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CENTRAL LIMIT THEOREMS AND MULTIPLIER

BOOTSTRAP WHEN p IS MUCH LARGER THAN n

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. We derive a central limit theorem for the maximum of a sum
of high dimensional random vectors. More precisely, we establish condi-
tions under which the distribution of the maximum is approximated by
the maximum of a sum of the Gaussian random vectors with the same
covariance matrices as the original vectors. The key innovation of our
result is that it applies even if the dimension of random vectors (p) is
much larger than the sample size (n). In fact, the growth of p could
be exponential in some fractional power of n. We also show that the
distribution of the maximum of a sum of the Gaussian random vectors
with unknown covariance matrices can be estimated by the distribution
of the maximum of the (conditional) Gaussian process obtained by mul-
tiplying the original vectors with i.i.d. Gaussian multipliers. We call
this procedure the “multiplier bootstrap”. Here too, the growth of p

could be exponential in some fractional power of n. We prove that our
distributional approximations, either Gaussian or conditional Gaussian,
yield a high-quality approximation for the distribution of the original
maximum, often with at most a polynomial approximation error. These
results are of interest in numerous econometric and statistical applica-
tions. In particular, we demonstrate how our central limit theorem and
the multiplier bootstrap can be used for high dimensional estimation,
multiple hypothesis testing, and adaptive specification testing. All of
our results contain non-asymptotic bounds on approximation errors.

1. Introduction

Consider random variable T0 defined by

T0 := max
16j6p

n∑

i=1

xij/
√
n,

where (xi)
n
i=1 is a sequence of independent zero-mean random p-vectors of

observations, xij is the jth component of vector xi, and p > 2. The distri-
bution of T0 is of interest in many statistical applications. When p is much
smaller than n, this distribution can be approximated by using a classical
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2 CHERNOZHUKOV, CHETVERIKOV AND KATO

Central Limit Theorem (CLT). In many high-dimensional problems, how-
ever, p is comparable or even larger than n, and the classical CLT does not
apply. This paper provides tractable approximations to the distribution of
T0 when p is possibly much larger than n.

Specifically, we derive a new Gaussian approximation theorem that gives
a bound on the Kolmogorov-Smirnov distance between the distributions of
T0 and its Gaussian analog Z0:

Z0 := max
16j6p

n∑

i=1

yij/
√
n,

yi := (yi1, . . . , yip)
′ ∼ N(0,E[xix

′
i]),

i.e., random variable Z0 is the maximum of the normalized sum of Gaussian
random vectors yi having the same covariance structure as xi’s. We show
that under mild moment assumptions, there exist some constants c > 0 and
C > 0 such that

(1) ρ := sup
t∈R

|P(T0 6 t)− P(Z0 6 t)| 6 Cn−c → 0,

as n → ∞, where p could grow as fast as an exponential of some fractional
power of n. For example, if xij are uniformly bounded (i.e., |xij | 6 C1 for
some constant C1 > 0 for all i, j), the distance ρ converges to zero at a poly-
nomial rate whenever (log p)7/n → 0 at a polynomial rate. Similar results
are also obtained when xij are sub-Gaussian and even non-sub-Gaussian, un-
der some assumptions that restrict the growth of max16j6p,16i6nE[|xij |4].
Figure 1 gives a graphical illustration of the result (1), motivated by the
problem of tuning the Dantzig selector of [12] to non-Gaussian settings, an
example which we examine in Section 5.

In the process of deriving our results, we employ various tools, includ-
ing Slepian’s “smart path” interpolation (which is related to the solution of
Stein’s partial differential equation), Stein’s leave-one-out method, approxi-
mation of maxima by the smooth functions (related to “free energy” in spin
glasses), and exponential inequalities for self-normalized sums. See, e.g.,
[42, 44, 21, 17, 45, 13, 14, 20, 37] for introduction and discussion of some of
these tools. The main result also critically relies on the anti-concentration
inequality for suprema of Gaussian processes, which is derived in [18] and
restated as Lemma 2.1.

Our result (1) has the following innovative features. To the best of our
knowledge, our result is the first to show that maxima of sums of random
vectors, with general covariance structure, can be approximated in distri-
bution by the maxima of sums of Gaussian random vectors when p � n,
in particular, when p can depend exponentially on a fractional power of n.
This condition is weaker than the one that results from the use of Yurin-
skii’s coupling, which also implies (1) but under the rather strong condition
p5/n → 0; see, in particular, Lemma 2.12 in [22] and Example 17 (Section
10) in [38]. Second, note that our analysis specifically covers cases where
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Figure 1. P-P plots comparing distributions of T0 and Z0

in the example motivated by the Dantzig estimation prob-
lem. Here, xij = zijεi where εi ∼ t(4), (a t-distribution with
four degrees of freedom), and zij are nonstochastic (simu-
lated once using U [0, 1] distribution independently across i
and j). Dashed line is 45◦. The distributions of T0 and Z0 are
close, as (qualitatively) predicted by the CLT derived in the
paper: see Corollaries 2.1 or 2.2. The quality of the Gaussian
approximation is particularly good for the tail probabilities,
which is most relevant for practical applications.

the process {
∑n

i=1 xij/
√
n, 1 6 j 6 p} is not asymptotically equicontinuous

and hence is not Donsker. Indeed, otherwise our result would follow from
the classical functional central limit theorems for empirical processes, as in
[21]. Third, the quality of approximation in (1) is of polynomial order in
n, which is better than the logarithmic in n quality that we could obtain
in some (though not all) nonparametric applications where the behavior of
the maximum T0 (after a suitable rescaling) could be approximated by the
extreme value distribution (as, e.g., in [43] and [10]).

Our result also contributes to the literature on multivariate central limit
theorems, which are concerned with conditions under which

(2)

∣∣∣∣∣P
(

1√
n

n∑

i=1

xi ∈ A

)
− P

(
1√
n

n∑

i=1

yi ∈ A

)∣∣∣∣∣→ 0,

uniformly in a collection of sets A, typically all convex sets. The results
of this kind were developed among others, by [36, 39, 27, 8, 16], under
the conditions that pc/n → 0 or similar conditions (also see [15]). These
results rely on the anti-concentration results for Gaussian random vectors
on the δ-expansions of boundaries of arbitrary convex sets A (see [5]). Note
that our result also establishes (2), but uniformly for all convex sets of the
form Amax = {a ∈ R

p : max16j6p aj 6 t} for t ∈ R. These sets have a
rather special structure that allows us to deal with p � n: in particular,
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concentration of measure on the δ-expansion of boundary of Amax is at most
of order δ

√
log p for Gaussian random p-vectors with unit variance, as shown

in [18] (restated as Lemma 2.1).
Note that the result (1) is immediately useful for inference with statistic

T0, even though P(Z0 6 t) needs not converge itself to a well behaved
distribution function. Indeed, if the covariance matrix n−1

∑n
i=1 E[xix

′
i]

is known, then cZ0
(1 − α) := (1 − α)-quantile of Z0, can be computed

numerically, and we have

(3) |P(T0 6 cZ0
(1− α))− (1− α)| 6 Cn−c → 0.

A chief application of this kind arises in determination of the penalty level
for the Dantzig selector of [12] in the high-dimensional regression with non-
Gaussian errors, which we examine in Section 5. There, under the canonical
(homoscedastic) noise, the covariance matrix is known, and so quantiles of
Z0 can be easily computed numerically and used for choosing the penalty
level. However, if the noise is heteroscedastic, the covariance matrix is no
longer known, and this approach is no longer feasible. This motivates our
second main result.

The second main result of the paper establishes validity of the multi-
plier bootstrap for estimating quantiles of Z0, when the covariance ma-
trix n−1

∑n
i=1 E[xix

′
i] is unknown. More precisely, we define the Gaussian-

symmetrized version W0 of T0 by multiplying xi with i.i.d. standard Gauss-
ian random variables e1, . . . , en:

(4) W0 := max
16j6p

n∑

i=1

xijei/
√
n.

We show that the conditional quantiles of W0 given data (xi)
n
i=1 consis-

tently estimate the quantiles of Z0 and hence those of T0 (where the notion
of consistency used is the one that guarantees asymptotically valid infer-
ence). Here the primary factor driving the bootstrap estimation error is
the maximum difference between the empirical and population covariance
matrices:

∆ := max
16j,k6p

∣∣∣∣∣
1

n

n∑

i=1

(xijxik − E[xijxik])

∣∣∣∣∣ ,

which can converge to zero even when p is much larger than n. For example,
when xij are uniformly bounded, the multiplier bootstrap is valid for infer-
ence if (log p)7/n → 0. Earlier related results on bootstrap in the “p → ∞
but p/n → 0” regime were studied in [35]; interesting results for the case
p � n based on concentration inequalities and symmetrization are studied
in [3, 4], albeit the approach and results are quite different from those given
here. In particular, in [3], either Gaussianity or symmetry in distribution is
imposed on the data.

As a part of establishing the results on the multiplier bootstrap, we de-
rive a bound on the Kolmogorov-Smirnov distance between distributions of
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maxima of two finite dimensional Gaussian random vectors, which again
depends on the maximum difference between the covariance matrices of the
vectors. The key property of our bound again is that it depends on the
dimension p of random vectors only via log p. This result is of independent
interest, and extends and complements the work of [14] that derived an ex-
plicit Sudakov-Fernique type bound on the difference of expected values of
the same quantities; see also [1], Chapter 2.

The key motivating example for our results is the high-dimensional sparse
regression model. In this model, [12] and [9] assume Gaussian errors to an-
alyze the Dantzig selector and Lasso. Our results show that Gaussianity is
not necessary and the Gaussian-like conclusions hold approximately, with
just the fourth moment of the regression errors being bounded. Moreover,
our approximation allows to take into account correlations between different
components of xi’s. This results in a better choice of the penalty level, and
in establishing sharper bounds on performance than those that had been
available previously. Note that some of the same goals had been accom-
plished using moderate deviations for self-normalized sums, combined with
the union bound [7]. The limitation, however, is that the union bound does
not take into account correlations between different components of xi’s, and
so it may be overly conservative in some applications.

Our results have a broad range of other statistical applications. In addi-
tion to the high-dimensional estimation example, we show how to apply our
result in the multiple hypothesis testing framework of multivariate linear
regression. We prove the validity of the stepdown procedure developed in
[41] when the critical value is obtained through the multiplier bootstrap.
Notably, the number of hypotheses to be tested can be much larger than
the sample size. Finally, in the third example, we develop a new specifica-
tion test for the null hypothesis of the linear regression model and a general
nonparametric alternative, which uses a number of moment conditions that
is much larger than the sample size. Lastly, in a companion work, [18] and
[19], we are exploring the strong coupling for suprema of general empirical
processes, based on the methods developed here and maximal inequalities.
These results represent a useful complement to the results based on the
Hungarian coupling developed by [33, 11, 31, 40] for the entire empirical
process. These results have applications to uniform confidence bands in
nonparametric regression; see, e.g., [26].

The rest of the paper is organized as follows. In Section 2 we give the
results on Gaussian approximation and associated comparison theorems.
In Section 3 we give the results on Gaussian comparison and associated
multiplier comparison theorems. In Section 4 we provide the results on
the multiplier bootstrap. In Sections 5, 6, and 7 we consider the three
substantive applications. Appendices contain proofs for each of the sections,
with Appendix A stating auxiliary tools and lemmas.
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1.1. Notation. Throughout the paper, En[·] denotes the average over in-
dex 1 6 i 6 n, i.e., it simply abbreviates the notation n−1

∑n
i=1[·]. For

example, En[x
2
ij ] = n−1

∑n
i=1 x

2
ij . In addition, Ē[·] = En[E[·]]. For ex-

ample, Ē[x2ij] = n−1
∑n

i=1 E[x
2
ij]. For a function f : R → R, we write

∂kf(x) = ∂kf(x)/∂xk for nonnegative integer k; for a function f : Rp → R,
we write ∂jf(x) = ∂f(x)/∂xj for j = 1, . . . , p, where x = (x1, . . . , xp)

′.

Denote by Ck(R) the class of k times continuously differentiable functions
from R to itself, and denote by Ck

b (R) the class of all functions f ∈ Ck(R)
such that supz∈R |∂jf(z)| < ∞ for j = 0, . . . , k. We write a . b if a is
smaller than or equal to b up to a universal positive constant. For a given
parameter q, we also write a .q b if there is a constant C = C(q) depending
only on q such that a 6 Cb. The same rule applies when there are multiple
parameters. For example, we will sometime write “a .c1,C1

b”, and this
means that there exists a constant C > 0 depending only on c1 and C1 such
that a 6 Cb.

2. Central Limit Theorems for Maxima of Non-Gaussian Sums

2.1. Comparison Theorems and Non-Asymptotic Gaussian Approx-
imations. Let xi = (xij)

p
j=1 be a zero-mean p-vector of random variables

and let yi = (yij)
p
j=1 be a p-vector of Gaussian random variables such that

yi ∼ N(0,E[xix
′
i]).

Consider sequences (xi)
n
i=1 and (yi)

n
i=1 of independent vectors, where inde-

pendence holds across the i index. Let

X := (X1, . . . ,Xp)
′ :=

1√
n

n∑

i=1

xi and Y := (Y1, . . . , Yp)
′ :=

1√
n

n∑

i=1

yi.

The purpose of this section is to compare and bound the difference be-
tween the expectations and distribution functions of the non-Gaussian to
the Gaussian maxima:

max
16j6p

Xj and max
16j6p

Yj.

This problem is of intrinsic difficulty since the maximum function z =
(z1, . . . , zp)

′ 7→ max16j6p zj is non-differentiable. To circumvent the prob-
lem, we use a smooth approximation of the maximum function.

For z = (z1, . . . , zp)
′ ∈ R

p, consider the function:

Fβ(z) := β−1 log




p∑

j=1

exp(βzj)


 ,

which approximates the maximum function, where β > 0 is the smoothing
parameter that controls the level of approximation (we call this function the
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“smooth max function”). Indeed, an elementary calculation shows that for
all z ∈ R

p,

(5) 0 6 Fβ(z)− max
16j6p

zj 6 β−1 log p.

This smooth max function arises in the definition of “free energy” in spin
glasses, see, e.g. [45].

We start with the following “warm-up” theorem that conveys main fea-
tures and ideas of the proof. Here and in what follows, for a smooth function
g : R → R, write

Gk := sup
z∈R

|∂kg(z)|, k > 0.

Theorem 2.1 (Comparison of Gaussian to Non-Gaussian Maxima, I). For
every g ∈ C3

b (R) and every β > 0,

|E[g(Fβ(X))− g(Fβ(Y ))]|
. (G3 +G2β +G1β

2)Ē[ max
16j6p

(|xij |3 + |yij|3)]/
√
n,

and hence

|E[g( max
16j6p

Xj)− g( max
16j6p

Y )]|

. (G3 +G2β +G1β
2)Ē[ max

16j6p
(|xij |3 + |yij|3)]/

√
n+ β−1G1 log p.

The theorem first bounds the difference between the expectations of func-
tions of the smooth max functions, and then bounds the difference between
the expectations of functions of the original maxima.

To state the next result we need the following anti-concentration lemma.

Lemma 2.1 (Anti-Concentration). Let ξ1, . . . , ξp be (not necessarily inde-
pendent) N(0, σ2j ) random variables (p > 2) with σ2j > 0 for all 1 6 j 6 p.

Let σ = min16j6p σj and σ̄ = max16j6p σj . Then for every u ∈ (0, 1),

sup
z∈R

P

(
| max
16j6p

ξj − z| 6 u

)
.σ,σ̄ u

√
log(p/u).

When σj are all equal,
√

log(p/u) on the right side can be replaced by
√
log p.

