systematic internalizers (“SI venues”).5 It is interesting

to inspect the evolution of volume traded at the different venue categories (Figure

2). The share of volume traded at dark, OTC and SI venues increased over the

sample period, while the share of volume traded at lit venues has fallen considerably.

For all categories, the observed changes are largest in the year 2009. In the period

after 2009, volumes have approximately stabilized with the exception of dark venues.

4The Herfindahl index of a stock is calculated as the sum of the squared market shares of the
exchanges where the stock was traded. A value of 1 indicates a perfectly monopolistic market.

5The list of lit venues includes: Bats Europe, Chi-X, Equiduct, LSE, Nasdaq Europe, Nyse Arca,
and Turquoise. The list of dark pools includes: BlockCross, Instinet BlockMatch, Liquidnet, Nomura
NX, Nyfix, Posit, Smartpool, and UBS MTF. The list of OTC venues includes: Boat xoff, Chi-X
OTC, Euronext OTC, LSE xoff, Plus, XOFF, and xplu/o. The list of SI venues includes: Boat SI
and London SI.
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Figure 3: Volatility of the FTSE 100 and FTSE 250 stock indices. Data source:
Datastream.

Quantitatively, the majority of trades are executed on lit and OTC venues while dark

and SI venues attract only about 1% of the order flow.

We measure market quality by volatility and bid-ask spreads of the FTSE 100 and

250 stocks. Both measures of market quality are constructed as weekly medians of the

daily measures. Volatility is calculated as the difference between price high and price

low, scaled by price low. Bid-ask spreads are constructed as the difference between

ask and bid price scaled by the midpoint. The evolution of volatility over the sample

period clearly shows the effect of the global financial crisis in 2008/2009 (Figure 3).6

8.2 The effect of market structure on market quality

The descriptive analysis documents a profound change in the organization of the UK

equity market. In this section, we apply our model to assess the consequences of

it for market quality. To do so, let {(Yit, Xit)} be the data sample at hand, where

Yit denotes market quality and Xit is a measure of market structure, namely the

Herfindahl index or the share of volume traded on lit venues. The effect of Xit on

Yit for firm i is captured by the individual regression function mi. The functions µ

can be interpreted as the common components of this effect, which for each firm i are

weighted differently by the coefficients βi. The common components are interesting

because they measure the degree of heterogeneity that is hidden in the average effect,

which is defined as n−1
∑n

i=1mi(x). The fixed effects γt and αi capture the time trends

6We do not show the evolution of the bid-ask spread as it does not exist for the index.
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Figure 4: The average effect n−1
∑n

i=1 mi(x) of changes in market structure on volatil-
ity.
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Figure 5: Component functions for the effect of market fragmentation on volatility.
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Figure 6: Component functions for the effect of the share of volume traded on lit
venues on volatility.

of and cross-sectional exposure to High Frequency Trading, for example. As argued

in Gresse (2011) among others, High Frequency Trading affects both the amount of

fragmentation as well as the quality of the market outcomes and thus introduces a

simultaneity in the data.

To estimate the parameters and functions of interest, we use our methods based

on the local linear smoothers m̂LL
i . Prior to estimation, we eliminate stocks with

26



0.2 0.4 0.6 0.8

−
0.

04
0.

00
0.

02
0.

04
0.

06

a) Herfindahl index

0.2 0.4 0.6 0.8

0.
00

0.
02

0.
04

0.
06

b) Share of volume on lit venues

Figure 7: The average effect n−1
∑n

i=1mi(x) of changes in market structure on bid-ask
spreads.

0.4 0.6 0.8 1.0

−
0.

06
0.

00
0.

04
0.

08

µ 1

0.4 0.6 0.8 1.0

−
0.

02
0.

00
0.

02

µ 2

Figure 8: Component functions for the effect of market fragmentation on bid-ask
spreads.
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Figure 9: Component functions for the effect of the share of volume traded on lit
venues on bid-ask spreads.

a very small time series dimension, in particular with less than 50 observations. In

addition, we exclude stocks whose support of the observations Xit is particularly small,

specifically whose support of Xit does not span the interquartile range of the pooled

distribution. The number of common components K is chosen according to the rule

of thumb described in Section 7, where we pick δn,T = 0.05 and K = 100. The
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bandwidth is determined by a plug-in method as discussed in Subsection 5.2. Finally,

the weighting matrix W is specified as in equation (9). As a robustness check, we

have repeated the estimation for alternative matrices W . The results suggest that our

procedure is not very sensitive to the choice of W .

The average effect of market fragmentation and of the volume share traded on lit

venues on volatility is shown in Figure 4. We find that volatility is lower when equity

venues compete for volume as compared to a monopolistic market, see Panel a) in

Figure 4. However, the transition between these extreme forms of market organization

is complicated: When new trading venues enter a monopolistic market, volatility first

increases until the Herfindahl index reaches a value of 0.4 and then falls. Figure 5

decomposes the average effect into the common components µk. We find that the

initial increase in volatility when competition increases – or when the value of the

Herfindahl index falls – can be attributed to the second component while the decline

in volatility at low values of the Herfindahl index is driven by the first component.

In addition to fragmentation of order flow, it is interesting to investigate how the

share of volume traded on lit venues affects market quality. Interestingly, we find that

volatility is higher if a larger share of volume is traded on lit venues as in Linton

(2012), cp. Panel b) in Figure 4. While the average effect is linear, Figure 6 reveals

that the second common component function has a quadratic shape.

Besides volatility, bid-ask spreads provide a good proxy for market quality. We

find that bid-ask spreads are lower in a competitive market in comparison with a

monopolistic market. During the transition to a competitive market structure, bid-

ask spreads increase initially by a small magnitude before falling rapidly for values

of the Herfindahl index below 0.6, see Panel a) in Figure 7. A disaggregation of this

effect into its common components is provided in Figure 8.

As shown in Panel b) in Figure 7, an increase in the share of volume traded at lit

venues lowers bid-ask spreads, but not monotonically. As the share of volume traded

at lit venues increases, bid-ask spreads fall until 60% of all shares are traded on lit

venues and increase thereafter. The decline is primarily driven by the first component

function, which can be seen from Figure 9.

8.3 Is there a difference between monopoly and competition?

One interesting question is whether market quality is significantly different under com-

petition when compared to a monopolistic market. To answer that question, we calcu-

late the statistic ĉi/
√
τ̂i/T where ĉi = m̂i(1)− m̂i(0) measures the difference between

monopoly and competition (see Section 5.4). Here, we only consider the Herfindahl in-

dex as an independent variable, but we use both measures of market quality, volatility

and bid-ask spreads, as a dependent variable. Recall that the Herfindahl index is 1 for

a monopolistic market and 0 under perfect competition. To estimate τi, one requires
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Figure 10: Kernel density estimate of the difference between monopoly and competi-
tion ĉi.

an estimate of the long-run variance of the residuals χ̂it. We estimate the long-run

variance by the HAC method with a quadratic spectral kernel (Andrews, 1991) where

the bandwidth is chosen optimally. For α-mixing random variables as assumed in this

paper, the HAC estimator based on the quadratic spectral kernel with an optimally

chosen growth rate of the bandwidth parameter is consistent if the 2 1/2th moment is

finite (Hansen, 1992). In our application, ĉi/
√
τ̂i/T is below the critical value even at

a significance level of 10% suggesting that there is no statistically significant difference

between monopoly and competition (Figure 10).

In addition to a stock-by-stock analysis, we also investigate whether on average,

market quality is different under competition when compared to a monopolistic market.

In this case, the test statistic is given by

t̂ =

√
nTh[ĝ(1)− ĝ(0)]√
V̂ (1) + V̂ (0)

,

which is asymptotically standard normal. Here, ĝ(x) = n−1
∑n

i=1 m̂i(x) is an esti-

mator of the average regression function and V̂ (x) is the sample analogue of V (x) =

‖K‖2
2 limn→∞( 1

n

∑n
i=1

σ2
i (x)

fi(x)
) with σ2

i (x) = E[ε2
it|Xit = x]. In our data, t̂ is 4.15 if

volatility is used as a measure of market quality and 16.09 if market quality is mea-

sured by bid-ask spreads. These results are consistent with the findings in Figures

4a) and 6a) but counter to the evidence from individual stocks. When compared to a
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Figure 11: Comparison of cdfs for mi(1) and mi(0) coefficients in the bid-ask spread
case.

stock-by-stock analysis, pooling the data increases the power of the test in detecting

a difference between competitive and monopolistic markets.

