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Submitted to the Annals of Statistics

SUPPLEMENT TO “A SIMPLE BOOTSTRAP METHOD FOR
CONSTRUCTING NONPARAMETRIC CONFIDENCE BANDS FOR

FUNCTIONS.”

By Peter Hall∗,†,§, and Joel Horowitz‡,¶

University of Melbourne∗ and University of California, Davis†

and Northwestern University‡

The supplementary material in Appendix B.1 outlines theoret-
ical properties underpinning our methodology, while Appendix B.2
contains a proof of Theorem 4.1.

APPENDIX B: SUPPLEMENTARY MATERIAL

B.1. Outline of theoretical properties underpinning our methodology. Here we give
a non-technical overview explaining why our methodology has the properties claimed (and proved
theoretically) for it. We assume for simplicity that the problem is univariate (i.e. r = 1), and, except
in the last paragraph of this appendix, we suppose that the set of points x ∈ R for which b(x) = 0
is of measure zero.

If the model at (2.1) obtains, and ĝ is a local linear estimator computed using a bandwidth h and
a nonnegative, symmetric, compactly supported kernel, then the bootstrap bias estimator admits
the expansion

E{ĝ∗(x) | Z} − ĝ(x) = c1 g
′′(x)h2 + (nh)−1/2 fX(x)−1/2 σW (x/h) + negligible terms , (B.1)

where, here and below, cj denotes a positive constant, c1 and c2 depend only on the kernel, fX
is the common density of the design points Xi, σ

2 denotes the variance of the errors εi in the
model at (2.1), and W is a c2-dependent, stationary Gaussian process with zero mean and unit
variance. (Although the covariance structure, and hence the distribution, of the process W are
fixed, a different version of W is used for each sample size, to ensure that (B.1) holds.) The value
of c2, in the claim of “c2-dependence,” depends on the length of the support of the kernel used to
construct the local linear estimator. The first term, c1 g

′′(x)h2, on the right-hand side of (B.1), is
identical to the asymptotic bias of ĝ(x), but the second term on the right makes the bias estimator,
on the left-hand side of (B.1), inconsistent.

Still in the context of (B.1), the bandwidth h, which would have been chosen by a standard
empirical method to minimise a version of Lp error where 1 ≤ p < ∞, is asymptotic to c3 n

−1/5,
say. The asymptotic variance of ĝ(x) equals σ (nh)−1 fX(x)−1, where fX is the density of the design
variables Xi. In this notation, b(x) in (2.4) is given by

b(x) = − lim
h→0

[
c1 g
′′(x)h2

/{
σ (nh)−1 fX(x)−1

}1/2]
= −c4 g′′(x) fX(x)1/2 . (B.2)

However, the limiting form of the bootstrap estimator of bias is strongly influenced by the second
term on the right-hand side of (B.1), as well as by the first term, with the result that

π̂(x, α) = Φ{z + b(x) + ∆(x)} − Φ{−z + b(x) + ∆(x)}+ negligible terms , (B.3)

§Research supported by ARC and NSF grants.
¶Research supported by NSF grant SES-0817552.
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uniformly in x, where, as in (2.4), z = z1−(α/2) = Φ−1(1− 1
2 α), and

∆(x) = −W (x/h) . (B.4)

Formula (B.3) gives us an approximation,

π̂app(x, α) = Φ{z1−(α/2) + b(x) + ∆(x)} − Φ{−z1−(α/2) + b(x) + ∆(x)} , (B.5)

to the bootstrap estimator, π̂(x, α), of the probability that the naive confidence interval B(α) (see
(2.2)) covers g(x) at x. Thus it can be proved that β̂(x, α0), the solution in β of π̂(x, β) = 1− α0,
satisfies β̂(x, α0) = α̂app(x, α0)+op(1), where α̂app(x, α0) is the solution in α of π̂app(x, α) = 1−α0.
Note too that α̂app(x, α0) is a smooth function, Ψ say, of both b(x) + ∆(x) and α0:

α̂app(x, α0) = Ψ{b(x) + ∆(x), α0} . (B.6)

The next two paragraphs introduce a crucial property on which the performance of our method-
ology depends. They show that step 6 of the algorithm in Section 2.3 eliminates (in asymptotic
terms) the stochastic process ∆(x) in quantities such as π̂app(x, α), at (B.5), and α̂app(x, α0), at
(B.6). Now, it is the term ∆(x), which is of the same size as b(x), that makes the conventional
bootstrap bias estimator inconsistent. See the left-hand side of (B.1) for a definition of that esti-
mator, and see the last paragraph of Section 2.2 for a discussion of its failings. As we note there,
the failings are “caused by the stochastic error of the bias estimator” which “is of the same size
as the bias itself.” That is, they are caused by the size of ∆(x). By eliminating ∆(x) we remove
most of the bias problem; in fact, in asymptotic terms we eliminate bias for all but a proportion ξ
of points x.

