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Abstract

This paper develops maximum score estimation of preference parameters
in the binary choice model under uncertainty in which the decision rule is
affected by conditional expectations. The preference parameters are estimated
in two stages: we estimate conditional expectations nonparametrically in the
first stage and then the preference parameters in the second stage based on
Manski (1975, 1985)’s maximum score estimator using the choice data and
first stage estimates. The paper establishes consistency and derives the rate of
convergence of the corresponding two-stage estimator, which is of independent
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1 Introduction

This paper develops a semiparametric two-stage estimator of preference parameters

in the binary choice model where the agent’s decision rule is affected by conditional

expectations of outcomes which are uncertain at the choice making stage and the pref-

erence shocks are nonparametrically distributed with unknown form of heteroskedas-

ticity. The pioneering papers of Manski (1991, 1993) establish nonparametric identi-

fication of agents’ expectations in the discrete choice model under uncertainty when

the expectations are fulfilled and conditioned only on observable variables. Utiliz-

ing this result, Ahn and Manski (1993) proposed a two-stage estimator for a binary

choice model under uncertainty where agent’s utility was linear in parameter and the

unobserved preference shock had a known distribution. Specifically, Ahn and Manski

(1993) estimated the agent’s expectations nonparametrically in the first stage and

then the preference parameters in the second stage by maximum likelihood estima-

tion using the choice data and the expectation estimates. Ahn (1995, 1997) extended

the two-step approach further. On one hand, Ahn (1995) considered nonparamet-

ric estimation of conditional choice probabilities in the second stage. On the other

hand, Ahn (1997) retained the linear index structure of the Ahn-Manski model but

estimated the preference parameters in the second stage using average derivative

method hence allowing for unknown distribution of the unobservable. In principle,

alternative approaches accounting for nonparametric unobserved preference shock

can also be applied in the second step estimation of this framework. Well known

methods include Cosslett (1983), Powell et al. (1989), Ichimura (1993), Klein and

Spady (1993), and Coppejans (2001), among many others.

The aforementioned papers allow for nonparametric setting of the distribution of

the preference shock. But the unobserved shock is assumed either to be indepen-

dent of or to have specific dependence structure with the covariates. By contrast,

Manski (1975, 1985) considered a binary choice model under the conditional median

restriction and thus allowed for general form of heteroskedasticity for the unobserved

shock. It is particularly important, as shown in Brown and Walker (1989), to ac-

count for heteroskedasticity in random utility models. Therefore, this paper develops
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the semiparametric two-stage estimation method for the Ahn-Manski model where

the second stage is based on Manski (1975, 1985)’s maximum score estimator and

thus can accommodate nonparametric preference shock with unknown form of het-

eroskedasticity.

From a methodological perspective, this paper also contributes to the literature

of two-stage M-estimation method with non-smooth criterion functions. When the

true parameter value can be formulated as the unique root of certain population mo-

ment equations, the problem of M-estimation can be reduced to that of Z-estimation.

Chen et al. (2003) considered semiparametric non-smooth Z-estimation problem with

estimated nuisance parameter, while allowing for over-identifying restrictions. Chen

and Pouzo (2009, 2012) developed general estimation methods for semiparametric

and nonparametric conditional moment models with possibly nonsmooth general-

ized residuals. For the general M-estimation problem, Ichimura and Lee (2010)

assumed some degree of second-order expansion of the underlying objective function

and established conditions under which one can obtain a
√
N -consistent estimator

of the finite dimensional parameter where N is the sample size when the nuisance

parameter at the first stage is estimated at a slower rate. For more recent papers

on two-step semiparametric estimation, see Ackerberg et al. (2012), Chen et al.

(2013), Escanciano et al. (2012, 2013), Hahn and Ridder (2013), and Mammen et

al. (2013), among others. None of the aforementioned papers include the maximum

score estimation in the second stage estimation.

For this paper, the second stage maximum score estimation problem cannot be

reformulated as a Z-estimation problem. Furthermore, even in absence of nuisance

parameter, Kim and Pollard (1990) demonstrated that the maximum score estimator

can only have the cube root rate of convergence and its asymptotic distribution is

non-standard. The most closely related paper is Lee and Pun (2006) who showed

that m out of n bootstrapping can be used to consistently estimate sampling dis-

tributions of nonstandard M-estimators with nuisance parameters. Their general

framework includes the maximum score estimator as a special case, but allowing for

only parametric nuisance parameters. Therefore, established results in the two-stage
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estimation literature are not immediately applicable and the asymptotic theory devel-

oped in this paper may also be of independent interest for non-smooth M-estimation

with nonparametrically generated covariates.

The rest of the paper is organized as follows. Section 2 sets up the binary choice

model under uncertainty and presents the two-stage maximum score estimation pro-

cedure of the preference parameters. Section 3 states regularity assumptions and

derives consistency and rate of convergence of the estimator. Section 4 presents

Monte Carlo studies assessing finite sample performance of the estimator. Section 5

concludes this paper. Proofs of technical results along with some preliminary lemmas

are given in the Appendices.

2 Maximum Score Estimation of a Binary Choice

Model under Uncertainty

Suppose an agent must choose between two actions denoted by 0 and 1. The utility

from choosing action j ∈ {0, 1} is

U j = zj
′β1 + y′β2 + εj.

Realization of the random vector (zj, εj) ∈ Rk ×R is known to the agent before the

action is chosen and the random vector y ∈ Rp is realized only after the action is cho-

sen. Random vectors (z1, ε1) and (z0, ε0) are not necessarily identical. Distribution

of y depends on the chosen action and realization of a random vector x ∈ Rq. Let

Es(·|·) denote the agent’s subjective conditional expectation. Given the realization

of (zj, εj), the agent chooses the action d that maximizes the expected utility:

z′jβ1 + Es(y|x, d = j)′β2 + εj, j ∈ {0, 1}.

Thus the decision rule has the form

d = 1 {z′β1 + [Es(y|x, d = 1)− Es(y|x, d = 0)]′β2 > ε} , (2.1)
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where z ≡ z1 − z0, ε ≡ ε0 − ε1, and 1{·} is an indicator function whose value is one

if the argument is true and zero otherwise.

As in Ahn and Manski (1993), suppose that expectations are fulfilled:

Es(y|x, d = j) = E(y|x, d = j).

We assume that the researcher does not observe realization of ε and E(y|x, d = j),

but that of (z, x, d, y).

Let G(x) ≡ E(y|x, d = 1) − E(y|x, d = 0) and let w ≡ (z,G(x)) ∈ W ⊂ Rk+p,

where W denotes the support of the distribution of w. Then, equation (2.1) can be

written as

d = 1{w′β > ε}, (2.2)

where β ≡ (β1, β2) is a vector of unknown preference parameters. The set of assump-

tions leading to the binary choice model in (2.2) is equivalent to that of Ahn and

Manski (1993, equations (1)-(3)).