The lemma is a special case of Theorem 1 in [18]. Combining Theorem
2.1 and Lemma 2.1 leads to a bound on the Kolmogorov-Smirnov distance
between the distribution functions of max16j6pXj and max16j6p Yj .

Corollary 2.1 (Central Limit Theorem, I). Suppose that there are some
constants c1 > 0 and C1 > 0 such that c1 6 Ē[x2ij] 6 C1 for all 1 6 j 6 p.
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Then

ρ := sup
t∈R

∣∣∣∣P
(
max
16j6p

Xj 6 t

)
− P

(
max
16j6p

Yj 6 t

)∣∣∣∣

.c1,C1
(log(pn))7/8Ē

[
max
16j6p

(|xij |3 + |yij|3)/
√
n

]1/4
.

Comment 2.1 (Main qualitative feature: logarithmic dependence on p). It
is well known since the work of [22] that the discrete empirical process can be
approximated by the Gaussian process with the same covariance functions
with the error bound depending polynomially on p. In many cases, however,
the main interest is in approximating the supremum of the process, and
the approximation of the whole process is not required. Theorem 2.1 and
Corollary 2.1 imply that the error of approximating the supremum of the
empirical process by the supremum of the Gaussian process depends on
p only through slowly growing, logarithmic term log p. This is the main
qualitative feature of all results presented in this paper. �

While Theorem 2.1 and Corollary 2.1 convey an important qualitative
aspect of the problem and admit easy-to-grasp proofs, an important disad-
vantage of these results is that the bounds depend on the maximum over
1 6 j 6 p inside the expectation:

Ē

[
max
16j6p

(|xij |3 + |yij|3)/
√
n

]
,

which may be unnecessarily large in some applications. Using a truncation
method in conjunction with the proof strategy of Theorem 2.1, we show in
Theorem 2.2 below that we can take the maximum out of the expectation,
and hence replace the above term by

max
16j6p

Ē
[
(|xij |3 + |yij |3)/

√
n
]
.

This greatly improves the bound appearing in Theorem 2.1 and Corollary
2.1 in some applications. The improvement here comes at a cost of a more
involved statement and more delicate regularity conditions involving param-
eters used in the truncation method.

The truncation method we employ is described as follows. Given a thresh-
old level u > 0, define a truncated version of xij by

(6) x̃ij = xij1

{
|xij | 6 u

√
E
[
x2ij

]}
− E

[
xij1

{
|xij | 6 u

√
E[x2ij ]

}]
.

Let ϕ(u) be the infimum, which is attained, over all numbers ϕ > 0 such
that for all 1 6 j 6 p and 1 6 i 6 n,

(7)
(
E
[
x2ij1

{
|xij | > u

√
E[x2ij ]

}])1/2
6
√

E[(xij)2]ϕ.
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Note that the function ϕ(u) is right-continuous. Finally, given a parameter
γ ∈ (0, 1), define δ(u, γ) as the infimum, which is attained, over all δ > 0
such that with probability at least 1− γ, for all 1 6 j 6 p,

(8)
√
En[(xij − x̃ij)2] 6

√
Ē[(xij)2]ϕ(u)(1 + δ).

The truncation construction is done so as to invoke sub-Gaussian tail in-
equalities for self-normalized sums (see Lemma A.8).

Comment 2.2 (On truncation). To illustrate the truncation method at
work, consider the following trivial examples.

(a) Suppose xij are zero-mean and bounded from above in absolute value
by a positive constant C1 > 0 for all 1 6 i 6 n and 1 6 j 6 p. Let

u = C1/mini,j
√

E[x2ij]. Then ϕ(u) = 0 and δ(u, γ) = 0 for all γ ∈ (0, 1).

(b) Suppose that xij are zero-mean sub-Gaussian with parameter C1 > 0,
i.e., P(|xij | > u) 6 exp(1 − u2/C2

1 ) for all u > 0, and E[x2ij] > 0 uniformly

over 1 6 i 6 n and 1 6 j 6 p. Take u = C2(log(pn))
1/2 for a sufficiently

large constant C2 > 0, and γ = 1/n. Then by Lemma A.9 in the Appendix,
ϕ(u) 6 1/(pn)2. By the union bound, with probability at least 1 − γ,

|xij| 6 u(E[x2ij ])
1/2 for all 1 6 i 6 n and 1 6 j 6 p, so that δ(u, γ) = 0. �

Define

M2 := max
16j6p

(Ē[x2ij ])
1/2 and M3 := max

16j6p
(Ē[x3ij])

1/3.

Let φ(z) and Φ(z) denote the density and distribution functions of the stan-
dard Gaussian distribution, respectively. Also define ϕN (u) > 0 by

ϕ2
N (u) =

∫

|z|>u
z2φ(z)dz.

An elementary calculation leads to

ϕ2
N (u) 6 (u2 + 2) exp(1− u2/2).

See Lemma A.9. Here is the main theorem of this section.

Theorem 2.2 (Comparison of Gaussian to Non-Gaussian Maxima, II).

Let β > 0, u > 0 and γ ∈ (0, 1) be such that 2
√
2uβ/

√
n 6 1 and u >√

2 log(2pn/γ). Then for every g ∈ C3
b (R),

|E[g(Fβ(X))− g(Fβ(Y ))]| . Dn(g, β, u, γ),

and hence

|E[g( max
16j6p

Xj)− g( max
16j6p

Yj)]| . Dn(g, β, u, γ) + β−1G1 log p,

where

Dn(g, β, u, γ) := (G3 +G2β +G1β
2)M3

3 /
√
n+ (G2 + βG1)M

2
2 (ϕ(u) + ϕN (u))

+G1M2ϕ(u)(1 + δ(u, γ))
√

log(p/γ) +G0γ.
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Combining Theorem 2.2 and Lemma 2.1 (anti-concentration inequality)
leads to a bound on the Kolmogorov-Smirnov distance between the distri-
bution functions of max16j6pXj and max16j6p Yj. To state the bound on
the Kolmogorov-Smirnov distance in a clean form, we prepare the addi-

tional notation. For a given γ ∈ (0, 1), let u1 = n3/8M
3/4
3 /(log(pn/γ))5/8,

u2 =
√

2 log(2pn/γ), and let u3 > 0 be the smallest number u > 0 such that

(9)
√
n(ϕ(u) + ϕN (u))1/3 6 u(log(pn/γ))5/6.

Note that u3 is well-defined because both ϕ(u) and ϕN (u) are right-continuous
and decreasing.

Corollary 2.2 (Central Limit Theorem, II). For a given γ ∈ (0, 1), deter-
mine u1, u2 and u3 as described above. Let u > u1 ∨ u2 ∨ u3. Suppose that
there are some constants 0 < c1 < C1 such that c1 6 Ē[x2ij] 6 C1 for all

1 6 j 6 p, and δ(u, γ) 6 C1. Then

ρ := sup
t∈R

∣∣∣∣P
(
max
16j6p

Xj 6 t

)
− P

(
max
16j6p

Yj 6 t

)∣∣∣∣

.c1,C1
u(log(pn/γ))3/2/

√
n+ γ.

2.2. Examples of Applications. The purpose of this subsection is to ob-
tain bounds on ρ for various leading examples frequently encountered in
applications. Under primitive conditions, it will be shown that the error ρ
converges to zero at least at a polynomial rate with respect to the sample
size n.

Let c1 > 0, c2 > 0 and C1 > 0 be some constants, and let Bn be a
sequence of positive constants. We allow for the case where Bn → ∞ as
n → ∞. Suppose that one of the following conditions is satisfied for xij
uniformly in 1 6 i 6 n, 1 6 j 6 p, and n > 1:

(E.1) P(|xij | > u) 6 exp(1− u2/C1) for all u > 0, and E[x2ij] > c1;

(E.2) Ē[max16j6p x
4
ij ] 6 C1 and E[x2ij ] > c1;

(E.3) |xij | 6 Bn and E[x2ij] > c1;

(E.4) xij = zijεi with P(|εi| > u) 6 exp(1− u2/C1), zij are nonstochastic,
|zij | 6 Bn, En[z

2
ij ] = 1, and E[ε2i ] > c1;

(E.5) xij = zijεi with Ē[ε4i ] 6 C1, zij are nonstochastic, |zij | 6 Bn,
En[z

2
ij ] = 1, and E[ε2i ] > c1.

The last two cases cover examples that arise in high-dimensional regres-
sion, e.g. [12], which we shall revisit later in the paper. Interestingly, these
cases are also connected to spin glasses, see e.g., [45] and [37] (zij can be
interpreted as generalized products of “spins” and εi as their random “in-
teractions”).

Corollary 2.3 (Central Limit Theorem in Leading Examples with Poly-
nomial Error Bound). Suppose that E[xij] = 0 for all 1 6 i 6 n and
1 6 j 6 p, and Ē[x2ij ] 6 C1 for all 1 6 j 6 p. Moreover, suppose that
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one of the conditions E.1-5 is satisfied, where under conditions E.1-2, sup-
pose that (log(pn))7/n 6 C1n

−c2; and under conditions E.3-5, suppose that
(log(pn))7B2

n/n 6 C1n
−c2. Then there exist constants c > 0 and C > 0

depending only on c1, c2 and C1 such that

sup
t∈R

∣∣∣∣P
(
max
16j6p

Xj 6 t

)
− P

(
max
16j6p

Yj 6 t

)∣∣∣∣ 6 Cn−c.

3. Gaussian Comparisons and Multiplier Theorems

3.1. A Gaussian-to-Gaussian Comparison Theorem. Let V and Y
be zero-mean Gaussian random p-vectors with covariance matrices ΣV and
ΣY , respectively. The purpose of this section is to give an error bound on
the difference of the expectations of smooth functions and the distribution
functions of

max
16j6p

Vj and max
16j6p

Yj

in terms of p and

∆0 := max
16j,k6p

∣∣ΣV
jk − ΣY

jk

∣∣ .

Recall that for a smooth function g : R → R, we write Gk := supz∈R |∂kg(z)|.
Let Fβ be the smooth max function defined in the previous section.

Theorem 3.1 (Comparison of Gaussian Maxima). For every g ∈ C2
b (R)

and every β > 0,

|E[g(Fβ(V ))− g(Fβ(Y ))]| 6 (G2/2 + βG1)∆0,

and hence
∣∣∣∣E
[
g

(
max
16j6p

Vj

)
− g

(
max
16j6p

Yj

)]∣∣∣∣ 6 (G2/2 + βG1)∆0 + 2β−1G1 log p.

Comment 3.1. Minimizing the second bound in β gives
∣∣∣∣E
[
g

(
max
16j6p

Vj

)
− g

(
max
16j6p

Yj

)]∣∣∣∣ 6 G2∆0/2 + 2G1

√
2∆0 log p.

This result extends the work of [14], which derived the following Sudakov-
Fernique type bound on the difference of the expectations of the Gaussian
maxima: ∣∣∣∣E

[
max
16j6p

Vj

]
− E

[
max
16j6p

Yj

]∣∣∣∣ 6 2
√

2∆0 log p.

Here we give bounds on the expectations of functions of Gaussian maxima,
which can be converted into bounds on the difference of the distribution
functions of Gaussian maxima, by taking g as a smooth approximation to
the indicator function. A slightly finer bound can be also obtained; see
equation (24). �
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Corollary 3.1 (Comparison of Distributions of Gaussian Maxima). Suppose
that there are some constants 0 < c1 < C1 such that c1 6 ΣY

jj 6 C1 for all
1 6 j 6 p. Moreover, suppose that ∆0 6 1. Then

sup
t∈R

∣∣∣∣P
(
max
16j6p

Vj 6 t

)
− P

(
max
16j6p

Yj 6 t

)∣∣∣∣ .c1,C1
∆

1/3
0 (log(p/∆0))

2/3.

Comment 3.2. The main contribution of this corollary is that the bound on
the Kolmogorov-Smirnov distance between the maxima of Gaussian random
p-vectors depends on p only through slowly growing log p. �

3.2. Gaussian Multiplier Theorem. Let (xi)
n
i=1 be a sequence of zero-

mean p-vector of random variables where xi = (xij)
p
j=1, and let (ei)

n
i=1 be

a sequence of N(0, 1) random variables independent of (xi)
n
i=1. Recall that

we have defined

T0 = max
16j6p

n∑

i=1

xij/
√
n and W0 = max

16j6p

n∑

i=1

xijei/
√
n.

In this section, we derive the Kolmogorov-Smirnov distance between T0 and
W0 where the distribution of W0 is taken conditional on (xi)

n
i=1. We show

that the key quantity driving the difference between the two quantities is the
maximum difference between empirical and population covariance matrices:

∆ = max
16j,k6p

∣∣En[xijxik]− Ē[xijxik]
∣∣ .

Another key quantity is

ρ = sup
t∈R

|P(T0 6 t)− P(Z0 6 t)| ,

where Z0 = max16j6p
∑n

i=1 yij/
√
n and y = (yi)

n
i=1 is a sequence of inde-

pendent N(0,E[xix
′
i]) vectors.

Corollary 3.2 (Comparison of conditional Gaussian to non-Gaussian max-
ima). Suppose that there are some constants 0 < c1 < C1 such that c1 6
Ē[x2ij ] 6 C1 for all 1 6 j 6 p. Then there exists a constant C > 0 depending

only on c1 and C1 such that for every ϑ ∈ (0, e−2), with probability at least
P(∆ 6 ϑ),

sup
t∈R

|P (T0 6 t)− Pe (W0 6 t)| 6 ρ+Cϑ1/3(log(p/ϑ))2/3.

Comment 3.3. Corollary 3.2 can be viewed as a set of new symmetrization
inequalities with an explicit error bound. In the asymptotic regime where we
can make the error bound asymptotically negligible, Corollary 3.2 provides
a multiplier central limit theorem. �
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4. Multiplier Bootstrap

4.1. Multiplier Bootstrap Theorems. Suppose that we have a dataset
(xi)

n
i=1 consisting of n independent zero-mean random p-vectors xi. In this

section we are interested in approximating quantiles of

(10) T0 = max
16j6p

n∑

i=1

xi/
√
n

using the multiplier bootstrap method. More precisely, let (ei)
n
i=1 be an

i.i.d. sequence of N(0, 1) random variables independent of (xi)
n
i=1, and let

(11) W0 = max
16j6p

n∑

i=1

xijei/
√
n.

Then we define the multiplier bootstrap estimator of the α-quantile of T0 as
the conditional α-quantile of W0 given (xi)

n
i=1, i.e.,

cW0
(α) := inf{t ∈ R : Pe(W0 6 t) > α},

where Pe is the probability measure induced by the multiplier variables
(ei)

n
i=1 holding (xi)

n
i=1 fixed (i.e., Pe(W0 6 t) = P(W0 6 t | (xi)ni=1)). The

multiplier bootstrap theorem below provides a non-asymptotic bound on the
bootstrap estimation error:

|P(T0 6 cW0
(α))− α| .

Before presenting the theorem, we first give a simple lemma that is used
in the proof of the theorem. The lemma is also useful for power analysis.
Define

cZ0
(α) := inf{t ∈ R : P(Z0 6 t) > α},

where Z0 = max16j6p
∑n

i=1 yij/
√
n and y = (yi)

n
i=1 is a sequence of inde-

pendent N(0,E[xix
′
i]) vectors. Recall that

∆ = max
16j,k6p

∣∣En[xijxik]− Ē[xijxik]
∣∣ .

Lemma 4.1 (Comparison of Quantiles, I). Suppose that there are some
constants 0 < c1 < C1 such that c1 6 Ē[x2ij ] 6 C1 for all 1 6 j 6 p. Then

for every ϑ ∈ (0, e−2) and α ∈ (0, 1),

P(cW0
(α) 6 cZ0

(α + v(ϑ))) > P(∆ 6 ϑ),

P(cZ0
(α) 6 cW0

(α + v(ϑ))) > P(∆ 6 ϑ),

where v(ϑ) := C2ϑ
1/3(log(p/ϑ))2/3 and C2 > 0 is a constant depending only

on c1 and C1.