To appreciate how ∆ is removed, recall that W , appearing in the definition of ∆ at (B.4),
is a stationary, c2-dependent Gaussian process with zero mean and unit variance, and note that
the process W ( · /h) oscillates with a frequency that diverges as h → 0. This symmetry, and
increasingly high frequency, ensure that if we take the median value of α̂app(x1, α0) over points x1,
say, in a δ-neighbourhood of x, and then let h → 0, the limiting value of the median will equal
Ψ{b(x)+η(x), α0}, where η(x)→ 0 as δ → 0. That is, the median value of α̂app(x1, α0), over x1 in a
small neighbourhood of the median, is very nearly Ψ{b(x), α0}. Thus, we have effectively eliminated
∆(x) from the formula at (B.6). Importantly, this elimination would not occur if we were to use
the mean, rather than the median; then we would get E[Ψ{b(x) + Z,α0}], instead of Ψ{b(x), α0},
where the random variable Z has the standard normal distribution.

We used the concept of the median here because we feel its properties may be easier for the
reader to grasp than those of a quantile. However, the same property holds if (as in step 6 of the
algorithm in Section 2.3) we construct the ξ-level quantile of values of α̂app(x, α0), over values
x ∈ R. As h→ 0 this empirical quantile converges in probability to the ξ-level theoretical quantile
of values of Ψ{b(x), α0}. Therefore we have again eliminated the process ∆(x) from the function
Ψ{b(x) + ∆(x), α0} (see (B.6)), for a fraction 1 − ξ of values of x, and so we have removed the
problem of bias for those x, at least in an asymptotic sense.

Finally we summarise the remainder of the argument that shows the effectiveness of our method.
Noting step 6 in Section 2.3, let xj , for 1 ≤ j ≤ N , say, denote the centre of the jth block in
a regular rectangular grid in R. Let 〈u〉 denote the integer part of a general positive number u,
write α̂app ξ(α0) for the 〈ξ N〉th largest among the values of α̂app(xj , α0) for 1 ≤ j ≤ N , and let
αapp ξ 0(α0) denote the version of α̂app(xj , α0) that is obtained if, in the formula for α̂app(x, α0) at
(B.6), we replace ∆(x) on the right-hand side by 0. (Since αapp ξ 0(α0) does not depend on data
then we have not used a hat in this notation.) Then, as argued in the previous paragraph,

α̂app ξ(α0)− αapp ξ 0(α0)→ 0 (B.7)



APPENDIX B 3

in probability. Moreover, by (B.3) and (B.5), α̂ξ(α0) − α̂app ξ(α0) → 0 in probability, and so by
(B.7),

α̂ξ(α0)− αapp ξ 0(α0)→ 0 . (B.8)

By definition, αapp ξ 0(α0) equals the largest value of α such that the interval (−z1−(α/2), z1−(α/2))
asymptotically covers −b(x) for a fraction 1−ξ of values of x. Therefore, in view of (B.8), the simul-
taneous confidence band with nominal level α̂ξ(α0) will also have asymptotically correct coverage
for at least a fraction 1− ξ of values of x.

More generally, without assuming that the set of x for which b(x) = 0 is of measure zero, the
points x that are undercovered are those for which b(x) 6= 0, and x will be covered at level at least
1 − α0 if and only if the nominal coverage is increased to at least the level 1 − β, where β solves
Φ{z1−(β/2) + b(x)} − Φ{−z1−(β/2) + b(x)} = 1− α0. The properties discussed in Section 2.6 follow
directly from this result.

B.2. Proof of Theorem 4.1. We shall prove only (4.5), since (4.6) can be derived by adapting
standard results on the rate of convergence in the central limit theorems for sums of independent
random variables, for example Theorem 6, page 115 of Petrov (1975). In the present context the
independent random variables are the quantities ε∗i multiplied by weights depending only on Z,
which is conditioned on when computing the probability on the left-hand side of (4.6).

Step 1. Preliminaries. For the sake of clarity we give the proof only in the case r = k = 1,
where ĝ is defined by (2.5) and (2.6). However, in step 6 below we shall mention changes that have
to be made for multivariate design and polynomials of higher degree. Define κ2 =

∫
u2K(u) du and

κ =
∫
K2.

