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Abstract

This paper considers the class of p-dimensional elliptic distributions (p ≥ 1) satisfying the consistency property

(Kano, 1994) and within this general framework presents a two-stage semiparametric estimator for the Lebesgue

density based on Gaussian mixture sieves. Under the on-line Exponentiated Gradient (EG) algorithm of Helmbold

et al. (1997) and without restricting the mixing measure to have compact support, the estimator produces estimates

converging uniformly in probability to the true elliptic density at a rate that is independent of the dimension of the

problem, hence circumventing the familiar curse of dimensionality inherent to many semiparametric estimators.

The rate performance of our estimator depends on the tail behaviour of the underlying mixing density (and hence

that of the data) rather than smoothness properties. In fact, our method achieves a rate of at least Op(n
−1/4),

provided only some positive moment exists. When further moments exists, the rate improves reaching Op(n
−3/8)

as the tails of the true density converge to those of a normal. Unlike the elliptic density estimator of Liebscher

(2005), our sieve estimator always yields an estimate that is a valid density, and is also attractive from a practical

perspective as it accepts data as a stream, thus significantly reducing computational and storage requirements.

Monte Carlo experimentation indicates encouraging finite sample performance over a range of elliptic densities.

The estimator is also implemented in a binary classification task using the well-known Wisconsin breast cancer

dataset.

AMS (2000) subject classifications: 62G07, 62G20, 68W27

1 Introduction

Owing to generality considerations and breadth of application, density estimation is one of the most actively studied

challenges in statistics. Although nonparametric density estimation was advanced dramatically by the introduction

∗This work was partially funded by the ESRC. We thank Alessio Sancetta and Alexei Onatski for helpful discussions, as well as two

anonymous referees, whose comments helped improve the paper.
†Statistics group, School of Mathematics, University of Bristol, UK. h.s.battey@bristol.ac.uk
‡Trinity College and Faculty of Economics, University of Cambridge, UK. obl20@cam.ac.uk

1

*Manuscript
Click here to view linked References

http://ees.elsevier.com/jmva/viewRCResults.aspx?pdf=1&docID=3135&rev=1&fileID=53330&msid={73A95418-04CF-4F15-9895-FB57B328A6F2}


Nonparametric estimation of elliptic densities

of the kernel density estimator (Fix and Hodges; Rosenblatt, 1956), the performance of this estimator deteriorates

rapidly for a fixed sample size as the number of dimensions grows large. Moreover, this performance depends heavily

on the choice of b bandwidth parameters, where b grows quadratically with the dimension of the problem. This

provides motivation for estimating nonparametrically within a restricted class of p-dimensional Lebesgue densities

(p ≥ 1): one that embeds many naturally arising distributions, allowing us to maintain a large degree of flexibility,

whilst circumventing these problems that arise in high dimensions.

Much recent research has focussed on shape constrained density estimation. For instance, Cule et al. (2010) consider

maximum likelihood estimation of a p-dimensional density that satisfies a log-concavity constraint, i.e. densities with

tails decaying at least exponentially fast. This estimator involves no choice of smoothing parameter, and is able to

estimate a range of symmetric and asymmetric densities consistently. Moreover, the estimator is shown to exhibit a

certain degree of robustness to mispecification (Cule and Samworth, 2010).

This paper is concerned with nonparametric estimation within the class of elliptic densities in Rp. This problem

has been addressed in the literature before (Stute and Werner, 1991; Liebscher, 2005; Sancetta, 2009), but our work

provides new contributions, which are highlighted below. Densities from the elliptic class are characterised by the

property that their contours of equal density have the same elliptical shape as the Gaussian. Indeed, many of the

convenient analytic properties possessed by the multivariate normal distribution (see e.g. Muirhead, 1982, Chapter

1) stem from the quadratic form in its characteristic function, which is actually a feature of the elliptic class more

generally (Fang et al., 1990; Cambanis et al., 1981). Such features are, in part, responsible for the popularity of the

elliptical symmetry assumption in applied work (see e.g. Kariya and Eaton (1977); Marsh (2007) for usage in the

invariant testing literature, Owen and Rabinovitch (1983); Berk (1997) for usage in portfolio theory, and Chmielewski

(1981) for a review of elliptical symmetry with applications).

More specifically, we consider a large subclass of elliptic distributions whose densities can be expressed as scale

mixtures of normal densities, hence restrict attention only to distributions whose tails are heavier than those of a

normal (Beale and Mallows, 1959). Members of this subclass are said to satisfy the consistency property (Kano,

1994) and are characterised by having all their d dimensional marginals d < p from the same type of elliptic class as

the p dimensional joint distribution. Unfortunately, the subclass excludes some well known members of the elliptic

class such as the logistic, Pearson types II and VII, Kotz-type and Bessel distributions. It does however include

(inter alia) the multivariate symmetric stable and Cauchy distributions, which arise as limit laws of normalised sums

of i.i.d. random variables with fewer than 2 finite absolute moments, leading to their popularity as (multivariate)

mutation distributions in evolutionary algorithms (see e.g. Rudolph, 1997; Arnold and Beyer, 2003), as well as the

multivariate t, popular in finance. A key issue in some applications is heavy tails or non existence of moments and

so in practice more emphasis has been given to leptokurtic members of the elliptical class, which is aligned with our

approach.

We propose a two-stage estimation procedure based on mixture likelihoods for the density of an elliptically dis-

tributed random vector with the consistency property. A major feature of this estimator is that it accepts data as a

stream, which leads to a significant reduction in computational and storage requirements. In the elliptic framework

without the consistency property, Stute and Werner (1991) proposed a density estimator that also circumvents the

curse of dimensionality. Stute and Werner (1991) document the difficulty in estimating the density of an elliptic

random variable due to the so called volcano effect that presents itself in a neighbourhood of the mean. Liebscher

(2005) proposed a different estimator of the density that benefits from improved properties; he showed that his esti-

mator achieved an optimal (one-dimensional) rate away from the mean for standard smoothness classes. As noted his
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Nonparametric estimation of elliptic densities

estimator does not completely overcome the problems arising near the mean. Furthermore, his main result requires

the existence of at least four moments for the random variables of interest, which rules out many distributions of

practical interest. Another problem is that the procedure relies on higher order kernels that must be chosen to satisfy

a series of conditions, with the ultimate consequence that the resulting estimate can be negative and highly oscillatory

at certain points of the support, an effect that is particularly prominent in small sample sizes (Marron and Wand,

1992). Our estimator, by contrast, always yields a valid density. Moreover, the implementation relies on delicate

asymptotic analysis which requires knowledge of unknown quantities. Since the procedure does not support cross

validation, it is hard in practice to implement the estimator described in Liebscher (2005). Further discussion of these

problems appears in section 4.2. Although the construction of our estimator also relies on one unknown quantity,

this may be computed, either by cross validation or by direct estimation. In fact, Monte Carlo evidence also suggests

that the estimator is not unduly affected by an incorrect choice of this quantity. A key difference in the orientation

of our approach is that we allow for heavy tailed data and our estimation procedure explicitly uses information or

assumptions about tail thickness rather than smoothness properties.

2 The model and its properties

Let X1, . . . , Xn be i.i.d. random vectors in Rp having a density f ∈ F . In this paper, we are only concerned with

the case in which F is the set of elliptic densities with the consistency property (see below); it is of interest to study

the implications for the estimator of f when the assumption of elliptical symmetry is violated, but this task is left for

future work. A p dimensional random vector X is said to have an elliptic distribution with mean µ, scaling matrix

Ω (positive definite), and Lebesgue measurable generator gp : R+ 7→ R+ (written X ∼ El(µ,Ω, gp)) if its density

function at x has the form

f(x) = cp|Ω|−1/2gp
(

(x − µ)TΩ−1(x− µ)
)

.

The parameters µ, Ω and gp uniquely determine the elliptic density up to a scaling factor: El(µ,Ω, gp) = El(µ, cΩ, gp,c)

where gp,c(q) = gp(q/c), which means we can always consider a Ω with diagonal elements all equal to one. This Ω

is just the matrix of linear correlation coefficients in the case that the elements of X have finite variances, however,

to subsume the more general cases, we will refer to Ω as the orbital eccentricity matrix. Provided Ω is full rank, X

necessarily has the following stochastic representation (Cambanis et al., 1981, Theorem 1)

X
d
= µ+RAU (p) A = Ω1/2 (2.1)

where
d
= means equality in distribution, U (p) is a random vector uniformly distributed on the unit sphere in Rp, i.e. on

{u ∈ Rp : uTu = 1}, A is the square root of Ω and R is a scalar random variable on R+, distributed independently of

U (p). By the full rank condition, we may define Z := A−1(X − µ)
d
= RU (p), which has a spherical distribution, hence

is distributionally invariant under the orthogonal group (Muirhead, 1982, Definition 1.5.1). The density of Z is thus

uniquely determined by the density of ZTZ
d
= R2 according to f(z) = cpgp(z

T z) ≡ cpgp(r
2), where this density exists

if and only if R has density at r, hp(r), related to gp(r
2) as (Fang et al., 1990)

hp(r) =
2πp/2

Γ(p/2)
rp−1gp(r

2)

The subscript p on the generator indicates that, in general, gp depends on the dimension p. When variables can be

integrated out without changing the form of g, then the density generator is said to possess the consistency property

(Kano, 1994); see Condition 3 below for a formal statement.
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Nonparametric estimation of elliptic densities

Condition 1. Ω is full rank.

Condition 2. R possesses a density with respect to Lebesgue measure.

Condition 3. The density generator, g(·), possesses the consistency property, i.e.

∫ ∞

−∞
g
p





p
∑

j=1

z2j



 dz
p
= g

p−1





p−1
∑

j=1

z2j



 (2.2)

for any p ∈ N and almost all z ∈ Rp

To provide an example of when Condition 3 holds and when it does not, if the p dimensional joint distribution is,

say, Gaussian, then all the p− 1 dimensional marginals are also Gaussian, yet if the p dimension joint distribution is

power exponential with parameter α, then it is not true that the p− 1 dimensional marginals are power exponential

with parameter α for any p ∈ N; further details on this latter example are provided in Kano (1994). Theorem 1 of

Kano (1994) establishes equivalence between the consistency property and Z being a scale mixture of normal random

vectors, which motivates our estimation procedure described below.

Assuming µ is known, we may centre as Y := X − µ and, by Condition 1 and the property El(µ,Ω, gp) =

El(µ, cΩ, gp,c), consider,

Y
d
= Ω1/2RU (p) .

Then by the consistency property (Condition 3) and by Theorem 1 (iii) of Kano (1994), there exists a random variable

Q > 0, unrelated to p such that for any p ∈ N, R
d
=
√

χ2
p/Q with χ2

p a chi-square random variable with p degrees

of freedom and Q, χ2
p and U (p) mutually independently distributed. It follows that Y

d
= Np/

√
Q where Np is a p

dimensional normal random vector with mean zero and correlation matrix Ω and Q is unrelated to p and independent

of Np. By Condition 2, Y possesses a Lebesgue density, hence the probability density function f(y) of Y at y may be

written

f(y) =

∫ ∞

0

φ(y|Ω/q)P(d(1/q)) (2.3)

where φ(y|Ω) is the normal kernel, given by (2π)−p/2|Ω|−1/2 exp{− 1
2 (y

TΩ−1y)} and P is the unknown law of the

inverse mixing random variable 1/Q on Q = (0,∞). The problem is now one of estimating Ω and the unknown law

of 1/Q, whose tails are assumed to satisfy Condition 4.

Condition 4. P(1/Q > x) ≤ L(x)x−α; α > 0, where the slowly varying function L(x) satisfies limx→∞ L(tx)/L(x) =

1 for all constant t > 0.

Remark. Condition 4 allows us to estimate densities of random variables with heavy tails, with the convergence rate

of our estimator depending on the parameter α. For instance, consider a random variable T2 distributed as a student

t with 2 degrees of freedom, then Q ∼ χ2
2/2, where χ2

2 is a chi-square random variable with 2 degrees of freedom.