An alternative approach to assess the difference between competitive and monop-

olistic market structures is to compare the marginal distributions of the coefficients

mi(1) and mi(0) according to stochastic dominance orderings, cp. Linton, Maasoumi,

and Whang (2005). We find that the comparison between cdfs and integrated cdfs

for volatility is inconclusive (meaning the two curves cross at least once), whereas

the bid-ask spread case is clearer. In particular, the distribution of bid ask spreads

under the monopoly case dominates to first order the distribution under competition,

which since bid-ask spread is a bad, means that competition would be preferred to

monopoly by any non satiated utility maximizer. We do not provide a formal test of

this hypothesis, since the derivation of appropriate critical values would appear to be

a substantial project in itself.

9 Conclusion

Our model captures in a general way two important features in many applications: het-

erogeneity and nonlinearity. We also allow for a limited type of endogeneity through

the unobserved time and cross-section fixed effects. Nevertheless, our estimation pro-

cedures are particularly simple, and are in fact closed form at each step. We have

provided the tools to conduct inference and to select tuning and order parameters.

We applied our method to a question of recent policy interest and our results revealed
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substantial nonlinearity in the relationship between fragmentation of order flow and

market quality, which is not unexpected. Overall, we may find weak evidence that

competition between trading venues reduces bid-ask spreads and lowers volatility for

traders. Additionally, we find that a higher share of volume traded on lit venues is

associated with higher volatility and lower bid-ask spreads. We believe that these re-

sults will be of interest for policy makers to evaluate MiFID I and to stimulate further

debate on MiFID II.

We close the paper by commenting on some extensions of our model. In our anal-

ysis, we have focused on the case of univariate regressors Xit. If the regressors are

multivariate, the usual curse of dimensionality problem arises. One way to circum-

vent this problem is to assume that the regression functions mi split up into additive

components according to

mi(x) = m
(1)
i (x1) + . . .+m

(d)
i (xd),

where d is the dimension of the regressors. Analogously to the univariate case, we may

suppose that for each j, the individual functions m
(j)
i have the common component

structure

m
(j)
i (xj) =

K∑
k=1

β
(j)
ik µ

(j)
k (xj),

where K could also be allowed to differ across j. The additive functions m
(1)
i , . . . ,m

(d)
i

can be estimated by time series backfitting for each individual i, see Mammen et al.

(1999). These backfitting estimators may be used as preliminary estimators in our

procedure. In particular, the common functions µ(j) = (µj1, . . . , µ
(j)
K ) may be estimated

separately for each j by repeating the estimation steps of Section 4 based on the

backfitting estimators.

Perhaps one is also concerned that we do not allow for sufficiently general time

effects, the latter all having the same coefficient. A more general model which allows

for additional interactive (exogenous) time effects is given by

Yit = µ0 + αi + γt + gi(t/T ) +mi(Xit) + εit,

where gi(·) is a smooth function of rescaled time. In practice, a number of authors

adopt parametric specifications for gi(t/T ) such as gi(t/T ) = ζit + ηit
2. In this case,

we obtain

Y fe
it = gi(t/T ) +mi(Xit) + εit +Op(T

−1/2) +Op(n
−1/2)

where we have assumed that
∑T

t=1 gi(t/T ) = 0. Similarly to the multivariate case

discussed above, we here have an additive regression model that could be estimated

by time series backfitting. Moreover, one could restrict gi(·) to rely on a small number

of principal components as we do for mi(·), and do parallel analysis for both functions.
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Appendix A

In this appendix, we derive the main results of our theory. In particular, we provide a

detailed proof of Theorems 5.1 and 5.2, which characterize the asymptotic behaviour of

our estimators. For the proof, we require a series of uniform convergence results which

are derived in Appendix B. Throughout the appendix, we assume that the conditions

(A1)–(A7) and (IW1)–(IW3) are satisfied. Moreover, the symbol C is used to denote a

universal real constant which may take a different value on each occurrence.

Proof of Theorem 5.1

We restrict attention to the proof for the Nadaraya-Watson based estimators. The

local linear case can be handled by analogous arguments and is thus omitted.

To start with, we list some auxiliary results needed to derive the statements (11)

and (12) of Theorem 5.1. The proof of these results is postponed until the arguments

for Theorem 5.1 are completed. The following uniform expansion of ĝk(x) − gk(x)

forms the basis of our arguments.

Proposition A1. Let Ih = [C1h, 1− C1h] and Ich = [0, 1] \ Ih. Then it holds that

ĝk(x)− gk(x) =
n∑
i=1

ωki
κ0(x)fi(x)

1

T

T∑
t=1

Kh(Xit − x)εit +Rk(x) (17)

with κ0(x) =
∫ (1−x)/h

−x/h K(ϕ)dϕ, where the remainder term satisfies supx∈Ih |Rk(x)| =

op(1/
√
nTh) and supx∈Ich |Rk(x)| = Op(h).

Using the uniform expansion of Proposition A1, we are able to derive the asymptotic

properties of ĝ. These are summarized in the next proposition.

Proposition A2. It holds that

sup
x∈Ih

∥∥ĝ(x)− g(x)
∥∥ = Op

(√ log nT

nTh

)
(18)

sup
x∈Ich

∥∥ĝ(x)− g(x)
∥∥ = Op(h). (19)

Moreover, for any fixed x ∈ (0, 1),

√
nTh(ĝ(x)− g(x))

d−→ N(0, V (x)), (20)

where V (x) = (Vk,l(x))k,l=1,...,K and Vk,l(x) = ‖K‖2
2 limn→∞(n

∑n
i=1 ωkiωli

σ2
i (x)

fi(x)
) with

σ2
i (x) = E[ε2

it|Xit = x].
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Proposition A1 can further be used to characterize the convergence behaviour of the

matrices Σ̂.

Proposition A3. It holds that

‖Σ̂− Σ‖ = op

( 1√
nTh

)
. (21)

Finally, Proposition A3 together with a Taylor expansion argument yields the following

result.

Proposition A4. It holds that

‖Ŝ − S‖ = op

( 1√
nTh

)
(22)

‖λ̂− λ‖ = op

( 1√
nTh

)
(23)

with λ = (λ1, . . . , λK) and λ̂ = (λ̂1, . . . , λ̂K).

With the help of the above propositions, it is now straightforward to prove the

statements (11) and (12) of Theorem 5.1. We start with the proof of (11): Recalling

that the matrix of eigenvectors S converges to a limit S∗ and using (18) together with

(22), we arrive at

sup
x∈Ih
‖µ̂(x)− µ(x)‖ ≤ ‖Ŝᵀ − Sᵀ‖ sup

x∈Ih
‖ĝ(x)‖

+ ‖Sᵀ‖ sup
x∈Ih
‖ĝ(x)− g(x)‖ = Op

(√ log nT

nTh

)
.

Similarly, we obtain that

√
nTh(µ̂(x)− µ(x)) =

√
nTh(Ŝ

ᵀ − Sᵀ
)ĝ(x) + S

ᵀ√
nTh(ĝ(x)− g(x))

= S
ᵀ√
nTh(ĝ(x)− g(x)) + op(1).

Since S converges to S∗, the normality result (20) implies that

S
ᵀ√
nTh(ĝ(x)− g(x))

d−→ N(0, (S∗)
ᵀ
V (x)S∗),

which yields (12). �
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Proof of Proposition A1

Let f̂i(x) = T−1
∑T

t=1Kh(Xit − x) and Y fe
it = Yit − Y i − Y t + Y . We have

ĝk(x)− gk(x) =
n∑
i=1

ωkim̂i(x)−
n∑
i=1

ωkimi(x)

=
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
Y fe
it −mi(x)

}/
f̂i(x)

=: Qk,V (x) +Qk,B(x) +Qk,γ(x) +Qk,α +Qk,µ0

with

Qk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
f̂i(x)

Qk,B(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
mi(Xit)−mi(x)

}/
f̂i(x)

Qk,γ(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
µ0 + γt − Y t

}/
f̂i(x)

Qk,α =
n∑
i=1

ωki
{
µ0 + αi − Y i

}
Qk,µ0 =

( n∑
i=1

ωki

){
Y − µ0

}
.

In what follows, we analyze these five terms one after the other.