Noting the model at (2.1), and defining

g̃(x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(x)Ai2(Xi1) g(Xi2) ,

e1(x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(x)Ai2(Xi1) εi2 , (B.9)

where Ai as at (2.6), we have:

E{ĝ∗(x) | Z} =
1

n

n∑
i=1

Ai(x) ĝ(Xi) = g̃(x) + e1(x) . (B.10)

Writing xi1i2 for a quantity between 0 andXi2−Xi1 , and noting that
∑
i Ai(x) ≡ n and

∑
i Ai(x) (Xi−

x) ≡ 0, it can be shown that, for x ∈ R,

1

n

n∑
i2=1

Ai2(Xi1) g(Xi2) =
1

n

n∑
i2=1

Ai2(Xi1)
{
g(Xi1) + (Xi2 −Xi1) g′(x)

+
1

2
(Xi2 −Xi1)2 g′′(Xi1 + xi1i2)

}
= g(Xi1) +

1

2
h2 g′′(Xi1) +R(x,Xi1) ,

where

R(x,Xi1) =
1

2n

n∑
i2=1

Ai2(Xi1) (Xi2 −Xi1)2
{
g′′(Xi1 + xi1i2)− g′′(Xi1)

}
. (B.11)
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In this notation,

g̃(x) =
1

n

n∑
i=1

Ai(x)
{
g(Xi) +

1

2
h2 g′′(Xi) +R(x,Xi)

}
= ĝ(x) +

1

2
h2 κ2 g

′′(x)− e2(x) +
1

2
h2R(x) , (B.12)

where

e2(x) =
1

n

n∑
i=1

Ai(x) εi , R(x) =
1

n

n∑
i=1

Ai(x)
{
R(x,Xi) + g′′(Xi)− g(x)

}
. (B.13)

Step 2. Bound for |R(x)|. The bound is given at (B.21) below. Let K be the kernel discussed
in (4.2)(h). Since K is supported on a compact interval [−B1, B1], for some B1 > 0 (see (4.2)(h)),
then Ai2(Xi1) = 0 unless |Xi2−Xi1 | ≤ 2B1h, and therefore the contribution of the i2th term to the
right-hand side of (B.11) equals zero unless |xi1i2 | ≤ 2B1h. However, g′′ is Hölder continuous on an
open set O containing R (see (4.2)(e)), and so |g′′(x1)− g′′(x2)| ≤ B2 |x1−x2|B3 for all x1, x2 ∈ O,
where B2, B3 > 0. Hence, by (B.11),

|R(x,Xi1)| ≤ B4 h
2+B3

n

n∑
i2=1

|Ai2(Xi1)| , (B.14)

where B4 = 1
2 B2 (2B1)

2+B3 . Now,

1

n

n∑
i=1

|Ai(x)| ≤ S0(x)S2(x) +B1 S0(x) |S1(x)|
S0(x)S2(x)− S1(x)2

. (B.15)

We shall show in Lemma B.1, in step 9, that the open set O containing R can be chosen so that,
for some B5 > 1 and all B6 > 0,

P

{
max
j=0,1,2

sup
x∈O
|Sj(x)| > B5

}
= O

(
n−B6

)
, (B.16)

P

[
min
j=0,1,2

inf
x∈O

{
S0(x)S2(x)− S1(x)2

}
≤ B−15

]
= O

(
n−B6

)
. (B.17)

Combining (B.15)–(B.17) we deduce that, for all B6 > 0 and some B7 > 0,

P

{
1

n

n∑
i=1

|Ai(x)| > B2
5

}
= O

(
n−B7

)
. (B.18)

Hence, by (B.14), for all B6 > 0,

P

{
sup
x∈O

1

n

n∑
i=1

|Ai(x)| |R(x,Xi)| > B4B
2
5 h

B3

}
= O

(
n−B6

)
. (B.19)

More simply, since Ai(x) = 0 unless |x−Xi| ≤ 2B1h then, for all B6 > 0,

sup
x∈O

1

n

n∑
i=1

|Ai(x)| |g′′(Xi)− g′′(x)| ≤ B2 (2B1h)B3 sup
x∈O

1

n

n∑
i=1

|Ai(x)| ,
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and so by (B.18), for all B6 > 0,

P

{
sup
x∈O

1

n

n∑
i=1

|Ai(x)| |g′′(Xi)− g′′(x)| > B2 (2B1h)B3 B2
5

}
= O

(
n−B6

)
. (B.20)

Combining (B.19) and (B.20), and noting the definition of R(x) at (B.13), we deduce that, for all
B6 > 0 and some B7 > 0,

P

{
sup
x∈O
|R(x)| > B7 h

2+B3

}
= O

(
n−B6

)
. (B.21)

Step 3. Expansion of e1(x). Recall that e1(x) was defined at (B.9); our expansion of e1(x) is
given at (B.31) below, and the terms R1 and R2 in (B.31) satisfy (B.30) and (B.33), respectively.
The expansion is designed to replace h, the bandwidth in (4.2)(g), which potentially depends on
the errors εi as well as on the design variables Xi, by a deterministic bandwidth h1. If h were a
function of the design sequence alone then this step would not be necessary.