Since

Pr (1/Q > x) = Pr
(

2χ−2
2 > x

)

= 2(1− e−1/2x) , (2.4)

T2 satisfies Condition 4 with α = 1.
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Figure 2.1: Plot of Pr(1/Q > x) against x for 1/Q ∼ 2/χ2

2, (blue), together with x−1 against x (red) (lines lie on

top of each other).

Likewise, for a student t random variable with 1.5 degrees of freedom, the tail behaviour of 1/Q satisfies

Pr (1/Q > x) = Pr
(

1.5χ−2
1.5 > x

)

= 1.22407(1.22542− Γ(0.75, 0.5/x)) ≈ x−0.75 (2.5)

where Γ(a, b) is the incomplete gamma function Γ(a, b) =
∫∞
b ta−1e−tdt.

200 000 400 000 600 000 800 000 1´106

0.00005

0.00010

0.00015

0.00020

Figure 2.2: Plot of Pr(1/Q > x) against x for 1/Q ∼ 1.5/χ1.5
2 , (blue), together with x−0.75 against x (red)

3 Estimation via finite mixture sieves

Sancetta (2009) considers Bayesian semiparametric estimation of an elliptic density in a similar framework to that

above, establishing weak conditions for posterior consistency. In this paper, we adopt a frequentist approach and

define a sequence of approximations to equation (2.3)

SM =

{

fM : fM (y) :=

M
∑

s=1

Λsφ(y|Ω/qs); M ∈ N

}

, (3.1)

where {Λs}Ms=1 are weights such that Λs ∈ [0, 1] ∀ s ∈ {1, . . . ,M} and
∑M

s=1 Λs = 1, and the qs are such that

1/qs ∈ (0, x̄(M)], where x̄(M) → ∞ as M → ∞. Interest lies in finding the optimal rate at which to allow M to

grow with the sample size in order to achieve the optimal trade-off between approximation error and estimation error.

Since we allow x̄ to go to infinity, we permit one or more of the estimated component densities of the mixture to have

infinite variance in the limit as the sample size goes to infinity.
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Nonparametric estimation of elliptic densities

3.1 Two-stage sieve estimation

Notice that estimating fM
n (y) requires estimation of p(p − 1)/2 orbital eccentricity coefficients from Ω = [Ωkl].

There is more than one way of doing this, and we shall make some specific suggestions below. We shall assume that

whichever method is chosen that it obeys the following Condition 5

Condition 5. The sequence (Ω̂n)n∈N satisfies |Ω̂n − Ω| = Op(n
−1/2).

For the remainder of this paper, we will write Ω̂n as Ω. The above condition admits estimation of Ω by the

Stahel-Donoho robust estimator of multivariate location and scatter, as discussed in Maronna and Yohai (1995). This

estimator also takes care of estimation of µ, which is a requirement for re-centering at zero the X in equation (2.1)

in the case that µ is unknown. As an alternative, the vector of univariate sample means or sample medians could be

used to estimate µ and a different estimator for Ω may be used.

We advocate the following estimator based on a transformation of p(p − 1)/2 estimators of the Kendall tau

dependence measure. The following canonical transformation is valid for all members of the elliptic class (Lindskog

et al., 2003)

τkl =
2

π
arcsin(ρkl) (3.2)

where τkl is the Kendall tau dependence measure, defined as

τkl := Pr ((Yi,k − Yj,k)(Yi,l − Yj,l) > 0)− Pr ((Yi,k − Yj,k)(Yi,l − Yj,l) < 0)

where (Yj,k, Yj,l) is an independent copy of (Yi,k, Yi,l). In the case that the elements of Y have finite variances and

Ω = [Ωkl] = [Cov(Yk, Yl)/Var(Yk)Var(Yl)], the standard estimator of the orbital eccentricity is the Pearson product

moment correlation coefficient, derived as the maximum likelihood solution in the case that Y is multivariate normally

distributed. This estimator is not robust, in the sense that it is not unaffected by departures of Y from normality. In

particular, the Pearson estimator performs very poorly when Y is from a distribution with heavy tails (Pollard, 2000);

by contrast, the sample version of Kendall’s tau τ̂kl is robust to heavy tailedness. τ̂kl is the proportion of concordant

pairs minus the proportion of discordant pairs, i.e.

τ̂k,l =
n
∑

i=1

n−1
∑

j=i

I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) > 0} − I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) < 0}
I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) > 0}+ I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) < 0}

=

(

n

2

)−1
∑

i,j<i

( I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) > 0} − I1 {(Yi,k − Yj,k)(Yi,l − Yj,l) < 0})

which, in light of equation (3.2) provides a natural means of estimating the orbital eccentricity efficiently:

ρ̂kl = sin
(π

2
τ̂kl

)

(3.3)

Zhao et al. (1997) show that each of the (p − 1)p/2 Kendall tau estimators satisfy |τ̂kl − τkl| = Oa.s.(n
−1/2). Since

sin(π2 ·) is a continuous mapping, Slutsky’s theorem implies Ω̂kl = Ωkl + Op(n
−1/2) ∀k 6= l, hence Condition 5 is

satisfied by the Kendall tau transform estimator.

We next turn to estimation of the weights. Equation (3.1), being a finite scale-mixture of normal densities, yields

an incomplete data problem as it is not observed from which component density each of the data points are drawn.
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Nonparametric estimation of elliptic densities

Since the true maximum likelihood solution is infeasible, we must rely on iterative methods that compute a sequence

of mixture vectors Λ1, . . . ,Λj, . . . for which some composite mixture
∑M

s=1 Λ̂sqsφ(y|Ω/qs) converges to the (unknown)

maximum likelihood mixture
∑M

s=1 Λ̂
ML
s qsφ(y|Ω/qs), where ΛML

s is the infeasible maximum likelihood solution and Λs

is some composite of the mixture weights computed in an iterative algorithm, which is yet to be specified. Note that

for typographical reasons, we make no notational distinction between scalar weights and vector weights; the distinction

will be clear from the context and the indexing. The celebrated Expectation Maximisation (EM) algorithm, is one

such iterative procedure; we refer to the seminal paper by Dempster et al. (1977) for details. Despite its theoretical

ability to overcome the latent factor problem, the EM algorithm can converge quite slowly (Meng and van Dyk, 1997)

and can be impractical, especially when processing large data sets and data streams (Cappé and Moulines, 2009).

Concerns in the latter case arise from the fact that all the data must be made available at each iteration, implying

large storage requirements and computational inefficiency. On-line variants allow previous estimates to be updated

based on each new piece of information and are therefore attractive from a computational perspective.

We study the asymptotic properties of the mixture sieve estimator using the Exponentiated Gradient algorithm

(henceforth termed EG algorithm) of Helmbold et al. (1997). This is a grid-based on-line algorithm for the unsuper-

vised mixture proportions estimation problem, providing significant computational speed-ups over conventional EM.

The EG algorithm considers a finite number, M , of mixture components, corresponding to fixed values of (qs)
M
s=1 in

the support of P. This is in contrast to continuous support EM-type algorithms in which the conditional expectation

of the log-likelihood is maximised with respect to the scale parameters, (qs)
M
s=1, in addition to the mixing parameters,

(Λs)
M
s=1. Clearly, such a grid-based approach will have the disadvantage that the (qs)

M
s=1 must be chosen a priori; we

make the choice that minimises the approximation error, i.e. we choose these values to be separated by equal intervals

for all s ∈ 1, . . . ,M . The case where equal intervals are chosen is also covered in Helmbold et al. (1997) and thus an

explicit bound is available on the estimation error from making this choice.

Write Ln(Λ) for the log mixture likelihood at an arbitrary iteration evaluated at Λ. At the jth iteration, the EG

algorithm with learning rate η (termed EGη algorithm) seeks to maximise with respect to Λj

F (Λj) = η

(

Ln(Λj−1)−
∑

s

∇sLn(Λj−1)(Λj,s − Λj−1,s)

)

− d(Λj ,Λj−1) (3.4)

subject to the constraint
∑M

s=1 Λj,s = 1, where d(Λj ,Λj−1) is the Kullback-Leibler divergence between the two

probability distributions Λj and Λj−1. Heuristically, the EGη algorithm is easy to understand as a Taylor series

approximation to Ln(Λj) with a penalty to reflect the quality of the approximation. Maximising the Lagrangian

corresponding to equation (3.4), amounts to solving the M + 1 equations for the M elements of Λj:

F (Λj, γ)

∂Λj,s
= η∇sL(Λj−1)−

∂d(Λj ,Λj−1)

∂Λj+1
+ γ = 0

and
M
∑

s=1

Λj,s = 1 .

Replacing d(Λj ,Λj−1) with the Kullback-Leibler divergence yields the requirement

η∇sL(Λj−1)−
(

ln

(

Λj,s

Λj−1,s + 1

))

+ γ = 0 . (3.5)
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Nonparametric estimation of elliptic densities

Solving equation (3.5) for the Λj,s and imposing the normalisation constraint yields the analytic update

Λj,s =
Λj−1,s exp{η∇sLn(Λj−1)}

∑M
t=1 Λj−1,t exp{η∇tLn(Λj−1)}

,

which, given an initialisation vector Λ0, gives a recursive estimate of the mixing weights (Λs)
M
s=1; we denote the EG

estimates by (Λ̂EG
s )Ms=1.

At each iteration, the EG solution Λ̂EG is charged a loss,

−Ln(Λ̂
EG) = − 1

n

n
∑

i=1

ln

(

M
∑

s=1

Λ̂EG
s ψ(Yi|qs)

)

.

The true (unknown) maximum likelihood solution, Λ̂ML (the one that would maximise the log likelihood if the labels

were observed) suffers an analogous loss. It is instructive to consider the average additional loss incurred over I

iterations of the EG algorithm over that incurred by the unknown maximum likelihood solution, which is obtained

from equation (9) of Helmbold et al. (1997) as

− 1

I

I
∑

j=1

1

n

n
∑

i=1

ln

(

M
∑

s=1

Λ̂EG
j,s ψ(Yi|qs)

)

≤ − 1

n

n
∑

i=1

ln

(

M
∑

s=1

Λ̂ML
s ψ(Yi|qs)

)

+
2 lnM

Iη
(3.6)

where ψ(y|qs) is the sth mixture density at y; here

ψ(y|qs) := φ(y|Ω/qs) (3.7)

Note that (3.6) does not imply convergence of Λ̂EG to Λ̂ML at rate (2 lnM)/Iη, but rather convergence in log

likelihood. Define the density estimator

f̂M
n (y) =

M
∑

s=1

Λ̂EG
I,s φ(y|Ω̂n/qs), (3.8)

where (Λ̂I,s)
M
s=1 is the average set of weights estimated in I = n iterations of the EG algorithm with learning rate η.

4 Asymptotic properties and practicalities

Using the EGη algorithm to estimate the mixture proportions in equation (3.1), and replacing Ω with Ω̂ in (3.7)

gives rise to the bound in the following theorem.

Theorem 1. Let Conditions 1 - 4 hold. Fix {qs = 1/xs : s = 1, . . . ,M} where x1 = M−α/(1+α)/2 and xs =

xs−1 +M−α/(1+α) and let M := M(n) be given by M =
⌊

cn
1+α
2+4α

⌋

(where c is a positive constant and bxc gives the

largest integer less than or equal to x). Suppose that f̂M
n (z) is defined by (3.8) with the learning rate η = 2r

√

2 lnM
I

where r is a lower bound on the instances ψ(Yi|qs) for all i and all s. Then,

sup
y∈D

|f(y)− f̂M
n (y)| = Op

(

n− 1+3α
4(1+2α)

)

(4.1)

for any compact subset D of Rp such that 0 /∈ D. Allowing r to go to zero at rate
√
2 lnM

2M
√
n

delivers the same rate in

equation (4.1).
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Nonparametric estimation of elliptic densities

Although constants depend on p because of the estimation of p(p− 1)/2 eccentricity parameters in Ω, for a fixed

p, the rate of convergence of f̂M
n (y) does not depend on p; this is qualitatively the same result as that obtained in

Liebscher (2005).