Recall that

ρ = sup
t∈R

|P(T0 6 t)− P(Z0 6 t)| .

We are now in position to state the main theorem of this section.
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Theorem 4.1 (Validity of Multiplier Bootstrap, I). Suppose that there are
some constants 0 < c1 < C1 such that c1 6 Ē[x2ij ] 6 C1 for all 1 6 j 6 p.

Then for every ϑ ∈ (0, e−2),

sup
α∈(0,1)

|P(T0 6 cW0
(α))− α| 6 ρ+ C2ϑ

1/3(log(p/ϑ))2/3 + P(∆ > ϑ),

where C2 > 0 is a constant that appears in Lemma 4.1.

Theorem 4.1 provides a useful result for the case where the statistics are
maxima of exact averages. There are many applications, however, where
the relevant statistics arise as maxima of approximate averages. The follow-
ing result shows that the theorem continues to apply if the approximation
error of the relevant statistic by a maximum of an exact average can be
suitably controlled. Specifically, suppose that a statistic of interest, say
T = T (x1 . . . , xn) which may not be of the form (10), can be approximated
by T0 of the form (10), and that the multiplier bootstrap is performed on
a statistic W =W (x1, . . . , xn, e1, . . . , en), which may be different from (11)
but still can be approximated byW0 of the form (11). The “approximation”
here is the following sense: there exist ζ1 > 0 and ζ2 > 0, depending on n
(and typically ζ1 → 0, ζ2 → 0 as n→ ∞), such that

P(|T − T0| > ζ1) < ζ2,(12)

P(Pe(|W −W0| > ζ1) > ζ2) < ζ2.(13)

We use the α-quantile of W = W (x1, . . . , xn, e1, . . . , en), computed condi-
tional on (xi)

n
i=1:

cW (α) := inf{t ∈ R : Pe(W 6 t) > α},
as an estimate of the α-quantile of T . We are interested in establishing that
the bootstrap estimation error approaches zero.

The following lemma will be helpful. The lemma is also useful for power
analysis.

Lemma 4.2 (Comparison of Quantiles, II). Suppose that condition (13) is
satisfied. Then for every α ∈ (0, 1),

P(cW (α) 6 cW0
(α+ ζ2) + ζ1) > 1− ζ2,

P(cW0
(α) 6 cW (α+ ζ2) + ζ1) > 1− ζ2.

Theorem 4.2 (Validity of Multiplier Bootstrap, II). Suppose that there are
some constants 0 < c1 < C1 such that c1 6 Ē[x2ij ] 6 C1 for all 1 6 j 6 p.

Moreover, suppose that conditions (12) and (13) are satisfied. Then for
every ϑ ∈ (0, e−2),

sup
α∈(0,1)

|P(T 6 cW (α))− α|

6 ρ+ C2ϑ
1/3(log(p/ϑ))2/3 + P(∆ > ϑ) + C3ζ1

√
log(p/ζ1) + ζ2,
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where C2 > 0 is a constant that appears in Lemma 4.1, and C3 > 0 is a
constant depending only on c1 and C1.

4.2. Examples of Applications: Revisited. Here we revisit the exam-
ples in Section 2.2 and see how the multiplier bootstrap works for these
leading examples. Let, as before, c1 > 0, c2 > 0 and C1 > 0 be some con-
stants, and let Bn be a sequence of positive constants. Recall conditions
E.1-5 in Section 2.2.

Corollary 4.1 (Multiplier Bootstrap in Leading Examples with Polynomial
Error Bound). Suppose that E[xij ] = 0 for all 1 6 i 6 n and 1 6 j 6 p;
Ē[x2ij ] 6 C1 for all 1 6 j 6 p; and conditions (12) and (13) are satisfied with

ζ1
√
log p + ζ2 6 C1n

−c2. Moreover, suppose that one of the conditions E.1-
5 is satisfied, where under conditions E.1-2, suppose that (log(pn))7/n 6
C1n

−c2; under conditions E.3-5, suppose that (log(pn))7B2
n/n 6 C1n

−c2;
and finally, under condition E.5, suppose that (log p)6B4

n/n 6 C1n
−c2. Then

there exist constants c > 0 and C > 0 depending only on c1, c2 and C1 such
that

sup
α∈(0,1)

|P(T 6 cW (α)) − α| 6 Cn−c.

Comment 4.1. This corollary shows that the multiplier bootstrap is valid
with a polynomial rate of accuracy for the significance level under very
weak conditions. This is in contrast with the extremal theory of Gaussian
processes that provides only a logarithmic rate of approximation (see, for
example, [34]). �

5. Application: Dantzig Selector in the Non-Gaussian Model

The purpose of this section is to demonstrate the case with which the CLT
and the multiplier bootstrap theorem given in Corollaries 2.3 and 4.1 can be
applied in important problems, dealing with a high-dimensional inference
and estimation. We consider the Dantzig selector previously studied in the
path-breaking works of [12] and [9] in a Gaussian setting and of [32] in a
sub-Gaussian setting. Here we consider the non-Gaussian case, where the
errors have only four bounded moments, and derive the performance bounds
that are approximately as sharp as in the Gaussian model. We give results
for both homoscedastic and heteroscedastic models.

5.1. Homoscedastic case. Let (zi, yi)
n
i=1 be a sample of independent ob-

servations where zi is a nonstochastic p-vector of regressors. We consider
the model

yi = z′iβ + εi, E[εi] = 0, i = 1, . . . , n, En[z
2
ij ] = 1, j = 1, . . . , p,

where yi is a random scalar dependent variable, and the regressors are nor-
malized to have unitary second moments. Here we consider the homoscedas-
tic case:

E[ε2i ] = σ2, i = 1, . . . , n,
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where σ is assumed to be known (for simplicity). We allow p to be substan-
tially larger than n. It is well known that a condition that gives a good per-
formance for the Dantzig selector is that β is sparse, namely ‖β‖0 6 s� n
(although this assumption will not be invoked below explicitly).

The aim is to estimate the vector β in some semi-norms of interest: ‖ · ‖I .
For example, given an estimator β̂ the prediction semi-norm for δ = β̂ − β
is

‖δ‖pr =
√

En[(z′iδ)
2],

or the j-th component seminorm for δ is

‖δ‖jc = |δj |,
and so on. The label I designates the name of a norm of interest.

The Dantzig selector is the estimator defined by

(14) β̂ ∈ arg min
b∈Rp

‖b‖`1 subject to
√
n max

16j6p
|En[zij(yi − z′ib)]| 6 λ,

where ‖β‖`1 =
∑p

j=1 |βj | is the `1-norm. An ideal choice of the penalty level
λ is meant to ensure that

T0 :=
√
n max

16j6p
|En[zijεi]| 6 λ

with a prescribed probability 1−α. Hence we would like to set penalty level
λ equal to

cT0
(1− α) := (1− α)-quantile of T0,

(note that zi are treated as fixed). Indeed, this penalty would take into
account the correlation amongst the regressors, thereby adapting the per-
formance of the estimator to the design condition. We can approximate this
quantity using the central limit theorems derived in Section 2. Specifically,
let

Z0 := σ
√
n max

16j6p
|En[zijei]|,

where ei are i.i.d. N(0, 1) random variables independent of the data. We
then estimate cT0

(1− α) by

cZ0
(1− α) := (1− α)-quantile of Z0.

Note that we can calculate cZ0
(1−α) numerically with any specified precision

by the simulation. (In a Gaussian model, design-adaptive penalty level
cZ0

(1−α) was proposed in [6], but its extension to non-Gaussian cases was
not available up to now).

An alternative choice of the penalty level is given by

c0(1− α) := σΦ−1(1− α/2p),

which is the canonical choice; see [12] and [9]. Note that canonical choice
c0(1−α) disregards the correlation amongst the regressors, and is therefore
more conservative than cZ0

(1−α). Indeed, by the union bound, we see that

cZ0
(1− α) 6 c0(1− α).
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Our first result below shows that the either of the two penalty choices,
λ = cZ0

(1 − α) or λ = c0(1 − α), are approximately valid under non-
Gaussian noise–under the mild moment assumption E[ε4i ] 6 const. replacing
the canonical Gaussian noise assumption. To derive this result we apply our
CLT to T0 to establish that the difference between distribution functions
of T0 and Z0 approaches zero at polynomial speed. Indeed T0 can be rep-
resented as a maximum of averages, T0 = max16k62p n

−1/2
∑n

i=1 z̃ikεi, for
z̃i = (z′i,−z′i)′, and therefore our CLT applies.

To derive the bound on estimation error ‖δ‖I in a seminorm of interest,
we employ the following identifiability factor:

κI(β) := inf
δ∈Rp

{
max
16j6p

|En[zij(z
′
iδ)]|

‖δ‖I
: δ ∈ R(β), ‖δ‖I 6= 0

}
,

where R(β) := {δ ∈ R
p : ‖β + δ‖`1 6 ‖β‖`1} is the restricted set; κI(β) is

defined as ∞ if R(β) = {0} (this happens if β = 0). The factors summarize
the impact of sparsity of true parameter value β and the design on the
identifiability of β with respect to the norm ‖ · ‖I .

Comment 5.1 (A comment on the identifiability factor κI(β)). The identi-
fiability factors κI(β) depend on the true parameter value β. This is not the
main focus of this section, but we note that these factors represent a modest
generalization of the cone invertibility factors and sensitivity characteristics
defined in [46] and [25], which are known to be quite general. The main dif-
ference perhaps is the use of a norm of interest ‖ · ‖I instead of the `q norms
and the use of smaller (non-conic) restricted set R(β) in the definition. It
is useful to note for later comparisons that in the case of prediction norm
‖ · ‖I = ‖ · ‖pr and under the exact sparsity assumption ‖β‖0 6 s, we have

(15) κpr(β) > 2−1s−1/2κ(s, 1),

where κ(s, 1) is the restricted eigenvalue defined in [9]. �

The following result states bounds on the estimation error for the Dantzig

selector β̂(0) with canonical penalty level λ = λ(0) := c0(1 − α) and the

Dantzig selector β̂(1) with design-adaptive penalty level λ = λ(1) := cZ0
(1−

α).

Theorem 5.1 (Performance of Dantzig Selector in Non-Gaussian Model).
Suppose that there are some constants c1 > 0, C1 > 0 and σ2 > 0, and a
sequence Bn of positive constants such that for all 1 6 i 6 n, 1 6 j 6 p, and
n > 1: (i) |zij | 6 Bn; (ii) En[z

2
ij ] = 1; (iii) E[ε2i ] = σ2; (iv) E[|εi|4] 6 C1;

and (v) (log(pn))7B2
n/n 6 C1n

−c1. Then there exist constants c > 0 and
C > 0 depending only on c1, C1 and σ2 such that, with probability at least
1− α− Cn−c, for either k = 0 or 1,

‖β̂(k) − β‖I 6
2λ(k)√
nκI(β)

.
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The most important feature of this result is that it provides Gaussian-like
conclusions (as explained below) in a model with non-Gaussian noise, having
bounded fourth moment. Note however that the probabilistic guarantee is
not 1− α as, e.g., in [9], but rather 1− α−Cn−c, which reflects the cost of
non-Gaussianity. In what follows we discuss details of this result. Note that
the bound above holds for any semi-norm of interest ‖ · ‖I .
Comment 5.2 (Improved Performance from Design-Adaptive Penalty Level).
The use of the design-adaptive penalty level implies a better performance

guarantee for β̂(1) over β̂(0). Indeed, we have

2cZ0
(1− α)√
nκI(β)

6
2c0(1− α)√
nκI(β)

.

For example, in some designs, we can have
√
nmax16j6p |En[zijgi]| = OP(1),

so that cZ0
(1 − α) = O(1), whereas c0(1 − α) grows at the rate of

√
log p.

Thus, the performance guarantee provided by β̂(1) can be much better than

that of β̂(0). �

Comment 5.3 (Relation to the previous results under Gaussianity). To
compare to the previous results obtained for the Gaussian settings, let us

focus on the prediction norm and on estimator β̂(1) with penalty level λ =
cZ0

(1− α). In this case, with probability at least 1− α− Cn−c,

(16) ‖β̂(1) − β‖pr 6
2cZ0

(1− α)√
nκpr(β)

6
4
√
sc0(1− α)√
nκ(s, 1)

6
4
√
s
√

2 log(α/(2p))√
nκ(s, 1)

,

where the last bound is the same as in [9], Theorem 7.1, obtained for the
Gaussian case. We recover the same (or tighter) upper bound without mak-
ing the Gaussianity assumption on the errors. However, the probabilistic
guarantee is not 1− α as in [9], but rather 1− α− Cn−c, which is the cost
of non-Gaussianity. �

Comment 5.4 (Other refinements). Unrelated to the main theme of this
paper, we can see from (16), that there is some tightening of the performance
bound due to the use of the identifiability factor κpr(β) in place of the
restricted eigenvalue κ(s, 1); for example, if p = 2 and s = 1 and the two
regressors are identical, then κpr(β) > 0, whereas κ(1, 1) = 0. There is also
some tightening due to the use of cZ0

(1−α) instead of c0(1−α) as penalty
level, as mentioned above. �

5.2. Heteroscedastic case. We consider the same model as above, except
now the assumption on the error becomes

σ2i := E[ε2i ] 6 σ2, i = 1, . . . , n,

i.e., σ2 is the upper bound on the conditional variance, and we assume that
this bound is known (for simplicity). As before, ideally we would like to set
penalty level λ equal to

cT0
(1− α) := (1− α)-quantile of T0,
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(where T0 is defined above, and we note that zi are treated as fixed). The
CLT applies as before, namely the difference of the distribution functions of
T0 and its Gaussian analog Z0 converges to zero. In this case, the Gaussian
analog can be represented as

Z0 :=
√
n max

16j6p
|En[zijσiei]|.

Unlike in the homoscedastic case, the covariance structure is no longer
known, since σi are unknown and we can no longer calculate the quan-
tiles of Z0. However, we can estimate them using the following multiplier
bootstrap procedure.

First, we estimate the residuals ε̂i = yi−z′iβ̂0 obtained from a preliminary

Dantzig selector β̂(0) with the conservative penalty level λ = λ0 := c0(1 −
1/n) := σΦ−1(1− 1/(2pn)), where σ2 here is the upper bound on the error
variance assumed to be known. Let (ei)

n
i=1 be an i.i.d. sequence of N(0, 1)

random variables, and let

W :=
√
n max

16j6p
|En[zij ε̂iei]|.

Then we estimate cZ0
(1− α) by

cW (1− α) := (1− α)-quantile of W,

defined conditional on data (zi, yi)
n
i=1. Note that cW (1−α) can be calculated

numerically with any specified precision by the simulation. Then we apply

program (14) with λ = λ1 = cW (1− α) to obtain β̂(1).

Theorem 5.2 (Performance of Dantzig in Non-Gaussian Model with Boot-
strap Penalty Level). Suppose that there are some constants c1 > 0, C1 >
0, σ2 > 0 and σ2 > 0, and a sequence Bn of positive constants such that
for all 1 6 i 6 n, 1 6 j 6 p, and n > 1: (i) |zij | 6 Bn; (ii) En[z

2
ij ] = 1;

(iii) σ2 6 E[ε2i ] 6 σ2; (iv) E[|εi|4] 6 C1; (v) (log(pn))7B4
n/n 6 C1n

−c1;
and (vi) (log p)Bnc0(1 − 1/n)/(

√
nκpr(β)) 6 C1n

−c1. Then there exist con-
stants c > 0 and C > 0 depending only on c1, C1, σ

2 and σ2 such that, with
probability at least 1− α− νn where νn = Cn−c, we have

(17) ‖β̂(1) − β‖I 6
2λ(1)√
nκI(β)

.