Define h1 = C1 n
−1/(r+4k) = C1 n

−1/5 where C1 is as in (4.2)(g), put δ1 = (h1 − h)/h1, and note
that, if |δ1| ≤ 1

2 ,
h1
h

= (1− δ1)−1 = 1 + δ1 +
1

2
δ21 +

1

3
δ31 + . . . .

Therefore, if ` ≥ 1 is an integer, and if K has `+ 1 uniformly bounded derivatives, then there exist
constants B8, B9 > 0 such that, when |δ1| ≤ 1

2 ,∣∣∣∣K(uh
)
−
{
K
( u
h1

)
+
∑
j1

∑
j2

c(j1, j2) δ
j1+j2
1

( u
h1

)j2
K(j2)

( u
h1

)}∣∣∣∣
≤ B8 |δ1|`+1 I(|u/h1| ≤ B9) , (B.22)

where c(j1, j2) denotes a constant and the double summation is over j1 and j2 such that j1 ≥ 0,
j2 ≥ 1 and j1 + j2 ≤ `. (This range of summation is assumed also in the double summations in
(B.24) and (B.28) below.) The constant B9 is chosen so that K(u) and its derivatives vanish for
|u| > B9. More simply,

u

h
=

u

h1

(
1 + δ1 +

1

2
δ21 +

1

3
δ31 + . . .

)
. (B.23)

Recall that Sk(x) = n−1
∑
i {(x−Xi)/h}kK{(x−Xi)/h}. Write this as Sk(h, x), to indicate the

dependence on h, and define

Tkj(x) =
1

nh1

n∑
i=1

(x−Xi

h1

)k+j
K(j)

(x−Xi

h1

)
.

Results (B.22) and (B.23) imply that, for constants ck(j1, j2), and provided |δ1| ≤ 1
2 ,∣∣∣∣Sk(h, x)−

{
Sk(h1, x) +

∑
j1

∑
j2

ck(j1, j2) δ
j1+j2
1 Tkj2(x)

}∣∣∣∣
≤ B10

|δ1|`+1

nh1

n∑
i=1

I
(∣∣∣x−Xi

h1

∣∣∣ ≤ B9

)
. (B.24)

The methods leading to (B.60), in the proof of Lemma B.1, can be used to show that there exists
an open set O, containing R, such that for all B11, B12 > 0, and each j and k,

P

{
sup
x∈O

∣∣(1− E)Tkj(x)
∣∣ > (nh1)

−1/2 nB11

}
= O

(
n−B12

)
. (B.25)
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Additionally, the argument leading to (B.61) can be used to prove that

sup
x∈O
|E{Tkj(x)} − `kj(x)| → 0 , (B.26)

where `kj(x) = fX(x)
∫
uk+jK(j)(u) du.

The definition of e1(x), at (B.9), can be written equivalently as

e1(x) =
1

(nh)2

n∑
i1=1

n∑
i2=1

S2(h, x)− {(x−Xi1)/h}S1(h, x)

S0(h, x)S2(h, x)− S1(h, x)2

× S2(h,Xi1)− {(Xi1 −Xi2)/h}S1(h,Xi1)

S0(h,Xi1)S2(h,Xi1)− S1(h,Xi1)2

×K
(x−Xi1

h

)
K
(Xi1 −Xi2

h

)
εi2 . (B.27)

Write Ai(h1, x) for the version of Ai(x), at (2.6), that would be obtained if h were replaced by
h1 in that formula, and in particular in the definitions of S0, S1, S2 and Ki. Using (B.22) and
(B.24) to substitute for K(u/h) and Sk(h, x), respectively, where u = x−Xi1 or Xi1 −Xi2 in the
case of K(u/h); and then Taylor expanding; it can be proved from (B.27), noting the properties at
(B.24)–(B.26), that, provided |δ1| ≤ 1

2 ,

e1(x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(h1, x)Ai2(h1, Xi1) εi2

+
∑
j1

∑
j2

c1(j1, j2) δ
j1+j2
1 Dj1j2(x) + |δ1|`+1R1(x) , (B.28)

where the constants c1(j1, j2) do not depend on h1 or n and are uniformly bounded; each term
Dj1j2(x) can be represented as