Remark. In a neighbourhood of y = 0, the proof strategy does not allow us to say anything about the convergence

rate. In fact, the density f can be infinite and nondifferentiable at this point under our conditions. Under the strong

additional condition that the mixing measure P is supported on [δ,∞) where δ > 0, the rate in equation (4.1) becomes

uniform over the whole of Rp, as the space of functions

G := {g : q 7→ φ (y|Ω/q) ; 1/q ∈ Q, y ∈ Rp}

is bounded for Q = [δ,∞). We note that in Ghosal and van der Vaart (2001), which studies univariate normal mixture

density estimation, the assumption of compactly supported mixing measure is assumed in order to obtain rates that

hold uniformly over (−∞,∞). In this case rates of almost n−1/2 are available. The case of noncompact support is

considered by Genovese and Wasserman (2000) who establish rates of at most n−1/4 when the tails of the mixing

density are described by our Condition 4 (see section 5.2 of Genovese and Wasserman (2000) and the discussion

surrounding equation (36) op. cit.).

Clearly, the rate of convergence of the sieve estimator depends rather significantly on the tail exponent α of

the mixing measure. When the law of the mixing measure satisfies the least restrictive tail condition (smallest tail

exponent), a bound of Op

(

n−1/4
)

may be achieved. In the limit however, as the law of 1/Q satisfies a stronger tail

condition, a rate of Op

(

n−3/8
)

is achievable. This rate corresponds to the case in which Y is normally distributed in

Rp (see the discussion in section 4.1 below).

4.1 A practical method for selection of the tuning parameter

Since the smoothing parameter required to attain the above rate depends on α, in order to reduce the potential

inefficiency induced by unnecessarily taking α too small in condition 4, it would be preferable that the choice of α

be data-driven. One of the advantages of our approach over that of Liebscher (2005) is that it does admit a cross-

validatory choice of α. However, since cross validation is such a computationally intensive procedure, we also consider

the possibility of direct estimation of α from realisations of Y TΩ−1Y
d
= R2. Since the law of the inverse mixing

random variable 1/Q (as determined by α) is related to the law of the random variable R2, the tail behaviour of the

two is linked in a way that is quantified in equation (2.5) in the case that Y is a student t random variable with d = 2

degrees of freedom. The tail behavior of 1/Q can be described in a similar way for any d.

Considering the case in which Y is distributed as a student t random variable with d = {2, 5, 10} degrees of

freedom, we display the probability density functions of 1/dQ, which has an inverse χ2 distribution with d degrees of

freedom, and the corresponding density functions of R2/p, which has an Fp,d distribution (see e.g. Muirhead, 1982,

section 15 and exercise 1.30).

As d → ∞ the inverse χ2
d density collapses to a spike at zero which corresponds to the density of 1/Q = dχ−2

d

collapsing to a spike at 1, corresponding to normality of the random vector Y .
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Figure 4.1: Density function of 1/dQ
d
= χ−2

d and the corresponding density function of R2/p = (1/p)Y TΩ−1Y
d
= Fp,d

when Y is distributed as a student-t random variable with dimension p = 3 and d degrees of freedom (d = {2, 5, 10}

with corresponding curve {blue, red,yellow})

The discussion above motivates the use of a Hill estimator (Hill, 1975) of the tail exponent of R2, whose realisations

come from the same distribution as realisations of Y TΩ−1Y , in order to gain insight into the tail behaviour of 1/Q,

whose realisations are inaccessible. Let R̂2 be defined as the random variable obtained from the transformation

Y T Ω̂−1Y , where Ω̂ is the estimator of the eccentricity matrix obtained from the canonical Kendall tau transform in

equation (3.3). Let R̂2
(k) denote the kth order statistic of this random variable R̂2. Then a Hill estimator for the tail

exponent of R2 (based on a subsample of the K largest observations R̂2) may be defined as

α̂K,n(R
2) =

1

K

K
∑

k=1

(ln R̂2
(n−k) − ln R̂2

(n−K))

Based on 100 simulations and n = 100000 draws from the distribution of 1/Q and R2 when Y is distributed as a

trivariate student t random variable with d degrees of freedom, we find that α̂K,n(R
2) exhibits a strong relationship

with α̂K,n(1/Q) (where we take K = 0.05n = 5000) (see Figure 4.2 below), the consistent, yet practically infeasible

estimator of the tail exponent of the law of 1/Q. Figure 4.2 depicts the average (over 100 simulations for each value

of d) Hill estimate for the tail exponent of the inaccessible 1/Q. This is plotted against the average Hill estimate for

the tail exponent of R2, which can be estimated easily and reliably from the data. The right panel of Figure .2 plots

the average of α̂K,n(1/Q) and the average of the exponential transformations of α̂K,n(R
2), where this transformation

is chosen with a view to making the relationship linear. Empirically the relationship seems fairly robust to changes

in the dimension p (see Figure 4.4).

The right panels of Figures 4.2 and 4.3 both indicate that an estimator of the form

α̂(1/Q) := c1 + c2 exp{α̂K,n(R̂
2)} (4.2)

may be reasonable for the tail exponent of 1/Q. However, the constants c1 and c2 are not invariant to the dimension

of the problem. We plot in Figure 4.4 the ordinary least squares estimates of the coefficients as a function of the

dimension p, along with the coeffient of determination. We do not plot confidence bands for the coefficients c1 and c2

as the upper and lower confidence limits are indistinguishable from the estimated regression coefficients; it is worth

noting that zero is not included in any of the confidence bands.
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Figure 4.2: Scatter plots of the average (over 100 simulations) of α̂K,n(1/Q) against the average of α̂K,n(R
2) (left)

and the average of α̂K,n(1/Q) against the average of exp{α̂K,n(R
2)} when Y is distributed as a trivariate student

t random variable with d degrees of freedom. The colour indicates increasing d (from 2 to 70 in steps of 0.05).
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Figure 4.3: Scatter plots of the average (over 100 simulations) of α̂K,n(1/Q) against the average of α̂K,n(R
2) (left)

and the average of α̂K,n(1/Q) against the average of exp{α̂K,n(R
2)} when Y is distributed as a student t random

variable in p = 5 dimensions with d degrees of freedom. The colour indicates increasing d (from 2 to 70 in steps

of 0.05).
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Figure 4.4: Estimated regression coefficients c1 and c2, and the coefficient of determination from a regression

of α̂(1/Q) on exp{α̂(R2)} within the class of p-dimensional t distributions. Statistics are plotted as a function of

the dimension p.
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We emphasise that this is simply a rule of thumb method designed around a particular class of distributions;

although it will not always work, it is a simple and reasonable approach for choosing the unknown parameter α(1/Q).

More generally we can define a cross-validation procedure that would work for any distribution.

Although we do not dedicate further discussion to the properties of f̂M
n based on an estimator of α(1/Q), to

illustrate that the rule of thumb approach of equation (4.2) provides reasonable results even outside the class of

multivariate t distributions, we present in section 5 the MISE minimising choice of α and the corresponding ISE

estimates when the data are drawn from a symmetric stable distribution with various tail parameters. We compare

the resulting ISEs to those obtained from using the choice of α based on equation (4.2) with the constants c1 and c2

of Figure 4.4.

4.2 Discussion of results

We have already discussed our results in relation to those of Genovese and Wasserman (2000) for univariate normal

mixtures. We now compare them with those of Liebscher (2005) who considered estimation of elliptically symmetric

densities under smoothness conditions. He obtained the bound

Op

(

(n/ln(n))−
k

2k+1

)

, (4.3)

for his kernel based nonparametric estimator (2.5). In the above display, k is the maximum order of derivative of the

density generator, g(·), for which the derivative exists and is bounded on R+; it is assumed to be an even integer

greater than or equal to 2. Note that the rate in (4.3) is – up to a logarithmic factor – optimal in the sense of Stone

(1980) for densities whose effective dimension is one. However, the bound is only valid uniformly over compact subsets

of Rp that exclude the mean, rather than over the whole of Rp (to which Stone’s minimax rate applies).

The validity of the rate of Liebscher (2005) is dependent on several conditions, which rule out cases that we are

able to accommodate with our method. The discussion surrounding Figure 4.1. allows us to relate the condition of

Liebscher (2005) that Y TΩ−1Y
d
= R2 has finite 4 + ε moment, to the tails of the density of Y . Given that the Fp,d

distribution only has finite moments of order d/2, the assumption of finite 4 + ε moment rules out the case in which

Y TΩ−1Y is distributed as an Fp,d random variable with d ≤ 8, which corresponds to Y having student t distribution

with d ≤ 8 degrees of freedom.

Our procedure has several practical advantages over that of Liebscher (2005). Aside from the practical advantages

of online estimation over batch estimation, the approach of Liebscher (2005) requires that a suitably chosen transfor-

mation (so chosen to alleviate problems that would otherwise lead to significant bias in a neighbourhood of the mean)

be applied to the data. This transformation is delicate and influences the order and choice of higher-order kernel (see

Conditions T (p) and K (p) of the paper). The suggested transformations involve a tuning parameter that, due to

the nature of the procedure, cannot be chosen by cross validation. This is in contrast to our approach, which does

support a cross validatory choice of α or potentially even direct estimation of α along the lines discussed in section 4.1

above. Furthermore, Monte Carlo evidence illustrates the encouraging finite sample performance of our procedure,

even when α is not chosen as the true one.

A final but important point to note is that the estimator of Liebscher (2005) requires a kernel of order k in order to

achieve the k-dependent rate of display (4.3). In order to have high-order even moments equal to zero (his condition

K (p)), higher-order kernels need to be negative and highly oscillatory, which means the resulting estimate is not a

proper density. This effect is gradually dampened as n → ∞, but will be prominent in small and moderate sample
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sizes. Although such a symptom may be unproblematic if, for instance, we are interested in using the estimator for

nonparametric regression, it is an undesirable feature in many other cases of interest. Our estimator has the advantage

that it always yields an estimate that is a proper density.

5 Simulation studies

5.1 Analysis of the rule of thumb procedure

In this section, we analyse the extent to which the rule of thumb procedure of section 4.1, which was built around

a particular family of distributions, may be suitable for other members of the elliptic class. We consider univariate

symmetric stable distributions, whose characteristic function is parameterised by a tail parameter γ ∈ (0, 2] in addition

to the location and scale parameters µ ∈ R and σ ∈ R+. Since the stable distribution does not possess a closed form

solution for its density function, a symmetric stable random variable Y ∼ S(γ, 0, σ, µ) is described by its characteristic

function as

E exp{iuY } =

{

exp{−σγ |u|γ + iµu} γ 6= 1

exp{−σγ |u|+ iµu} γ = 1 .

The density function of a stable random variable can be calculated numerically by the algorithm described by Nolan

(1997) in the univariate case and using the method of Abdul-Hamid and Nolan (1998) in the multivariate case. Due

to the lack of freely available software that support this distribution, we consider only the univariate case here, for

which user-written software is publically available (Veillette, 2012).

For values of the tail parameter γ increasing from 0.3 to 2 in steps of size 0.1, we conduct a simulation study in

which n = 500 symmetric stable random variables Y ∼ S(γ, 0, 1, 0) on each of 100 Monte Carlo replications. For

values of the tuning parameter α ∈ A, where A is a finite set of elements increasing from 0.25 to 3 in steps of size

0.25, we construct an estimate of the density function, we also construct an estimate of the density function based

on the Hill estimate α̂(R̂2) and the rule of thumb procedure described in section 4.1. We plot in the left panel of

Figure 5.1 below the symmetric stable density function for various values of γ. We also plot in the right panel of

Figure 5.1 the estimates of α(1/Q) and the values of the tuning parameter in A that minimise the empirical MISE

over the 100 Monte Carlo replications. In Figure 5.2 we plot the natural logarithm of the integrated square error in

100 simulations for each value of the tail parameter γ; the left panel corresponds to the MISE minimising choice of

tuning parameter, and the right panel corresponds to the Hill estimate.
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Figure 5.1: Left panel: univariate symmetric stable density functions for different tail parameters γ with µ and

σ fixed at 0 and 1 respectively; right panel: boxplots of the natural logarithm of (1 + α) with α chosen by the

rule of thumb described in equation (4.2), with c1 and c2 the least squares estimates of Figure 4.4. The black

dots represent the α chosen by minimising the MISE over the 100 Monte Carlo replications.