However, in this paper we consider an important deviation from Ahn and Manski

(1993)’s setup where the unobserved preference shock ε is independent of (z, x) with

a known distribution function. Instead, we consider inference under a flexible spec-

ification of the unobserved model component. Following Manski (1985), we impose

the restriction:

Med(ε|z, x) = 0. (2.3)

The conditional median independence assumption in (2.2) allows for heteroskedastic-

ity of unknown form, and hence, is substantially weaker than the assumption imposed

in Ahn and Manski (1993). Given (2.3), the model (2.1) then satisfies

Med(d|z, x) = 1{w′β > 0}. (2.4)

Let Θ denote the space of preference parameters, and let Λj, j ∈ {1, ..., p},
denote the function space of difference of conditional expectations E(yj|x, d = 1) −
E(yj|x, d = 0). Moreover, let b ≡ (b1, b2) and γj(x), j ∈ {1, ..., p}, denote generic
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elements of Θ and Λj, respectively. Let γ(x) ≡ (γ1(x), ..., γp(x)) and Λ ≡
∏p

j=1 Λj

be the space of γ. We refer to β ≡ (β1, β2) and G(x) as the true finite-dimensional

and infinite-dimensional parameters.

Suppose that data consist of random samples (zi, xi, di, yi), i = 1, · · · , N . We

estimate in the first stage the conditional expectations which are not observed. Let

Ĝ(xi) denote an estimate of the difference in conditional expectations. Using the

estimate Ĝ, we estimate the preference parameters β in the second stage by the

method of maximum score estimation of Manski (1975, 1985). For any b and γ,

define the sample score function

SN(b, γ) ≡ 1

N

N∑
i=1

τi(2di − 1)1{z′ib1 + γ(xi)
′b2 > 0}, (2.5)

where τi ≡ τ(xi) is a predetermined weight function to avoid unduly influences from

estimated G(xi) at the boundaries of the support of xi. The two-stage estimator of

β is now defined as

β̂ = arg maxb∈Θ SN(b, Ĝ). (2.6)

3 Consistency and Rate of Convergence of β̂

Let F (t; b) and f(t; b), respectively, denote the distribution and density of w′b. To

simplify the analysis, we consider fixed trimming such that τ(x) = 1(x ∈ X ), where

X ⊂ Rq is a predetermined, compact, and convex subset of the support of x. For any

real vector b, let ‖b‖E denote the Euclidean norm of b. For any p-dimensional vector of

functions h(x), let ‖h‖∞ ≡
∥∥∥(‖h1‖sup , ..., ‖hp‖sup

)∥∥∥
E

where ‖hj‖sup ≡ sup{|hj(x)| :

x ∈ X} and hj(x) denote the jth component of h. Let z̃ be the subvector of z

excluding the component z1. Write b1 = (b1,1, b̃1) and β1 = (β1,1, β̃1). We assume the

following regularity conditions.

Assumption 1. Assume that:
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C1. Θ = {−1, 1} ×Υ, where Υ is a compact subspace of Rk+p−1and
(
β̃1, β2

)
is an

interior point of Υ.

C2. (a) The support of the distribution of w is not contained in any proper linear

subspace of Rk+p. (b) 0 < P (d = 1|w) < 1 for almost every w. (c) For almost

every (z̃, x), the distribution of z1 conditional on (z̃, x) has everywhere positive

density with respect to Lebesgue measure.

C3. Med(ε|z, x) = 0 for almost every (z, x).

C4. There is a positive constant L < ∞ such that |F (t1; b) − F (t2; b)| ≤ L|t1 − t2|
for all (t1, t2) ∈ R2 uniformly over b ∈ Θ.

C5.
∥∥∥Ĝ−G∥∥∥

∞
= op(1).

Because the scale of β for the model characterized by (2.4) cannot be identified,

Assumption C1 imposes scale normalization by requiring that the absolute value of

the first coefficient is unity. Assumption C2 implies that F (t; b) is absolutely con-

tinuous and has density f(t; b) for each b ∈ {−1, 1} × Υ. Assumptions C1 - C3

are standard in the maximum score estimation literature (see e.g., Manski (1985),

Horowitz (1992), and Florios and Skouras (2008)). Assumption C4 is a mild condi-

tion on the distribution of the index variable w′b. Assumption C5 requires uniform

consistency of first stage estimation. This assumption can be easily verified for stan-

dard nonparametric estimators such as series estimators (Newey (1997, Theorem

1)) and the kernel regression estimator (Bierens (1983, Theorem 1), Bierens (1987,

Theorem 2.3.1) and Andrews (1995, Theorem 1)).

Given these regularity conditions, we have the following result.

Theorem 1 (Consistency). Let Assumption 1 (C1 - C5) hold. Then the two-stage

estimator given by (2.6) converges to β in probability as N −→∞.

In addition to consistency, we also study rate of convergence of the estimator β̂.

Let w̃ ≡ (z̃, G(x)), b̃ ≡ (̃b1, b2) and β̃ ≡ (β̃1, β2). Let Fε(·|z, x) denote the distribution
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function of ε conditional on (z, x) and g1(z1|z̃, x) denote the density function of z1

conditional on (z̃, x). Let p1 (·, z̃, x) denote the partial derivative of P (d = 1|z, x)

with respect to z1. Define the following matrix

V ≡ β1,1E
[
τp1(−w̃′β̃/β1,1, z̃, x)g1(−w̃′β̃/β1,1|z̃, x)w̃w̃′

]
.

Since the objective function of (2.5) is non-smooth, we require the nonparametric

parameter of the estimation problem should possess certain degree of smoothness

to facilitate derivation of the rate of convergence result. In particular, we consider

the following well known class of smooth functions (see, e.g., van der Vaart and

Wellner (1996, Section 2.7.1)) : For 0 < α <∞, let Cα
M denote the class of functions

f :X 7−→ R with ‖f‖α ≤ M where for any q dimensional vector of non-negative

integers k = (k1, ..., kq),

‖f‖α ≡ max
σ(k)≤α

∥∥Dkf
∥∥

sup
+ max

σ(k)≤α
sup
x 6=x′

∣∣Dkf(x)−Dkf(x′)
∣∣

‖x− x′‖α−αE

where σ(k) ≡
∑q

j=1 kq, α denotes the greatest integer smaller than α, and Dk is the

differential operator

Dk ≡ ∂σ(k)

∂xk1
1 · · · ∂x

kq
q

.

Given the norm ‖·‖α, for any p-dimensional vector of functions h(x), let ‖h‖α,p ≡∥∥(‖h1‖α , ..., ‖hp‖α
)∥∥

E
where hj(x) denote the jth component of h. Note that ‖·‖α,p

is a stronger norm than ‖·‖∞ used in condition C5 for the uniform consistency of the

first stage estimator.

The regularity conditions imposed for the convergence rate result are stated as

follows.

Assumption 2. Assume that:

C6. The support of z̃ is bounded.

C7. There is a positive constant B < ∞ such that (i) for every z1 and for almost
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every (z̃, x),

g1(z1|z̃, x) < B, |∂g1(z1|z̃, x)/∂z1| < B, and
∣∣∂2g1(z1|z̃, x)/∂z2

1

∣∣ < B,

and (ii) for non-negative integers i and j satisfying i+ j ≤ 2,

∣∣∂i+jFε(t|z, x)/∂ti∂zj1
∣∣ < B

for every t and z1 and for almost every (z̃, x).

C8. All elements of the vector w̃ have finite third absolute moments.

C9. The matrix V is positive definite.

C10. For each j ∈ {1, ..., p}, Λj = Cα
M for some α ≥ 2q and M <∞.

C11.
∥∥∥Ĝ−G∥∥∥

α,p
= Op(εN) where εN is a non-stochastic positive real sequence such

that N1/3εN ≤ 1 for each N .