(i) It holds that

Qk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
κ0(x)fi(x) +Rk,V (x),

where the remainder term is given by

Rk,V (x) =
M∑
m=1

R
(m)
k,V (x) +R

(M+1)
k,V (x)

with

R
(m)
k,V (x) =

n∑
i=1

ωki

((κ0(x)fi(x)− f̂i(x))m

(κ0(x)fi(x))m+1

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)

34



for m = 1, . . . ,M and

R
(M+1)
k,V (x) =

n∑
i=1

ωki

((κ0(x)fi(x)− f̂i(x))M+1

(κ0(x)fi(x))M+1f̂i(x)

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
.

The remainder term has the property that

sup
x∈Ih

∣∣Rk,V (x)
∣∣ = op

( 1√
nTh

)
(24)

sup
x∈Ich

∣∣Rk,V (x)
∣∣ = Op(h). (25)

(25) directly follows from an application of Lemma B1. (24) can be seen as follows:

Firstly, it holds that supx∈Ih |R
(m)
k,V (x)| = op(1/

√
nTh) for m = 1, . . . ,M . The argu-

ments to prove this claim are rather involved. The main part of the arguments is

given as the proof of Lemma B3 in Appendix B. Applying this lemma together with

some straightforward additional considerations easily yields the claim. Secondly, if M

is chosen sufficiently large, then an application of Lemma B1 immediately shows that

supx∈Ih |R
(M+1)
k,V (x)| = op(1/

√
nTh).

(ii) We next show that

sup
x∈Ih
|Qk,B(x)| = op

( 1√
nTh

)
sup
x∈Ich
|Qk,B(x)| = Op(h).

To see this, decompose Qk,B(x) into the following two components:

Qk,B(x) = Q
(1)
k,B(x) +Q

(2)
k,B(x)

with

Q
(1)
k,B(x) =

n∑
i=1

ωki
1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])/
f̂i(x)

Q
(2)
k,B(x) =

n∑
i=1

ωki
1

T

T∑
t=1

E
[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}]/
f̂i(x).

Exploiting the smoothness conditions on the functions mi and fi in a standard way,

the term Q
(2)
k,B(x) can be shown to satisfy supx∈Ih |Q

(2)
k,B(x)| = Op(h

2) = op(1/
√
nTh)
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and supx∈Ich |Q
(2)
k,B(x)| = Op(h). Moreover, Q

(1)
k,B(x) = Q

(1,a)
k,B (x) +Q

(1,b)
k,B (x) with

Q
(1,a)
k,B (x) =

n∑
i=1

ωki
1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])/
κ0(x)fi(x)

Q
(1,b)
k,B (x) =

n∑
i=1

ωki

(κ0(x)fi(x)− f̂i(x)

κ0(x)fi(x)f̂i(x)

) 1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])
.

Using the proving strategy of Lemma B2, the term Q
(1,a)
k,B (x) can be shown to be of the

order Op(h
√

log nT/nTh) = op(1/
√
nTh) uniformly for x ∈ [0, 1]. Moreover, applying

Lemma B1, we immediately get that supx∈[0,1] |Q
(1,b)
k,B (x)| = op(1/

√
nTh) as well.

(iii) We now turn to the analysis of Qk,γ(x). In particular, we show that

sup
x∈[0,1]

|Qk,γ(x)| = op

( 1√
nTh

)
.

To do so, first note that

Qk,γ(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
µ0 + γt −

1

n

n∑
j=1

Yjt

}/
f̂i(x)

= −
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}/
f̂i(x).

This expression can be decomposed as Qk,γ(x) = Q
(1)
k,γ(x) +Q

(2)
k,γ(x) +Q

(3)
k,γ(x) with

Q
(1)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}/
κ0(x)fi(x)

Q
(2)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n
(mi(Xit) + εit)

}( 1

f̂i(x)
− 1

κ0(x)fi(x)

)
Q

(3)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

∑
j 6=i

(mj(Xjt) + εjt)
}( 1

f̂i(x)
− 1

κ0(x)fi(x)

)
.

To analyze the term Q
(1)
k,γ(x), we further split it up into two components according to
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Q
(1)
k,γ(x) = Q

(1,a)
k,γ (x) +Q

(1,b)
k,γ (x) with

Q
(1,a)
k,γ (x) = − 1

T

T∑
t=1

( n∑
i=1

ωki
κ0(x)fi(x)

(Kh(Xit − x)− E[Kh(Xit − x)])
)

×
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}

Q
(1,b)
k,γ (x) = −

n∑
i=1

ωki
κ0(x)fi(x)

( 1

nT

n∑
j=1

T∑
t=1

E[Kh(Xit − x)](mj(Xjt) + εjt)
)
.

The term Q
(1,a)
k,γ (x) can be handled by similar techniques as applied in Lemma B3.

The details are summarized in Lemma B4 which yields that supx∈[0,1] |Q
(1,a)
k,γ (x)| =

op(1/
√
nTh). Moreover, it is straightforward to verify that supx∈[0,1] |Q

(1,b)
k,γ (x)| =

Op(1/
√
nT ). Turning to the expression Q

(2)
k,γ(x), we can easily see with the help of

Lemma B1 that supx∈[0,1] |Q
(2)
k,γ(x)| = op(1/

√
nTh). To prove that supx∈[0,1] |Q

(3)
k,γ(x)| =

op(1/
√
nTh), some rather involved arguments are needed. These are presented in

detail in Lemma B5 and Corollary B1 of Appendix B.

(iv) Trivially,

Qk,α =
n∑
i=1

ωki

{
µ0 + αi −

1

T

T∑
t=1

{
µ0 + γt + αi +mi(Xit) + εit

}}
= −

n∑
i=1

ωki
1

T

T∑
t=1

{
mi(Xit) + εit

}
= Op

( 1√
nT

)
and Qk,µ0 = Op(1/

√
nT ) as well.

Combining (i)–(iv) yields the expansion (17). �

Proof of Proposition A2

The proof easily follows with the help of the uniform expansion from Proposition A1.

The latter says that

ĝk(x)− gk(x) = Wk,V (x) +Rk(x),

where

Wk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
κ0(x)fi(x)

and the remainder term Rk(x) satisfies supx∈Ih |Rk(x)| = op(1/
√
nTh) as well as

supx∈Ich |Rk(x)| = Op(h). Applying Lemma B2 to Wk,V (x), we immediately obtain

that supx∈[0,1] |Wk,V (x)| = Op(
√

log nT/nTh). This yields the uniform convergence
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results (18) and (19). Furthermore, standard arguments show that

√
nThWk,V (x)

d−→ N
(

0, ‖K‖2
2 lim
n→∞

n
n∑
i=1

ω2
ki

σ2
i (x)

fi(x)

)
.

From this, the normality result (20) easily follows. �

Proof of Proposition A3

It holds that

Σ̂kl − Σkl =

∫
ĝk(x)ĝl(x)w(x)dx−

∫
gk(x)gl(x)w(x)dx

=

∫ [
ĝk(x)− gk(x)

]
ĝl(x)w(x)dx+

∫
gk(x)

[
ĝl(x)− gl(x)

]
w(x)dx

=

∫ [
ĝk(x)− gk(x)

]
gl(x)w(x)dx+

∫
gk(x)

[
ĝl(x)− gl(x)

]
w(x)dx

+ op

( 1√
nTh

)
,

where the last equality follows by Proposition A2. Using the uniform expansion of

Proposition A1, we obtain∫ [
ĝk(x)− gk(x)

]
gl(x)w(x)dx = JV +R

with

JV =
n∑
i=1

ωki
1

T

T∑
t=1

(∫
Kh(Xit − x)gl(x)(κ0(x)fi(x))−1w(x)dx

)
εit

andR =
∫
gl(x)Rk(x)w(x)dx. As supx∈Ih |Rk(x)| = op(1/

√
nTh) and supx∈Ich |Rk(x)| =

Op(h), we have that R = op(1/
√
nTh). Moreover, applying Chebychev’s inequality and

exploiting the mixing conditions on the data with the help of Davydov’s inequality

(see Corollary 1.1 in Bosq (1998)), it is not difficult to see that JV = op(1/
√
nTh).