The right panel of Figure 5.1 illustrates that for γ in the range (0.6,1.6), the rule of thumb based on equation (4.2)

performs reasonably well in the sense that the estimated α̂(1/Q) is close to the α that produces the lowest MISE

over the 100 Monte Carlo replications. For large and small values of γ, the rule of thumb is less reliable. This is not

surprising in light of the right panels of Figures 4.2 and 4.3, where the linearity of the relationship breaks down for

very heavy and very light tails.

Viewing the right panel for Figure 5.1 together with Figure 5.2, we see that taking α too small is not detrimental

to the performance of the estimator, whilst taking α too large results in too few mixtures being used to approximate

the density of interest and causes the performance to deteriorate substantially.
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Figure 5.2: Right panel: boxplots of the ISE over 100 simulations when the empirical MISE minimising α is

chosen; boxplots of the ISE over 100 simulations when α is chosen by the rule of thumb described in equation

(4.2), with c1 and c2 the least squares estimates of Figure .4

14



Nonparametric estimation of elliptic densities

5.2 Finite sample performance

We consider the relative performance of our sieve estimator in samples of size 100, 500, 1000 and 2000 when the

data come from the bivariate and trivariate t distributions with 1.5, 2, 3 and 4 degrees of freedom and with correlation

coefficients ρ = 0.4 in the p = 2 case and ρ12 = 0.4, ρ13 = −0.7, ρ23 = 0.1 in the p = 3 case.

Figures 5.3 and 5.4 depict the integrated squared errors (ISE) based on 1000 Monte Carlo replications for the kernel

density estimator, the Liebscher (2005) estimator, and for several versions of the Kendall tau-transform Gaussian

mixture sieve estimator, where the latter is computed using both the EG and EM algorithms over a fixed set of

mixing points {1/qs, s = 1, . . . ,M}. We examine the performance of the EG and EM mixture sieve estimators using

both the rule of thumb procedure and the unobservable theoretical value of α, with which the estimator is optimised.

Letting αd satisfy Pr(d−2
d > x) = x−αd , which is the relevant quantity Pr(1/Q > x) from Condition 4 for the case in

which Y is a t distribution with d degrees of freedom, we have α1.5 ≈ 0.75, α2 ≈ 1, α3 ≈ 1.52 and α4 ≈ 2.05. Since

this quantity is unknown in practice, we consider the performance of the EG and EM variants of the mixture sieve

estimator when these values of α are estimated using the rule of thumb procedure discussed in section 4.1. Letting

α denote the true value of α (i.e. dropping the d subscript), and letting α̂ denote the estimated value of α based

on the rule of thumb procedure, we take respectively, ε = M−α/1+α, with M =
⌊

n
1+α
2+4α

⌋

and ε = M−α̂/1+α̂, with

M =
⌊

n
1+α̂
2+4α̂

⌋

, i.e. the optimal number of mixtures from Theorem 1 with c = 1. Letting {xs, s = 1, . . . ,M} be the

values of {1/qs, s = 1, . . . ,M}, we consider uniform spacings xj − xj−1 starting at x1 = δ + ε/2, with δ some small

constant that we take equal to 0.25, and xs = xs−1 + ε ∀ s{1, . . . ,M}. We take initial weights {Λ0,s : s = 1, . . . ,M}
all equal to 1/M and we set η = 1.5. Where applicable, we use the same choice of tuning parameters for the finite

mixture sieve with EM update.

For the kernel density estimator we use an empirical bandwidth selector based on least squares cross validation

(LSCV) (Wand and Jones, 1995, section 4.7). The empirical bandwidths and kernel density estimates were computed

using the ks package (Duong, 2007) in R. Although we do not discuss this further, it is worth pointing out that an

adaptive bandwidth kernel density estimator such as that of Abramson (1982) is likely to perform better on heavy

tailed data such as these; we also refer to Sain and Scott (1996) for univariate adaptive kernel methods, and to Sain

(2002) and Scott and Sain (2005) for multivariate adaptive techniques.

For the Liebscher estimator, we employ the transformation suggested in the example preceding Theorem 1 of

Liebscher (2005). The transformation depends on a constant, a, which is not discussed in the paper; we take this

constant equal to 1, but the estimator appears to be rather insensitive to this choice. The kernel estimator and sieve

estimator can all produce estimates in dimensions higher than p = 3, using respectively the ks package and the code

we wrote to compute the sieve estimates in the p = 2 and p = 3 cases (available upon request). The only modifications

required are the fairly simple ones required to produce the p > 3 dimensional grid-array of evaluation points.
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Figure 5.3: Boxplots of the square root of the integrated squared error (divided by the number of points in

the grid-array of evaluation points) based on 1000 MC replications using n observations from a bivariate t

distribution with d degrees of freedom and with correlation coefficient ρ = 0.4. Top left panel: d = 1.5; top right

panel: d = 2; bottom left panel: d = 3; bottom right panel: d = 4. In all panels, the blocks relate to the sample

size: (from left to right) n = 100, 500, 1000, 2000.

We see from Figures 5.3 and 5.4 that the performance of the kernel density estimator with empirical bandwidth

selector is very unpredictable in small to moderate sample sizes, a problem that is amplified when p = 3. Except

for in the trivariate case with 2 degrees of freedom and n = 2000 observations, where the kernel density estimator

marginally outperforms the mixture sieve (EG), the Gaussian mixture sieve (EG and EM) estimates consistently yield

a smaller median ISE estimate than do the Liebscher estimates and the kernel estimates based on empirically selected

bandwidth. The differences are particularly prominent in the cases where the sample size is small and the true density

is heavy tailed. The Liebscher estimator has a much smaller standard deviation than does the LSVC kernel in small

sample sizes, and it marginally outperforms for all sample sizes in the p = 2 case when the tails of the true density

are not too heavy. The EM algorithm tends to slightly outperform the EG algorithm in terms of median integrated

squared error in the p = 3 case. In the p = 2 case, the EG algorithm tends to slightly outperform EM when the α is

estimated based on the rule of thumb procedure. It all scenarios, there is very little difference in performance between

the EM and EG algorithms. Further figures are available in a longer version of this paper.
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Figure 5.4: Boxplots of the square root of the integrated squared error (divided by the number of points in

the grid-array of evaluation points) based on 1000 MC replications using n observations from a trivariate t

distribution with d degrees of freedom and with correlation coefficients ρ12 = 0.4, ρ13 = −0.7, ρ23 = 0.1. Top left

panel: d = 1.5; top right panel: d = 2; bottom left panel: d = 3; bottom right panel: d = 4. In all panels, the

blocks relate to the sample size: (from left to right) n = 100, 500, 1000, 2000.

Because our proof strategy does not allow is to comment on the theoretical performance of our estimator in a

neighbourhood of the origin, we provide in Figures 5.5 and 5.6 the root squared errors (over the same 1000 Monte

Carlo replications) of each estimator at zero. While the Liebscher estimator behaves moderately well at zero in the

p = 2 case (see Figure 5.5), when p > 2 the estimator is not defined at zero. This is due to the nature of the

transformations employed; referring to equation (2.5) of Liebscher (2005) we see that whenever p > 2, the component

z−p/2+1 is problematic at z = 0, and equation (2.5) results in a zero times infinity operation. For this reason the

Liebscher estimator is not used as a comparison in Figure 5.6.
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Figure 5.5: Boxplots of the root squared error at zero based on 1000 MC replications using n observations from

a bivariate t distribution with d degrees of freedom and with correlation coefficient ρ = 0.4. Top left panel:

d = 1.5; top right panel: d = 2; bottom left panel: d = 3; bottom right panel: d = 4. In all panels, the blocks

relate to the sample size: (from left to right) n = 100, 500, 1000, 2000.

It is worth noting that the difference in computation time for the different estimators is substantial in large and

moderate sample sizes, especially when the data are heavy tailed. On the same standard desktop computer (2.4GHz,

2GB RAM), the average computation time over ten different draws of n = 2000 observations from the trivariate t

distribution with 1.5 degrees of freedom was 0.74 seconds for the EG mixture sieve (true α), 27.31 seconds for the

EM mixture sieve (true α), and 10.32 seconds for the Liebscher estimator, whilst that for the LSVC kernel density

estimator was over 10 minutes. It is comforting to note that, the EG algorithm, an algorithm with such substantial

practical advantages when it comes to handling large and growing datasets can perform so well, even in samples of

small and moderate size. Since each iteration of the EG alogirthm with p = 3 only takes around 8/1000 seconds to

compute, it is an attractive option for handling financial and other data generated on a tic-by-tic basis.

18



Nonparametric estimation of elliptic densities

0

0.05

0.1

0.15

0.2
E

G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

Figure 5.6: Boxplots of the root squared error at zero based on 1000 MC replications using n observations

from a trivariate t distribution with d degrees of freedom and with correlation coefficients ρ12 = 0.4, ρ13 = −0.7,

ρ23 = 0.1. Top left panel: d = 1.5; top right panel: d = 2; bottom left panel: d = 3; bottom right panel: d = 4. In

all panels, the blocks relate to the sample size: (from left to right) n = 100, 500, 1000, 2000.

5.3 Sensitivity to the choice of c

A natural question that arises when considering Theorem 1 is how large a role the choice of c makes to the

performance of the estimator. To address this question, we analyse the performance of the mixture sieve (EG)

algorithm over a range of values of c. For c increasing from 0.5 to 2 in steps of size 0.1, we compute the integrated

squared errors of the EG estimator in 100 simulation experiments in which n = 500 observations were drawn from a

bivariate t distribution with 1.5 degrees of freedom and correlation coefficient ρ = 0.4. η was taken as 1.5 and α was

fixed at 0.75, which is the correct value of α to use when the data are drawn from a t distribution with 1.5 degrees

of freedom. An analogous experiment is conducted for the 4 degrees of freedom case. The results are displayed in

Figure 5.7.
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Figure 5.7: Boxplots of the root integrated squared error (divided by the number of points in the grid-array

of evaluation points) based on 100 MC replications using 500 observations from a bivariate t distribution with

d degrees of freedom and with correlation coefficient ρ = 0.4. Left panel: d = 1.5; right panel: d = 4.

As Figure 5.7 indicates for this example, in practice the estimator is rather insensitive to the choice of c as long

as c is not taken too small. The reason that small c results in a deterioration in performance is that too few mixtures

are being used to approximate the density. By contrast, when a large number of mixtures are used, the algorithm

produces estimates of the mixing weight that are close to zero for many of the mixture components.

6 Application to binary classification of Wisconsin breast cancer data

We consider our elliptic density estimator in the context of binary classification using the well-known Wisconsin

breast cancer (diagnostic) dataset used also in Liebscher (2005). This dataset is available on the UCI Machine Learning

Repository website: http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29.

It consists of 30 real-valued continuous attributes based on the cell nuclei of 569 breast tumor patients, of which

212 instances are malignant and 357 instances are benign, along with a variable indicating whether the tumor was

malignant or benign. The dataset is discussed in more detail in Street et al. (1993). Figure 6.1 presents a smoothed

scatterplot matrix of three of these attributes (the area, smoothness and texture of the worst nuclei observations for

each patient) for the malignant and benign groups.
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Figure 6.1: Smoothed scatter plot matrices for malignant cases (left) and benign cases (right) for three of the

attributes of the Wisconsin breast cancer data: worst area, worst smoothness and worst texture.