Assumption C6 is standard in deriving asymptotic properties of Manski’s maxi-

mum score estimator (see, e.g. Kim and Pollard (1990), pp. 213 - 216). Assumption

C7 requires some smoothness of the density g1(z1|z̃, x) and the distribution Fε(t|z, x).

Assumption C8 is mild. Since −V corresponds to the second order derivative of

E[SN(b, γ)] with respect to b̃ evaluated at true parameter values, Assumption C9 is

analogous to the classic condition of Hessian matrix being non-singular in the M-

estimation framework. Assumption C10 imposes smoothness for the nonparametric

parameter γ and hence helps to control complexity of the space Λ.

Assumption C11 requires that the first stage estimator should converge under

the norm ‖·‖α,p at a rate no slower than N−1/3. Note that convergence of Ĝ to G

in the norm ‖·‖α,p also implies uniform convergence of derivatives of Ĝ to those of

G. For integer-valued α > 0, Assumption C11 is fulfilled provided that for vector of

non-negative integers k = (k1, ..., kq) that satisfies σ(k) ≤ α,∥∥∥DkĜt,j −DkGt,j

∥∥∥
sup

= Op(εN) (3.1)
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where Ĝt,j(x) denotes the estimate of Gt,j(x) ≡ E(yj|x, d = t) for (t, j) ∈ {0, 1} ×
{1, ..., p}. The condition (3.1) can also be verified for series estimators (Newey (1997,

Theorem 1)) and the kernel regression estimator (Andrews (1995, Theorem 1)).

Theorem 2 (Rate of Convergence). In addition to Assumption 1 (C1 - C5), let

Assumption 2 (C6 - C11) also hold. Then
∥∥∥β̂ − β∥∥∥

E
= Op(N

−1/3).

Note that if G were priorly known to the researcher, the preference parameters

β could be estimated using covariates w and the resulting maximum score estimator

would have the cube root rate of convergence (Kim and Pollard (1990)). In the case

of unknown G, Theorem 2 implies that the two-stage estimator β̂ retains the same

convergence rate as its corresponding infeasible estimator.

We conclude this section by making some remarks on the asymptotic distribution

of the two-stage estimator β̂. Without the first stage estimation, Kim and Pollard

(1990) obtained the limiting distribution of the maximum score estimator. In view

of this, we conjecture the limiting distribution of our proposed estimator of β might

be the same as that of Kim and Pollard (1990), as long as the first stage estimator

converges uniformly in probability at a sufficiently faster rate than N−1/3 with other

regularity conditions. Once we show this, the inference on β can be carried out by

subsampling (Delgado et al. (2001)) since the standard bootstrap cannot be used to

estimate the distribution of the maximum score estimator consistently (Abrevaya

and Huang (2005)). There does not seem to exist a known result on nonstandard M-

estimation with nonparametrically generated regressors. It is thus a future research

topic to establish the limiting distribution of our estimator and more generally to

develop a general approach for nonstandard M-estimation with nonparametrically

generated nuisance parameters.

4 Monte Carlo Simulations

We adopt the following DGP in simulation study of the two-stage maximum score

estimator:

d = 1{β0 + zβ1 +G(x)β2 > ε},
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where x = (x1, x2), G(x) = E(y|x, d = 1) − E(y|x, d = 0), z ∼ Logistic, x1 ∼
U(−1, 1), x2 ∼ Beta(2, 2) and ε|(z, x) ∼ N(0, 1 + z2 + x2

1 + x2
2). The scalar random

variable y is generated according to

y = d(γ01 + γ11x1 + γ21x2 + u1) + (1− d)(γ00 + γ10x1 + γ20x2 + u0), (4.1)

where (u1, u0) are independent of (x, z, ε) and are jointly normally distributed with

E(u1) = E(u0) = 0, V ar(u1) = V ar(u0) = 1, and Cov(u1, u0) = ρ. Given (4.1),

G(x) = γ01 − γ00 + (γ11 − γ10)x1 + (γ21 − γ20)x2.

The true parameter values are specified in Table 1.

We compare infeasible single-stage estimator using (z,G(x)) as regressors and

also the feasible two-stage estimator using (z, Ĝ(x)) as regressors. We consider both

parametric and nonparametric first stage estimators. For the former, we estimate

E(y|x, d = j) by running OLS of y on x using d = j subsamples. For the latter,

we implement Nadaraya-Watson kernel regression estimators. The nonparametric

estimators of E(y|x, d = j), j ∈ {0, 1} are thus constructed as

N∑
i=1

yiK(Ω̂
−1/2
j h−1

N (x− xi))1{di = j}

N∑
i=1

K(Ω̂
−1/2
j h−1

N (x− xi))1{di = j}
(4.2)

where xi = (x1,i, x2,i), Ω̂j is the diagonal matrix whose kth diagonal element is the

estimated variance of xk,i conditional on di = j, and hN is a deterministic bandwidth

sequence. Here, K(.) is a multivariate kernel function of the 12th order (see, e.g.,

Bierens (1987, p. 112) and Andrews (1995, p. 567)) such that

K(x) ≡
6∑

m=1

amb
−2
m exp

[
−x′x/(2b2

m)
]
,
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where the constants (am, bm) , m ∈ {1, ..., 6} satisfy

6∑
m=1

am = 1 and
6∑

m=1

amb
2l
m = 0 for l ∈ {1, ..., 5}. (4.3)

We specify bm = m−1/2 and then solve am as solution of the system of linear equa-

tions (4.3). The bandwidth hN is set to be cN−1/36 with c ∈ {3, 3.5, 4, 4.5, 5, 5.5, 6}.
As noted by Bierens (1987, p. 113), the choice of the constants (am, bm) for the kernel

function is less crucial since its effect on the asymptotic variance of the conditional

mean estimator can be captured via the scale constant c associated with the band-

width hN . By Theorem 1(b) of Andrews (1995), the resulting first stage estimator

(4.2) has the convergence property required in (3.1) with σ(k) ≤ 4 and εN = N−1/3,

thus fulfilling regularity conditions C5 and C11 of Section 3.

To implement the second-stage estimator using nonparametric first stage estima-

tors, we trim the data by setting τi = 1{|x1i| ≤ 1− ε, ε ≤ x2i ≤ 1− ε} where τi is the

weight introduced in (2.5) and ε is set to be 0.01. The estimates of β0, β1 and β2 are

obtained using grid search method. Since the model (2.2) allows for identification of

preference parameters only up to scale normalization, we report simulation results

of the estimated ratio λ̂ ≡ β̂2/β̂1.

Let λ̂Single, λ̂OLS and λ̂Kernel respectively denote the estimators λ̂ that are con-

structed based on the infeasible single-stage, two-stage (OLS first stage) and two-

stage (kernel regression first stage) preference parameter estimators. We compute

bias, median, root mean squared error (RMSE), mean absolute deviation (mean AD)

and median absolute deviation (median AD) of these estimators based on 1000 sim-

ulation repetitions. Table 2 presents simulation results of λ̂Single and λ̂OLS and Table

3 gives those of λ̂Kernel for various values of the bandwidth parameter c. We find that

there seems to be systematically downward bias among all the simulation configura-

tions including the infeasible single-stage estimation cases. However, magnitude of

the bias diminishes as sample size increases. The precision in terms of RMSE, mean

AD and median AD of the two-stage estimators λ̂OLS and λ̂Kernel is quite close to

that of the infeasible single-stage estimator λ̂Single. We notice that simulation results
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of λ̂Kernel do not appear to be very sensitive with respect to choice of the bandwidth

parameter c though setting c to be around 4.5 tends to yield better overall finite

sample performance. In short, our proposed two-stage maximum score estimator

seems to work well in the simulations.