Moreover, with probability at least 1− νn,

λ(1) = cW (1− α) 6 cZ0
(1− α+ νn),

where cZ0
(1−a) := (1− a)-quantile of Z0; in particular cZ0

(1−a) 6 c0(1−
a).

5.3. Some Extensions. Here we comment on some additional potential
applications.

Comment 5.5 (Confidence Sets). Note that bounds given in the preceding
theorems can be used for inference on β or components of β, given the



20 CHERNOZHUKOV, CHETVERIKOV AND KATO

assumption κI(β) > κ, where κ is a known constant. For example, consider
inference on the j-th component βj of β. In this case, we set the norm
of interest ‖δ‖I to be ‖δ‖jc = |δj | on R

p, and consider the corresponding
identifiability factor κjc(β). Suppose it is known that κjc(β) > κ. Then a
(1− α− Cn−c)-confidence interval for βj is given by

{b ∈ R : |β̂(1)j − b| 6 2λ(1)/(
√
nκ)}.

This confidence set is of interest, but it does require the investigator to make
a stance on what a plausible κ should be. We refer to [25] for possible ways
of computing lower bounds on κ; there is also a work by [30], which provides
computable lower bounds on related quantities. �

Comment 5.6 (Generalization of Dantzig Selector). There are many in-
teresting applications where the results given above apply. There are, for
example, interesting works by [2] and [24] that consider related estimators
that minimize a convex penalty subject to the multiresolution screening
constraints. In the context of the regression problem studied above, such
estimators may be defined as:

β̂ ∈ arg min
b∈Rp

J(b) subject to
√
n max

16j6p
|En[zij(yi − z′ib)]| 6 λ,

where J is a convex penalty, and the constraint is used for multiresolution
screening. For example, the Lasso estimator is nested by the above formu-
lation by using J(b) = ‖b‖pr, and the previous Dantzig selector by using
J(b) = ‖b‖`1 . The estimators can be interpreted as a point in confidence set
for β, which lies closest to zero under J-discrepancy. Our results on choosing
λ apply to this class of estimators, and the previous analysis also applies
by redefining the identifiability factor κI(β) relative to the new restricted
set R(β) := {δ ∈ R

p : J(β + δ) 6 J(β)}; where κI(β) is defined as ∞ if
R(β) = {0}. �

6. Application: Multiple Hypothesis Testing

In this subsection, we study the problem of multiple hypothesis testing
in the framework of multiple linear regressions. (Note that the problem of
testing multiple means is a special case of testing multiple regressions.) We
combine a general stepdown procedure described in [41] with the multiplier
bootstrap developed in this paper. In contrast with [41], our results do not
require weak convergence arguments, and, thus, can be applied to models
with increasing numbers of both parameters and regressions. Notably, the
number of regressions can be exponentially large in the sample size.

Let (zi, yi)
n
i=1 be a sample of independent observations where zi is a p-

vector of nonstochastic covariates and yi is a K-vector of dependent random
variables. For each k = 1, . . . ,K, let Ik ⊂ {1, . . . , p} be a subset of covariates
used in the k-th regression. Denote by |Ik| = pk the number of covariates
in the k-th regression, and let p̄ = max16k6K pk. Let vik be a subvector
of zi consisting of those elements of zi whose indices appear in Ik: vik =
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(zij)j∈Ik . We denote components of vik by vikj, j = 1, . . . , pk. Without loss
of generality, we assume that Ik∩Ik′ = ∅ for all k 6= k′ and

∑
16k6K pk = p.

For each k = 1, . . . ,K, consider the linear regression model

yik = v′ikβk + εik, i = 1, . . . , n.

where βk ∈ R
pk is an unknown parameter of interest, and (εik)

n
i=1 is a

sequence of independent zero-mean unobservable scalar random variables.
We allow for triangular array asymptotics so that everything in the model,
and, in particular, the number of regressions K and the dimensions of the
parameters βk and pk, may depend on n. For brevity, however, we omit
index n. We are interested in simultaneous testing the set of null hypotheses
Hkj : βkj = 0 against the alternatives H ′

kj : βkj 6= 0, (k, j) ∈ W0 for some
set of pairs W0 where βkj denotes the jth component of βk, with the strong
control of the family-wise error rate. In other words, we seek a procedure
that would reject at least one true null hypothesis with probability not
greater than 1 − α + o(1) uniformly over the set of true null hypotheses.
More formally, let Ω be a set of all data generating processes, and ω be the
true process. Each null hypothesis Hkj is equivalent to ω ∈ Ωkj for some
subset Ωkj of Ω. Let W denote the set of all pairs (k, j) with k = 1, . . . ,K
and j = 1, . . . , pk:

W = {(k, j) : k = 1, . . . ,K; j = 1, . . . , pk}.
For a subset w ⊂ W let Ωw = (∩(k,j)∈wΩkj) ∩ (∩(k,j)/∈wΩ

c
kj) where Ωc

kj =

Ω\Ωkj. The strong control of the family-wise error rate means

(18) sup
w⊂W

sup
ω∈Ωw

P{reject at least one hypothesis among Hkj, (k, j) ∈ w}

6 α+ o(1).

This setting is clearly of interest in many empirical studies.
Our approach is based on the simultaneous analysis of t-statistics for

each component βkj . Let xik = (En[vikv
′
ik])

−1vik. Then the OLS estimator

β̂k of βk is given by β̂k = En[xikyik]. The corresponding residuals are ε̂ik =

yik−v′ikβ̂, i = 1, . . . , n. Since (xik)
n
i=1 is nonstochastic, the covariance matrix

of β̂k is given by V (β̂k) = En[xikx
′
ikσ

2
ik]/n where σ2ik = E[ε2ik], i = 1, . . . , n.

The t-statistic for testing Hkj against H ′
kj is tkj := |β̂kj |/

√
V̂ (β̂k)jj where

V̂ (β̂k) = En[xikx
′
ikε̂

2
ik]/n. Also define

t0kj :=
|
∑n

i=1 xikjεik/
√
n|√

En[x2ikj ε̂
2
ik]

.

Note that tkj = t0kj under the hypothesis Hkj.

The stepdown procedure of [41] is described as follows. For a subset
w ⊂ W, let c1−α,w be some estimator of the (1−α)-quantile of max(k,j)∈w t

0
kj.

On the first step, let w(1) = W0. Reject all hypotheses Hkj satisfying
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tkj > c1−α,w(1). If no null hypothesis is rejected, then stop. If some Hkj

are rejected, then let w(2) be the set of all null hypotheses that were not
rejected on the first step. On step l > 2, let w(l) ⊂ W be the subset of null
hypotheses that were not rejected up to step l. Reject all hypotheses Hkj,
(k, j) ∈ w(l), satisfying tkj > c1−α,w(l). If no null hypothesis is rejected,
then stop. If some Hkj are rejected, then let w(l + 1) be the subset of all
null hypotheses among (k, j) ∈ w(l) that were not rejected. Proceed in this
way until the algorithm stops.

[41] proved the following result. Suppose that c1−α,w satisfies

c1−α,w′ 6 c1−α,w′′ whenever w′ ⊂ w′′,(19)

sup
w⊂W

sup
ω∈Ωw

P

(
max

(k,j)∈w
t0kj > c1−α,w

)
6 α+ o(1),(20)

then inequality (18) holds. Indeed, let w be the set of true null hypotheses.
Suppose that the procedure rejects at least one of these hypotheses. Let l
be the step when the procedure rejected a true null hypothesis for the first
time, and let Hk0j0 be this hypothesis. Clearly, we have w(l) ⊃ w. So,

max
(k,j)∈w

t0kj > t0k0j0 = tk0j0 > c1−α,w(l) > c1−α,w.

Combining this chain of inequalities with (20) yields (18).
To obtain suitable c1−α,w that satisfies inequalities (19) and (20) above,

we can use the multiplier bootstrap method. Let (ei)
n
i=1 be an i.i.d. sequence

of N(0, 1) random variables that are independent of the data. Let c1−α,w be
the conditional (1− α)-quantile of

(21) max
(k,j)∈w

|∑n
i=1 xikj ε̂ikei/

√
n|√

En[x2ikj ε̂
2
ik]

given (zi, yi)
n
i=1. To prove that so defined critical values c1−α,w satisfy in-

equalities (19) and (20), we will assume the following regularity condition,

(M) There are some constants c1 > 0, σ̄2 > 0, σ2 > 0 and a sequence Bn

of positive constants such that for 1 6 i 6 n, 1 6 j 6 p, 1 6 k 6 K,
1 6 l 6 pk, and n > 1: (i) |zij | 6 Bn and Bn > c1; (ii) En[(zij)

2] = 1;
(iii) σ2 6 E[ε2ik] 6 σ̄2; (iv) the minimum eigenvalue of En[vikv

′
ik] is

bounded from below by c1; and (v) En[x
2
ikl] > c1.

Theorem 6.1 (Strong Control of Family-Wise Error Rate). Let C1 > 0 be
some constant and suppose that assumption M is satisfied, and p̄B2

n(log(pn))
7/n =

o(1). Moreover, suppose either (a) E[max16k6K ε4ik] 6 C1 for all 1 6 i 6 n,
p̄3B4

n(log p)
4/n = o(1), and p̄2B4

n(log p)
6/n = o(1) or (b) P(|εik| > u) 6

exp(1−u2/C1) for all 1 6 i 6 n and 1 6 k 6 K and p̄3B2
n(log p)

3/n = o(1).
Then the stepdown procedure with the multiplier bootstrap critical values
c1−α,w given above satisfies (18).

Comment 6.1 (Relation to prior results). There is a vast literature on
multiple hypothesis testing. Let us consider the simple case where K =
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p, pk = 1 for all k = 1, . . . ,K and vik = 1, so that the k-th regression
reduces to yik = βk + εik (here βk is scalar). The problem then reduces
to testing multiple means (without stepdown). It is instructive to see the
implication of Theorem 6.1 in this simple setting. Denote by t0k the t-statistic
for testing Hk : βk = 0 against H ′

k : βk 6= 0, and let c1−α be the conditional
(1− α)-quantile of

max
k=1,...,p

|∑n
i=1 ε̂ikei/

√
n|√

En[ε̂
2
ik]

,

where ε̂ik = yik − ȳk, ȳk = En[yik], and (ei)
n
i=1 is a sequence of i.i.d. N(0, 1)

random variables independent of the data. Theorem 6.1 implies that, when
Hk are true for all k, P(max16k6p t

0
k > c1−α) 6 α+o(1) (indeed, the inequal-

ity “6” can be replaced by the equality “=”) uniformly in the underlying

distribution provided that σ2 6 E[ε2ik] 6 σ̄2, log p = o(n1/7) and either
(a) E[max16k6p ε

4
ik] 6 C1 or (b) P(|εik| > u) 6 exp(1 − u2/C1). Hence

the multiplier bootstrap as described above leads to an asymptotically exact
testing procedure for the multiple hypothesis testing problem of which the
logarithm of the number of hypotheses is nearly of order n1/7 (subject to the
prescribed assumptions). Note here that no assumption on the dependency
structure between yi1, . . . , yip is made.

The question on how large p can be was studied in [23] but from a con-
servative perspective. The motivation there is to know how fast p can grow
to maintain the size of the simultaneous test when we calculate critical
values (conservatively) ignoring the dependency among t0k and assuming
that t0k were distributed as, say, N(0, 1). This framework is conservative in
that correlation amongst statistics is dealt away with union bounds, namely
Bonferroni-Holm procedures. On the other hand, our approach takes into
account the correlation amongst statistics and hence is asymptotically exact,
that is, asymptotically non-conservative. �

7. Application: Adaptive Specification Testing

In this section, we study the problem of adaptive specification testing.
Let (vi, yi)

n
i=1 be a sample of independent random pairs where yi is a scalar

dependent random variable, and vi is a d-vector of nonstochastic covariates.
The null hypothesis, H0, is that there exists β ∈ R

d such that

(22) E[yi] = v′iβ; i = 1, . . . , n.

The alternative hypothesis, Ha, is that there is no β satisfying (22). We
allow for triangular array asymptotics so that everything in the model may
depend on n. For brevity, however, we omit index n.

Denote εi = yi − E[yi], i = 1, . . . , n. Then E[εi] = 0, and under H0, yi =
v′iβ+εi. To test H0, consider a set of test functions Pj(vi), j = 1, . . . , p. Let
zij = Pj(vi). We choose test functions so that En[zijvi] = 0 and En[z

2
ij ] = 1

for all j = 1, . . . , p. In our analysis, p may be higher or even much higher



24 CHERNOZHUKOV, CHETVERIKOV AND KATO

than n. Let β̂ = (En[viv
′
i])

−1(En[viyi]) be an OLS estimator of β, and let

ε̂i = yi − z′iβ̂; i = 1, . . . , n be corresponding residuals. Our test statistic is

T := max
16j6p

|
∑n

i=1 zij ε̂i/
√
n|√

En[z2ij ε̂
2
i ]

.

The test rejects H0 if T is significantly large.
Note that since En[zijvi] = 0, we have

n∑

i=1

zij ε̂i/
√
n =

n∑

i=1

zij(εi + v′i(β − β̂))/
√
n =

n∑

i=1

zijεi/
√
n.

Therefore, under H0,

T = max
16j6p

|∑n
i=1 zijεi/

√
n|√

En[z2ij ε̂
2
i ]

.

This suggests that we can use the multiplier bootstrap to obtain a critical
value for the test. More precisely, let (ei)

n
i=1 be an i.i.d. sequence of in-

dependent N(0, 1) random variables that are independent of the data, and
let

W := max
16j6p

|∑n
i=1 zij ε̂iei/

√
n|√

En[z2ij ε̂
2
i ]

.

The multiplier bootstrap critical value cW (1−α) is the conditional (1−α)-
quantile of W given the data. To prove the validity of multiplier bootstrap,
we will impose the following condition:

(S) There are some constants c1 > 0, C1 > 0, σ̄2 > 0, σ2 > 0, and
a sequence Bn of positive constants such that for all 1 6 i 6 n,
1 6 j 6 p, 1 6 k 6 d, and n > 1: (i) |zij | 6 Bn; (ii) En[z

2
ij ] = 1; (iii)

σ2 6 E[ε2i ] 6 σ̄2; (iv) |vik| 6 C1; (v) d 6 C1; and (vi) the minimum
eigenvalue of En[viv

′
i] is bounded from below by c1.

Theorem 7.1 (Size Control of Adaptive Specification Test). Let c2 > 0 be
some constant. Suppose that assumption S is satisfied, and (log(pn))7B2

n/n 6
C1n

−c2. Moreover, suppose that either (a) E[ε4i ] 6 C1 for all 1 6 i 6 n and
(log p)6B4

n/n 6 C1n
−c2 or (b) P(|εi| > u) 6 exp(1−u2/C1) for all 1 6 i 6 n.

Then there exist constants c > 0 and C > 0, depending only on c1, c2, C1, σ
2

and σ̄2, such that under H0, |P(T 6 cW (1− α))− (1− α)| 6 Cn−c.

Comment 7.1. The literature on specification testing is large. In particu-
lar, [29] and [28] developed adaptive tests that are suitable for inference in
L2-norm. In contrast, our test is most suitable for inference in sup-norm. An
advantage of our procedure is that selecting a wide class of test functions
leads to a test that can effectively adapt to a wide range of alternatives,
including those that can not be well-approximated by Hölder-continuous
functions. �
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Appendix A. Preliminaries

A.1. A Useful Maximal Inequality. The following lemma is a useful
variation on standard maximal inequalities.

Lemma A.1 (Maximal Inequality). Consider a sequence (xi)
n
i=1 of inde-

pendent random p-vectors (p > 2). Let M = max16i6nmax16j6n |xij | and
σ2 = max16j6p Ē[x

2
ij ]. Then

E

[
max
16j6p

|En[xij ]− Ē[xij ]|
]
. σ

√
(log p)/n+

√
E[M2](log p)/n.