Figure 6.2 plots the hill estimates of α(R) against the threshold,K (see section 4.1) for the benign and the malignant

cases (standardised data). It suggests that the tails of the inverse mixing measure for the trivariate density of worst

case area, texture and smoothness are much heavier in the case of a malignant tumour than in the case of a benign

tumour. We consider the problem of classifying patients into the benign or malignant group based on observations

on these three variables. To this end, we construct trivariate density estimates in the benign and malignant groups

using the mixture sieve (EG) estimator with tuning parameter α chosen by the rule of thumb procedure in section

4.1. Using a threshold of K = 65 observations in equation (4.2) yields a α̂(1/Q) of 3.47 in the malignant case and

of 4.17 in the benign case. Letting f̂n(y|M) denote the density at some evaluation point y in the malignant group

and letting f̂n(y|B) denote the density at y in the benign group, we may construct a Bayes’ classifier based on the

estimated posterior probabilities,

P̂ (M |y) = f̂M
n (y|M)P̂ (M)

f̂n(y|M)P̂ (M) + f̂n(y|B)P̂ (B)
and P̂ (B|y) = f̂M

n (y|B)P̂ (B)

f̂n(y|M)P̂ (M) + f̂n(y|B)P̂ (B)
.

where P̂ (M) and P̂ (B) denote the estimated probability of being in the malignant and benign groups respectively;

these quantities are obtained using the empirical proportions of malignant and benign cases. The relative magnitudes

of P̂ (M |yi) and P̂ (B|yi) then determines whether individual i with attributes yi is assigned to group M (malignant)

or group B (benign). Based on these posterior probabilities, we test the performance of the classifier by comparing

the output of the classifier to the true group labels. Our classifier misclassifies only 69 of the patients in the malignant

group, as compared with 79 misclassifications in the malignant group when the classification is based on the trivariate

normal distribution. However, the trivariate normal model does classify the patients in the benign group better, with

33 misclassifications occurring rather than 43 in the case of the our classifier.
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Figure 6.2: hill estimates of α(R) against threshold, K, for malignant and benign cases.

We have presented here one possible application of the methodology developed in this paper. A further application

to systemic risk management using emerging markets exchange rates is presented in a longer version of this paper,

which is available elsewhere.

7 Proofs

Proof of Theorem 1. As usual, decompose the left hand side of equation (4.1) into estimation error and approximation

error.
sup
y∈D

|f(y)− f̂M
n (y)| ≤ sup

y∈D
|f(y)− fM (y)|+ sup

y∈D
|fM (y)− f̂M

n (y)|

= I1 + I2

(7.1)

where, as in Theorem 1, D is any fixed compact subset of Rp that does not include the zero vector.

We will make use of linear functional notation throughout, i.e.

P(A) :=

∫

I1{1/q ∈ A}P(d(1/q)) and Ph :=

∫

Q
h(1/q)P(d(1/q))

The controls over I1 and I2 both rely on the following preliminary lemma

Lemma 1. For a fixed p < ∞ and D any fixed compact subset of Rp that does not include the zero vector, the set of

functions

G := {g : q 7→ ψ (y|q) ; q ∈ Q, y ∈ D} (7.2)

is a subset of B, the set of bounded functions from A to R, where A is an arbitrary set.
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Proof. Let

ζ(q) := qp/2 and ϑ(q) := exp
{

−qyTΩ−1y
}

and as before, let w := yTΩ−1y. Then lim1/q→0 ζ(q)ϑ(q) is indeterminate. Transforming, we have

lim
1/q→0

ζ(q)ϑ(q) = lim
1/q→0

ζ(q)

1/ϑ(q)

which is zero for all w outside a small neighbourhood of w = 0 and p < ∞, hence G ⊂ B. Note that the above limit

is infinity in a neighbourhood of w = 0, which is why a neighbourhood of w = 0 must be excluded.

Control over I1:

Definition 1 (Dudley (2002)). Let PM and P be laws on Q. The Prohorov metric is defined as

ρ(PM ,P) := inf {ε > 0 : PM (A) ≤ P(Aε) + ε for all Borel sets A} (7.3)

where A is an arbitrary Borel set and Aε := {r ∈ R+ : d(r, A) < ε} is the “ε-enlargement” of A.

Lemma 2. Let PM ∈ M with

M :=

{

M
∑

s=1

Λsδ1/qs : Λ1, . . . ,ΛM ∈ Q ∩ [0, 1],
M
∑

s=1

Λs = 1,M = 1, 2, . . .

}

.

δ1/qs is the Dirac measure at 1/qs, i.e., for an arbitrary Borel set A, δ1/qs(A) = 1 if 1/qs ∈ A, 0 otherwise. Under

Condition 4,

ρ(P,PM ) = O
(

M−α/(1+α)
)

where ρ(·, ·) is the Prohorov metric of equation (7.3).

Proof. Let {1/qs : s ∈ N} be equally spaced over Q and let P(Q) be the set of all probability measures on the Borel sets

of Q. Since M is dense in P(Q) under the weak topology (Parthasarathy, 1967, Theorem 6.3), there exists a choice

of weights, (Λs)s=1,...M , such that the sequence of weighted discrete measures, PM (A) :=
∑M

s=1 Λsδ1/qs(A) converges

weakly to P(A) as M → ∞. Furthermore, separability of Q means weak convergence of PM to P is equivalent to

convergence under the Prohorov metric (Dudley, 2002, Theorem 11.3.3). To establish the rate of convergence, we fix

an ε > 0 and introduce the function h ∈ Cb,

h(1/q) = 0 ∨
(

1− 1

2ε
d(1/q,A)

)

(7.4)

which is the same function introduced in Dudley (2002) Chapter 11.3. In the above definition d(1/q,A) = infr∈A d(1/q, r),

so that h(1/q) = 1 if and only if 1/q ∈ A, and h(1/q) = 0 as soon as 1/q is more than a 2ε away from the boundary of

A. Hence I1{1/q ∈ A} ≤ h(1/q) ≤ I1{1/q ∈ A2ε}. For this fixed ε, there exists a x = εM(ε) such that P(1/Q > x(ε)) ≤ ε

by Condition 4. Cover [0, x(ε)] with disjoint open balls of radius ε/2 around the {1/qs : s = 1, . . . ,M(ε)}, i.e. with

Bε
s satisfying Bε

s ∩ Bε
j = 0 ∀j 6= s, and fix {Λs : s = 1, . . . ,M(ε)} such that

∑M(ε)
s=1 |Λsδ1/qs − P(Bε

s)| ≤ ε. Then for
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the arbitrary Borel set A,

PM (A) ≤
∫

Q
h(1/q)P(d(1/q)) +

∫

Q
h(1/q)|PM − P|(d(1/q))

≤
∫

Q
I1{1/q ∈ A2ε}P(d(1/q)) +

∫

Q
h(1/q)|PM − P|(d(1/q))

= P(A2ε) +

∣

∣

∣

∣

∣

∣

M(ε)
∑

s=1

Λsh(1/qs)−
∫

Q
h(1/q)P(d(1/q))

∣

∣

∣

∣

∣

∣

≤ P(A2ε) + sup
r∈Q

|h(r)|
M(ε)
∑

s=1

∣

∣Λsδ1/qs − P(Bε
s)
∣

∣+ sup
r∈Q

|h(r)|P
((

∪M(ε)
s=1 B

ε
s

)c)

≤ P(A2ε) + 2ε

Since x = εM(ε), Condition 4 implies that

P(1/Q > εM(ε)) . [εM(ε)]
−α

where . means less than up to a finite absolute constant. Solving for ε gives

ε = [εM(ε)]
−α

=M(ε)−
α

1+α (7.5)

The infimum over the ε such that the condition PM ≤ P(A2ε) + 2ε holds is ε =M(ε)−α/(1+α) and thus the Prohorov

metric tends to zero at a rate of O(M−α/(1+α)) when x = εM(ε) =M
1

1+α .

Corollary 1. Under Conditions 1 and 4, with PM as defined in Lemma 2 and {1/qs : s = 1, . . . ,M} equally spaced

between 0 + ε/2 and x− ε/2 =M
1

1+α − ε/2, where ε =M−α/1+α,

I1 = |Ω|−1/2 sup
y∈D

∣

∣

∣

∣

∫ ∞

0

ψ(y|q)(P− PM )(dq)

∣

∣

∣

∣

= O
(

M−α/(1+α)
)

Proof. By Jensen’s inequality and the convexity of the supremum and the absolute value

I1 =|Ω|−1/2 sup
y∈D

∣

∣

∣

∣

∫ ∞

0

ψ(y|q)(P− PM )(d(1/q))

∣

∣

∣

∣

≤|Ω|−1/2

∫ ∞

0

sup
y∈D

ψ(y|q)(d(1/q))
∫

|P− PM | (d(1/q))
(7.6)

The right hand side of (7.6) converges at rate rM if

∫ ∞

0

sup
y∈D

ψ(y|q)d(1/q) <∞ (7.7)

and PM → P at rate rM in some metric that metricises the topology of weak convergence. Lemma 1 ensures

sup
y∈D

ψ(y|q) <∞ ∀q ∈ R+

and since supy∈D ψ(y|q) ↘ 0 for 1/q → ∞, the condition in equation 7.7 is satisfied. The rate rM is provided by

Lemma 2 alongside Theorem 11.3.3 of Dudley (2002).
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Control over I2:

Since we control the approximation error separately, we assume in what follows, that each Yi is generated from a

member of the set of densities {ψ(·|qs) : qs ∈ R+, s = 1, . . . ,M} and write the true log likelihood, i.e. the one that

contains the latent mixture indicators (Zi,s), as

PnL(Λ) :=
1

n

n
∑

i=1

ln

(

M
∑

s=1

Λs|Ω|1/2Zi,sψ(Yi|qs)
)

where

Zi,s =

{

1 if Yi ∈ Ys

0 otherwise

and Ys is the set of Yi drawn from the sth mixture component. Then the infeasible maximum likelihood estimator is

Λ̂ML
n := argsup

Λ∈Γ
PnL(Λ) and Λ0 := argsup

Λ∈Γ
PL(Λ)

where

Γ =

{

Λ : Λs ∈ [0, 1] ∀s,
M
∑

s=1

Λs = 1

}

,

Pn is the empirical measure and P is the true one.

Let Λ̂EG
I denote the vector of average weights computed over I = n iterations of the EG algorithm. We decompose

I2 as

I2 = sup
y∈D

∣

∣

∣

∣

∣

|Ω|− 1
2

M
∑

s=1

Λ0
sφ(y|Ω/qs)− |Ω̂|− 1

2

M
∑

s=1

Λ̂EG
I,s φ(y|Ω̂n/qs)

∣

∣

∣

∣

∣

≤ sup
y∈D

∣

∣

∣

∣

∣

(

|Ω|−1/2 − |Ω̂|−1/2
)

M
∑

s=1

Λ0
sφ(y|Ω/qs)

∣

∣

∣

∣

∣

+ sup
y∈D

∣

∣

∣

∣

∣

|Ω̂|− 1
2

M
∑

s=1

Λ0
sφ(y|Ω/qs)− |Ω̂|− 1

2

M
∑

s=1

Λ0
sφ(y|Ω̂/qs)

∣

∣

∣

∣

∣

+ |Ω̂|− 1
2 sup
y∈D

∣

∣

∣

∣

∣

M
∑

s=1

Λ0
sφ(y|Ω/qs)−

M
∑

s=1

Λ̂EG
I,s φ(y|Ω/qs)

∣

∣

∣

∣

∣

= II1 + II2 + II3

Remark. | · | denotes both determinant and absolute value here, with the context ensuring no ambiguity.

Control over II1:

II1 ≤
∣

∣

∣

(

|Ω|−1/2 − |Ω̂|−1/2
)∣

∣

∣

M
∑

s=1

Λ0
s sup
y∈D

φ(y|Ω/qs)

by convexity of the supremum. By Condition 5, Ω̂ is root-n consistent for Ω; we show here that the determinant is

also root-n consistent. The determinant of a p-dimensional matrix X := (xjk) is given by |X | =∑p
j=1 cjkxjk for any

k ∈ {1, . . . , p}, where C := (cjk) is a matrix of cofactors (Abadir and Magnus, 2005, Exercise 4.36) hence for any

k ∈ {1, . . . , p}
∣

∣

∣|Ω̂| − |Ω|
∣

∣

∣ ≤
p
∑

j=1

|cjk − ĉjk||Ωjk|+
p
∑

j=1

|cjk||Ωjk − Ω̂jk|
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where

|cjk − ĉjk| =
∣

∣

∣
(−1)j+k

(

|Ωjk| − |Ω̂jk|
)∣

∣

∣

and Ωjk is the (p − 1)-dimensional matrix obtained by removing the jth row and kth column from Ω. By induction,
∣

∣

∣|Ω̂| − |Ω|
∣

∣

∣ = Op(n
−1/2) with constants of order p!. The final result follows by Lemma 1.