5 Conclusions

This paper has developed maximum score estimation of preference parameters in

the binary choice model under uncertainty in which the decision rule is affected by

conditional expectations. The estimation procedure is implemented in two stages:

we estimate conditional expectations nonparametrically in the first stage and obtain

the maximum score estimate of the preference parameters in the second stage using

the choice data and first stage estimates. The paper has established consistency

and the rate of convergence of the corresponding two-stage estimator, which is of

independent interest for non-smooth M-estimation with generated regressors.

It would be an alternative approach to develop the second stage estimator using

Horowitz (1992)’s smoothed maximum score estimator or using a Laplace estimator

proposed in Jun, Pinkse, and Wan (2013). These alternative methods would produce

faster convergence rates but require extra tuning parameters. Alternatively, we might

build the second stage estimator based on Lewbel (2000), who introduced the idea

of a special regressor satisfying certain conditional independence restriction. These

are interesting future research topics.

A Proof of Consistency

Recall that w = (z,G(x)) and SN(b, γ) is the sample score function defined by (2.5).

We first state and prove a preliminary lemma that will be invoked in proving Theorem

1 of the paper.
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Lemma 1. Under Assumptions C1, C4 and C5,

sup
b∈Θ

∣∣∣SN(b, Ĝ)− SN(b,G)
∣∣∣ p−→ 0. (A.1)

Proof of Lemma 1. Note that

∣∣∣SN(b, Ĝ)− SN(b,G)
∣∣∣ ≤ 1

N

N∑
i=1

τi1
{∣∣∣(Ĝ(xi)−G(xi))

′b2

∣∣∣ ≥ |w′ib|} . (A.2)

By Assumption C1, ‖b2‖E < B2 for some finite positive constant B2. Therefore, the

right-hand side of the inequality (A.2) is bounded above by

Γ̃N ≡ PN

(
τ = 1, B2

∥∥∥Ĝ−G∥∥∥
∞
≥ |w′b|

)
, (A.3)

where PN denotes the empirical probability. Note that the term (A.3) is further

bounded above by

ΓN ≡ PN

(
B2

∥∥∥Ĝ−G∥∥∥
∞
≥ |w′b|

)
. (A.4)

Let Eη denote the event
∥∥∥Ĝ−G∥∥∥

∞
< η for some η > 0. Then given ε > 0,

P (supb∈Θ ΓN > ε) ≤ P (supb∈Θ ΓN > ε,Eη) + P (Ec
η)

≤ P [supb∈Θ PN (B2η ≥ |w′b|) > ε] + P (Ec
η).

By Assumption C5, P (Ec
η) −→ 0 as N −→ ∞. Hence, to show (A.1), it remains to

establish that as N −→∞,

P [supb∈Θ PN (B2η ≥ |w′b|) > ε] −→ 0. (A.5)

Note that by Assumption C4, P (B2η ≥ |w′b|) ≤ 2LB2η. Therefore, we have that

P [supb∈Θ PN (B2η ≥ |w′b|) > ε]

≤ P [supb∈Θ |PN (B2η ≥ |w′b|)− P (B2η ≥ |w′b|)| > ε− 2LB2η] , (A.6)
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where η is taken to be sufficiently small such that ε− 2LB2η > 0 for the given ε. By

Lemma 9.6, 9.7 (ii) and 9.12 (i) of Kosorok (2008), the family of sets {B2η ≥ |w′b|} for

b ∈ Θ forms a Vapnik-Červonenkis class. Therefore, by Glivenko-Cantelli Theorem

(see, e.g. Theorem 2.4.3 of van der Vaart and Wellner (1996)), the right-hand side of

(A.6) tends to zero as N −→ ∞. Hence, the convergence result in (A.5) holds and

Lemma 1 thus follows.

We now prove Theorem 1 for consistency of β̂.

Proof of Theorem 1. For any (b, γ), define

S(b, γ) ≡ E [τ(2d− 1)1{z′b1 + γ(x)′b2 > 0}] .

Given Assumptions C1 - C3 and by Manski (1985, Lemma 3, p. 321), β uniquely

satisfies β = arg maxb∈Θ S(b,G). We now look at the difference∣∣∣SN(b, Ĝ)− S(b,G)
∣∣∣ ≤ ∣∣∣SN(b, Ĝ)− SN(b,G)

∣∣∣+ |SN(b,G)− S(b,G)| , (A.7)

where by Lemma 1, the first term of the right-hand side of (A.7) converges to zero

in probability uniformly over b ∈ Θ, whilst by Manski (1985, Lemma 4, p. 321), the

second term converges to zero almost surely uniformly over b ∈ Θ. Therefore, we

have that

sup
b∈Θ

∣∣∣SN(b, Ĝ)− S(b,G)
∣∣∣ p−→ 0.

By Lemma 5 of Manski (1985, p. 322), S(b,G) is continuous in b. Given these results,

Theorem 1 thus follows by application of the consistency theorem in Newey and

McFadden (1994, Theorem 2.1).
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B Lemma on the Rates of Convergence of a Two-

Stage M-Estimator with a Non-smooth Crite-

rion Function

We first present and prove a general lemma establishing the rates of convergence of

a general two-stage M-estimator under high level assumptions. In next section, we

prove Theorem 2 by verifying these assumptions for the particular estimator given

by (2.6) under the regularity conditions of C1 - C11.

To present a general result, let s 7→ mθ,h(s) be measurable functions indexed by

parameters (θ, h). Let Θ and H be the space of parameters θ and h, respectively.

Let (θ∗, h∗) denote the true parameter value. We assume (θ∗, h∗) ∈ Θ × H. Let

SN (θ, h) ≡
∑N

i=1 mθ,h(si)/N be the empirical criterion of the M-estimation prob-

lem where (si)
N
i=1 are i.i.d. random vectors. Suppressing the individual index, let

S (θ, h) ≡ E [mθ,h(s)] be the population criterion. For a given first stage estimate ĥ,

let the estimator θ̂ be constructed as

θ̂ = arg sup
θ∈Θ

SN

(
θ, ĥ
)

. (B.1)

Let dΘ(θ, θ∗) and dH(h, h∗) be non-negative functions measuring discrepancies

between θ and θ∗, and h and h∗, respectively. Note that dΘ and dH are usually

related to but not necessarily the same as the metrics specified for the spaces Θ and

H. Given a non-stochastic positive real sequence εN , define HN(C) ≡ {h ∈ H :

dH(h, h∗) ≤ CεN}. To simplify the presentation, we use the notation . to denote

being bounded above up to a universal constant. Define the recentered criterion

S̃N(θ, h) ≡ (SN(θ, h)− SN(θ∗, h))− (S(θ, h)− S(θ∗, h)). (B.2)

The following lemma modifies the rate of convergence results developed by van der

Vaart (1998, Theorem 5.55) and provides sufficient conditions ensuring that θ̂ retains

the same convergence rate as it would have if h∗ were known.
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Lemma 2 (Rate of convergence for a general two-stage M-estimator). For any fixed

and sufficiently large C > 0, assume that for all sufficiently large N ,

sup
h∈HN (C)

|S(θ∗, h)− S(θ∗, h∗)| . (CεN)2 (B.3)

and there is a sequence of non-stochastic functions eN : Θ × HN(C) 7−→ R such

that for all sufficiently small δ > 0 and for every (θ, h) ∈ Θ × HN(C) satisfying

dΘ(θ, θ∗) ≤ δ,

S(θ, h)− S(θ∗, h∗) + eN(θ, h) . −d2
Θ(θ, θ∗) + d2

H(h, h∗), (B.4)

sup
dΘ(θ,θ∗)≤δ,(θ,h)∈Θ×HN (C)

|eN(θ, h)| . CδεN , (B.5)

and

E

[
sup

dΘ(θ,θ∗)≤δ,(θ,h)∈Θ×HN (C)

∣∣∣S̃N(θ, h)
∣∣∣] .