1

nh

n∑
i=1

Ji
(x−Xi

h1

)
εi , (B.29)

where the functions Ji depend on j1, j2 and x, on the design sequence X and the bandwidth h1,
but not on the errors or on h, and, for some B14 and B15, and all B16, satisfy

P

{
sup
x∈O

sup
|u|≤B13

max
1≤i≤n

|Ji(u)| > B14

}
= O

(
n−B16

)
,

P

{
sup
x∈O

sup
|u|>B14

max
1≤i≤n

|Ji(u)| = 0

}
= O

(
n−B16

)
,

P

{
sup
x∈O

sup
u1,u2∈IR

max
1≤i≤n

|Ji(u1)− Ji(u2)| ≤ B15 |u1 − u2|
}

= O
(
n−B16

)
;

and, also for some B14 and all B16,

P

{
sup
x∈O
|R1(x)| > B14

}
= O

(
n−B16

)
. (B.30)

Combining the results from (B.28) down, and using Markov’s inequality and lattice arguments to
bound the quantity at (B.29), we deduce that, if |δ1| ≤ 1

2 ,

e1(x) = T (x) + δ1R2(x) + |δ1|`+1R1(x) , (B.31)
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where

T (x) =
1

n2

n∑
i1=1

n∑
i2=1

Ai1(h1, x)Ai2(h1, Xi1) εi2 , (B.32)

R1 satisfies (B.30) and R2 satisfies

P

{
sup
x∈O
|R2(x)| > (nh1)

−1/2 nB17

}
= O

(
n−B18

)
. (B.33)

In (B.33), for each fixed B17 > 0, B18 can be taken arbitrarily large, provided that E|ε|B19 < ∞
for sufficiently large B19.

Step 4. Approximation to T (x), defined at (B.32). The approximation is given by (B.41), with
the remainder there controlled by (B.42).

Define

Di(x) =
1

n

n∑
i1=1

Ai1(h1, x)Ai(h1, Xi1) .

Result (B.61), derived during the proof of Lemma B.1, and assumption (4.2)(f) on fX , imply that
for a sequence of constants η = η(n) decreasing to 0 at a polynomial rate as n → ∞, and for all
B16 > 0,

P

[
sup
x∈O

max
1≤i≤n

{∣∣∣∣hAi(h1, x)K
(x−Xi

h1

)−1
− 1

fX(x)

∣∣∣∣} > η

]
= O

(
n−B16

)
. (B.34)

Define

D(x1, x2) =
1

nh1

n∑
i=1

1

fX(Xi)
K
(x1 −Xi

h1

)
K
(x2 −Xi

h1

)
,

It follows from (B.34) and the compact support of K (see (4.2)(h)) that

Di(x) =
1 + ∆i(x)

h1 fX(x)
D(x,Xi) , (B.35)

where the random functions ∆i are measurable in the sigma-field generated by X (we refer to this
below as “X measurable”) and satisfy, for some B20 > 0 and all B16 > 0,

P

{
sup
x∈O

max
1≤i≤n

|∆i(x)| > n−B20

}
= O

(
n−B16

)
. (B.36)

Recall that L = K ∗ K, and note that E{D(x1, x2)} = L{(x1 − x2)h1}, and that, since K
is compactly supported, there exists B21 > 0 such that D(x1, x2) = 0 whenever x1 ∈ R and
|x1 − x2| > B21. Furthermore, there exist B22 and B23(p), the latter for each choice of the integer
p ≥ 1, such that whenever x1 ∈ R,

var{D(x1, x2)} ≤
B22

nh1
I
(∣∣∣x1 − x2

h1

∣∣∣ ≤ B21

)
,

E

{
1

fX(Xi)
K
(x1 −Xi

h1

)
K
(x2 −Xi

h1

)}2p
≤ B23(p)h1 I

(∣∣∣x1 − x2
h1

∣∣∣ ≤ B21

)
.

Hence, by Rosenthal’s inequality, whenever x1 ∈ R and x2 ∈ IR,

E
∣∣(1− E)D(x1, x2)

∣∣2p ≤ B24(p)

(nh1)p
I
(∣∣∣x1 − x2

h1

∣∣∣ ≤ B21

)
.



8 P. HALL AND J. HOROWITZ

Therefore, by Markov’s inequality, for each B25, B26 > 0,

sup
x1∈R, x2∈IR

P
{∣∣(1− E)D(x1, x2)

∣∣ > (nh1)
−1/2 nB25

}
= O

(
n−B26

)
.