Control over II2:

It suffices to control M maxs supy∈D |φ(y|Ω̂/qs)− φ(y|Ω̂/qs)|. Notice that

Pr
(

|φ(y|Ω̂/qs)− φ(y|Ω̂/qs)| > Kηn

)

≤ Pr
(

|φ(y|Ω̂/qs)− φ(y|Ω̂/qs)| > Kηn, ‖Ω̂− Ω‖1 ≤ Kδn

)

+ Pr
(

‖Ω̂− Ω‖1 > Kδn

)

= III1 + III2

III2 is O(1) with δn = n−1/2 and constant of the order p(p − 1)/2 by Condition 5. For any fixed y ∈ D and

s ∈ {1, . . . ,M} let Dφ(Ω̂) denote the derivative of φ(y|Ω/qs) with respect to Ω evaluated at Ω̂. Since

sup
y∈D,qs∈{q1,...,qM}

‖Dφ(Ω̂)‖1

= sup
y∈D,qs∈{q1,...,qM}

∥

∥

∥

∥

(2π)−p/2 exp

{

−1

2
qsy

T Ω̂y

}

(−qsΩ̂−1y ⊗ Ω̂−1y)

∥

∥

∥

∥

1

< ∞

we have, through a Taylor expansion of φ(y|Ω/qs) around φ(y|Ω̂/qs),

sup
y∈D,qs∈{q1,...,qM}

∣

∣

∣φ(y|Ω/qs)− φ(y|Ω̂/qs)
∣

∣

∣ . ‖Ω̂n − Ω‖1 .

where ‖ · ‖1 is the l1 norm. The right hand side is bounded by Kδn = Kn−1/2 by the statement of the joint event.

III1 = Op(n
−1/2) uniformly over y ∈ D and qs ∈ {q1, . . . , qM} which together with III2 implies II2 is Op(M/

√
n).

Control over II3:

The control over II3 relies on three preliminary lemmata, stated and proved below.

Lemma 3. Suppose Conditions 1 - 4 hold. Then

(i) d(Λ̂ML
n ,Λ0) →p 0

(ii) d(Λ̂ML
n ,Λ0) = Op(M/

√
n)

where d(·, ·) is Euclidean distance.

Proof. To prove part (i) we verify the conditions of Theorem 5.7 of van der Vaart (1998). Let

L :=

{

L(Λ) : Λ 7→ ln(
∑

s

ΛsZψ(Y |qs)) ; Λ ∈ Γ

}

⊂ L1(P )
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and let M(Λ) = PL(Λ), Mn(Λ) = PnL(Λ) so that Mn(Λ) − M(Λ) = (Pn − P )L(Λ;Y, Z). By the identification

established in Holzmann et al. (2006), the map Λ 7→ M(Λ) has unique maximum at Λ0, hence

sup
Λ∈Γ:d(Λ,Λ0)≥δ

M(Λ) <M(Λ0) ∀δ > 0

It remains to show that

sup
Λ∈Γ

|Mn(Λ)−M(Λ)| →p 0 . (7.8)

Since Γ ⊂ [0, 1]M is compact, it has a finite cover, hence we can easily construct brackets for L (see e.g. van de Geer,

2000, proof of Lemma 3.10). (7.8) follows by Lemma 3.1 of van de Geer (2000).

Our proof of part (ii) follows van der Vaart and Wellner (1996) Theorem 3.2.5. Re-write our goal in Lemma 3 (ii)

as

lim
J→∞

lim sup
n→∞

Pr
(

rnd(Λ̂
ML,Λ0) > 2J

)

= 0 (7.9)

through a Taylor series expansion of M(Λ) around Λ0 we have

M(Λ) = M(Λ0) + (Λ− Λ0)T M̈(Λ0)(Λ − Λ0) + o(‖Λ− Λ0‖22) ∀Λ ∈ Γ

where the Hessian matrix M̈(Λ0) is negative definite, implying

M(Λ0)−M(Λ) ≥ Cd2(Λ0,Λ) ∀Λ ∈ Γ (7.10)

Next, by the definition of Λ̂ML as a maximiser

sup
Λ∈Γ

Mn(Λ) ≤ Mn(Λ̂
ML
n ) (7.11)

For n, j ∈ N, we introduce the sequence of sets

Sjn :=
{

Λ ∈ Γ : 2j−1 < rn‖Λ̂ML − Λ0‖2 ≤ 2j
}

, j ∈ N,

where rn is an divergent sequence of positive real numbers and, as before

Γ =

{

Λ : Λs ∈ [0, 1] ∀s,
M
∑

s=1

Λs = 1

}

Let K :=
⋃∞

j=j0
Sjn, where j0 > J . For Λ̂ML ∈ K

Mn(Λ̂
ML)−Mn(Λ

0) +M(Λ0)−M(Λ̂ML)

= (Pn − P )L(Λ̂ML)− (Pn − P )L(Λ0)

≥ Cd2(Λ0, Λ̂ML)

[by equations (7.10) and (7.11)]

> C(r−1
n 2j0−1)2

= Cr−1
n 22j0−2 ,

Letting Gn(Λ) :=
√
n(Pn − P )L(Λ), introduce the event

B :=

{

1√
n

(

Gn(Λ̂
ML)−Gn(Λ

0)
)

>
C22j0−2

r2n
, Λ̂ML ∈ K

}
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and consider

Pr(rn‖Λ̂ML − Λ0‖2 > 2J)

≤ Pr
(

B, ‖Λ̂ML − Λ0‖2 < η
)

+ Pr
(

B, ‖Λ̂ML − Λ0‖2 ≥ η
)

[by equation (7.11)]

≤ Pr
(

B, ‖Λ̂ML − Λ0‖2 < η
)

+ Pr(‖Λ̂ML − Λ0‖2 ≥ η)

≤ Pr





⋃

j≥j0 :2j−1<rnη

sup
Λ∈Sjn

1√
n

(

Gn(Λ)−Gn(Λ
0)
)

>
C22j−2

r2n



+ Pr(‖Λ̂ML − Λ0‖2 ≥ η)

≤
∑

j≥j0 :2j−1<rnη

Pr

(

sup
Λ∈Sjn

1√
n

(

Gn(Λ)−Gn(Λ
0)
)

>
C22j−2

r2n

)

+ Pr(2‖Λ̂ML − Λ0‖2 ≥ η)

[by Boole’s inequality]

= IV1 + IV2

IV2 is o(1) on K by the consistency established in part (i). The object of interest is the largest rn for which IV1 is

O(1) for a fixed M <∞. By Markov’s inequality

IV1 =
∑

j≥j0:2j−1<rnη

Pr

(

sup
Λ∈Sjn

1√
n

(

Gn(Λ)−Gn(Λ
0)
)

>
C22j−2

r2n

)

≤
∑

j≥j0 :2j−1<rnη

E supΛ∈Sjn
r2n
∣

∣Gn(Λ)−Gn(Λ
0)
∣

∣

C
√
n22j−2

which requires a bound on the expected modulus of continuity of the empirical process Gn(Λ) :=
√
n(Pn − P )L(Λ)

over the Λ ∈ Γ such that ‖Λ− Λ0‖2 < 2jr−1
n . let Ġn(Λ) denote the gradient of Gn at Λ, and Ġs

n(Λ) the sth element.

Then

Ġs
n(Λ) =

(

1

n

n
∑

i=1

q
p/2
s Zi,s exp

{

− 1
2Y

T
i (Ω/qs)

−1Yi
}

∑M
s=1 Λsq

p/2
s Zi,s exp

{

− 1
2Y

T
i (Ω/qs)−1Yi

}
− q

p/2
s E

[

Zi,s exp
{

− 1
2Y

T
i (Ω/qs)

−1Yi
}]

∑M
s=1 Λsq

p/2
s E

[

Zi,s exp
{

− 1
2Y

T
i (Ω/qs)−1Yi

}]

)

(7.12)

The class of functions

Gs := {g : qs 7→ ψ(y|qs) : qs ∈ [q1, qM ], y ∈ Rp}
is bounded Lipschitz so, since qM < ∞, q

p/2
s Vi,s exp

{

− 1
2Y

T
i (Ω/qs)

−1Yi
}

and its expectation are bounded. Further-

more, since

M
∑

s=1

Λsq
p/2
s Zi,s exp

{

−1

2
Y T
i (Ω/qs)

−1Yi

}

≥ sup
s

Λsq
p/2
s Zi,s exp

{

−1

2
Y T
i (Ω/qs)

−1Yi

}

> 0 ,

the supremum of equation (7.12) is bounded by some constant K, leading to

IV1 ≤
∑

j≥j0 :2j−1<rnη

E supΛ∈Sjn
r2nĠ

T
n (Λ̄)‖Λ− Λ0‖

C
√
n22j−2

≤
∑

j≥j0 :2j−1<rnη

E supΛ∈Sjn
r2nM max1≤s≤M Ġs

n(Λ̄s)
∣

∣Λs − Λ0
s

∣

∣

C
√
n22j−2

≤
∑

∑
l∈N:2l+J≤rnη

MKr2n2
l+Jr−1

C
√
n22(l+J)−2

= O

(

MK(1− 22)rn
C22J−2

√
n

)
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where Λ̄ lies in the convex hull of Λ and Λ0. The above display is O(1) with rn =
√
n for J → ∞ and M <∞, which

proves the claim.

Lemma 4 (ULLN for the Hessian). Under Conditions 1-3,

‖∇Λ∇ΛLn(Λ)− E∇Λ∇ΛLn(Λ)‖ = Op(n
−1/2)

Proof. By Compactness of Γ, introduce a finite cover for Γ, {N (Λ(j), δ), j = 1, . . . , J}, Λ(j) ∈ Γ. Introduce also

H(l,r)
n (Λ) = [∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r

where [∇Λ∇ΛLn(Λ)]l,r is the (l, r)th element of the Hessian, given by

[∇Λ∇ΛLn(Λ)]l,r = − 1

n

n
∑

i=1

ψ(Yi|ql)ψ(Yi|qr)
[
∑

k Λkψ(Yi|qk)]2

We use a familiar argument based on pointwise convergence and stochastic equicontinuity. We state it here for ease

of reference.

Pr

(

sup
Λ∈Γ

|[∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r| >
2C√
n

)

≤ Pr

(

max
j∈{1,...,J}

sup
Λ∈N (Λ(j) ,δ)

(∣

∣

∣H(l,r)
n (Λ)−H(l,r)

n (Λ(j))
∣

∣

∣+
∣

∣

∣H(l,r)
n (Λ(j))

∣

∣

∣

)

>
2C√
n

)

≤ Pr

(

max
j∈{1,...,J}

sup
Λ∈N (Λ(j) ,δ)

∣

∣

∣H(l,r)
n (Λ)−H(l,r)

n (Λ(j))
∣

∣

∣

C√
n

)

+ Pr





J
⋃

j=1

{

∣

∣

∣H(l,r)
n (Λ(j))

∣

∣

∣ >
C√
n

}





≤ Pr

(

max
j∈{1,...,J}

sup
Λ∈N (Λ(j) ,δ)

∣

∣

∣H(l,r)
n (Λ)−H(l,r)

n (Λ(j))
∣

∣

∣

C√
n

)

+

J
∑

j=1

Pr

(

∣

∣

∣H(l,r)
n (Λ(j))

∣

∣

∣ >
C√
n

)

Hence the problem is one of showing that

(i) ∃ 0 < C <∞ such that
∑J

j=1 Pr
(

∣

∣H l,r
n (Λ(j))

∣

∣ > C√
n

)

< ε ∀ ε > 0;

(ii) ∃ 0 < C <∞ such that, as δ = δn ↘ 0 at rate
√
n,

Pr






sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣

∣

∣
H(l,r)

n (Λ)−H(l,r)
n (Λ′)

∣

∣

∣
>

C√
n






< ε ∀ ε > 0

For pointwise convergence (i), Markov’s inequality and the fact that (Yi)
n
i=1 are i.i.d. implies

Pr

(

|[∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r| >
C√
n

)

≤
nE
{

|[∇Λ∇ΛLn(Λ)]l,r − E[∇Λ∇ΛLn(Λ)]l,r|2
}

C2

=
nE
{

∣

∣h(l,r)(Yi; Λ)− Eh(l,r)(Yi; Λ)
∣

∣

2
}

nC2
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where

h(l,r)(Yi; Λ) = − ψ(Yi|ql)ψ(Yi|qr)
[
∑

k Λkψ(Yi|qk)]2
.