Proof. Throughout the proof, let (yi)
n
i=1 be an independent copy of (xi)

n
i=1,

and let (εi)
n
i=1 be an i.i.d. sequence of Rademacher random variables inde-

pendent of everything else.
Step 1. We first prove

(23) E[ max
16j6p

En[|xij |]] . E[M ](log p)/n+ max
16j6p

Ē[|xij |].

Observe that

I := E[ max
16j6p

En[|xij |]] 6 E[ max
16j6p

|En[|xij |]− Ē[|xij |]|] + max
16j6p

Ē[|xij |]

= E[ max
16j6p

|En[|xij |]− E[En[|yij |]]|] + max
16j6p

Ē[|xij |]

6 E[ max
16j6p

|En[|xij |]− En[|yij |]|] + max
16j6p

Ē[|xij |]

6 E[ max
16j6p

|En[εi(|xij | − |yij|)]|] + max
16j6p

Ē[|xij |]

6 2E[ max
16j6p

|En[εi|xij |]|] + max
16j6p

Ē[|xij |],

Further, using Pisier inequality conditional on (xi)
n
i=1, we have

E[ max
16j6p

|En[εi|xij |]|] .
√

(log p)/nE[ max
16j6p

(En[|xij |2])1/2]

6
√

(log p)/nE[ max
16j6p

(MEn[|xij |])1/2]

6
√

((log p)/n)E[M ]E[ max
16j6p

En[|xij |]],

where the last step follows from the Cauchy-Schwarz inequality. Hence I .

a
√
I+b, where a =

√
E[M ](log p)/n and b = max16j6p Ē[|xij |]. Solving this

inequality gives (23).
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Step 2. We now prove the claim of the lemma. Observe that

E[ max
16j6p

|En[xij]− Ē[xij]|] 6 E[ max
16j6p

|En[xij ]− E[En[yij]]|]

6 E[ max
16j6p

|En[xij − yij]|]

= E[ max
16j6p

|En[εi(xij − yij)]|]

6 2E[ max
16j6p

|En[εixij]|]

.
√

(log p)/nE[ max
16j6p

En[x
2
ij]]

1/2.

Applying (23) to x2ij instead of xij, we see that the last expression is

.
√

(log p)/n

(
E[M2](log p)/n+ max

16j6p
Ē[x2ij ]

)1/2

6
√

E[M2](log p)/n+ σ
√

(log p)/n,

where the last step follows from inequality
√
a+ b 6

√
a +

√
b. This com-

pletes the proof. �

A.2. Properties of the Smooth Max Function. We shall use the fol-
lowing properties of the smooth max function. In this section, we assume
g ∈ C3

b (R), and let m = g ◦ Fβ.

Lemma A.2 (Properties of Fβ). We have

∂jFβ(z) = πj(z), ∂j∂kFβ(z) = βwjk(z), ∂j∂k∂lFβ(z) = β2qjkl(z).

where, for δjk := 1{j = k},

πj(z) := eβzj/

p∑

m=1

eβzm ,

wjk(z) := (πjδjk − πjπk)(z),

qjkl(z) := (πjδjlδjk − πjπlδjk − πjπk(δjl + δkl) + 2πjπkπl)(z).

Moreover,

πj(z) > 0,

p∑

j=1

πj(z) = 1,

p∑

j,k=1

|wjk(z)| 6 2,

p∑

j,k,l=1

|qjkl(z)| 6 6.

Proof of Lemma A.2. The first property was noted in [14]. The other prop-
erties follow from repeated application of the chain rule. �
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Lemma A.3 (Three derivatives of m = g ◦ Fβ). Let πj , wjk, and qjkl be as
defined above. For every z ∈ R

p,

∂jm(z) = (∂g(Fβ)πj)(z),

∂j∂km(z) = (∂2g(Fβ)πjπk + ∂g(Fβ)βwjk)(z),

∂j∂k∂lm(z) = (∂3g(Fβ)πjπkπl + ∂2g(Fβ)β(wjkπl + wjlπk +wklπj)

+ ∂g(Fβ)β
2qjkl)(z).

Proof of lemma A.3. The proof follows from the repeated application of the
chain rule and by the properties noted in Lemma A.2. �

Lemma A.4 (Bounds on derivatives of m = g ◦ Fβ). We have

|∂j∂km(z)| 6 Ujk(z), |∂j∂k∂lm(z)| 6 Ujkl(z),

where

Ujk(z) := (G2πjπk +G1βWjk)(z),

Ujkl(z) := (G3πjπkπl +G2β(Wjkπl +Wjlπk +Wklπj) +G1β
2Qjkl)(z),

Wjk(z) := (πjδjk + πjπk)(z),

Qjkl(z) := (πjδjlδjk + πjπlδjk + πjπk(δjl + δkl) + 2πjπkπl)(z).

Moreover,

p∑

j,k=1

Ujk(z) 6 (G2 + 2G1β),

p∑

j,k,l=1

Ujkl(z) 6 (G3 + 6G2β + 6G1β
2).

Proof of Lemma A.4. The lemma follows from a direct calculation. �

Lemma A.5. For every z ∈ R
p, w ∈ R

p such that maxj6p |wj |β 6 1,
τ ∈ [0, 1], and every 1 6 j 6 p, we have

πj(z) . πj(z + τw) . πj(z),

Ujk(z) . Ujk(z + τw) . Ujk(z),

Ujkl(z) . Ujkl(z + τw) . Ujkl(z).

Proof of Lemma A.5. To show the first claim we note that

πj(z + τw) =
exp(zjβ + τwjβ)∑p

m=1 exp(zmβ + τwmβ)

6
exp(zjβ)∑p

m=1 exp(zmβ)

exp(τ maxj6p |wj |β)
exp(−τ maxj6p |wj |β)

6 πj(z) exp(2).

Proceeding similarly, we have πj(z + τw) > πj(z) exp(−2).
The second and third claims follow from the first, noting that Ujk and

Ujkl are finite sums of products of order up to 3 of terms such as πj, πk, πl,
δjk. �



28 CHERNOZHUKOV, CHETVERIKOV AND KATO

Lemma A.6 (Lipschitz Property of Fβ). For each x ∈ R
p and z ∈ R

p, we
have

|Fβ(x)− Fβ(z)| 6 max
16j6p

|xj − zj |.

Proof of Lemma A.6. For some t ∈ [0, 1],

|Fβ(x)− Fβ(z)| = |
p∑

j=1

∂jFβ(x+ t(z − x))(zj − xj)|

6

p∑

j=1

πj(x+ t(z − x)) max
16j6p

|zj − xj| 6 max
16j6p

|zj − xj|,

where the property
∑p

j=1 πj(x+ t(z − x)) = 1 was used. �

A.3. Lemmas on Truncation. Recall that x̃i = (x̃ij)
p
j=1 and X̃ = n−1/2

∑n
i=1 x̃i, where “tilde” denotes the truncation operation defined in Section

2.

Lemma A.7 (Truncation Impact). For every 1 6 j, k 6 p and q > 1, (a)

(E[|x̃ij |q])1/q 6 2(E[|xij |q])1/q; (b) |E[x̃ij x̃ik] − E[xijxik]| 6 (3/2)(E[x2ij ] +

E[x2ik])ϕ(u); and (c) with probability at least 1− 5γ, for all 1 6 j 6 p,

|Xj − X̃j| 6
√

Ē[x2ij]ϕ(u)
√

2 log(p/γ)(5 + δ(u, γ)).

Proof of Lemma A.7. Claim (a). Define Iij = 1{|xij | 6 u
√

E[x2ij ]}, and

note that

(E[|x̃ij |q])1/q 6 (E[|xijIij |q])1/q + |E[xijIij ]|
6 (E[|xijIij |q])1/q + (E[|xijIij |q])1/q 6 2(E[|xij |q])1/q,

where the first inequality follows from the triangle inequality, the second
from Hölder’s inequality, and the last from the monotonicity of the expec-
tation.

Claim (b). Observe that

|E[x̃ijx̃ik]− E[xijxik]| 6 |E[(x̃ij − xij)x̃ik]|+ |E[xij(x̃ik − xik)]|

6
√

E[(x̃ij − xij)2]
√

E[x̃2ik] +
√

E[(x̃ik − xik)2]
√

E[x2ij]

6 2ϕ(u)
√

E[x2ij ]
√

E[x2ik] + ϕ(u)
√

E[x2ik]
√

E[x2ij ]

6 (3/2)ϕ(u)(E[x2ij ] + E[x2ik]),

where the first inequality follows from the triangle inequality, the second
from the Cauchy-Schwarz inequality, the third from the definition of ϕ(u)
together with claim (a), and the last from inequality |ab| 6 (a2 + b2)/2.

Claim (c). We shall use the following lemma.
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Lemma A.8 (Sub-Gaussian Bounds for Arbitrary Self-Normalized Sums).
Let ξ1, . . . , ξn be independent real-valued random variables such that E[ξi] = 0
and E[ξ2i ] <∞ for all 1 6 i 6 n. Let Sn =

∑n
i=1 ξi. Then for every x > 0,

P(|Sn| > x(4Bn + Vn)) 6 4 exp(−x2/2),
where B2

n =
∑n

i=1 E[ξ
2
i ] and V

2
n =

∑n
i=1 ξ

2
i .

Proof of Lemma A.8. See [20], Theorem 2.16. �

Define

Λj := 4
√

Ē[(xij − x̃ij)2] +
√

En[(xij − x̃ij)2].

Then by Lemma A.8, with probability at least 1− 4γ,

|Xj − X̃j | 6 Λj

√
2 log(p/γ), for all 1 6 j 6 p.

By definition of ϕ(u) and δ(u, γ), with probability at least 1 − γ, for all
1 6 j 6 p,

Λj 6 4
√

Ē[(xij − x̃ij)2] +
√

Ē[(xij)2]ϕ(u)(1 + δ(u, γ))

6

√
Ē[(xij)2]ϕ(u)(5 + δ(u, γ)).

This implies claim (c). �

Lemma A.9 (Sub-Gaussian truncation). For any sub-Gaussian random
variable R with parameter C > 0, i.e., if P(|R| > u) 6 exp(1 − u2/C2) for
all u > 0, then we have

E[R21{|R| > u}] 6 (u2 + C2) exp(1− u2/C2)

for all u > 0.

Proof. The lemma follows from the following calculation:

E[R21{|R| > u}] 6 u2P(|R| > u) + 2

∫ ∞

u
zP(|R| > z)dz

6 u2 exp(1− u2/C2) + 2

∫ ∞

u
z exp(1− z2/C2)dz

= (u2 + C2) exp(1− u2/C2).

�

Let ỹi = (ỹij)
p
j=1, where ỹij = yij1{|yij | 6 u(E[y2ij ])

1/2}, and let Ỹ =

n−1/2
∑n

i=1 ỹi. Note that by the symmetry of the distribution of yij, E[ỹij] =
0.

Lemma A.10 (Normal Truncation Impact). For every 1 6 j, k 6 p and q >

1, (a) (E[|ỹij|q])1/q 6 (E[|yij |q])1/q; (b) |E[ỹij ỹik]−E[yijyik]| 6 (3/2)(E[y2ij ]+

E[y2ik])ϕN (u) where recall that ϕ2
N (u) :=

∫
|z|>u z

2φ(z)dz; and (c) for a given

γ ∈ (0, 1) and u > Φ−1(1− γ/(2np)), e.g., u =
√

2 log(2np/γ),

P( max
16j6p

|Yj − Ỹj | = 0) > 1− γ.
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Proof of Lemma A.10. Claim (a) follows from the fact that |ỹij| 6 |yij | and
the monotonicity of the expectation. Claim (b) follows from claim (b) of

Lemma A.7. For claim (c), note that the event max16j6p |Yj − Ỹj | = 0

is implied by the event maxj6p,i6n

∣∣∣yij/
√

E[y2ij]
∣∣∣ 6 u, which, by the union

bound, does not occur with probability 2np(1 − Φ(u)) 6 γ whenever u >
Φ−1(1− γ/(2np)). �

Appendix B. Proofs for Section 2

B.1. Proof of Theorem 2.1. Without loss of generality we can and will
assume that sequences (xi)

n
i=1 and (yi)

n
i=1 are independent of each other.

We will use an interpolation approach of Slepian. For t ∈ [0, 1], define

Z(t) :=
√
tX +

√
1− tY =

n∑

i=1

Zi(t), Zi(t) :=
1√
n
(
√
txi +

√
1− tyi).

We shall also employ Stein’s leave-one-out expansions to form:

Z(i)(t) := (Zij(t))
p
j=1 := Z(t)− Zi(t).

Let Ψ(t) = E[m(Z(t))] for m := g ◦ Fβ . Then

E[m(X) −m(Y )] = Ψ(1)−Ψ(0) =

∫ 1

0
Ψ′(t)dt

=
1

2

p∑

j=1

n∑

i=1

∫ 1

0
E[∂jm(Z(t))Żij(t)]dt =

1

2
(I + II + III),

where

Żij(t) =
d

dt
Zij(t) =

1√
n

(
1√
t
xij −

1√
1− t

yij

)
,

and

I =

p∑

j=1

n∑

i=1

∫ 1

0
E[∂jm(Z(i)(t))Żij(t)]dt,

II =

p∑

j,k=1

n∑

i=1

∫ 1

0
E[∂j∂km(Z(i)(t))Żij(t)Zik(t)]dt,

III =

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
(1− τ)E[∂j∂k∂lm(Z(i)(t) + τZi(t))Żij(t)Zik(t)Zil(t)]dτdt.

Since Z(i)(t) and Żij(t) are independent of each other and E[Żij(t)] = 0, we
have

I =

p∑

j=1

n∑

i=1

∫ 1

0
E[∂jm(Z(i)(t))]E[Żij(t)]dt = 0.
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Second, since E[Żij(t)Zik(t)] = n−1E[xijxik − yijyik] = 0, we also have

II =

p∑

j,k=1

n∑

i=1

∫ 1

0
E[∂j∂km(Z(i)(t))]E[Żij(t)Zik(t)]dt = 0.

Consider the third term III. We have

|III| . (G3 +G2β +G1β
2)

∫ 1

0
nĒ

[
max

16j,k,l6p
|Żij(t)Zik(t)Zil(t)|

]
dt

. (G3 +G2β +G1β
2)Ē

[
max
16j6p

(|xij |3 + |yij|3)
]
/
√
n.

where the first inequality follows from Lemma A.4 and the second inequality
from Hölder’s inequality. The first claim of the theorem now follows. The
second claim follows directly from property (5) of the smooth max function.

�

B.2. Proof of Corollary 2.1. Set S := Ē[max16j6p(|xij |3 + |yij|3)]/
√
n,

β = (log(pn))5/8S−1/4 and ψ = (log(pn))−3/8S−1/4. Consider a function
g0 : R → [0, 1] belonging to the class C3(R) such that g0(s) = 1 for s 6 0
and g0(s) = 0 for s > 1. Fix any t ∈ R, and define g(s) = g0(ψ(s− t− eβ)).
For this function g we have

G0 = 1, G1 6 Cψ, G2 6 Cψ2, G3 6 Cψ3,

for some constant C > 0 depending only on g0. Write eβ = β−1 log p. Then
by property (5) of the smooth max function and the definition of g,

P( max
16j6p

Xj 6 t) 6 P(Fβ(X) 6 t+ eβ) 6 E[g(Fβ(X))].

Here by Theorem 2.1,

E[g(Fβ(X))] − E[g(Fβ(Y ))] . (ψ3 + βψ2 + β2ψ)S.