Approximating to (1−E)D(x1, x2) on a polynomially fine lattice of pairs (x1, x2), with x1 ∈ R and
|x1−x2| ≤ B21, we deduce that the supremum here can be placed inside the probability statement:
for each B25, B26 > 0,

P

{
sup

x1∈R, x2∈IR

∣∣(1− E)D(x1, x2)
∣∣ > (nh1)

−1/2 nB25

}
= O

(
n−B26

)
. (B.37)

Combining (B.35)–(B.37) we deduce that

Di(x) =
1 + ∆i(x)

h1 fX(x)
L
(x−Xi

h1

)
+

Θi(x)

h1 (nh1)1/2
I
(∣∣∣x−Xi

h1

∣∣∣ ≤ B21

)
, (B.38)

where the function Θi is X -measurable and satisfies, for each B25, B26 > 0,

P

{
sup
x∈R

max
i : |x−Xi|≤B21h1

|Θi(x)| > nB25

}
= O

(
n−B16

)
. (B.39)

By (B.32) and (B.38),

T (x) =
1

n

n∑
i=1

Di(x) εi =
1

nh1 fX(x)

n∑
i=1

L
(x−Xi

h1

)
εi + T1(x) + T2(x) , (B.40)

where

T1(x) =
1

nh1 fX(x)

n∑
i=1

∆i(x)L
(x−Xi

h1

)
εi ,

T2(x) =
1

(nh1)3/2 fX(x)

n∑
i=1

Θi(x) I
(∣∣∣x−Xi

h1

∣∣∣ ≤ B21

)
εi .

Using the fact that the functions ∆i and Θi are X -measurable, as well as (B.36), (B.39), and
approximations on polynomially fine lattices, it can be proved that if B27 (large) and B28 (small) are
given then, provided E|ε|B29 <∞ where B29 depends on B27 and B28, we have for some B30 > 0,

P

{
sup
x∈R
|T1(x)| > (nh1)

−1/2 n−B30

}
= O

(
n−B27

)
,

P

{
sup
x∈R
|T2(x)| > (nh1)

−1 nB28

}
= O

(
n−B27

)
.

Therefore, by (B.40),

T (x) =
1

n

n∑
i=1

Di(x) εi =
1

nh1 fX(x)

n∑
i=1

L
(x−Xi

h1

)
εi +R3(x) , (B.41)

where the following property holds for j = 3: for some B31 > 0, if B32 > 0 is given then, provided
E|ε|B33 <∞, with B33 depending on B32,

P

{
sup
x∈R
|Rj(x)| > (nh1)

−1/2 n−B31

}
= O

(
n−B32

)
. (B.42)
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Step 5. Approximation to e2(x), defined at (B.13). Property (B.61), and arguments similar to
those in step 5, permit us to show that

e2(x) =
1

nh1 fX(x)

n∑
i=1

L
(x−Xi

h1

)
εi +R4(x) , (B.43)

where (B.42) holds for j = 4.

Step 6. Gaussian approximation to e1(x)− e2(x). The approximation is given at (B.50). Recall
that M = L−K = K ∗K −K. By (B.31), (B.33) and (B.41)–(B.43),

e1(x)− e2(x) =
1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
εi + |δ1|`+1R1(x) +R5(x) , (B.44)

where R1 and R5 satisfy (B.30) and (B.42), respectively.
Next we use an approximation due to Komlós, Major and Tusnády (1976). Theorem 4 there

implies that if B34 (small) and B35 (large) are given then there exists B36 > 0, depending on B34

and B35, such that, if E|ε|B36 < ∞, then it is possible to construct a sequence of Normal random
variables Z1, Z2, . . . with E(Zi) = E(εi) = 0 and E(Z2

i ) = E(εi)
2 = σ2, and for which

P

{
max
1≤i≤n

∣∣∣∣ i∑
i1=1

(εi1 − Zi1)

∣∣∣∣ > nB34

}
= O

(
n−B35

)
. (B.45)

Define Mi(x) = M{(x−Xi)/h1} for 1 ≤ i ≤ n, Mn+1 = 0, Vi =
∑

1≤i1≤i εi1 and Ni =
∑

1≤i1≤i Zi1 ,
and note that, using Euler’s method of summation,

n∑
i=1

M
(x−Xi

h1

)
εi =

n∑
i=1

Mi(x) εi =
n∑
i=1

{Mi(x)−Mi+1(x)}Vi .