By Lemma 1, h(l,r)(Yi; Λ) := h(l,r)(Yi; ql, qr,Λ) is bounded uniformly over y ∈ D and ql, qr ∈ Q, hence (i) is true. For

(ii), we first note that, by the mean value theorem, for any Λ,Λ′ ∈ Γ, there exists a Λ̄ in the convex hull of {Λ,Λ′}
such that

h(l,r)(Yi,Λ)− h(l,r)(Yi,Λ
′) =

[

∇Λh
(l,r)(Yi, Λ̄)

]T

(Λ− Λ′) .

Averaging, taking absolute values of both sides and applying the Cauchy-Schwarz inequality gives

∣

∣

∣

∣

∣

n−1
n
∑

i=1

h(l,r)(Yi,Λ)− n−1
n
∑

i=1

h(l,r)(Yi,Λ
′)

∣

∣

∣

∣

∣

≤ sup
Λ∈Γ

∥

∥

∥

∥

∥

n−1
n
∑

i=1

∇Λh
(l,r)(Yi, Λ̄)

∥

∥

∥

∥

∥

‖Λ− Λ′‖ .

An analogous bound applies to |Eh(l,r)(Yi,Λ)− Eh(l,r)(Yi,Λ
′)| and we have

Pr






sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣

∣H l,r
n (Λ)−H l,r

n (Λ′)
∣

∣

C√
n







≤ Pr






sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣

∣

∣

∣

∣

n−1
n
∑

i=1

h(l,r)(Yi,Λ)− n−1
n
∑

i=1

h(l,r)(Yi,Λ
′)

∣

∣

∣

∣

∣

>
C

2
√
n







+ I1











sup
Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

∣

∣

∣Eh(l,r)(Yi,Λ)− Eh(l,r)(Yi,Λ
′)|
∣

∣

∣ >
C

2
√
n











≤ Pr






sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

Bn‖Λ− Λ′‖ > C

2
√
n






+ I1











sup
Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

B‖Λ− Λ′‖ > C

2
√
n











where

Bn = sup
Λ∈Γ

∥

∥

∥

∥

∥

n−1
n
∑

i=1

∇Λh
(l,r)(Yi, Λ̄)

∥

∥

∥

∥

∥

and B = sup
Λ∈Γ

∥

∥

∥∇Λ

[

Eg(l,r)(Yi, Λ̄)
]∥

∥

∥ .

Letting δn ↘ 0 at rate
√
n, we require, for the existence of a 0 < C <∞ such that

Pr






sup

Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

Bn‖Λ− Λ′‖ > C

2
√
n






<
ε

2
∀ε > 0

that such a C ensures Pr(Bn > C/2) < ε/2 ∀ε > 0. Let ξl,r(Yi; Λ) be a vector with sth element

[ξ(l,r)(Yi; Λ)]s =
2ψ(Yi|ql)ψ(Yi|qr)ψ(Yi|qs)

[
∑

k |Λkψ(Yi|qk)]3
.
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By Markov’s inequality

Pr(Bn > C/2) ≤
4E supΛ∈Γ

∥

∥

∥

1
n2 [
∑n

i=1 ξ
(l,r)(Yi; Λ)

2 + 2
∑n

i=1

∑

j<i ξ
(l,r)(Yi; Λ)ξ

(l,r)(Yj ; Λ)]
∥

∥

∥

C2

≤
4E 1

n2 supΛ∈Γ

∥

∥

∑n
i=1 ξ

(l,r)(Yi; Λ)
2
∥

∥+ 2
∑n

i=1

∑

j<i supΛ∈Γ

∥

∥ξ(l,r)(Yi; Λ)ξ
(l,r)(Yj ; Λ)]

∥

∥

C2

[By Jensen’s inequality]

=
4

C2

[

1

n
E sup

Λ∈Γ

∥

∥

∥

∥

∥

n
∑

i=1

ξ(l,r)(Yi; Λ)
2

∥

∥

∥

∥

∥

+
n(n− 1)

n2
sup
Λ∈Γ

∥

∥

∥
ξ(l,r)(Yi; Λ)ξ

(l,r)(Yj ; Λ)
∥

∥

∥

]

−→ E sup
Λ∈Γ

∥

∥

∥
ξ(l,r)(Yi; Λ)ξ

(l,r)(Yj ; Λ)
∥

∥

∥
as n→ ∞

Existence of a finite C for which

I1











sup
Λ,Λ′∈Γ:

‖Λ−Λ′‖≤δn

B‖Λ− Λ′‖ > C

2
√
n











= 0

is ensured by the boundedness of B. This establishes (ii).

The following lemma, which establishes the rate of convergence of the arithmetic mean to the geometric mean, is

standard (see e.g. de Leeuw, 2011). The proof is reproduced here for convenience.

Lemma 5. Let (a)mi=1 denote a collection of numbers and define,

am :=
1

m

m
∑

i=1

ai and gm = [

m
∏

i=1

ai]
1/m .

am and gm converge to the same limit at rate 2m.

Proof.

xm+1 :=
am+1

gm+1
=
am + gm
2
√
amgm

=
1

2

(√

am
gm

+

√

gm
am

)

=
1

2
(
√
xm + 1/

√
xm)

By the geometric-arithmetic mean inequality, we have xm ≥ 1, so 1/
√
xm ≤ 1 and

√
xm ≤ xm. Hence

xm+1 − 1 =
1

2

(√
xm +

1√
xm

− 2

)

≤ 1

2
(xm − 1)

so

0 ≤ (xm+1 − 1) ≤ 1

2
(xm − 1)

and the recursion gives

0 ≤ (xm+1 − 1) ≤ 1

2m
(x0 − 1)

i.e. xm → 1 at rate 2m.

Corollary 2. When η is chosen as 2r
√

(2 lnM)/I, where r is the lower bound on the instances ψ(Yi|qs), introduced

in Theorem 1 of Helmbold et al. (1997),

|Ω̂|−1/2 sup
y∈D

∣

∣

∣

∣

∣

M
∑

s=1

Λ0
sψ(y|qs)−

M
∑

s=1

Λ̂EG
I,s ψ(y|qs)

∣

∣

∣

∣

∣

= Op

(

M√
n

)

.
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where I = n. We may also consider the asymptotics as we allow r ↘ 0. This yields the same rate if r is of order at

most
√
2 lnM

2M
√
n

and yields

|Ω̂|−1/2 sup
y∈D

∣

∣

∣

∣

∣

M
∑

s=1

Λ0
sψ(y|qs)−

M
∑

s=1

Λ̂EG
I,s ψ(y|qs)

∣

∣

∣

∣

∣

= Op

(√
2 lnM

(2r)n

)

.

if r converges to zero faster.

Proof.

|Ω̂|−1/2 sup
y∈D

∣

∣

∣

∣

∣

M
∑

s=1

Λ0
sψ(y|qs)−

M
∑

s=1

Λ̂EG
I,s ψ(y|qs)

∣

∣

∣

∣

∣

≤ |Ω̂|−1/2

[

max
s∈{1...,M}

sup
y∈D

ψ(y|qs)
] M
∑

s=1

|Λ0
s − Λ̂EG

I,s |

The term in parenthesis is bounded by Lemma 1. For
∑M

s=1 |Λ0
s − Λ̂EG

I,s |, consider, by the triangle inequality

‖Λ̂EG
I − Λ0‖1 ≤ ‖Λ̂EG

I − Λ̂ML‖1 + ‖Λ̂ML − Λ0‖1 (7.13)

where ‖ · ‖1 is the l1-norm. Lemma 3 implies ‖Λ̂ML −Λ0‖1 = Op(M/
√
n). For the first term, mean value expand the

partial derivative vector of the log likelihood around Λ̂ML to give

∇ΛLn(Λ̂
EG
I ) = ∇ΛLn(Λ̂

ML) +∇Λ∇ΛLn(Λ̄)(Λ̂
EG
I − Λ̂ML)

where Λ̄ lies in the convex hull of Λ̂EG
I and Λ̂ML. Inverting,

(Λ̂EG
I − Λ̂ML) =

[

∇Λ∇ΛLn(Λ̄)
]−1

(

∇ΛLn(Λ̂
EG
I )−∇ΛLn(Λ̂

ML)
)

and Chebyshev’s inequality applied to
∣

∣

∣
∇ΛLn(Λ̂

ML)− E∇ΛLn(Λ̂
ML)

∣

∣

∣
and

∣

∣

∣
∇ΛLn(Λ̂

EG
I )− E∇ΛLn(Λ̂

EG
I )

∣

∣

∣

implies that, elementwise for all s ∈ {1, . . . ,M},
∣

∣

∣∇ΛLn(Λ̂
EG
I )−∇ΛLn(Λ̂

ML)
∣

∣

∣

=
∣

∣

∣
∇ΛELn(Λ̂

EG
I )−∇ΛELn(Λ̂

ML)
∣

∣

∣
+Op(n

−1/2)

=

∣

∣

∣

∣

∣

∣

∇ΛE





1

n

n
∑

i=1

ln





1

I

I
∑

j=1

∑

k

Λ̂EG
k,j ψ(Yi|qk)







−∇ΛE

(

1

n

n
∑

i=1

ln

(

∑

k

Λ̂ML
k ψ(Yi|qk)

))

∣

∣

∣

∣

∣

∣

+Op(n
−1/2)

=

∣

∣

∣

∣

∣

∣

∣

∇ΛE







1

n

n
∑

i=1

ln





I
∏

j=1

∑

k

Λ̂EG
k,j ψ(Yi|qk)





1/I





−∇ΛE

(

1

n

n
∑

i=1

ln

(

∑

k

Λ̂ML
k ψ(Yi|qk)

))

∣

∣

∣

∣

∣

∣

∣

+Op(n
−1/2) +Op(2

−I)

=

∣

∣

∣

∣

∣

∣

∇ΛE





1

I

I
∑

j=1

Ln(Λ̂
EG
j )



−∇ΛELn(Λ̂
ML)

∣

∣

∣

∣

∣

∣

+Op(n
−1/2) +Op(2

−I)

where the penultimate line follows by Lemma 5. Equation (3.4) and the negitve semi-definiteness of the Hessian imply

that, elemmentwise for all s ∈ {1, . . . ,M},
∣

∣

∣

∣

∣

∣

∇ΛE





1

I

I
∑

j=1

Ln(Λ̂
EG
j )



−∇ΛELn(Λ̂
ML)

∣

∣

∣

∣

∣

∣

= O

(√
2 lnM

2r
√
I

)
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where I = n and r is a lower bound on the random variables ψ(Yi, qs) introduced by Helmbold et al. (1997) (see

Theorem 1 op. cit.). By Lemma 4 along with the continuity of the inverse, which ensures the applicability of Slutsky’s

theorem,
[

∇Λ∇ΛLn(Λ̄)
]−1

converges to some finite constant at rate
√
n. We have

(Λ̂EG
I − Λ̂ML) =

[

∇Λ∇ΛLn(Λ̄)
]−1

(

∇ΛLn(Λ̂
EG
I )−∇ΛLn(Λ̂

ML)
)

= Op

(

1√
n

)

Op

(

max

{

1√
n
,

√
2 lnM

2r
√
I

})

= Op

(√
2 lnM

(2r)n

)

since I = n.

We conclude the proof of Theorem 1 by returning to equation (7.1). We see from the controls over II1, II2 and

II3 that II3 dominates in the bound on I2. Equalising the antagonistic approximation and estimation error terms

and solving for M delivers the rate in Theorem 1

References

K. M. Abadir and J. R. Magnus. Matrix algebra, volume 1 of Econometric Exercises. Cambridge University Press,

Cambridge, 2005.