We now bound E[g(Fβ(Y ))] as follows. By the definition of g and property
(5) of the smooth max function, we have

E[g(Fβ(Y ))] 6 P( max
16j6p

Yj 6 t+ eβ + ψ−1).

This is where Lemma 2.1 plays its role. Let u := eβ+ψ
−1. Then u > ψ−1 >

S1/4 &c1 n
−1/8, so that log(p/u) .c1 log(pn). Hence by Lemma 2.1,

P( max
16j6p

Yj 6 t+ eβ + ψ−1)− P( max
16j6p

Yj 6 t) .c1,C1
(eβ + ψ−1)

√
log(pn),

by which we conclude that

P(max
16j6p

Xj 6 t)− P( max
16j6p

Yj 6 t)

.c1,C1
(ψ3 + βψ2 + β2ψ)S + (eβ + ψ−1)

√
log(pn).
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Similarly, we have

P(max
16j6p

Yj 6 t)− P( max
16j6p

Xj 6 t)

.c1,C1
(ψ3 + βψ2 + β2ψ)S + (eβ + ψ−1)

√
log(pn).

Substituting β = (log(pn))5/8S−1/4 and ψ = (log(pn))−3/8S−1/4 leads to
the desired result. �

B.3. Proof of Theorem 2.2. The second claim of the theorem follows
from property (5) of the smooth max function. Hence we shall prove the first
claim. The proof strategy is similar to the proof of Theorem 2.1. However,
to control effectively the third order terms in the leave-one-out expansions
we need to invoke truncation; for this purpose we shall replace X and Y
by their truncated versions X̃ and Ỹ , defined as follows: Let x̃i = (x̃ij)

p
j=1,

where x̃ij was defined before the statement of the theorem, and define the

truncated version ofX as X̃ = n−1/2
∑n

i=1 x̃i. Also, recall that ỹi = (ỹij)
p
j=1,

where ỹij = yij1{|yij | 6 u(E[y2ij ])
1/2}, and Ỹ = n−1/2

∑n
i=1 ỹi. Without

loss of generality, we will assume that sequences (xi)
n
i=1 and (yi)

n
i=1 are

independent.
The proof consists of four steps. Step 1 will show that we can replace X

by X̃ and Y by Ỹ . Step 2 will bound the difference of the expectations of
the relevant functions of X̃ and Ỹ . This is the main step of the proof. Steps
3 and 4 will carry out supporting calculations. The steps of the proof will
also call on various technical lemmas collected in section A.

Step 1. Let m := g ◦ Fβ . The main goal is to bound E[m(X) −m(Y )].
Define

I = 1

{
max
16j6p

|Xj − X̃j | 6 ∆(γ, u) and max
16j6p

|Yj − Ỹj| = 0

}
,

where

∆(γ, u) =M2ϕ(u)
√

2 log(p/γ)(5 + δ(u, γ)).

By Lemmas A.7 and A.10 we have E[I] > 1− 6γ. Hence

|E[m(X) −m(X̃)]| 6 |E[(m(X)−m(X̃))I]|+ |E[(m(X) −m(X̃))(1 − I)]|
6 G1∆(γ, u) + 12G0γ,

where we invoked Lemma A.6 and

|E[m(Y )−m(Ỹ )]| 6 E[(m(Y )−m(Ỹ ))I]|+ |E[(m(Y )−m(Ỹ ))(1 − I)]
6 12G0γ.

Therefore,

|E[m(X) −m(Y )]| 6 |E[m(X̃)−m(Ỹ )]|+G1∆(γ, u) + 24G0γ.

Step 2 (Main Step) The purpose of this step is to establish the bound:

|E[m(X̃)−m(Ỹ )]| . (G3+G2β+G1β
2)M3

3 /
√
n+(G2+βG1)M

2
2 (ϕ(u)+ϕN (u)).
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Define, as in the proof of Theorem 2.1,

Z(t) :=
√
tX̃ +

√
1− tỸ =

n∑

i=1

Zi(t), Zi(t) :=
1√
n
(
√
tx̃i +

√
1− tỹi).

and

Z(i)(t) := Z(t)− Zi(t), Żij(t) =
1√
n

(
1√
t
x̃ij −

1√
1− t

ỹij

)
.

Arguing as in the proof of Theorem 2.1, we have

|E[m(X̃)−m(Ỹ )]| = 1

2

p∑

j=1

n∑

i=1

∫ 1

0
E[∂jm(Z(t))Żij(t)]dt =

1

2
(I + II + III),

where

I =

p∑

j=1

n∑

i=1

∫ 1

0
E[∂jm(Z(i)(t))Żij(t)]dt,

II =

p∑

j,k=1

n∑

i=1

∫ 1

0
E[∂j∂km(Z(i)(t))Żij(t)Zik(t)]dt,

III =

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
(1− τ)E[∂j∂k∂lm(Z(i)(t) + τZi(t))Żij(t)Zik(t)Zil(t)]dτdt.

By independence of Z(i)(t) and Żij(t)together with the fact that E[Żij(t)] =
0, we have

I =

p∑

j=1

n∑

i=1

∫ 1

0
E[∂jm(Z(i)(t))]E[Żij(t)]dt = 0.

Moreover, in steps 3 and 4 below, we will show that

|II| . (G2 + βG1)M
2
2 (ϕ(u) + ϕN (u)),

|III| . (G3 +G2β +G1β
2)M3

3 /
√
n.

The claim of this step now follows.
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Step 3. (Bound on II) Observe first that by the independence of Z(i)(t)
and Zi(t),

|II| =

∣∣∣∣∣∣

p∑

j,k=1

n∑

i=1

∫ 1

0
E[∂j∂km(Z(i)(t))]E[Żij(t)Zik(t)]dt

∣∣∣∣∣∣

6

p∑

j,k=1

n∑

i=1

∫ 1

0
E[|∂j∂km(Z(i)(t))|] · |E[Żij(t)Zik(t)]|dt

6

p∑

j,k=1

n∑

i=1

∫ 1

0
E[Ujk(Z

(i)(t))] · |E[Żij(t)Zik(t)]|dt.

where the last step follows from Lemma A.4. Now since (
√
tx̃ij+

√
1− tỹij) 6

2
√
2u and so that β(

√
tx̃ij +

√
1− tỹij)/

√
n 6 1 (which is satisfied by the

assumption on β, u and γ), by Lemma A.5, the last expression is bounded
by

p∑

j,k=1

n∑

i=1

∫ 1

0
E[Ujk(Z(t))] · |E[Żij(t)Zik(t)]|dt

6

p∑

j,k=1

n∑

i=1

{∫ 1

0
E[Ujk(Z(t))]dt

} (
E[x2ij ] + E[x2ik]

)
n−1(ϕ(u) + ϕN (u))

=

p∑

j,k=1

{∫ 1

0
E[Ujk(Z(t))]dt

}
·
(
Ē[x2ij ] + Ē[x2ik]

)
(ϕ(u) + ϕN (u))

. (G2 +G1β)M
2
2 (ϕ(u) + ϕN (u)).

Here the first inequality is due to Lemmas A.7 (b) and A.10 (b), and the
last inequality is due to

∑p
j,k=1Ujk(z) 6 G2 + 2G1β established in Lemma

A.4.
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Step 4. (Bound on III) Observe that

|III| 6(1)

p∑

j,k,l=1

n∑

i=1

∫ 1

0

∫ 1

0
E[Ujkl(Z

(i)(t) + τZi(t))|Żij(t)Zik(t)Zil(t)|]dτdt

.(2)

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[Ujkl(Z

(i)(t))|Żij(t)Zik(t)Zil(t)|]dt

=(3)

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[Ujkl(Z

(i)(t))] · E[|Żij(t)Zik(t)Zil(t)|]dt

.(4)

p∑

j,k,l=1

n∑

i=1

∫ 1

0
E[Ujkl(Z(t))] · E[|Żij(t)Zik(t)Zil(t)|]dt

=(5)

p∑

j,k,l=1

∫ 1

0
E[Ujkl(Z(t))] · nĒ[|Żij(t)Zik(t)Zil(t)|]dt

6(6)

∫ 1

0




p∑

j,k,l=1

E[Ujkl(Z(t))]


 max

16j,k,l6p
nĒ[|Żij(t)Zik(t)Zil(t)|]dt

.(7) (G3 +G2β +G1β
2)

∫ 1

0
max

16j,k,l6p
nĒ[|Żij(t)Zik(t)Zil(t)|]dt.

where (1) follows from |∂j∂k∂lm(z)| 6 Ujkl(z) (see Lemma A.4), (2) from

Lemma A.5, (3) from the independence of Z(i)(t) and Żij(t)Zik(t)Zil(t), (4)
from Lemma A.5, (5) from the definition of Ē, (6) from a trivial inequality,
(7) from Lemma A.4. We have to bound the integral on the last line. Let
ω(t) = 1/(

√
t ∧

√
1− t), and observe that

∫ 1

0
max

16j,k,l6p
nĒ[|Żij(t)Zik(t)Zil(t)|]dt

=

∫ 1

0
ω(t) max

16j,k,l6p
nĒ[|Żij(t)(

√
t ∧

√
1− t)Zik(t)Zil(t)|]dt

6(1)

∫ 1

0
ω(t) max

16j,k,l6p

(
Ē[|Żij(t)(

√
t ∧

√
1− t)|3]Ē[|Zik(t)|3]Ē[|Zil(t)|3]

)1/3
dt

6(2) n
−1/2

{∫ 1

0
ω(t)dt

}
max
16j6p

Ē[(|x̃ij |+ |ỹij|)3]

.(3) n
−1/2 max

16j6p
[(Ē[|x̃ij |3])1/3 + (Ē[|ỹij |3])1/3]3

.(4) n
−1/2 max

16j6p
[(Ē[|xij |3])1/3 + (Ē[|yij |3])1/3]3

.(5) n
−1/2 max

16j6p
Ē[|xij |3],
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where (1) follows from Hölder’s inequality, (2) from the fact that |Żij(t)(
√
t∧√

1− t)| 6 (|x̃ij | + |ỹij|)/
√
n, |Zik(t)| 6 (|x̃ik| + |ỹik|)/

√
n, and |Zil(t)| 6

(|x̃il|+|ỹil|)/
√
n, and that Ē[(|x̃ij |+ |ỹij|)3]1/3Ē[(|x̃ik|+ |ỹik|)3]1/3Ē[(|x̃il|+ |ỹil|)3]1/3

6 max16j6p Ē[(|x̃ij | +|ỹij|)3], (3) from
∫ 1
0 ω(t)dt . 1, (4) from Lemmas A.7

(a) and A.10 (a), and (5) from the normality of yij with E[y2ij] = E[x2ij ], so

that Ē[|yij |3]1/3 . Ē[y2ij]
1/2 = Ē[|x2ij |]1/2 6 Ē[|xij |3]1/3. �

B.4. Proof of Corollary 2.2. Following the argument in the proof of
Corollary 2.1 and applying Theorem 2.2, for u > u1 ∨ u2 ∨ u3 (note that

u >
√

2 log(2pn/γ)), we have

sup
t∈R

|P( max
16j6p

Xj 6 t)− P( max
16j6p

Yj 6 t)|

.c1,C1
(ψ3 + ψ2β + ψβ2)M3

3 /
√
n+ (ψ2 + ψβ)M2

2 (ϕ(u) + ϕN (u))

+ ψM2ϕ(u)(1 + δ(u, γ))
√

log(p/γ) + β−1(log(pn))3/2 + ψ−1
√

log(pn) + γ.

Let u? be the smallest number u > 0 such that:
√
n(ϕ(u) + ϕN (u))4/3 6M3

3 (log(pn/γ))
5/6.

Consider the case u > u?. Let

ψ = n1/8(log(pn/γ))−3/8M
−3/4
3 and β =

√
n/(2

√
2u).

Note that β .
√
n/u 6

√
n/u1 6 n1/8(log(pn/γ))5/8M

−3/4
3 =: β̄. Hence

(ψ3 + ψ2β + ψβ2)M3
3 /

√
n . ψβ̄2M3

3 /
√
n

. n−1/8(log(pn/γ))7/8M
3/4
3

6 u1(log(pn/γ))/n
1/2

6 u(log(pn/γ))3/2/n1/2.

Since M2 6 C1 and δ(u, γ) 6 C1,

(ψ2 + ψβ)M2
2 (ϕ(u) + ϕN (u)) .C1

ψβ̄(ϕ(u) + ϕN (u))

6 ψβ̄(ϕ(u?) + ϕN (u?))

= n−1/8(log(pn/γ))7/8M
3/4
3

6 u(log(pn/γ))3/2/
√
n,

and

ψM2ϕ(u)(1 + δ(u, γ))
√

log(p/γ) .C1
ψϕ(u)

√
log(pn/γ)

6 ψβ̄(ϕ(u) + ϕN (u))
√

log(pn/γ)/β̄

6 u(log(pn/γ))3/2/
√
n,

where the last inequality follows from the calculations above and assuming
that

√
log(pn/γ)/β̄ . 1 (otherwise, the claim of the corollary is trivial).
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Finally, by the definition of β and ψ, (log(pn/γ))3/2/β +
√

log(pn/γ)/ψ .

u(log(pn/γ))3/2. Hence the claim of the corollary for the case u > u? follows.
Consider the case u 6 u?. Let

ψ = (log(pn/γ))−1/6(ϕ(u) + ϕN (u))−1/3 and β =
√
n/(2

√
2u).

Note that ψ 6 (log(pn/γ))−1/6(ϕ(u?)+ϕN (u?))−1/3 = n1/8(log(pn/γ))−3/8M
−3/4
3 ,

which is the value of ψ used for the case u > u?. So, (ψ3 + ψ2β +

ψβ2)M3
3 /

√
n . u(log(pn/γ))3/2 by the same argument as above. Moreover,

ψβM2
2 (ϕ(u) + ϕN (u)) .C1

β(ϕ(u) + ϕN (u))2/3(log(pn/γ))−1/6

6 β(ϕ(u3) + ϕN (u3))
2/3(log(pn/γ))−1/6

= βu23(log(pn/γ))
5/3−1/6/n

6 u3(log(pn/γ))
5/3−1/6/

√
n

6 u(log(pn/γ))3/2/
√
n,

and

ψ2M2
2 (ϕ(u) + ϕN (u)) .C1

(ϕ(u) + ϕN (u))1/3(log(pn/γ))−1/3

6 (ϕ(u3) + ϕN (u3))
1/3(log(pn/γ))−1/3

6 u3
√

log(pn/γ)/
√
n

6 u(log(pn/γ))3/2/
√
n.

By the definition of β,

(log(pn))3/2/β . u(log(pn/γ))3/2/
√
n.

Moreover, by the same argument as that used for the case u > u?,

ψM2ϕ(u)(1 + δ(u, γ))
√

log(p/γ) .C1
ψϕ(u)

√
log(pn/γ)

6 (ϕ(u) + ϕN (u))2/3(log(pn/γ))1/3

6 (ϕ(u3) + ϕN (u3))
2/3(log(pn/γ))1/3

6 (u log(pn/γ)/
√
n)2 6 (u(log(pn/γ))3/2/

√
n)2

. u(log(pn/γ))3/2/
√
n,

where on the last step we assume that u(log(pn/γ))3/2/
√
n . 1 because

otherwise the claim of the corollary is trivial. Finally, by the same argument
as above,

√
log(pn/γ)/ψ = (ϕ(u) + ϕN (u))1/3(log(pn/γ))2/3 6 u(log(pn/γ))3/2/

√
n.

The claim of the corollary for the case u 6 u? follows. �
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B.5. Proof of Corollary 2.3. In this proof, let c > 0 and C > 0 de-
note generic constants depending only on c1, c2, C1 and the their values may
change from place to place. Assume that γ > n−c for some c > 0. In
all cases, we will choose γ so that this assumption holds. Recall the defi-
nitions of u1, u2, and u3 given before the statement of corollary 2.2. Let
u = u0 + u1 + u2 + u3 where u0 > 0 is to be chosen later.