Therefore,
n∑
i=1

M
(x−Xi

h1

)
(εi − Zi) =

n∑
i=1

{Mi(x)−Mi+1(x)} (Vi −Ni) . (B.46)

Let T = T (h1) denote the set of all points x1 ∈ IR such that (x− x1)/h1 lies within the support
of K for some x ∈ R. Then T depends on n, and, for n ≥ B37 say, is a subset of the open set O
introduced in step 9. Hence, if x ∈ T and n ≥ B37 then fX(x) > B38, where B38 > 0 is a lower
bound for fX on the open set referred to in (4.2)(f). Let ν denote the number of Xis, for 1 ≤ i ≤ n,
that lie in T . Order the Xis so that these Xis are listed first in the sequence X1, . . . , Xn, and
moreover, such that X1 ≤ . . . ≤ Xν . Let Xν+1 be the Xi that is nearest to Xν and is not one of
X1, . . . , Xν . Using properties of spacings of order statistics from a distribution the density of which
is bounded away from zero, we deduce that if B39 < 1 then, for all B40 > 0,

P
(

max
1≤i≤ν

|Xi −Xi+1| > n−B39

)
= O

(
n−B40

)
. (B.47)

If 1 ≤ i ≤ ν and x ∈ R then

|Mi(x)−Mi+1(x)| =
∣∣∣M(x−Xi

h1

)
−M

(x−Xi

h1
+
Xi −Xi+1

h1

)∣∣∣
≤ h−11 (sup |M ′|) |Xi −Xi+1| ≤ h−11 (sup |M ′|)n−B39 ,
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where the identity and the first inequality hold with probability 1, and, by (B.47), the second
inequality holds with probability 1 − O(n−B40). If n ≥ B37 and x ∈ R then all the indices i for
which Mi(x) −Mi+1(x) 6= 0 are in the range from 1 to ν, and therefore the second series on the
right-hand side of (B.46) can be restricted to a sum from i = 1, . . . , ν. Combining the results in
this paragraph we deduce that for all B40 > 0,

P

{
max
1≤i≤n

|Mi(x)−Mi+1(x)| ≤ h−11 (sup |M ′|)n−B39

}
= 1−O

(
n−B40

)
. (B.48)

In multivariate cases, where the number of dimensions, r, satisfies r ≥ 2, the spacings argument
above should be modified by producing an ordering X1, . . . , Xn of the Xis which is such that
‖Xi −Xi+1‖ is small, for 1 ≤ i ≤ n− 1, where ‖ · ‖ is the Euclidean metric. We do this by taking
B < 1/r and, first of all, constructing a regular, rectangular lattice withinR where the total number
of cells, or lattice blocks, is bounded above and below by constant multiples of nB+δ for a given
δ ∈ (0, 13 (r−1 − B)). (The sizes of the faces of the cells are in proportion to the sizes of the faces
of R.) We order the points Xi within each given cell so that ‖Xi − Xi+1‖ ≤ nB is small. (With
probability converging to 1 at a polynomial rate, this can be done simultaneously for each of the
cells.) Then we choose one representative point Xi in each cell (it could be the point nearest to the
cell’s centre), and draw a path linking that point in one cell to its counterpart in an adjacent cell,
such that those linked points are no further than nB+2δ apart, and each cell is included in the chain
after just n− 1 links have been drawn. Again this can be achieved with probability converging to 1
at a polynomial rate. Once the linkage has been put in place, the n design points can be reordered
so that ‖Xi − Xi+1‖ ≤ nB+3δ for 1 ≤ i ≤ n − 1. By taking B > r, but very close to r, and then
choosing δ > 0 but very close to 0, we see that, for any given B′ > r, we can, with probability
converging to 1 at a polynomial rate, construct an ordering X1, . . . , Xn so that ‖Xi−Xi+1‖ ≤ nB

′

for 1 ≤ i ≤ n− 1.
Result (B.46) implies that, if x ∈ R,∣∣∣∣ 1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
(εi − Zi)

∣∣∣∣
≤ 1

nh1B38

{
max
1≤i≤n

|Mi(x)−Mi+1(x)|
}{

max
1≤i≤n

∣∣∣∣ i∑
i1=1

(εi1 − Zi1)

∣∣∣∣} . (B.49)

Combining (B.45), (B.48) and (B.49), recalling from step 3 that h1 = C1 n
−1/5, and taking B35 > 1

in (B.45), we conclude that for all B40 > 0,

P

{
sup
x∈R

∣∣∣∣ 1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
(εi − Zi)

∣∣∣∣
≤ sup |M ′|
B38C2

1 n
(3/5)+B39−B34

}
= 1−O

(
n−B40

)
.