This completes the proof. �

Proof of Proposition A4

Let v(A) = vec(A) be the vectorized representation of a K × K matrix A. There

are fixed vector-valued functions fk(·) and scalar functions ψk(·) with first and second

derivatives existing and being continuous in a neighbourhood of v(Σ∗) such that

sk = fk(v(Σ)) and λk = ψk(v(Σ))

ŝk = fk(v(Σ̂)) and λ̂k = ψk(v(Σ̂)).
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In what follows, we show that ‖ŝk − sk‖ = op(1/
√
nTh) for all k = 1, . . . , K, which

immediately yields (22). The result (23) for the estimates of the eigenvalues follows

by exactly the same argument. From Proposition A3, we know that

‖v(Σ̂)− v(Σ)‖ = op

( 1√
nTh

)
.

As fk is continuously differentiable in a neighbourhood of v(Σ∗), a first-order Taylor

expansion yields

ŝk − sk = fk(v(Σ̂))− fk(v(Σ)) = f ′k(ξ)
[
v(Σ̂)− v(Σ)

]
with ξ being an intermediate point between v(Σ̂) and v(Σ). Since f ′k(ξ)− f ′k(v(Σ∗)) =

op(1), we immediately arrive at

‖ŝk − sk‖ = op

( 1√
nTh

)
. �

Proof of Theorem 5.2

We again restrict attention to the Nadaraya-Watson based case, the arguments for the

local linear case being essentially the same. We write

√
T (β̂i − βi) =

√
T (β̂i − β̃i) +

√
T (β̃i − βi)

and analyze the two terms on the right-hand side separately. First consider the term√
T (β̂i − β̃i). It holds that

√
T (β̂i − β̃i)

=
( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1 1√

T

T∑
t=1

π(Xit)
{
µ̂(Xit)− µ(Xit)

}
Y fe
it

+
{( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1

−
( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1}

× 1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it .

Here,

1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it = L1 + L2 + L3 + L4
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with

L1 =
1√
T

T∑
t=1

π(Xit)µ(Xit)εit

L2 =
1√
T

T∑
t=1

π(Xit)µ(Xit)mi(Xit)

L3 =
1√
T

T∑
t=1

π(Xit)µ(Xit)
(
µ0 + γt − Y t

)
L4 =

( 1

T

T∑
t=1

π(Xit)µ(Xit)
)√

T
(
αi − Y i + Y

)
.

It is straightforward to see that L1 = Op(1), L2 = Op(
√
T ) and L4 = Op(1). Moreover,

noting that

L3 =
1√
T

T∑
t=1

π(Xit)µ(Xit)
(
µ0 + γt −

1

n

n∑
j=1

(
µ0 + αj + γt +mj(Xjt) + εjt

))
= − 1√

T

T∑
t=1

π(Xit)µ(Xit)
( 1

n

n∑
j=1

(mj(Xjt) + εjt
))
,

it is easy to infer that L3 = op(1). Hence,

1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it = Op(

√
T ). (26)

As supx∈Ih ‖µ̂(x)− µ(x)‖ = Op(
√

log nT/nTh) = op(1/
√
T ), we further obtain that

1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ − 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ

= Op

(√ log nT

nTh

)
= op

( 1√
T

)
(27)

as well as
1√
T

T∑
t=1

π(Xit)
{
µ̂(Xit)− µ(Xit)

}
Y fe
it = op(1). (28)

Combining (26)–(28) yields √
T (β̂i − β̃i) = op(1).
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We next turn to
√
T (β̃i − βi). Write

√
T (β̃i − βi) =

( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1

(L1 + L3 + L4)

with L1, L3 and L4 introduced above. As already shown, L3 = op(1). Moreover, noting

that T−1
∑T

t=1 π(Xit)µ(Xit)
P−→ E[π(Xit)µ(Xit)], we can rewrite L4 as

L4 = −E[π(Xit)µ(Xit)]
1√
T

T∑
t=1

(mi(Xit) + εit) + op(1).

As a result,

L1 + L3 + L4 =
1√
T

T∑
t=1

{(
π(Xit)µ(Xit)− E[π(Xit)µ(Xit)]

)
εit

− E[π(Xit)µ(Xit)]mi(Xit)
}

+ op(1)

=:
1√
T

T∑
t=1

χit + op(1).

Applying a central limit theorem now yields

√
T (β̃i − βi)

d−→ N(0,Γ−1
i Ψi(Γ

−1
i )

ᵀ
)

with the matrices Γi = E[π(Xit)µ(Xit)µ(Xit)
ᵀ
] and Ψi =

∑∞
l=−∞Cov(χi0, χil). �

Proof of Theorem 6.2

The same arguments as for the proof of Proposition A3 show that

‖Σ̃− Σ‖ = op

( 1√
nTh

)
.

Moreover, letting λ1 ≥ . . . ≥ λK be the eigenvalues of the matrix Σ and λ̃1 ≥ . . . ≥ λ̃K
the eigenvalues of Σ̃, we have that

λ̃k =

∫
µ̃2
k(x)w(x)dx

and λk = 0 for k = K + 1, . . . , K. Finally, note that the mapping of symmetric

matrices on their eigenvalues is Lipschitz continuous. In particular, let A and B be

any real symmetric K × K matrices and let λ1(A) ≥ λ2(A) ≥ . . . ≥ λK(A) and

λ1(B) ≥ λ2(B) ≥ . . . ≥ λK(B) be the corresponding eigenvalues. Then there exists a
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constant L independent of A and B such that

|λk(A)− λk(B)| ≤ L‖A−B‖.

Combining the above remarks, we arrive at∫
µ̃2
k(x)w(x)dx = λ̃k = |λ̃k − λk| ≤ L‖Σ̃− Σ‖ = op

( 1√
nTh

)
.

for all k = K + 1, . . . , K. �

Appendix B

In this appendix, we derive some results on uniform convergence which are needed

for the proof of the main theorems. Throughout the appendix, we consider an array

{(Xit, Zit)} = {(Xit, Zit), i = 1, . . . , n, t = 1, . . . , T} which satisfies the following

conditions.

(B1) The data {(Xit, Zit)} are independent across i. Moreover, they are strictly sta-

tionary and strongly mixing in time direction. Let αi(k) for k = 1, 2, . . . be the

mixing coefficients of the time series {(Xit, Zit), t = 1, . . . , T} of the i-th individ-

ual. It holds that αi(k) ≤ α(k) for all i = 1, . . . , n, where the coefficients α(k)

decay exponentially fast to zero as k →∞.

(B2) The densities fi of the variables Xit have bounded support, [0, 1] say, and are

uniformly bounded from above, i.e. max1≤i≤n supx∈[0,1] fi(x) ≤ C < ∞. In

addition, the joint densities fi;l of (Xit, Xit+l) exist and are uniformly bounded

from above as well.

(B3) It holds that E|Zit|θ ≤ C <∞ for some θ > 4. Moreover,

max
1≤i≤n

sup
x∈[0,1]

E
[
|Zit|θ

∣∣Xit = x
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|Zit|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|ZitZit+l|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞

for all l ∈ Z and some sufficiently large constant C.

In addition, we suppose that the kernel K and the dimensions n and T fulfill the

conditions stated in the main body of the paper.
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We now derive the various results on uniform convergence. To prove them, we

use a covering argument together with an exponential inequality, thus following the

common strategy to be found for example in Bosq (1998), Masry (1996), or Hansen

(2008). For the proof of Lemmas B1 and B2, these standard arguments have to be

modified only slightly. For the proof of Lemmas B3–B5 in contrast, some rather

intricate and non-standard arguments are needed to get the overall strategy to work.

Lemma B1. Let the kernel average Ψi(x) be defined by

Ψi(x) =
1

T

T∑
t=1

Kh(Xit − x)Zit.

It holds that

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ = op(1). (29)

If the variables Zit are bounded, i.e. if |Zit| ≤ C for some constant C independent of

i and t, then we even have that

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ = Op

(√ log T

Th

)
. (30)

Proof. As already noted, the proof proceeds by slightly modifying standard argu-

ments. We are thus content with giving some remarks on the necessary modifications.

We start with the proof of (30). Write

P
(

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ > CaT

)
≤

n∑
i=1

P
(

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ > CaT

)
with aT =

√
log T/Th. Going along the lines of the standard proving strategy, the

probabilities on the right-hand side can be bounded by a null sequence {cT} indepen-

dent of i. Under our conditions, this sequence can be chosen such that {ncT} is a null

sequence as well. This yields the result.