By Corollary 2.2,

ρ 6 C
{
(u0 + u1 + u2 + u3)(log(pn/γ))

3/2/
√
n+ γ

}
,

provided that δ(u, γ) 6 C. Under conditions E.1-2, M3
3 6 C and under con-

ditions E.3-5, M3
3 6 CBn. Therefore, under either conditions of the Corol-

lary, u1(log(pn/γ))
3/2/

√
n 6 Cn−c since u1 = n3/8M

3/4
3 /(log(pn/γ))5/8.

Moreover, u2(log(pn/γ))
3/2/

√
n 6 Cn−c since u2 =

√
2 log(2pn/γ). Hence,

it suffices to choose u0 and γ in such a way that (u0+u3)(log(pn/γ))
3/2/

√
n+

γ 6 Cn−c and δ(u, γ) 6 C.

Case E.1. Set u0 = C
√

log(pn) for sufficiently large C > 0 and γ = 1/n.
Then by Comment 2.2, δ(u, γ) 6 δ(u0, γ) = 0. To derive a bound on u3, let

fl(t) =
√
n(ϕ(t) + ϕN (t))1/3 and fr(t) = t(log(pn/γ))5/6.

By equation (9), u3 is the smallest number u > 0 such that fl(u) 6 fr(u).
Note that fl(·) is decreasing while fr(·) is increasing. Moreover, fl(u0) 6

1/(p2/3n1/6) 6 1 because ϕ(u0) 6 1/(pn)2 by Comment 2.2 and ϕN (u0) 6
1/(pn)2 by Theorem 2.2 (C is sufficiently large). On the other hand, fr(u0) >
1. Therefore, fl(u0) 6 fr(u0), and so u3 6 u0, from which we conclude that

that (u0 + u3)(log(pn/γ))
3/2/

√
n 6 Cn−c.

Case E.4. This case is similar to case E.1. Indeed, when xij = zijεi and
zij are nonstochastic, equation (7), which defines ϕ(u), becomes

√
E[ε2i 1{|εi| > u

√
E[ε2i ]}] 6

√
E[ε2i ]ϕ.

Moreover, xij − x̃ij = zij(εi − ε̃i) where

ε̃i = εi1

{
|εi| 6 u

√
E[ε2i ]

}
− E

[
εi1

{
|εi| 6 u

√
E[ε2i ]

}]
.

Therefore, setting u0 = C
√

log(pn) for sufficiently large C > 0 and γ = 1/n
gives δ(u, γ) = 0 and u3 6 u0. The conclusion follows as in case E.1.

Case E.3. Set u0 = CBn for sufficiently large C > 0 and γ = 1/n. Then
by comment 2.2, δ(u, γ) = 0 and calculations like those used above show

that u3 6 u0. Hence (u0 + u3)(log(pn/γ))
3/2/

√
n+ γ 6 Cn−c.
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Case E.2. Set u0 = n2/7/
√
C1 and γ = C1n

−1/7. Then

P

(
max
i,j

(|xij | − u
√

E[x2ij ]) > 0

)
6 P

(
max
i,j

|xij| > u
√
C1

)

6

n∑

i=1

E[ max
16j6p

x4ij]/(u
√
C1)

4

6 n/(u4C1)

6 n/(u40C1) = γ,

and hence δ(u, γ) = 0. Moreover,

E
[
x2ij1{|xij | > u

√
E[x2ij ]}

]
6 E[x4ij ]/(u

2E[x2ij]) .c1,C1
1/u2,

so that ϕ(u) .c1,C1
1/u. Hence fl(ũ) .c1,C1

fr(ũ) with ũ = n3/8/(log(pn/γ))5/8

and u3 6 Cũ, from which we have (u0 + u3)(log(pn/γ))
3/2/

√
n+ γ 6 Cn−c.

Case E.5. This case is similar to case E.2 and hence we omit the detail. �

Appendix C. Proof for Section 3

C.1. Proof of Theorem 3.1. We shall use the following form of Stein’s
identity.

Lemma C.1 ([45]). Let (W,U) be a zero-mean Gaussian random vector,
where W is scalar and U is a p-vector. Let f : R

p → R be a function (of
moderate growth at infinity). Then

E[Wf(U)] =

p∑

j=1

E[WUj ]E[∂jf(U)].

Proof of Lemma C.1. See Section A.6 of [45], and also [44]. �

Proof of Theorem 3.1. Without loss of generality, we can and will assume
that V and Y are independent, so that E[VjYk] = 0 for all j, k = 1, . . . , p.
For t ∈ [0, 1], define the following Slepian interpolant:

Z(t) :=
√
tV +

√
1− tY.

Let m := g ◦ Fβ and Ψ(t) := E[m(Z(t))]. Then

|E[m(V )−m(Y )]| = |Ψ(1)−Ψ(0)| =
∣∣∣∣
∫ 1

0
Ψ′(t)dt

∣∣∣∣ .

Here we have

Ψ′(t) =
1

2

p∑

j=1

E
[
∂jm(Z(t))(t−1/2Vj − (1− t)−1/2Yj)

]

=
1

2

p∑

j=1

p∑

k=1

(ΣV
jk − ΣY

jk)E[∂j∂km(Z(t))],
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where the second equality holds by application of Lemma C.1 to W =
t−1/2Vj − (1− t)−1/2Yj and f(U) = ∂jm(U) with U = Z(t). Hence,

∣∣∣∣
∫ 1

0
Ψ′(t)dt

∣∣∣∣ 6
1

2

∑

16j,k6p

∣∣ΣV
jk − ΣY

jk

∣∣
∣∣∣∣
∫ 1

0
E[∂j∂km(Z(t))]dt

∣∣∣∣

6
1

2
max

16j,k6p

∣∣ΣV
jk − ΣY

jk

∣∣
∫ 1

0

∑

16j,k6p

|E[∂j∂km(Z(t))]| dt

=
∆0

2

∫ 1

0

∑

16j,k6p

|E[∂j∂km(Z(t))]| dt.

In view of Lemmas A.2 and A.3,
∑

16j,k6p

|∂j∂km(Z(t))| 6 |∂2g(Fβ(Z(t)))| + 2β|∂g(Fβ(Z(t))|.

Hence we obtain

|E[g(Fβ(V ))− g(Fβ(Y ))]|

6 ∆0 ×
(
2−1

∫ 1

0
E|∂2g(Fβ(Z(t)))|dt+ β

∫ 1

0
E|∂g(Fβ(Z(t))|dt

)
(24)

6 ∆0(2
−1G2 + βG1),

which leads to the first claim. The second claim follows from property (5)
of the smooth max function. �

C.2. Proof of Corollary 3.1. Recall that ∆0 := max16j,k6p |ΣV
jk − ΣY

jk|.
For β > 0, define eβ = β−1 log p. Set β = (log(p/∆0))

5/6∆
−1/3
0 and ψ =

(log(p/∆0))
−1/6∆

−1/3
0 . Fix any t ∈ R. Using the same argument as in the

proof of Corollary 2.1 and applying Theorem 3.1, we have

P( max
16j6p

Xj 6 t)− P(max
16j6p

Yj 6 t+ eβ + ψ−1) . (ψ2 + βψ)∆0.

Note that eβ + ψ−1 > ψ−1 > ∆
1/3
0 > ∆0. Hence application of Lemma 2.1

leads to

P(max
16j6p

Yj 6 t+ eβ + ψ−1)−P( max
16j6p

Yj 6 t) .c1,C1
(eβ + ψ−1)

√
log(p/∆0).

Combining these inequalities and substituting the values of β and ψ leads
to

P( max
16j6p

Xj 6 t)− P( max
16j6p

Yj 6 t) .c1,C1
∆

1/3
0 (log(p/∆0))

2/3.

This gives one half of the asserted claim. The second half is similar. �

C.3. Proof of Corollary 3.2. It is easy to check that the map ϑ 7→
ϑ1/3(log(p/ϑ))2/3 is increasing in ϑ for ϑ ∈ (0, e−2). So, by Corollary 3.1,
on the event {(xi)ni=1 : ∆ 6 ϑ}, we have |P(Z0 6 t) − Pe(W0 6 t)| .c1,C1

ϑ1/3(log(p/ϑ))2/3 for all t ∈ R. Therefore, the claim of the corollary follows
from the triangle inequality. �
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Appendix D. Proofs for Section 4

D.1. Proof of Lemma 4.1. Recall that ∆ = max16j,k6p |En[xijxik] −
Ē[xijxik]|. By Corollary 3.1, on the event {(xi)ni=1 : ∆ 6 ϑ}, we have
|P(Z0 6 t)− Pe(W0 6 t)| 6 v(ϑ) for all t ∈ R, and so on this event

Pe(W0 6 cZ0
(α+v(ϑ))) > P(Z0 6 cZ0

(α+v(ϑ)))−v(ϑ) > α+v(ϑ)−v(ϑ) = α,

implying the first claim of the lemma. The second claim follows similarly.
�

D.2. Proof of Lemma 4.2. By equation (13), the probability of the event
{(xi)ni=1 : Pe(|W −W0| > ζ1) 6 ζ2} is at least 1− ζ2. On this event,

Pe(W 6 cW0
(α+ ζ2) + ζ1) > Pe(W0 6 cW0

(α+ ζ2))− ζ2 > α+ ζ2 − ζ2 = α,

implying that P(cW (α) 6 cW0
(α + ζ2) + ζ1) > 1 − ζ2. The second claim of

the lemma follows similarly. �

D.3. Proof of Theorem 4.1. For ϑ > 0, let v(ϑ) := C2ϑ
1/3(log(p/ϑ))2/3

with C2 > 0 as in Lemma 4.1. Then

P(T0 6 cW0
(α)) 6(1) P(T0 6 cZ0

(α+ v(ϑ))) + P(∆ > ϑ)

6(2) α+ v(ϑ) + P(∆ > ϑ) + ρ,

where (1) follows from Lemma 4.1 and (2) follows from the definition of ρ
and the fact that Z0 has no point masses. The upper bound in the claim
of theorem follows by substituting v(ϑ). The lower bound follows from a
similar argument.

D.4. Proof of Theorem 4.2. For ϑ > 0, let v(ϑ) := C2ϑ
1/3(log(p/ϑ))2/3

with C2 > 0 as in Lemma 4.1. Then

P(T 6 cW (α)) 6(1) P(T0 6 cW (α) + ζ1) + ζ2

6(2) P(T0 6 cW0
(α+ ζ2) + 2ζ1) + 2ζ2

6(3) P(T0 6 cZ0
(α+ ζ2 + v(ϑ)) + 2ζ1) + 2ζ2 + P(∆ > ϑ)

6(4) P(T0 6 cZ0
(α+ ζ2 + v(ϑ) + C3ζ1

√
log(p/ζ1))) + 2ζ2 + P(∆ > ϑ)

6(5) α+ ζ2 + v(ϑ) + C3ζ1
√

log(p/ζ1) + 2ζ2 + P(∆ > ϑ) + ρ

where C3 > 0 depends on c1 and C1 only and where (1) follows from equation
(12), (2) from Lemma 4.2, (3) from Lemma 4.1, (4) from Lemma 2.1, and
(5) from the definition of ρ and the fact that Z0 has no point masses. The
upper bound in the claim of theorem follows by substituting v(ϑ). The lower
bound follows from a similar argument. �
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D.5. Proof of Corollary 4.1. Let c > 0 and C > 0 denote generic con-
stants depending only on c1, c2, C1, and their value may change from place
to place. Corollary 2.3, in every case, ρ 6 Cn−c. Moreover, since it is as-
sumed throughout the paper that p > 2, ζ1

√
log p 6 C1n

−c2 implies that
ζ1 . n−c2 , and so ζ1

√
log(p/ζ1) 6 Cn−c. Also, ζ2 6 Cn−c by assumption.

By Markov’s inequality, P(∆ > ϑ) 6 E[∆]/ϑ. In addition, ϑ1/3(log(p/ϑ))2/3

converges to zero at least at a polynomial rate if ϑ(log p)2 converges to zero at
a polynomial rate. Therefore, we can find ϑ > 0 such that ϑ1/3(log(p/ϑ))2/3+
P(∆ > ϑ) 6 Cn−c if E[∆](log p)2 6 Cn−c (with possibly different C and c).
The last bound follows by applying Lemma A.1. This gives the first claim
of the corollary. The second claim follows similarly. �

Appendix E. Proofs for Section 5

E.1. Proof of Theorem 5.1. The proof proceeds in three steps. In the

proof (β̂, λ) denote (β̂(k), λ(k)) with k either 0 or 1.
Step 1. Here we show that there exist some constant c > 0 and C > 0

(depending only c1, C1 and σ2) such that for either k ∈ {0, 1},

(25) P(T0 6 λ(k)) > 1− α− νn,

with ν = Cn−c. We first note that T0 =
√
nmax16k62p En[z̃ikεi], where

z̃i = (z′i,−z′i)′. Application of Corollary 2.3, case E.5, gives

|P(T0 6 λ)− P(Z0 6 λ)| 6 Cn−c,

where c > 0 and C > 0 are constants depending only on c1, C1 and σ2.
Since λ > cZ0

(1 − α) the claim follows. Indeed, λ(1) = cZ0
(1 − α), and

λ(1) 6 λ(0) = c0(1 − α) := σΦ−1(1 − α/(2p)), since by the union bound
P(Z0 > c0(1− α)) 6 2pP(σN(0, 1) > c0(1− α)) = α.

Step 2. We claim that with probability at least 1 − α − νn, δ̂ = β̂ − β
obeys: √

n max
16j6p

|En[zij(z
′
iδ̂)]| 6 2λ.

Indeed, by definition of β̂,
√
nmax16j6p |En[zij(yi−z′iβ̂)]| 6 λ, which by the

triangle inequality for the maximum norm implies that
√
nmax16j6p |En[zij(z

′
iδ̂)]| 6

T0 + λ. The claim follows from Step 1.
Step 3. By Step 1, with probability at least 1 − α − νn, the true pa-

rameter value β obeys the constraint in optimization problem (14), so that

by definition of β̂ we must have ‖β̂‖`1 6 ‖β‖`1 . Therefore, with the same

probability δ̂ ∈ R(β) = {δ ∈ R
d : ‖β + δ‖`1 6 ‖β‖`1}. By definition of κI(β)

we have that

κI(β)‖δ̂‖I 6 max
16j6p

|En[zij(z
′
iδ̂)]|.

Combining this inequality with that in Step 2 gives the claim of the theorem.
�
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E.2. Proof of Theorem 5.2. The proof has four steps. In the proof, we
let %n = Cn−c for sufficiently small c > 0 and sufficiently large C > 0
depending only on c1, C1, σ

2, σ2, where c and C (and hence %n) may change
from place to place.

Step 0. The same argument as in the previous proof applies to β̂(0) with
λ = λ(0) := c0(1 − 1/n), noting that now σ2 is the upper bound on E[ε2i ].
Thus, we conclude that with probability at least 1− %n,

‖β̂0 − β‖pr 6
2c0(1− 1/n)√

nκpr(β)
.

Step 1. We claim that with probability at least 1− %n,

max
16j6p

(
En[z

2
ij(ε̂i − εi)

2]
)1/2

6 Bn
2c0(1− 1/n)√

nκpr(β)
=: ιn.

Application of Hölder’s inequality and identity εi − ε̂i = z′i(β̂0 − β) give

max
16j6p

(
En[z

2
ij(ε̂i − εi)

2]
)1/2

6 Bn(En[z
′
i(β̂0 − β)]2)1/2 6 Bn‖β̂0 − β‖pr.

The claim follows from Step 0.
Step 2. In this step, we apply Corollary 4.1 to

T = T0 =
√
n max

16j62p
En[z̃ijεi],

W =
√
n max

16j62p
En[z̃ij ε̂iei],

W0 =
√
n max

16j62p
En[z̃ijεiei],

where z̃i = (z′i,−z′i)′, to conclude that uniformly in α ∈ (0, 1)

(26) P(T0 6 cW (1− α)) > 1− α− %n.