φN(δ)√
N

, (B.6)

where φN(δ) is a sequence of functions defined on (0,∞) and satisfies that φN(δ)δ−α

is decreasing for some α < 2. Suppose dH(ĥ, h∗) = Op(εN), dΘ(θ̂, θ∗) = op(1) and

there is a non-stochastic positive real sequence δN which tends to zero as N −→ ∞
and satisfies that εN ≤ δN and φN(δN) ≤

√
Nδ2

N for every N . Then dΘ(θ̂, θ∗) =

Op(δN).

Proof. Based on the peeling technique of van der Vaart (1998, Theorem 5.55), for

each natural number N , integer j and positive real M , construct the set

AN,j,M(C) ≡
{

(θ, h) ∈ Θ×HN(C) : 2j−1δN < dΘ(θ, θ∗) ≤ 2jδN , dH(h, h∗) ≤ 2−MdΘ(θ, θ∗)
}
.

17



Then we have that for any ε > 0,

P
(
dΘ(θ̂, θ∗) ≥ 2M

(
δN + dH(ĥ, h∗)

)
, ĥ ∈ HN(C)

)
≤ P (2dΘ(θ̂, θ∗) > ε) + P

(
(θ̂, ĥ) ∈

⋃
j≥M,2jδN≤ε

AN,j,M(C)
)

≤ P (2dΘ(θ̂, θ∗) > ε) +∑
j≥M,2jδN≤ε

P

(
sup

(θ,h)∈AN,j,M (C)

[SN(θ, h)− SN(θ∗, h)] ≥ 0

)
(B.7)

where the last inequality follows from the definition of θ̂ given by (B.1). Since

dΘ(θ̂, θ∗) = op(1), the term P (2dΘ(θ̂, θ∗) > ε) tends to zero as N −→ ∞. Hence the

remaining part of the proof is to bound the terms in the sum (B.7).

Let N be large enough such that (B.3) holds and choose ε to be small enough

such that assumptions (B.4), (B.5) and (B.6) hold for every δ ≤ ε. Note that for

every sufficiently large M , if (θ, h) ∈ AN,j,M(C), then d2
H(h, h∗)−d2

Θ(θ, θ∗) . −δ2
N22j

so that by (B.4),

S(θ, h)− S(θ∗, h∗) + eN(θ, h) . −δ2
N22j (B.8)

and thus

SN(θ, h)− SN(θ∗, h) .
[
S̃N(θ, h) + S(θ∗, h∗)− S(θ∗, h)− eN(θ, h)

]
− δ2

N22j.

Therefore, by Markov inequality, each term in the sum (B.7) can be bounded above

by

δ−2
N 2−2jE

[
sup

(θ,h)∈AN,j,M (C)

∣∣∣S̃N(θ, h) + S(θ∗, h∗)− S(θ∗, h)− eN(θ, h)
∣∣∣] . (B.9)

By (B.3), (B.5), (B.6) and applying triangular inequality, the term (B.9) is bounded

above by

δ−2
N 2−2j

[
N−1/2φN(2jδN) + 2jCδNεN + (CεN)2

]
. (B.10)

By the monotonicity property of the mapping δ 7→ φN(δ)δ−α, we have that φN(2jδN) ≤

18



2jαφN(δN). Furthermore, since φN(δN) ≤
√
Nδ2

N , the first term in the bracket of

(B.10) can thus be bounded by 2jαδ2
N . Given that εN ≤ δN , the term (B.10) can be

further bounded above by 2j(α−2) +C2−j +C22−2j. Using this fact and the condition

α < 2, it follows that the sum (B.7) tends to zero as M −→∞.

Since dH(ĥ, h∗) = Op(εN), P (ĥ ∈ HN(C)) can be made arbitrarily close to 1

by choosing a sufficiently large value of C for every sufficiently large N . Therefore,

Lemma 2 follows by putting together all these results and noting that δN+dH(ĥ, h∗) =

Op(δN).

C Proof of the Rate of convergence for β̂

To establish the convergence rate of β̂, we apply Lemma 2 by setting (θ, h) = (b, γ),

(θ∗, h∗) = (β,G), Θ = {−1, 1} ×Υ, H = Λ, s = (τ, d, z, x) and

mb,γ(s) ≡ τ(2d− 1)1{z′b1 + γ(x)′b2 > 0}.

Assumptions (B.3), (B.4), (B.5) and (B.6) of Lemma 2 are non-trivial and will be

verified using primitive condition C1 - C11 of the model. Assumption (B.4) is con-

cerned with the quadratic expansion of S(b, γ) around (β,G) by which we obtain the

functional form of eN(b, γ). Recall that w = (z,G(x)), z = (z1, z̃), w̃ = (z̃, G(x)),

b1 = (b1,1, b̃1), β1 = (β1,1, β̃1), b̃ = (̃b1, b2) and β̃ = (β̃1, β2). The following lemma will

be used to establish expansion of the population criterion S(b, γ).

Lemma 3. Under conditions C3 and C7, the sign of p1(−w̃′β̃/β1,1, z̃, x) is the same

as that of β1,1 for almost every (z̃, x).

Proof. Note that the model (2.2) implies that

P (d = 1|z, x) = Fε(w
′β|z, x).
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Thus, by C7(ii), P (d = 1|z, x) is differentiable with respect to z1 and

∂

∂z1

P (d = 1|z, x) = β1,1
∂

∂t
Fε(t|z, x)

∣∣∣∣
t=w′β

+
∂

∂z1

Fε(t|z, x)

∣∣∣∣
t=w′β

.

Consider the mapping z1 7→ h(z1) ≡ ∂
∂z1
Fε(t|z, x)

∣∣∣
t=z1β1,1+w̃′β̃

. By C3, h(−w̃′β̃/β1,1) =

0 for almost every (z̃, x). Therefore, Lemma 3 follows from this fact and the mono-

tonicity of Fε(t|z, x) in the argument t.

By assumption C1, the space of the coefficient b1,1 is {−1, 1} and thus b1,1 = β1,1

when ‖b− β‖E < δ for δ small enough. Let p(z, x) ≡ P (d = 1|z, x) and

S1(̃b, γ) ≡ E
[
τ(2p(z, x)− 1)1{z1β1,1 + z̃′b̃1 + γ(x)′b2 > 0}

]
. (C.1)

We now derive the quadratic expansion of S1(̃b, γ) around (β̃, G).