We now turn to (29). As the variables Zit are not bounded, we have to replace

them by truncated versions Z≤it = ZitI(|Zit| ≤ τnT ) in a first step. Since we maximize

over i, the truncation sequence τn,T must be chosen to go to infinity much faster than

in the standard case where i is fixed. In particular, we take τn,T = (nT )1/(θ−δ) for some

small δ > 0. Applying the same proving strategy as for (30) to the truncated version

of Ψi(x), one can see that the arguments still go through. However, as the truncation

points τn,T diverge much faster than in the standard case with fixed i, the convergence

rate turns out to be slower than the standard rate
√

log T/Th. �

43



Lemma B2. Let

Ψ(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)Zit.

It holds that

sup
x∈[0,1]

∣∣Ψ(x)− E[Ψ(x)]
∣∣ = Op

(√ log nT

nTh

)
.

Proof. As the proof closely follows standard arguments, we only provide a short

sketch: Let an,T =
√

lognT
nTh

and write Ψ(x) = Ψ≤(x) + Ψ>(x) with

Ψ≤(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)ZitI(|Zit| ≤ τn,T )

Ψ>(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)ZitI(|Zit| > τn,T ),

where the truncation sequence τn,T is given by τn,T = (nT )1/(θ−δ) with some small

δ > 0. We thus have

Ψ(x)− E[Ψ(x)] = (Ψ≤(x)− E[Ψ≤(x)]) + (Ψ>(x)− E[Ψ>(x)]).

Straightforward arguments show that supx∈[0,1] |Ψ>(x) − E[Ψ>(x)] = Op(an,T ). To

analyze the term supx∈[0,1] |Ψ≤(x)− E[Ψ≤(x)]|, we cover the unit interval by a grid of

points Gn,T that gets finer and finer as the sample size increases. We then replace the

supremum over x by the maximum over the grid points x ∈ Gn,T and show that the

resulting error is negligible. To complete the proof, we write

P
(

max
x∈Gn,T

∣∣Ψ≤(x)− E[Ψ≤(x)]
∣∣ > Can,T

)
≤
∑

x∈Gn,T

P
(∣∣Ψ≤(x)− E[Ψ≤(x)]

∣∣ > Can,T
)

and bound the probabilities P(|Ψ≤(x) − E[Ψ≤(x)]| > Can,T ) for each grid point with

the help of an exponential inequality. To do so, let

Ψ≤(x)− E[Ψ≤(x)] =
n∑
i=1

T∑
t=1

Wit(x)

with Wit(x) = 1
nT
{Kh(Xit − x)ZitI(|Zit| ≤ τn,T ) − E[Kh(Xit − x)ZitI(|Zit| ≤ τn,T )]}

and split up the expression
∑T

t=1Wit(x) into a growing number of blocks of increasing

size. Using Bradley’s lemma (see Lemma 1.2 in Bosq (1998)), we can replace these

blocks by independent versions and apply an exponential inequality. �
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Lemma B3. Let

Ψ(x) =
1

n

n∑
i=1

Vi(x)Wi(x)

with

Vi(x) =
( 1

T

T∑
t=1

(
Kh(Xit − x)− E[Kh(Xit − x)]

))ν
Wi(x) =

1

T

T∑
t=1

Kh(Xit − x)Zit

for some fixed natural number ν. Assume that the variables Zit satisfy E[Zit|Xit] = 0

and let θ > 5 in condition (B3). Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof. Throughout the proof, we use the following notation. Let

CT : the event that maxi supx |Vi(x)1/ν | ≤ C
√

log T/Th and

maxi supx T
−1
∑T

t=1Kh(Xit − x) ≤ C

CiT : the event that supx |Vi(x)1/ν | ≤ C
√

log T/Th and

supx T
−1
∑T

t=1 Kh(Xit − x) ≤ C

for a fixed large constant C. Moreover, write CcT and CciT to denote the complements

of CT and CiT , respectively. Inspecting the proof of Lemma B1, it is easily seen that

P (CcT ) = o(1) and P (CciT ) = o(1), given that the constant C in the definition of the

events CT and CiT is chosen sufficiently large. With this notation at hand, we obtain

that

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,C

c
T

)
= P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ o(1),

where an,T = (log nT
√
nTh)−1 and M is a positive constant. Moreover,

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
= P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

Vi(x)Wi(x)
∣∣∣ > Man,T ,CT

)
= P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CT )Vi(x)Wi(x)
∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)Wi(x)
∣∣∣ > Man,T

)
.
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Now write
1

n

n∑
i=1

I(CiT )Vi(x)Wi(x) = Q≤(x) +Q>(x)

with the two terms on the right-hand side being defined as

Q≤(x) =
1

n

n∑
i=1

I(CiT )Vi(x)W≤
i (x)

Q>(x) =
1

n

n∑
i=1

I(CiT )Vi(x)W>
i (x).

Here, Wi(x) = W≤
i (x) +W>

i (x) with

W≤
i (x) =

1

T

T∑
t=1

Kh(Xit − x)Z≤it

W>
i (x) =

1

T

T∑
t=1

Kh(Xit − x)Z>
it

and Zit = Z≤it + Z>
it with

Z≤it = ZitI(|Zit| ≤ τn,T )− E[ZitI(|Zit| ≤ τn,T )|Xit]

Z>
it = ZitI(|Zit| > τn,T )− E[ZitI(|Zit| > τn,T )|Xit],

where the truncation sequence τn,T is chosen to equal τn,T = (nT )1/(θ−δ) for some small

δ > 0. We now arrive at

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)Wi(x)
∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

|Q≤(x)| > M

2
an,T

)
+ P

(
sup
x∈[0,1]

|Q>(x)| > M

2
an,T

)
.

In the remainder of the proof, we show that the two terms on the right-hand side

converge to zero as the sample size goes to infinity. To do so, we proceed in several

steps.

Step 1. We start by considering the term Q>(x). It holds that

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)
( 1

T

T∑
t=1

Kh(Xit − x)ZitI(|Zit| > τn,T )
)∣∣∣ > Can,T

)
≤ P

(
|Zit| > τn,T for some 1 ≤ i ≤ n and 1 ≤ t ≤ T

)
≤

n∑
i=1

T∑
t=1

P(|Zit| > τn,T ) ≤
n∑
i=1

T∑
t=1

E
[ |Zit|θ
τ θn,T

]
≤ C

nT

τ θn,T
→ 0.
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In addition,

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)
( 1

T

T∑
t=1

Kh(Xit − x)E[ZitI(|Zit| > τn,T )|Xit]
)∣∣∣

≤ C

h

√
log T

Th
max
1≤i≤n

max
1≤t≤T

E
[
|Zit|I(|Zit| > τn,T )|Xit

]
≤ C

√
log T

Th

1

hτ θ−1
n,T

≤ Can,T ,

where the third line follows by (B3). As a result,

P
(

sup
x∈[0,1]

|Q>(x)| > M

2
an,T

)
= o(1)

for M sufficiently large.

Step 2. We now turn to the analysis of the term Q≤(x). Cover the region [0, 1] with

open intervals Jl (l = 1, . . . , Ln,T ) of length C/Ln,T and let xl be the midpoint of the

interval Jl. Then

sup
x∈[0,1]

|Q≤(x)| ≤ max
1≤l≤Ln,T

|Q≤(xl)|+ max
1≤l≤Ln,T

sup
x∈Jl
|Q≤(x)−Q≤(xl)|.

For any point x ∈ Jl, we have

I(CiT )
∣∣Vi(x)W≤

i (x)− Vi(xl)W≤
i (xl)

∣∣ ≤ Cτn,T
h3
|x− xl| ≤

Cτn,T
h3Ln,T

.

Therefore,

max
1≤l≤Ln,T

sup
x∈Jl
|Q≤(x)−Q≤(xl)| ≤

Cτn,T
h3Ln,T

.

Choosing Ln,T →∞ with Ln,T = Cτn,T/an,Th
3, we obtain that

max
1≤l≤Ln,T

sup
x∈Jl
|Q≤(x)−Q≤(xl)| ≤ Can,T .

If we pick the constant M large enough, we thus arrive at

P
(

sup
x∈[0,1]

|Q≤(x)| > M

2
an,T

)
≤ P

(
max

1≤l≤Ln,T
|Q≤(xl)| >

M

4
an,T

)
+ o(1).