H. Abdul-Hamid and J. P. Nolan. Multivariate stable densities as functions of one-dimensional projections. J.

Multivariate Anal., 67(1):80–89, 1998.

I. S. Abramson. On bandwidth variation in kernel estimates—a square root law. Ann. Statist., 10(4):1217–1223, 1982.

D. Arnold and H.-G. Beyer. On the effects of outliers on evolutionary optimisation. In Intelligent Data Engineering

and Automated Learning – IDEAL 2003, volume 2690 of Lecture notes in computer science, pages 151–160. Springer,

New York, 2003.

E. M. L. Beale and C. L. Mallows. Scale mixing of symmetric distributions with zero means. Ann. Math. Statist., 30:

1145–1151, 1959.

J. Berk. Necessary conditions for the CAPM. Journal of Economic Theory, 73(1):245 – 257, 1997.

S. Cambanis, S. Huang, and G. Simons. On the theory of elliptically contoured distributions. J. Multivariate Anal.,

11(3):368–385, 1981.

O. Cappé and E. Moulines. Online EM algorithm for latent data models. J. R. Stat. Soc. Ser. B Stat. Methodol., 71

(3):593–613, 2009.

M. A. Chmielewski. Elliptically symmetric distributions: a review and bibliography. Internat. Statist. Rev., 49(1):

67–74, 1981.

33



Nonparametric estimation of elliptic densities

M. Cule and R. Samworth. Theoretical properties of the log-concave maximum likelihood estimator of a multidimen-

sional density. Electron. J. Stat., 4, 2010.

M. Cule, R. Samworth, and M. Stewart. Maximum likelihood estimation of a multidimensional log-concave density.

J. R. Stat. Soc. Ser. B Stat. Methodol., 2010.

J. de Leeuw. Rate of convergence for the arithmetic-geometric mean process. Technical report, 2011. URL

http://statistics.ucla.edu/preprints/uclastat-preprint-2008:20.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J.

Roy. Statist. Soc. Ser. B, 39(1):1–38, 1977. With discussion.

R. M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, 2002. Revised reprint of the 1989 original.

T. Duong. Package ‘ks’: Kernel smoothing. R package version 1.4.11, 2007. URL

http://cran.r-project.org/web/packages/ks/index.html.

K.-T. Fang, S. Kotz, and K. Ng. Symmetric Multivariate and Related Distributions, volume 36 of Monographs on

Statistics and Applied Probability. Chapman & Hall, London, 1990.

E. Fix and J. Hodges. Discriminatory analysis, nonparametric discrimination: consistency properties. Technical

report.

C. R. Genovese and L. Wasserman. Rates of convergence for the Gaussian mixture sieve. Ann. Statist., 28(4):

1105–1127, 2000.

S. Ghosal and A. W. van der Vaart. Entropies and rates of convergence for maximum likelihood and Bayes estimation

for mixtures of normal densities. Ann. Statist., 29(5):1233–1263, 2001.

D. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison of new and old algorithms for a

mixture estimation problem. In Machine Learning, pages 69–78, 1997.

B. M. Hill. A simple general approach to inference about the tail of a distribution. Ann. Statist., 3(5):1163–1174,

1975.

H. Holzmann, A. Munk, and T. Gneiting. Identifiability of finite mixtures of elliptical distributions. Scand. J. Statist.,

33(4):753–763, 2006.

Y. Kano. Consistency property of elliptical probability density functions. J. Multivariate Anal., 51(1):139–147, 1994.

T. Kariya and M. L. Eaton. Robust tests for spherical symmetry. Ann. Statist., 5(1):206–215, 1977.

E. Liebscher. A semiparametric density estimator based on elliptical distributions. J. Multivariate Anal., 92(1):

205–225, 2005.

F. Lindskog, A. McNeil, and U. Schmock. Kendall’s tau for elliptical distributions. In Credit Risk. Measurement,

Evaluation and Management, pages 149–156. Springer-Verlag, Heidelberg, 2003.

R. A. Maronna and V. J. Yohai. The behavior of the Stahel-Donoho robust multivariate estimator. J. Amer. Statist.

Assoc., 90(429):330–341, 1995.

34

http://statistics.ucla.edu/preprints/uclastat-preprint-2008:20
http://cran.r-project.org/web/packages/ks/index.html


Nonparametric estimation of elliptic densities

J. S. Marron and M. P. Wand. Exact mean integrated squared error. Ann. Statist., 20(2):712–736, 1992.

P. Marsh. Constructing optimal tests on a lagged dependent variable. Journal of Time Series Analysis, 28(5):723–743,

2007.

X.-L. Meng and D. van Dyk. The EM algorithm—an old folk-song sung to a fast new tune. J. Roy. Statist. Soc. Ser.

B, 59(3):511–567, 1997. With discussion and a reply by the authors.

R. J. Muirhead. Aspects of multivariate statistical theory. John Wiley & Sons Inc., New York, 1982. Wiley Series in

Probability and Mathematical Statistics.

J. P. Nolan. Numerical calculation of stable densities and distribution functions. Comm. Statist. Stochastic Models,

13(4):759–774, 1997. Heavy tails and highly volatile phenomena.

J. Owen and R. Rabinovitch. On the class of elliptical distributions and their applications to the theory of portfolio

choice. The Journal of Finance, 38(3), 1983.

K. R. Parthasarathy. Probability measures on metric spaces. Probability and Mathematical Statistics, No. 3. Academic

Press Inc., New York, 1967.

D. Pollard. Linear correlation estimation. 2000.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27, 1956.

G. Rudolph. Local convergence rates of simple evolutionary algorithms with cauchy mutations. IEEE Transactions

on Evolutionary Computation, 1(4):249 –258, 1997.

S. R. Sain. Multivariate locally adaptive density estimation. Comput. Statist. Data Anal., 39(2):165–186, 2002.

S. R. Sain and D. W. Scott. On locally adaptive density estimation. J. Amer. Statist. Assoc., 91(436):1525–1534,

1996.

A. Sancetta. Bayesian semiparametric estimation of elliptic densities. 2009. URL

http://www.sancetta.googlepages.com/academicpublications.

D. W. Scott and S. R. Sain. Multidimensional density estimation. In E. W. C.R. Rao and J. Solka, editors, Data

Mining and Data Visualization, volume 24 of Handbook of Statistics, pages 229 – 261. Elsevier, 2005.

C. J. Stone. Optimal rates of convergence for nonparametric estimators. Ann. Statist., 8(6):1348–1360, 1980.

W. N. Street, W. H. Wolberg, and O. L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. 1993.

W. Stute and U. Werner. Nonparametric estimation of elliptically contoured densities. In Nonparametric functional

estimation and related topics (Spetses, 1990), volume 335 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages

173–190. Kluwer Acad. Publ., Dordrecht, 1991.

S. A. van de Geer. Applications of empirical process theory, volume 6 of Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press, Cambridge, 2000.

A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics.

Cambridge University Press, Cambridge, 1998.

35

http://www.sancetta.googlepages.com/academicpublications


Nonparametric estimation of elliptic densities

A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics.

Springer-Verlag, New York, 1996. With applications to statistics.

M. Veillette. STBL: Alpha stable distributions for MATLAB. Matlab Central File Exchange, retreived October 10,

2012, 2012. URL http://www.mathworks.com/matlabcentral/fileexchange/37514.

M. P. Wand and M. C. Jones. Kernel smoothing, volume 60 of Monographs on Statistics and Applied Probability.

Chapman and Hall Ltd., London, 1995.

L. Zhao, Z. Bai, C.-C. Chao, and W.-Q. Liang. Error bound in a central limit theorem of double-indexed permutation

statistics. Ann. Statist., 25(5):2210–2227, 1997.

36

http://www.mathworks.com/matlabcentral/fileexchange/37514


200 000 400 000 600 000 800 000 1´106

2.´10-6

4.´10-6

6.´10-6

8.´10-6

0.00001

0.000012

Figure



200 000 400 000 600 000 800 000 1´106

0.00005

0.00010

0.00015

0.00020

Figure



0.5 1.0 1.5 2.0

2

4

6

8

1 2 3 4 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure



0.5 1 1.5 2 2.5 3 3.5 4
2

4

6

8

10

12

14

average Hill estimate for  α(R2)

av
er

ag
e 

H
ill

 e
st

im
at

e 
fo

r 
 α

(1
/Q

)

 

 

Figure



5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

average Hill estimate for  exp{α(R2)}

av
er

ag
e 

H
ill

 e
st

im
at

e 
fo

r 
 α

(1
/Q

)

 

 

10

20

30

40

50

60

70

Figure



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

4

6

8

10

12

14

average Hill estimate for  α(R2)

av
er

ag
e 

H
ill

 e
st

im
at

e 
fo

r 
 α

(1
/Q

)

Figure



0 20 40 60 80 100 120
2

4

6

8

10

12

14

average Hill estimate for  exp{α(R2)}

av
er

ag
e 

H
ill

 e
st

im
at

e 
fo

r 
 α

(1
/Q

)

 

 

10

20

30

40

50

60

70

Figure



1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

dimension

st
at

is
tic

 

 
c

1

c
2

coeff determination

Figure



−5 0 5
0

0.2

0.4

0.6

0.8

1

Symmetric stable densities, σ = 1, µ = 0

y

f(
y)

 

 
tail param = 0.4
tail param = 0.8
tail param = 1.2
tail param = 1.6
tail param = 2

Figure



0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
index of tail parameter

lo
g(

1+
m

in
im

is
in

g 
α)

 a
nd

 lo
g(

1+
ru

le
 o

f t
hu

m
b 

α)

 

 

Figure



−12

−10

−8

−6

−4

−2

0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
index of tail parameter

lo
g(

IS
E

)

Figure



−12

−10

−8

−6

−4

−2

0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
index of tail parameter

lo
g(

IS
E

)

Figure



0

0.01

0.02

0.03

0.04

0.05

0.06

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.01

0.02

0.03

0.04

0.05

0.06

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.01

0.02

0.03

0.04

0.05

0.06

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.01

0.02

0.03

0.04

0.05

0.06

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.005

0.01

0.015

0.02

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.005

0.01

0.015

0.02

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.005

0.01

0.015

0.02

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.005

0.01

0.015

0.02

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
)

Figure



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
(0

))

Figure



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
(0

))

Figure



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
(0

))

Figure



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

E
G

E
M

E
G

(0
)

E
M

(0
)

Li
eb

sc
he

r
K

er
ne

l

sq
rt

(I
S

E
(0

))

Figure



0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

Figure



0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

Figure



0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

Figure



0

0.05

0.1

0.15

0.2

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

E
G

E
M

E
G

(0
)

E
M

(0
)

K
er

ne
l

sq
rt

(I
S

E
(0

))

Figure



0

0.002

0.004

0.006

0.008

0.01

0.012

c=
0.

5

c=
0.

6

c=
0.

7

c=
0.

8

c=
0.

9

c=
1

c=
1.

1

c=
1.

2

c=
1.

3

c=
1.

4

c=
1.

5

c=
1.

6

c=
1.

7

c=
1.

8

c=
1.

9

c=
2

sq
rt

(I
S

E
)

Figure



0

0.002

0.004

0.006

0.008

0.01

0.012

c=
0.

5

c=
0.

6

c=
0.

7

c=
0.

8

c=
0.

9

c=
1

c=
1.

1

c=
1.

2

c=
1.

3

c=
1.

4

c=
1.

5

c=
1.

6

c=
1.

7

c=
1.

8

c=
1.

9

c=
2

sq
rt

(I
S

E
)

Figure



0

max

wArea

0.10
0.12
0.14
0.16
0.18
0.20
0.22

1000 3000

0.10 0.16 0.22

wSmoothness

1000

2000

3000

4000

20
25
30
35
40
45
50

20 30 40 50

wTexture

Figure



0

max

wArea

0.08
0.10
0.12
0.14
0.16
0.18
0.20

200 600 1000

0.08 0.14 0.20

wSmoothness

200

400

600

800

1000

1200

15

20

25

30

35

40

15 25 35

wTexture

Figure



20 40 60 80 100 120
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Threshold

H
ill

 e
st

im
at

e 
fo

r α
(R

2 )

 

 
benign
malignant

Figure