Lemma 4. For sufficiently small
∥∥∥b̃− β̃∥∥∥

E
and ‖γ −G‖∞ and under conditions C3,

C7, C8 and C9, we have that∣∣∣S1(β̃, γ)− S1(β̃, G)
∣∣∣ . ‖γ −G‖2

∞

and there are constants c1 > 0 and c2 ≥ 0 such that

S1(̃b, γ)− S1(β̃, G) + e(̃b, γ) ≤ −c1

∥∥∥b̃− β̃∥∥∥2

E
+ c2 ‖γ −G‖2

∞

for some function e(̃b, γ) that satisfies∣∣∣e(̃b, γ)
∣∣∣ . ∥∥∥b̃− β̃∥∥∥

E
‖γ −G‖∞ .

Proof. We prove Lemma 4 explicitly for the case β1,1 = 1. Proof for the case β1,1 =

−1 can be done by similar arguments.
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Suppose now β1,1 = 1. Then

S1(̃b, γ)− S1

(
β̃, G

)
= E

(
τ(2p(z, x)− 1)

[
1{z1 + z̃′β̃1 +G(x)′β2 ≤ 0} − 1{z1 + z̃′b̃1 + γ(x)′b2 ≤ 0}

])
.

Let

λ(t) ≡ z̃′
(
β̃1 + t

(
b̃1 − β̃1

))
+ (G(x) + t (γ(x)−G(x)) )′ (β2 + t (b2 − β2)) ,

Ψ(t) ≡ −E(τ(2p(z, x)− 1)1{z1 + λ(t) ≤ 0}).

The first-order and second-order derivatives of Ψ(t) are derived as follows:

Ψ′(t) = E (τλ′(t) (2p(−λ(t), z̃, x)− 1) g1(−λ(t)|z̃, x)) ,

Ψ′′(t) = −E
{
τ (λ′(t))

2
[2p1 (−λ(t), z̃, x) g1(−λ(t)|z̃, x)

+ (2p(−λ(t), z̃, x)− 1)
∂

∂z1

g1(−λ (t) |z̃, x)

]}
+E (2τ [(2p(−λ(t), z̃, x)− 1)] g1(−λ(t)|z̃, x)(γ(x)−G(x))′(b2 − β2)) .

Then the second order expansion of S1(̃b, γ)− S1

(
β̃, G

)
takes the form

Ψ′(0) + Ψ′′(0)/2 + o

((
max

{∥∥∥b̃− β̃∥∥∥
E
, ‖γ −G‖∞

})2
)

where by C7 and C8, the remainder term has the stated order uniformly over b̃ and

γ. Given assumption C3, it follows that p(−w̃′β̃, z̃, x) = 1/2 for almost every (z̃, x).

Let

κ(z̃, x) = 2p1

(
−w̃′β̃, z̃, x

)
g1(−w̃′β̃|z̃, x).

Then we have that

Ψ′(0) + Ψ′′(0)/2 = −E
(
τκ(z̃, x)

(
w̃′(̃b− β̃) + (γ(x)−G(x))′β2

)2
)

= −
(
A1 + A2 + e(̃b, γ)

)
,
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where

A1 ≡ (̃b− β̃)′E(τκ(z̃, x)w̃w̃′)(̃b− β̃),

A2 ≡ E
(
τκ(z̃, x) (γ(x)−G(x))′ β2β

′
2 (γ(x)−G(x))

)
,

e(̃b, γ) ≡ 2(̃b− β̃)′E (τκ(z̃, x)w̃β′2 (γ(x)−G(x))) .

Under condition C9, E(τκ(z̃, x)w̃w̃′) is positive definite, so that A1 ≥ c1

∥∥∥b̃− β̃∥∥∥2

E

for some positive real constant c1. By Lemma 3, p1

(
−w̃′β̃, z̃, x

)
≥ 0 and thus

κ(z̃, x) ≥ 0. By Cauchy-Schwarz inequality, 0 ≤ A2 ≤ c2 ‖γ −G‖2
∞, where c2 ≡

E(τκ(z̃, x)) ‖β2‖2
E ≥ 0, and the function e(̃b, γ) satisfies that∣∣∣e(̃b, γ)
∣∣∣ ≤ 2E

(
τκ(z̃, x)

∣∣∣(̃b− β̃)′w̃β′2 (γ(x)−G(x))
∣∣∣)

≤ 2E (τκ(z̃, x) ‖w̃‖E) ‖β2‖E
∥∥∥b̃− β̃∥∥∥

E
‖γ −G‖∞ .

Hence Lemma 4 follows by noting that when
∥∥∥b̃− β̃∥∥∥

E
and ‖γ −G‖∞ are sufficiently

small, ∣∣∣S1(β̃, γ)− S1(β̃, G)
∣∣∣ =

∣∣A2 + o
(
‖γ −G‖2

∞
)∣∣ ≤ c2 ‖γ −G‖2

∞

and

S1(̃b, γ)− S1

(
β̃, G

)
+ e(̃b, γ) ≤ −A1 + A2

≤ −c1

∥∥∥b̃− β̃∥∥∥2

E
+ c2 ‖γ −G‖2

∞ .

We now verify assumption (B.6) of Lemma 2. Note that for δ sufficiently small,

assumption C1 implies that b1,1 = β1,1 when ‖b− β‖E ≤ δ. Therefore we can focus on

analyzing (B.6) for the case of b1,1 = β1,1 and
∥∥∥b̃− β̃∥∥∥

E
≤ δ. For any s = (τ, d, z, x),
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consider the following recentered function

m̃b̃,γ(s) ≡ τ(2d−1)
[
1{z1β1,1 + z̃′b̃1 + γ(x)′b2 > 0} − 1{z1β1,1 + z̃′β̃1 + γ(x)′β2 > 0}

]
(C.2)

and the class of functions

zδ,ε ≡
{
m̃b̃,γ :

∥∥∥b̃− β̃∥∥∥
E
≤ δ, ‖γ −G‖α,p ≤ ε

}
. (C.3)

Let ‖·‖Lr(P ) denote the Lr(P ) norm such that ‖f‖Lr(P ) ≡ [E(|f(τ, d, z, x)|r)]1/r for

any measurable function f . For any ε > 0, let N[](ε,z, Lr(P )) denote the Lr(P )

- bracketing number for a given function space z. Namely, N[](ε,z, Lr(P )) is the

minimum number of Lr(P ) - brackets of length ε required to cover z (see e.g., van der

Vaart (1998, p. 270)). The logarithm of bracketing number for z is referred to as the

bracketing entropy for z. Assumption (B.6) is a stochastic equicontinuity condition

concerning the complexity of the function space zδ,ε in terms of its envelope function

and bracketing entropy. Let M
δ,ε

denote an envelope for zδ,ε such that
∣∣∣m̃b̃,γ(s)

∣∣∣
≤
∣∣M

δ,ε
(s)
∣∣ for all s and for all m̃b̃,γ ∈ zδ,ε. The next lemma derives the envelope

function M
δ,ε

.