Step 3. It remains to show that

P
(

max
1≤l≤Ln,T

|Q≤(xl)| >
M

4
an,T

)
= o(1)
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for some large fixed constant M . To do so, we write

P
(

max
1≤l≤Ln,T

|Q≤(xl)| >
M

4
an,T

)
≤ P1 + P2

with

P1 = P
(

max
1≤l≤Ln,T

|Q≤(xl)− EQ≤(xl)| >
M

8
an,T

)
P2 = P

(
max

1≤l≤Ln,T
|EQ≤(xl)| >

M

8
an,T

)
.

First consider the term P2. If ν ≥ 3, then

|EQ≤(xl)| =
∣∣∣ 1
n

n∑
i=1

E[I(CiT )Vi(xl)W
≤
i (xl)]

∣∣∣
≤ 1

n

n∑
i=1

E
[
I(CiT )Vi(xl)

2
]1/2E[W≤

i (xl)
2
]1/2

≤ C√
Th

( log T

Th

)ν/2
= o(an,T ).

For ν ≤ 2, we write

|EQ≤(xl)| =
∣∣∣ 1
n

n∑
i=1

E[I(CiT )Vi(xl)W
≤
i (xl)]

∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

E[Vi(xl)W
≤
i (xl)]

∣∣∣+
∣∣∣ 1
n

n∑
i=1

E[I(CciT )Vi(xl)W
≤
i (xl)]

∣∣∣.
If ν = 1, we have

∣∣E[Vi(xl)W
≤
i (xl)]

∣∣ =
∣∣∣ 1

T 2

T∑
s,t=1

E
[
(Kh(Xis − xl)− E[Kh(Xis − xl)])Kh(Xit − xl)Z≤it

]∣∣∣
=
∣∣∣ 1

T 2

∑
s 6=t

E
[
(Kh(Xis − xl)− E[Kh(Xis − xl)])Kh(Xit − xl)Z≤it

]∣∣∣
≤ C log T

T
= o(an,T ),

the last line following with the help of Davydov’s inequality and (B3). For ν = 2, it

holds that

∣∣E[Vi(xl)W
≤
i (xl)]

∣∣ =
∣∣∣ 1

T 3

T∑
s,s′,t=1

E
[
(Kh(Xis − xl)− E[Kh(Xis − xl)])

× (Kh(Xis′ − xl)− E[Kh(Xis′ − xl)])Kh(Xit − xl)Z≤it
]∣∣∣
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≤ CT (log T )2

T 3h2
= C

( log T

Th

)2

= o(an,T ),

the last line again following by Davydov’s inequality. In addition,

E[I(CciT )Vi(xl)W
≤
i (xl)] ≤ E[I(CciT )]1/2E[Vi(xl)

2W≤
i (xl)

2]1/2.

Repeating the usual strategy to prove uniform convergence for kernel estimates, it can

be shown that under our assumptions, E[I(CciT )] = P(CciT ) ≤ T−C for an arbitrarily

large constant C. This yields that E[I(CciT )Vi(xl)W
≤
i (xl)] = o(an,T ), which in turn

implies that |EQ≤(xl)| = o(an,T ) for ν = 1, 2. As a result, P2 = o(1) for any ν ≥ 1.

To cope with the term P1, we apply the bound

P1 ≤
Ln,T∑
l=1

P
(
|Q≤(xl)− EQ≤(xl)| >

M

8
an,T

)
and consider the probability P(|Q≤(xl) − EQ≤(xl)| > M

8
an,T ) for an arbitrary fixed

grid point xl. Write

Q≤(xl)− EQ≤(xl) =
n∑
i=1

ξi(xl)

with ξi(xl) = n−1{I(CiT )Vi(xl)W
≤
i (xl) − E[I(CiT )Vi(xl)W

≤
i (xl)]}. Recalling the defi-

nition of the events CiT , the variables ξi(xl) can be bounded as follows:

|ξi(xl)| ≤ C

√
log T

Th

τn,T
n
≤ C

(nTh)1/2+δ
:= Cn,T

with some sufficiently large constant C and a small δ > 0, given that n � T 2/3 and

θ > 5. With λn,T = 1
2
C
−1

n,T , we obtain that λn,T |ξi(xl)| ≤ 1/2. As exp(x) ≤ 1 + x+ x2

for |x| ≤ 1/2,

E
[

exp
(
± λn,T ξi(xl)

)]
≤ 1 + λ2

n,TE[ξi(xl)
2] ≤ exp

(
λ2
n,TE[ξi(xl)

2]
)
.

Using this together with Markov’s inequality, we arrive at

P
(∣∣∣ n∑

i=1

ξi(xl)
∣∣∣ > M

8
an,T

)
≤ exp

(
− M

8
λn,Tan,T

){
E
[

exp
(
λn,T

n∑
i=1

ξi(xl)
)]

+ E
[

exp
(
− λn,T

n∑
i=1

ξi(xl)
)]}

≤ 2 exp
(
− M

8
λn,Tan,T

) n∏
i=1

exp
(
λ2
n,TE[ξi(xl)

2]
)

= 2 exp
(
− M

8
λn,Tan,T

)
exp

(
λ2
n,T

n∑
i=1

E[ξi(xl)
2]
)
.
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Now note that

E[ξi(xl)
2] ≤ 1

n2
E[I(CiT )Vi(xl)

2W≤
i (xl)

2] ≤ C log T

n2Th
E[W≤

i (xl)
2]

and

E[W≤
i (xl)

2] =
1

T 2

T∑
s,t=1

E
[
Kh(Xis − xl)Kh(Xit − xl)Z≤isZ

≤
it

]
=

1

T 2

T∑
s,t=1

Cov
(
Kh(Xis − xl)Z≤is , Kh(Xit − xl)Z≤it

)
≤ C

Th
.

Hence, E[ξi(xl)
2] ≤ C log T/(nTh)2 and

λ2
n,T

n∑
i=1

E[ξi(xl)
2] ≤ C(nTh)1+2δ log T

n(Th)2
≤ C

(nT )2δ

Th
= o(1).

Moreover,

λn,Tan,T =
(nTh)1/2+δ

log nT (nTh)1/2
→∞

at polynomial rate. As a result,

P
(∣∣∣ n∑

i=1

ξi(xl)
∣∣∣ > M

8
an,T

)
≤ CT−p,

where the constant p > 0 can be chosen arbitrarily large. This completes the proof. �

Lemma B4. Let

Ψ(x) =
1

T

T∑
t=1

Vt(x)Wt

with Wt = 1
n

∑n
i=1 Zit and

Vt(x) =
1

n

n∑
i=1

(
Kh(Xit − x)− E[Kh(Xit − x)]

)
.

Assume that the variables Zit have mean zero and let θ > 5 in condition (B3). Then

it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof. The proof is similar to that of Lemma B3 with the roles of i and t being

reversed. Let an,T = (log nT
√
nTh)−1 and τn,T = (nT )1/(θ−δ) for some small δ > 0.

Arguments analogous to those for Step 1 in the proof of Lemma B3 yield that Ψ(x)
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can be replaced by the term

Q≤(x) =
1

T

T∑
t=1

I(Ctn)Vt(x)W≤
t ,

where W≤
t = 1

n

∑n
i=1 Z

≤
it with Z≤it = ZitI(|Zit| ≤ τn,T ) − E[ZitI(|Zit| ≤ τn,T )] and Ctn

is the event that supx |Vt(x)| ≤ C
√

log n/nh for some large constant C. Next cover

the unit interval by a grid of Ln,T = CτnT/an,Th
2 points. As in the proof of Lemma

B3, we can show that

sup
x∈[0,1]

|Q≤(x)| = max
1≤l≤Ln,T

|Q≤(xl)|+O(an,T ).

Moreover, again repeating the arguments from Lemma B3, we obtain that for some

sufficiently large constant M ,

P
(

max
1≤l≤Ln,T

|Q≤(xl)| > Man,T

)
≤ P

(
max

1≤l≤Ln,T
|Q≤(xl)− EQ≤(xl)| >

M

2
an,T

)
+ o(1)

≤
Ln,T∑
l=1

P
(
|Q≤(xl)− EQ≤(xl)| >

M

2
an,T

)
+ o(1).