To show applicability of Corollary 4.1 , we note that for any ζ1 > 0, we have

Pe(|W −W0| > ζ1) 6 Ee[|W −W0|]/ζ1
6

√
nEe[max

j
|En[zij(ε̂i − εi)ei]|]/ζ1

.
√

log pmax
j

(En[z
2
ij(ε̂i − εi)

2])1/2/ζ1,

where the third inequality is due to Pisier’s inequality. The last quantity is
bounded by (ι2n log p)

1/2/ζ1 with probability > 1− %n by Step 1.
Since ιn log p 6 C1n

−c1 by assumption (vi) of the theorem, we can set
ζ1 in such a way that ζ1(log p)

1/2 6 %n and (ι2n log p)
1/2/ζ1 6 %n. Then all

conditions of Corollary 4.1 with so defined ζ1 and ζ2 = %n∨ ((ι2n log p)
1/2/ζ1)

hold, and hence application of the corollary then gives that uniformly in
α ∈ (0, 1)

(27) |P(T0 6 cW (1− α)) − 1− α| 6 %n,

which implies the claim of this step.
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Step 3. In this step we claim that with probability at least 1− %n,

cW (1− α) 6 cZ0
(1− α+ 2%n).

Combining Step 2 and Lemma 4.2 gives that with probability at least 1−ζ2,
cW (1 − α) 6 cW0

(1 − α + ζ2) + ζ1, where ζ1 and ζ2 are chosen as in Step
2. In addition, Lemma 4.1 shows that cW0

(1 − α + ζ2) 6 cZ0
(1 − α + %n).

Finally, Lemma 2.1 yields cZ0
(1−α+%n)+ζ1 6 cZ0

(1−α+2%n). Combining
presented bounds gives the claim of this step.

Step 4. Given (26), the rest of the proof is identical to Steps 2-3 in the
preceding proof of Theorem 5.1, using c = cW (1−α). The result follows for
νn = 2%n. �

Appendix F. Proofs for Section 6

F.1. Proof of Theorem 6.1. The multiplier bootstrap critical value c1−α,w

clearly satisfies c1−α,w 6 c1−α,w′ whenever w ⊂ w′, so that inequality (19)
holds. Therefore, it suffices to prove (20). We will only consider w = W,
and note that the same o(1) in equation (20) applies when w ⊂ W. Also, we
will only consider the case with four bounded moments. The sub-Gaussian
case is similar. The following direct corollaries of assumptions will be used
repeatedly in the sequel,

max
i,k,j

|xikj| 6 max
i,k

‖xik‖ 6(1) c
−1
1 max

i,k
‖vik‖

6 c−1
1

√
p̄max

i,k,j
|vikj| 6(2) c

−1
1

√
p̄Bn,(28)

max
k,j

En[x
2
ikj] 6 max

k
En[‖xik‖2]

6(3) c
−2
1 max

k
En[‖vik‖2] 6(4) c

−2
1 p̄,(29)

where (1) and (3) follow from assumption M-(iv) and the definition of xik,
(2) is from M-(i) since vik is a subvector of zi, and (4) is due to M-(ii). We
start with several lemmas. In all the lemmas below, we will assume the same
conditions as in the theorem.

Lemma F.1.
∑n

i=1 xikjεik/
√
n = OP(rn1) uniformly over k = 1, . . . ,K and

j = 1, . . . , pk where rn1 =
√
p̄ log p.

Proof. Applying Lemma A.1 combined with inequalities (28) and (29) gives

E[max
k,j

|
n∑

i=1

xikjεik/
√
n|] = (

√
p̄Bn(log p)/n

1/4 +
√
p̄ log p) = O(

√
p̄ log p),

where the second step follows because Bn
√
log p/n1/4 = o(1). The asserted

claim follows from Markov’s inequality. �

Lemma F.2. En[x
2
ikj(ε̂

2
ik − σ2ik)] = OP(rn2) uniformly over k = 1, . . . ,K

and j = 1, . . . , pk where rn2 = p̄B2
n log p/

√
n.
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Proof. We have

En[x
2
ikj(ε̂

2
ik − σ2ik)] = En[x

2
ikj(ε

2
ik − σ2ik)] + En[x

2
ikj(v

′
ik(β̂k − βk))

2]

− 2En[x
2
ikjεikv

′
ik(β̂k − βk)]

=: Ijk + IIjk + IIIjk.

All three terms are bounded below in three steps. Summing up gives the
result because p̄/

√
n→ 0.

Step 1. We prove that Ijk = En[x
2
ikj(ε

2
ik − σ2ik)] = OP(rn21) uniformly

over k = 1, . . . ,K and j = 1, . . . , pk where rn21 = p̄B2
n log p/

√
n.

Applying Lemma A.1 combined with inequalities (28) and (29) gives

E[max
k,j

|En[x
2
ikj(ε

2
ik − σ2ik)]|] = O(p̄B2

n log p/
√
n+ p̄Bn

√
(log p)/n)

= O(p̄B2
n log p/

√
n),

where the second step holds because Bn is bounded away from zero. The
claim of this step follows from Markov’s inequality.

Step 2. We prove that IIjk = En[x
2
ikj(v

′
ik(β̂k − βk))

2] = OP(rn22) uni-

formly over k = 1, . . . ,K and j = 1, . . . , pk where rn22 = p̄2B2
n(log p)/n. We

have

max
k,j

En[x
2
ikj(v

′
ik(β̂k − βk))

2] 6(1) p̄B
2
nmax

k
En[(v

′
ik(β̂k − βk))

2]

= p̄B2
nmax

k
En[εikv

′
ik]En[vikv

′
ik]

−1
En[vikεik]

6(2) c
−1
1 p̄B2

nmax
k

‖En[vikεik]‖2

6 c−1
1 p̄2B2

nmax
k,j

|En[vikjεik]|2

=(3) OP(p̄
2B2

n(log p)/n),

where (1) follows from inequality (28), (2) is by Assumption M-(iv), and (3)
follows by applying Lemma A.1. The claim of this step follows.

Step 3. We prove that IIIjk = En[x
2
ikjεik(v

′
ik(β̂k − βk))] = OP(rn23)

uniformly over k = 1, . . . ,K and j = 1, . . . , pk where rn23 = p̄2B2
n(log p)/n.

We have

max
k,j

|En[x
2
ikjεik(v

′
ik(β̂k − βk))]| 6 max

k,j
‖En[x

2
ikjεikv

′
ik]‖‖β̂k − βk‖

6 max
k,j,l

√
p̄|En[x

2
ikjεikvikl]|‖β̂k − βk‖.

Then

max
k

‖β̂k − βk‖ = max
k

‖En[vikv
′
ik]

−1
En[vikεik]‖ 6(1) c

−1
1 max

k
‖En[vikεik]‖

6 c−1
1

√
p̄max

k,j
|En[vikjεik]| =(2) OP(

√
p̄(log p)/n)
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where (1) follows from Assumption M-(iv) and (2) is as in step 2. In addition,
Lemma A.1 combined with inequalities (28) and (29) gives

E[max
k,j,l

|En[x
2
ikjεikvikl]|] = O(p̄B3

n(log p)/n
3/4 + p̄B2

n

√
(log p)/n)

= O(p̄B2
n

√
(log p)/n)

because Bn
√
log p/n1/4 = o(1). Combining presented bounds yields the

claim of this step. �

Lemma F.3.
∑n

i=1 xikj ε̂ikei/
√
n = OP(rn1) uniformly over k = 1, . . . ,K

and j = 1, . . . , pk. Recall that rn1 =
√
p̄ log p.

Proof. We have

Ee[max
k,j

|
n∑

i=1

xikj ε̂ikei/
√
n|] .(1)

√
log pmax

k,j
(En[x

2
ikj ε̂

2
ik])

1/2

=(2)

√
log pmax

k,j
(En[x

2
ikjσ

2
ik] +OP(rn2))

1/2

6(3)

√
log pmax

k,j
(En[x

2
ikjσ

2
ik])

1/2 +OP(rn2
√

log p)

6(4) σ
√

log pmax
k,j

(En[x
2
ikj])

1/2 +OP(rn2
√

log p)

=(5) OP(
√
p̄ log p),

where (1) follows from Pisier’s inequality, (2) is from lemma F.2, (3) follows
by applying Taylor expansion since rn2 = o(1) and En[x

2
ikjσ

2
ik] bounded away

from zero, which is because of Assumptions M-(iii) and M-(v), (4) follows
from Assumption M-(iii), and (5) is due to equation (29) and rn2 = o(1)
again. The claim of the lemma follows. �

Lemma F.4.
∑n

i=1 xikj(ε̂ik − εik)ei/
√
n = OP(rn3) uniformly over k =

1, . . . ,K and j = 1, . . . , pk where rn3 = p̄Bn log p/
√
n.

Proof. We have

Ee[|
n∑

i=1

xikj(ε̂ik − εik)ei/
√
n|] .(1)

√
log pmax

k,j
(En[x

2
ikj(ε̂ik − εik)

2])1/2

=(2)

√
log pmax

k,j
(En[x

2
ikj(v

′
ik(β̂k − βk))

2])1/2

=(3) OP(p̄Bn log p/
√
n)

where (1) follows from Pisier’s inequality, (2) is by the definition of ε̂ik, and
(3) is by step 2 in the proof of lemma F.2. The result follows. �

We now complete the proof of the theorem by applying Theorem 4.2 with
T , T0, W , and W0 defined below. Let

T0 := max
k,j

∑n
i=1 xikjεik/

√
n√

En[x2ikjσ
2
ik]

.
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Then

T := max
k,j

∑n
i=1 xikjεik/

√
n√

En[x2ikj ε̂
2
ik]

= max
k,j

∑n
i=1 xikjεik/

√
n√

En[x2ikjσ
2
ik] +OP(rn2)

= T0 +OP(rn1rn2) = T0 + oP(1/
√

log p),

where we used lemmas F.1 and F.2 and the facts that En[x
2
ikjσ

2
ik] is bounded

away from zero and that p̄3B4
n(log p)

4/n = o(1). Similarly,

W := max
k,j

∑n
i=1 xikj ε̂ikei/

√
n√

En[x
2
ikj ε̂

2
ik]

= max
k,j

∑n
i=1 xikj ε̂ikei/

√
n√

En[x
2
ikjσ

2
ik]

+OP(rn1rn2)

= W0 +OP(rn1rn2 + rn3) =W0 + oP(1/
√

log p),

where

W0 := max
k,j

∑n
i=1 xikjεikei/

√
n√

En[x
2
ikjσ

2
ik]

,

and where we additionally used lemmas F.3 and F.4 and the fact that
p̄Bn(log p)

3/2/
√
n = o(1). It follows that equations (12) and (13) in Sec-

tion 4 hold for some ζ1 and ζ2 satisfying ζ1
√
log p+ ζ2 = o(1) for chosen T ,

T0, W , and W0. Therefore, the theorem follows from Theorem 4.2. �

Appendix G. Proofs for Section 7

G.1. Proof of Theorem 7.1. We only consider the case with four bounded
moments. The sub-Gaussian case is similar. In this proof, let c > 0 and
C > 0 denote generic constants depending only on c1, C1, σ

2, σ̄2 and their
values may change from place to place. Let

T0 := max
16j6p

∑n
i=1 zijεi/

√
n√

En[z2ijσ
2
i ]

and W0 := max
16j6p

∑n
i=1 zijεiei/

√
n√

En[z2ijσ
2
i ]

.

Step 1. We show that P(|T −T0| > ζ1) < ζ2 for some ζ1 and ζ2 satisfying
ζ1
√
log p+ ζ2 6 Cn−c.

Under the conditions of the theorem, applying Corollary 2.2 followed by
Pisier’s inequality for Gaussian random vectors, we have

(30) P

(
max
16j6p

n∑

i=1

zijεi/
√
n > C

√
log p

)
6 n−c.

for sufficiently large C. Moreover,

En[z
2
ij(ε̂

2
i − σ2i )] = En[z

2
ij(ε̂i − εi)

2] + En[z
2
ij(ε

2
i − σ2i )] + 2En[z

2
ijεi(ε̂i − εi)]

=: I + II + III.

Consider I. We have

I 6(1) max
16i6n

(ε̂i − εi)
2 6(2) C‖β̂ − β‖2 6(3) C‖En[viεi]‖2
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where (1) follows from assumption S-(ii), (2) from S-(iv) and S-(v), and (3)
holds because of S-(vi). Since E[‖En[viεi]‖2] 6 C/n, Markov’s inequality
implies that for every ψ > 0,

(31) P

(
max
16j6p

En[z
2
ij(ε̂i − εi)

2] > ψ

)
6 C/(nψ).

Consider II. Combining Lemma A.1 and Markov’s inequality, we have

(32) P

(
max
16j6p

|En[z
2
ij(ε

2
i − σ2i )]| > ψ

)
6 CB2 log p/(

√
nψ).

Consider III. We have |III| 6 2|En[z
2
ijv

′
i(β − β̂)εi]| 6 2‖En[z

2
ijεivi]‖‖β̂ −

β‖. Using the same arguments as above, we have

P

(
max
16j6p

|En[z
2
ijεi(ε̂i − εi)]| > ψ

)
6 P

(
max
16j6p

‖En[z
2
ijεivi]‖ > ψ/2

)
+ C/n

6 C{B2
n log p/(

√
nψ) + 1/n}.(33)

Combining (30), (31), (32), and (33) and using Taylor’s expansion leads to

P
(
|T − T0| > Cψ

√
log p

)
6 B2

n log p/(
√
nψ) + 1/(nψ) + n−c

for sufficiently small ψ. By setting ψ = (log p)−1n−c for sufficiently small
c > 0, we obtain the claim of this step.

Step 2. We show that P(Pe(|W −W0| > ζ1) > ζ2) < ζ2 for some ζ1 and
ζ2 satisfying ζ1

√
log p+ ζ2 6 Cn−c.

For ψ > 0, consider the event such that max16j6p |En[z
2
ij(ε̂

2
i − σ2i )]| 6 ψ,

max16j6p |En[z
2
ijεi(ε̂i − εi)]| 6 ψ, and max16i6p(ε̂i − εi)

2 6 ψ2. By calcula-

tions in step 1, this event has probability at least 1 − C(B2 log p/(
√
nψ) +

1/(nψ2) + 1/n). Moreover, on this event,

Pe

(
max
16j6p

|
n∑

i=1

zij ε̂iei/
√
n| > C

√
(1 + ψ) log p

)
6 1/n,

Pe

(∣∣∣∣∣max
16j6p

n∑

i=1

zij ε̂iei/
√
n− max

16j6p

n∑

i=1

zijεiei/
√
n

∣∣∣∣∣ > Cψ
√

log p

)
6 1/n

for sufficiently large C > 0 because En[z
2
ij ε̂

2
i ] = En[z

2
ijσ

2
i ]+En[z

2
ij(ε̂

2
i −σ2i )] 6

C+ψ and (En[z
2
ij(ε̂i− εi)

2])1/2 6 max16i6n |ε̂i− εi| 6 ψ. Therefore, on this
event, using Taylor’s expansion, we have

Pe

(
|W −W0| > Cψ

√
log p

)
. 1/n

for sufficiently small ψ. By setting ψ = (log p)−1n−c for sufficiently small
c > 0, we obtain the claim of this step.

Step 3. Steps 1 and 2 verified conditions (12) and (13) of section 4. The
claim of the theorem now follows by applying Corollary 4.1. �
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