Lemma 5. Let δ and ε be sufficiently small. Then under conditions C1, C4 ,C6 and

C10, for some real constants a1 > 0 and a2 > 0, we can take

M
δ,ε

= 1{a1 max{δ, ε} ≥ |w′β|}

and furthermore, ∥∥M
δ,ε

∥∥
L2(P )

≤ a2

√
max{δ, ε}. (C.4)

Proof. Note that ∣∣∣m̃b̃,γ(τ, d, z, x)
∣∣∣

≤ 1{z1β1,1 + z̃′b̃1 + γ(x)′b2 > 0 ≥ z′β1 + γ(x)′β2 or

z′β1 + γ(x)′β2 > 0 ≥ z1β1,1 + z̃′b̃1 + γ(x)′b2}.
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Under condition C6, there is a positive real constant B such that ‖z̃‖E < B with

probability 1. Hence if
∥∥∥b̃− β∥∥∥

E
≤ δ and ‖γ −G‖α,p ≤ ε, then we have that

z1β1,1 + z̃′b̃1 + γ(x)′b2 > 0 ≥ z′β1 + γ(x)′β2

⇐⇒ z̃′(̃b1 − β̃1) + γ(x)′(b2 − β2) > − [z′β1 + γ(x)′β2] ≥ 0

=⇒ δ [‖z̃‖E + ‖γ‖∞] ≥ − [z′β1 + γ(x)′β2] and 0 ≥ w′β + (γ(x)−G(x))′β2

=⇒ w′β + (γ(x)−G(x))′β2 ≥ −δ [‖z̃‖E + ε+ ‖G‖∞] and ε ‖β2‖E ≥ w′β

=⇒ δ [B + ε+ ‖G‖∞] + ε ‖β2‖E ≥ w′β ≥ −δ [B + ε+ ‖G‖∞]− ε ‖β2‖E

Based on similar arguments, it also follows that

z′β1 + γ(x)′β2 > 0 ≥ z1β1,1 + z̃′b̃1 + γ(x)′b2

=⇒ δ [B + ε+ ‖G‖∞] + ε ‖β2‖E ≥ w′β ≥ −δ [B + ε+ ‖G‖∞]− ε ‖β2‖E

Therefore, Lemma 5 follows by noting that for ε sufficiently small (e.g., ε < 1), we

can take

M
δ,ε

= 1{a1 max{δ, ε} ≥ |w′β|}

where a1 ≡ 2 max{(B + 1 + ‖G‖∞) , ‖β2‖E}. By C1 and C10, 0 < a1 < ∞ and

hence by C4,
∥∥M

δ,ε

∥∥
L2(P )

≤ a2

√
max{δ, ε} with a2 ≡

√
2a1L where L is the positive

constant stated in condition C4.

The following lemma establishes the bound for the bracketing entropy for zδ,ε.

Lemma 6. Given conditions C1, C4, C6, C7, C8 and C10, we have that

logN[](ε,zδ,ε, L2(P )) .
√

max{δ, ε}/ε

for sufficiently small δ and ε and for ε ≤ a2

√
max{δ, ε} where a2 is the constant

stated in (C.4).
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Proof. For j ∈ {1, ..., p}, let Λ̃j(ε) and Λ̃jBj(δ, ε) be classes of functions defined as

Λ̃j(ε) ≡
{

(γj −Gj)/ε : ‖γj −Gj‖α ≤ ε
}
,

Λ̃jBj(δ, ε) ≡
{

(γj(x)−Gj(x))(b2,j − β2,j)/ (εδ) : ‖γj −Gj‖α ≤ ε, |b2,j − β2,j| ≤ δ
}
.

Assumption C10 implies that both Λ̃j(ε) and Λ̃jBj(δ, ε) are Cα
1 with α ≥ 2q. By

Corollary 2.7.2 of van der Vaart and Wellner (1996, p. 157), we have that for j ∈
{1, ..., p},

logN[](ε
2, Λ̃j(ε), L1(P )) . ε−2q/α and logN[](ε

2, Λ̃jBj(δ, ε), L1(P )) . ε−2q/α. (C.5)

Note that for s = (τ, d, z, x), m̃b̃,γ(s) defined by (C.2) can be rewritten as

m̃b̃,γ(s) = τd
[
1{h(s; b̃) > 0} − 1{h(s; β̃) > 0}

]
+τ(1−d)

[
1{h(s; b̃) ≤ 0} − 1{h(s; β̃) ≤ 0}

]
where

h(s; b̃) ≡ w′β + w̃′(̃b− β̃) + (γ(x)−G(x))′(b2 − β2) + (γ(x)−G(x))′β2,

h(s; β̃) ≡ w′β + (γ(x)−G(x))′β2.

Consider the following spaces:

Θ1 ≡ {w̃′(̃b− β̃) :
∥∥∥b̃− β̃∥∥∥

E
≤ δ},

Θ2,j ≡
{

(γj(x)−Gj(x))(b2,j − β2,j) : ‖γj −Gj‖α ≤ ε, |b2,j − β2,j| ≤ δ
}

for j ∈ {1, ..., p},

Θ2 ≡
{

(γ(x)−G(x))′(b2 − β2) : ‖γ −G‖α,p ≤ ε, ‖b2 − β2‖E ≤ δ
}
,

Θ3,j ≡ {(γj(x)−Gj(x))β2,j : ‖γj −Gj‖α ≤ ε} for j ∈ {1, ..., p},

Θ3 ≡ {(γ(x)−G(x))′β2 : ‖γ −G‖α,p ≤ ε},

Θ4 ≡ {h(τ, d, z, x; b̃)− w′β : ‖γ −G‖α,p ≤ ε,
∥∥∥b̃− β̃∥∥∥

E
≤ δ}.

Let ni(ε) ≡ logN[](ε,Θi, L1(P )) for i ∈ {1, 2, 3, 4} and nk,j(ε) ≡ logN[](ε,Θk,j, L1(P ))

for (k, j) ∈ {2, 3} × {1, ..., p}. Since Θ1 is a pointwise Lipschitz class of functions
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with envelope ‖w̃‖E δ. By condition C8, E(‖w̃‖E) is finite. Thus applying Theorem

2.7.11 of van der Vaart and Wellner (1996, p. 164), we have that

n1(ε2) . log(δ/ε2) .
√
δ/ε .

√
max{δ, ε}/ε. (C.6)

Note that for any norm ‖·‖, any fixed real valued c, any class of functions z, it is

straightforward to verify that

N[](ε, cz, ‖·‖) = 1 for c = 0

N[](ε, cz, ‖·‖) ≤ N[](ε/ |c| ,z, ‖·‖) for c 6= 0

where cz ≡ {cf : f ∈ z}.

Using this fact, we have that n2,j(ε
2) = logN[](ε

2/(εδ), Λ̃jBj(δ, ε), L1(P )) and

n3,j(ε
2) = 0 for β2,j = 0 and n3,j(ε

2) ≤ logN[](ε
2/(ε |β2,j|), Λ̃j(ε), L1(P )) for β2,j 6= 0.

Hence for sufficiently small δ and ε (e.g., δ < 1 and ε < 1) and by (C.5), it follows

that

n2,j(ε
2) ≤ logN[]((ε/

√
max{δ, ε})2, Λ̃jBj(δ, ε), L1(P )) . (a2

√
max{δ, ε}/ε)2q/α.

Since α ≥ 2q, we have that n2,j(ε
2) .

√
max{δ, ε}/ε for ε ≤ a2

√
max{δ, ε}. Us-

ing similar arguments, we can also deduce that n3,j(ε
2) .

√
max{δ, ε}/ε for ε ≤

a2

√
max{δ, ε}.