To complete the proof, we bound the probability P(|Q≤(x) − EQ≤(x)| > M
2
an,T )

for an arbitrary point x by an exponential inequality. To do so, we must slightly vary

the arguments for Lemma B3, taking into account the fact that Q≤(x) is not a sum of

independent terms any more. In particular, we write

Q≤(x)− EQ≤(x) =
T∑
t=1

ξt(x)

with ξt(x) = T−1{I(Ctn)Vt(x)W≤
t − E[I(Ctn)Vt(x)W≤

t ]} and split up the expression∑T
t=1 ξt(x) into blocks as follows:

T∑
t=1

ξt(x) =

qn,T∑
s=1

B2s−1(x) +

qn,T∑
s=1

B2s(x) +B2qn,T+1(x)

with Bs(x) =
∑min{srn,T ,T}

t=(s−1)rn,T+1 ξt(x). Here, 2qn,T + 1 is the number of blocks and rn,T is

the block length. In particular, T = 2qn,T rn,T + vn,T with 0 ≤ vn,T ≤ rn,T . It holds

that

P
(∣∣∣ T∑

t=1

ξt(x)
∣∣∣ > M

2
an,T

)
≤ P

(∣∣∣ qn,T∑
s=1

B2s−1(x)
∣∣∣ > M

6
an,T

)
+ P

(∣∣∣ qn,T∑
s=1

B2s(x)
∣∣∣ > M

6
an,T

)
+ P

(∣∣B2qn,T+1(x)
∣∣ > M

6
an,T

)
.
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In what follows, we restrict attention to the first term. The second and third one can

be analyzed by analogous arguments. We make use of the following two facts:

(1) Let V(i) = {V(i)
t : t = 1, . . . , T} = {(Xit, Zit) : t = 1, . . . , T} be the time series

of the i-th individual and consider the time series W = {Wt : t = 1, . . . , T} with

Wt = ht(V
(1)
t , . . . ,V

(n)
t ) = ht(X1t, Z1t, . . . , Xnt, Znt) for some Borel functions ht.

Then by Theorem 5.2 in Bradley (2005) and the comments thereafter, the mixing

coefficients αW(k) of the time series W are such that αW(k) ≤
∑n

i=1 αi(k) ≤ nα(k)

for each k ∈ N. In particular, letting αξ(k) be the mixing coefficients of the time

series {ξt(x)}, it holds that αξ(k) ≤ nα(k).

(2) By Bradley’s lemma (see Lemma 1.2 in Bosq (1998)), we can construct a se-

quence of random variables B∗1(x), B∗3(x), . . . such that (i) B∗1(x), B∗3(x), . . . are

independent, (ii) B∗2s−1(x) has the same distribution as B2s−1(x), and (iii) for

0 < µ ≤ ‖B2s−1(x)‖∞, it holds that

P
(
|B∗2s−1(x)−B2s−1(x)| ≥ µ

)
≤ 18

(‖B2s−1(x)‖∞
µ

)1/2

αξ(rn,T ). (31)

Using fact (2), we can write

P
(∣∣∣ qn,T∑

s=1

B2s−1(x)
∣∣∣ > M

6
an,T

)
≤ P1 + P2

with

P1 = P
(∣∣∣ qn,T∑

s=1

B∗2s−1(x)
∣∣∣ > M

12
an,T

)
P2 = P

(∣∣∣ qn,T∑
s=1

(
B2s−1(x)−B∗2s−1(x)

)∣∣∣ > M

12
an,T

)
.

We first consider P1. Picking the block length to equal rn,T = T η for some small η > 0,

it holds that |B2s−1(x)| ≤ C
√

logn
nh

τn,T rn,T
T

≤ C
(nTh)1/2+δ

=: Cn,T with some sufficiently

large constant C and a small δ > 0. Choosing λn,T ≤ 1
2
C
−1

n,T and applying Markov’s

inequality, the same arguments as in Lemma B3 yield that

P1 ≤ 2 exp
(
− M

12
λn,Tan,T + λ2

n,T

qn,T∑
s=1

E[B∗2s−1(x)2]
)
.

Since
∑qn,T

s=1 E[B∗2s−1(x)2] ≤ C log n log T/n2Th, we finally arrive at

P1 ≤ 2 exp
(
− M

12
λn,Tan,T + Cλ2

n,T

log n log T

n2Th

)
.
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Direct calculations show that λn,Tan,T →∞, whereas λ2
n,T

logn log T
n2Th

= o(1). This implies

that P1 converges to zero at an arbitarily fast polynomial rate. Moreover, using (31)

together with the fact that αξ(k) ≤ nα(k) and recalling that the coefficients α(k)

decay exponentially fast to zero, it immediately follows that P2 converges to zero at

an arbitrarily fast polynomial rate as well. From this, the result easily follows. �

Lemma B5. Let

Ψ(x) =
1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

ϕit(x)Zjt

)
with ϕit(x) = Kh(Xit − x)φ̂i(x) and φ̂i(x) an estimator based on the data {Xit : t =

1, . . . , T}. Assume that φ̂i(x) has the following two properties:

(a) P(max1≤i≤n supx∈[0,1] |φ̂i(x)| > Cbn,T ) = o(1) for a sufficiently large constant C

and a null sequence {bn,T} which satisfies b2
n,T/h ≤ C(nT )−η for some small η > 0.

(b) max1≤i≤n |φ̂i(x) − φ̂i(x′)| ≤ cn,T |x − x′| with probability tending to one for some

sequence {cn,T} which satisfies cn,T ≤ (nT )C for some positive constant C.

In addition, let the variables Zit have mean zero. Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof. Let CT be the event that max1≤i≤n supx∈[0,1] |φ̂i(x)| ≤ Cbn,T and CiT the event

that supx∈[0,1] |φ̂i(x)| ≤ Cbn,T . Moreover, write CcT and CciT to denote the complements

of CT and CiT , respectively. By assumption, P (CcT ) = o(1) and P (CciT ) = o(1). With

this notation at hand, we have

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,C

c
T

)
≤ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ o(1),

where an,T =
√

lognT
nTh(nT )η

and M is a positive constant. Moreover,

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
= P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CT )ϕit(x)Zjt

)∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Zjt

)∣∣∣ > Man,T

)
.
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Defining

Z≤jt = ZjtI(|Zjt| ≤ τn,T )− E
[
ZjtI(|Zjt| ≤ τn,T )

]
Z>
jt = ZjtI(|Zjt| > τn,T )− E

[
ZjtI(|Zjt| > τn,T )

]
with τn,T = (nT )1/(θ−δ) for some small δ > 0, we further get that

1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Zjt

)
= Q≤(x) +Q>(x)

with

Q≤(x) =
1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Z≤jt

)
Q>(x) =

1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Z>
jt

)
.

Hence,

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Zjt

)∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣Q≤(x)
∣∣ > M

2
an,T

)
+ P

(
sup
x∈[0,1]

∣∣Q>(x)
∣∣ > M

2
an,T

)
.

In what follows, we show that the two terms on the right-hand side converge to zero

as the sample size increases. The proof splits up into several steps.

Step 1. We first consider Q>(x). Similarly to Lemma B3, it holds that

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)ZjtI(|Zjt| > τn,T )
)∣∣∣ > Can,T

)
≤ P

(
|Zjt| > τn,T for some 1 ≤ j ≤ n and 1 ≤ t ≤ T

)
→ 0

and

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)E
[
ZjtI(|Zjt| > τn,T )

])∣∣∣
≤ Cbn,T
n2Th

n∑
i=1

∑
j 6=i

T∑
t=1

E
[
|Zjt|I(|Zjt| > τn,T )

]
≤ Cbn,T

τ θ−1
n,T h

≤ Can,T .
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From this, it immediately follows that P(supx∈[0,1] |Q>(x)| > M
2
an,T ) = o(1) for M

sufficiently large.

Step 2. We now turn to the analysis of Q≤(x). Let Ln,T → ∞ with Ln,T =

max{ τn,T cn,T
han,T

,
bn,T τn,T
h2an,T

, (nT )δ} for some small δ > 0. Cover the region [0, 1] with open

intervals Jl (l = 1, . . . , Ln,T ) of length C/Ln,T and let xl be the midpoint of the interval

Jl. Then for x ∈ Jl,

∣∣Q≤(x)−Q≤(xl)
∣∣ ≤ Cτn,T

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )|ϕit(x)− ϕit(xl)|
)

≤ Cτn,T
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )
{
Kh(Xit − x)|φ̂i(x)− φ̂i(xl)|

+ |φ̂i(xl)||Kh(Xit − x)−Kh(Xit − xl)|
})

≤ Cτn,T

(cn,T
h

+
bn,T
h2

)
|x− xl| ≤ C

τn,T
Ln,T

(cn,T
h

+
bn,T
h2

)
≤ Can,T

with probability tending to one. From this, it immediately follows that for sufficiently

large M ,

P
(

sup
x∈[0,1]

∣∣Q≤(x)
∣∣ > M

2
an,T

)
≤ P

(
max

1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
+ o(1).

Step 3. It remains to show that

P
(

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
= o(1)

for some sufficiently large constant M . Writing

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ ≤ max

1≤i≤n
1≤l≤Ln,T

∣∣∣∑
j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣
with Wjt = 1

nT
{ZjtI(|Zjt| ≤ τn,T )− E[ZjtI(|Zjt| ≤ τn,T )]}, we obtain

P
(

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
≤ P

(
max
1≤i≤n

1≤l≤Ln,T

∣∣∣∑
j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣ > M

4
an,T

)

≤
n∑
i=1

Ln,T∑
l=1

P
(∣∣∣∑

j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣ > M

4
an,T

)
.
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We now bound the probability P(|
∑

j 6=i
∑T

t=1 I(CiT )ϕit(x)Wjt| > Man,T/4) for an

arbitrary point x with the help of an exponential inequality. To do so, we rewrite the

expression
∑

j 6=i
∑T

t=1 I(CiT )ϕit(x)Wjt. In particular, we split up the inner sum over t

into blocks as follows:

T∑
t=1

I(CiT )ϕit(x)Wjt =

qn,T∑
s=1

Bj,2s−1(x) +

qn,T∑
s=1

Bj,2s(x) +Bj,2qn,T+1(x)

with

Bj,s(x) =

min{srn,T ,T}∑
t=(s−1)rn,T+1

I(CiT )ϕit(x)Wjt

for s = 1, . . . , 2qn,T + 1. As in Lemma B4, 2qn,T + 1 is the number of blocks and rn,T

is the length of each block. In particular, T = 2qn,T rn,T + vn,T with 0 ≤ vn,T ≤ rn,T .

We thus get

P
(∣∣∣∑

j 6=i

T∑
t=1

I(CiT )ϕit(x)Wjt

∣∣∣ > M

4
an,T

)
≤ P

(∣∣∣∑
j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

12
an,T

)
+ P

(∣∣∣∑
j 6=i

qn,T∑
s=1

Bj,2s(x)
∣∣∣ > M

12
an,T

)
+ P

(∣∣∣∑
j 6=i

Bj,2qn,T+1(x)
∣∣∣ > M

12
an,T

)
.

In what follows, we restrict attention to the first term on the right-hand side. The

second and third one can be analyzed by similar arguments.

Denote by Bj,1(x), Bj,3(x), . . . the blocks Bj,1(x), Bj,3(x), . . . for a fixed realization

of {Xit : t = 1, . . . , T}, i.e. for fixed values of the weights ϕi1(x), . . . , ϕiT (x). By

Bradley’s lemma, we can construct a sequence of random variables B∗j,1(x), B∗j,3(x), . . .

such that (i) B∗j,1(x), B∗j,3(x), . . . are independent, (ii) B∗j,2s−1(x) has the same distri-

bution as Bj,2s−1(x), and (iii) for 0 < µ ≤ ‖Bj,2s−1(x)‖∞,

P
(
|B∗j,2s−1(x)−Bj,2s−1(x)| ≥ µ

)
≤ 18

(‖Bj,2s−1(x)‖∞
µ

)1/2

α(rn,T ). (32)

We now write

P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

12
an,T

)
= E

[
P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

12
an,T

∣∣∣{Xit}Tt=1

)]
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= E
[
P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

12
an,T

)]
≤ E[P1] + E[P2]

with

P1 = P
(∣∣∣∑

j 6=i

qn,T∑
s=1

B∗j,2s−1(x)
∣∣∣ > M

24
an,T

)
P2 = P

(∣∣∣∑
j 6=i

qn,T∑
s=1

(
Bj,2s−1(x)−B∗j,2s−1(x)

)∣∣∣ > M

24
an,T

)
.

First consider P1. It holds that

|Bj,2s−1(x)| ≤ Cτn,T rn,T bn,T
nTh

≤ Cτn,T rn,T (bn,T/
√
h)

nTh
≤ Cτn,T rn,T
nTh(nT )η/2

=: Cn,T .

Choosing λn,T ≤ 1
2
C
−1

n,T and applying Markov’s inequality, the same arguments as in

Lemma B3 yield that

P1 = P
(∣∣∣∑

j 6=i

qn,T∑
s=1

B∗j,2s−1(x)
∣∣∣ > M

24
an,T

)
≤ 2 exp

(
− M

24
λn,Tan,T + λ2

n,T

∑
j 6=i

qn,T∑
s=1

E[B∗j,2s−1(x)2]
)
.

Noting that

∑
j 6=i

qn,T∑
s=1

E[B∗j,2s−1(x)2] =
∑
j 6=i

qn,T∑
s=1

E[Bj,2s−1(x)2|{Xit}Tt=1]

≤
∑
j 6=i

T∑
s,t=1

I(CiT )|ϕis(x)ϕit(x)|
∣∣E[WjsWjt]

∣∣
≤ Cb2

n,T

∑
j 6=i

T∑
s,t=1

Kh(Xis − x)Kh(Xit − x)
∣∣E[WjsWjt]

∣∣
≤
Cb2

n,T

h2

∑
j 6=i

( T∑
t=1

|EW 2
jt|+ 2

T−1∑
l=1

T−l∑
t=1

|EWjtWjt+l|
)
≤ C

nTh(nT )η
,

we arrive at

E[P1] ≤ C exp
(
− M

24
λn,Tan,T + C

λ2
n,T

nTh(nT )η

)
.
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Moreover, choosing

rn,T =

√
nTh

τ 2
n,T log nT

,

we obtain that
λ2n,T

nTh(nT )η
= log(nT ) and λn,Tan,T = log(nT ). As a result,

E[P1] ≤ C exp
([
C − M

24

]
log nT

)
≤ C(nT )−κ,

where κ can be made arbitrarily large by choosing M large enough.

We next turn to P2. Using (32), we obtain that

P2 ≤
∑
j 6=i

qn,T∑
s=1

P
(∣∣Bj,2s−1(x)−B∗j,2s−1(x)

∣∣ > Man,T
24nqn,T

)
≤ C

∑
j 6=i

qn,T∑
s=1

( Cn,T

an,T/nqn,T

)1/2

α(rn,T ) ≤ C(nT )−r

and hence E[P2] ≤ C(nT )−r, where r can be chosen arbitrarily large as the α-

coefficients decay exponentially fast.

Putting everything together, we arrive at

P
(

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
≤

n∑
i=1

Ln,T∑
l=1

P
(∣∣∣∑

j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣ > M

4
an,T

)
≤ CnLn,T

(
(nT )−κ + (nT )−r

)
.

If we choose the exponents κ and r sufficiently large, then the right-hand side converges

to zero at an arbitrarily fast polynomial rate. This completes the proof. �

Corollary B1. Consider the setting of Lemma B4 with φ̂i(x) = 1

f̂i(x)
− 1

κ0(x)fi(x)
.

Assume that the densities fi are uniformly bounded away from zero on their support

[0, 1]. In addition, suppose that |fi(x) − fi(x′)| ≤ C|x − x′| for all x, x′ ∈ [0, 1] and a

constant C that is independent of i. Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof. Using Lemma B1, we have that

P
(

max
1≤i≤n

sup
x∈[0,1]

|φ̂i(x)| > C
(√ log T

Th
+ h
))

= o(1),
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i.e. bn,T =
√

log T/Th+ h. Moreover,

|φ̂i(x)− φ̂i(x′)| ≤
∣∣∣ 1

f̂i(x)
− 1

f̂i(x′)

∣∣∣+
∣∣∣ 1

κ0(x)fi(x)
− 1

κ0(x′)fi(x′)

∣∣∣
≤
(

max
i

sup
x,x′

1

f̂i(x)f̂i(x′)

)( 1

T

T∑
t=1

∣∣Kh(Xit − x)−Kh(Xit − x′)
∣∣)

+
(

max
i

sup
x,x′

1

κ0(x)fi(x)fi(x′)

)
|fi(x)− fi(x′)|

+
(

max
i

sup
x,x′

1

κ0(x)κ0(x′)fi(x′)

)
|κ0(x)− κ0(x′)|

≤ C

h2
|x− x′|

for some sufficiently large C with probability tending to one. Hence, cn,T = Ch−2. �
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