By preservation of bracketing metric entropy (see, e.g., Lemma 9.25 of Kosorok

(2008, p. 169)), we have that for i ∈ {2, 3},

ni(ε) ≤ ni,p(ε2
1−p) +

∑p−1

j=1
ni,j(ε2

−j).

and n4(ε) ≤ n1(ε/2) + n2(ε/4) + n3(ε/4). Therefore by the bounds derived above,

it follows that n2(ε2) .
√

max{δ, ε}/ε, n3(ε2) .
√

max{δ, ε}/ε and also n4(ε2) .√
max{δ, ε}/ε.
Now let fL1 ≤ fU1 , ..., f

L
N[](ε

2,Θ3,L1(P )) ≤ fUN[](ε
2,Θ3,L1(P )) and gL1 ≤ gU1 , ..., g

L
N[](ε

2,Θ4,L1(P )) ≤
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gUN[](ε
2,Θ4,L1(P )) be the ε2-brackets with bracket length defined by L1(P ) for the spaces

Θ3 and Θ4, respectively. For 1 ≤ k ≤ N[](ε
2,Θ3, L1(P )) and 1 ≤ j ≤ N[](ε

2,Θ4, L1(P )),

define

mL
jk(τ, d, z, x) ≡ τd

[
1{w′β + gLj (z, x) > 0} − 1{w′β + fUk (z, x) > 0}

]
+τ(1− d)

[
1{w′β + gUj (z, x) ≤ 0} − 1{w′β + fLk (z, x) ≤ 0}

]
,

mU
jk(τ, d, z, x) ≡ τd

[
1{w′β + gUj (z, x) > 0} − 1{w′β + fLk (z, x) > 0}

]
+τ(1− d)

[
1{w′β + gLj (z, x) ≤ 0} − 1{w′β + fUk (z, x) ≤ 0}

]
.

Note that

0 ≤ mU
jk −mL

jk ≤ 2
[
1{gLj ≤ −w′β < gUj }+ 1{fLk ≤ −w′β < fUk }

]
.

Thus

E
(
mU
jk −mL

jk

)2 ≤ 12P (gLj ≤ −w′β < gUj ) + 4P (fLk ≤ −w′β < fUk ). (C.7)

By condition C1 and given (z̃, x), the mapping z1 7−→ w′β is one-to-one. Hence by

condition C7, the density of w′β conditional on (z̃, x) is bounded and by (C.7), it

then follows that
∥∥mU

jk −mL
jk

∥∥
L2(P )

. ε. Moreover for each m̃b̃,γ ∈ zδ,εN , there is a

bracket
[
mL
jk,m

U
jk

]
in which it lies. Therefore,

logN[](ε,zδ,εN , L2(P )) . n3(ε2) + n4(ε2) .
√

max{δ, ε}/ε.

Replacing (θ, h) and θ∗ with ((β1,1, b̃), γ) and (β1,1, β̃), respectively in the defini-

tion of S̃N given by (B.2), we now verify assumption (B.6) in the next lemma.

Lemma 7. For sufficiently small δ and ε, under conditions C1, C4, C6, C7, C8 and

C10,

E

 sup
‖b̃−β̃‖

E
≤δ,‖γ−G‖α,p≤ε

∣∣∣S̃N (̃b, γ)
∣∣∣
 .

√
max{δ, ε}√

N
.
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Proof. By Lemmas 5 and 6, we have that

∫ ‖Mδ,ε‖L2(P )

0

√
logN[](ε,zδ,ε, L2(P ))dε

≤
∫ a2

√
max{δ,ε}

0

√
logN[](ε,zδ,ε, L2(P ))dε

.
√

max{δ, ε}.

Lemma 7 hence follows by applying Corollary 19.35 of van der Vaart (1998, p. 288).

We now prove Theorem 2.

Proof of Theorem 2. We take δN = N−1/3, dΘ(b, β) =
√
c1 ‖b− β‖E and dH(γ,G) =

√
c2 ‖γ −G‖α,p in the application of Lemma 2, where c1 and c2 are real constants

stated in Lemma 4.

Since c1 > 0, the norm by the metric dΘ(·, ·) is equivalent to the Euclidean norm

and thus by Theorem 1, dΘ(β̂, β) = op(1). Moreover since c2 ≥ 0, assumption C11

implies that dH(Ĝ, G) = Op(εN). Given assumption C1, for sufficiently small δ, we

have that b1,1 = β1,1 when dΘ(b, β) ≤ δ. Hence for sufficiently small δ and εN , by

Lemma 4 and noting that ‖·‖α,p is stronger than ‖·‖∞, assumptions (B.3), (B.4) and

(B.5) hold.

By Lemma 7 and by taking C sufficiently large in the definition of HN(C)

of Lemma 2, assumption (B.6) also holds with φN(δ) =
√

max{δ, εN}. Clearly,

φN(δ)δ−α is decreasing for some α < 2. By assumption C11, εN ≤ δN and thus

φN(δN) ≤
√
Nδ2

N for every N . Therefore, all conditions stated in Lemma 2 are

fulfilled and the result of Theorem 2 hence follows.
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Table 1 : Parameter configuration in the DGP

Parameter β0 β1 β2 γ01 γ11 γ21 γ00 γ10 γ20 ρ
Value 0 1 1 0.2 0.15 0.1 0.1 0.08 0.4 −0.8

Table 2 : Simulation Results for λ̂Single and λ̂OLS

N Bias RMSE Median mean AD median AD
Single-stage estimation

300 -0.058 0.199 0.890 0.184 0.225
500 -0.048 0.190 0.928 0.172 0.202
1000 -0.040 0.184 0.942 0.166 0.187

Two-stage estimation : OLS first stage
300 -0.084 0.199 0.839 0.183 0.223
500 -0.070 0.191 0.876 0.174 0.205
1000 -0.055 0.187 0.901 0.170 0.194
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Table 3 : Simulation Results for λ̂Kernel

c Bias RMSE Median mean AD median AD
Two-stage estimation : kernel first stage (N = 300)

3 -0.112 0.195 0.818 0.178 0.206
3.5 -0.097 0.193 0.842 0.175 0.207
4 -0.087 0.194 0.845 0.177 0.211

4.5 -0.078 0.195 0.856 0.178 0.216
5 -0.071 0.198 0.862 0.180 0.220

5.5 -0.071 0.202 0.848 0.187 0.230
6 -0.085 0.202 0.835 0.186 0.234
Two-stage estimation : kernel first stage (N = 500)

3 -0.100 0.190 0.841 0.173 0.200
3.5 -0.088 0.192 0.849 0.175 0.207
4 -0.074 0.189 0.873 0.170 0.198

4.5 -0.062 0.190 0.893 0.172 0.196
5 -0.065 0.197 0.872 0.180 0.218

5.5 -0.058 0.193 0.901 0.175 0.209
6 -0.078 0.198 0.858 0.182 0.223
Two-stage estimation : kernel first stage (N = 1000)
3 -0.081 0.186 0.862 0.168 0.195

3.5 -0.077 0.186 0.867 0.168 0.191
4 -0.056 0.189 0.903 0.171 0.197

4.5 -0.055 0.183 0.908 0.165 0.183
5 -0.058 0.188 0.899 0.171 0.194

5.5 -0.058 0.187 0.902 0.169 0.195
6 -0.062 0.190 0.897 0.172 0.199
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