Hence, by (B.44),

e1(x)− e2(x) = ζ(x) + |δ1|`+1R1(x) +R5(x) +R6(x) , (B.50)

where

ζ(x) =
1

nh1 fX(x)

n∑
i=1

M
(x−Xi

h1

)
Zi , (B.51)
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R1 and R5 satisfy (B.30) and (B.42), respectively, and, for some B41 > 0 and all B40 > 0,

P

{
sup
x∈R
|R6(x)| ≤ B41 n

−(3/5)−B39+B34

}
= 1−O

(
n−B40

)
. (B.52)

Step 7. Approximation to ζ(x) in terms of a Gaussian process. The approximation is given
at (B.53). Conditional on the design sequence X the process ζ, at (B.51), is itself Gaussian, with
zero mean and covariance

cov{ζ(x1), ζ(x2) | X} =
σ2

{nh1 fX(x)}2
n∑
i=1

M
(x1 −Xi

h1

)
M
(x2 −Xi

h1

)
,

and standard arguments show that for some B42 > 0 and all B43 > 0,

P

{
sup

x1, x2∈R

∣∣∣∣nh1 fX(x) cov{ζ(x1), ζ(x2) | X}

− (M ∗M)
(x1 − x2

h1

)∣∣∣∣ > n−B42

}
= O

(
n−B43

)
.

Hence, for each n there exists a Gaussian stationary process W , with zero mean and covariance
given by (4.4), such that for some B44 > 0 and all B43 > 0,

P

{
(nh1)

1/2 sup
x∈R

∣∣ζ(x)− fX(x)−1/2W (x)
∣∣ > n−B44

}
= O

(
n−B43

)
. (B.53)

Step 8. Completion of proof of Theorem 4.1, except for Lemma B.1. Combining (B.10) and
(B.12) we deduce that

E{ĝ∗(x) | Z} = ĝ(x) +
1

2
h2 κ2 g

′′(x) + e1(x)− e2(x) +
1

2
h2R(x) . (B.54)

Combining (B.50) and (B.53), using the bounds at (B.30), (B.42) and (B.52) on the remainder
terms R1, R5 and R6 on the right-hand side of (B.50), and noting that, in view of (4.2)(g) and the
definition δ1 = (h1 − h)/h1, P (|δ1| > n−C2/(r+4k))→ 0, we see that if the exponent `+ 1 in (B.50)
can be taken sufficiently large (depending on C2 > 0, and enabled by taking C5 sufficiently large
in (4.2)(h)), then for some B45 > 0,

P

{
(nh1)

1/2 sup
x∈R

∣∣e1(x)− e2(x)− fX(x)−1/2W (x)
∣∣ > n−B45

}
→ 0 . (B.55)

In view of the approximation to h by h1 = C1 n
−1/5 asserted in (4.2)(g), (B.21) implies that

P

{
sup
x∈R
|R(x)| > B7 h

2
1 n
−B46

}
→ 0 . (B.56)

Result (4.5) follows on combining (B.54)–(B.56).

Step 9. Derivation of (B.16) and (B.17).

Lemma B.1. If (4.2) holds then there exists an open set O, containing R, such that (B.16) and
(B.17) obtain.
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To derive the lemma, recall that

Sk(x) =
1

nh

n∑
i=1

(x−Xi

h

)k
K
(x−Xi

h

)
.

Let H = [n−B49 , n−B48 ], where 0 < B48 < B49 < 1. As noted in (4.2), the bandwidth h is a function
of the data in Z, but initially we take h to be deterministic, denoting it by h2 and denoting the
corresponding value of Sk(x) by Sk(h2, x). Then by standard calculations, for each integer j ≥ 1,
and for k = 0, 1, 2,

sup
h2∈H

sup
x∈IR

(nh2)
j E
[
{(1− E)Sk(h2, x)}2j

]
≤ B(j) , (B.57)

where B(j) does not depend on n. Here we have used the uniform boundedness of fX , asserted
in (4.2)(f). Result (B.57), and Markov’s inequality, imply that for all B50, B51 > 0, and for k =
0, 1, 2,

sup
h2∈H

sup
x∈IR

P
[∣∣(1− E)Sk(h2, x)

∣∣ > (nh2)
−1/2 nB50

]
= O

(
n−B51

)
. (B.58)

Let B52 > 0. It follows from (B.58) that if S, contained in the open set referred to in (4.2)(f), is
a compact subset of IR, if S(n) is any subset of S such that #S(n) = O(nB52), and if H(n) is any
subset of H such that #H(n) = O(nB52), then for all B50, B51 > 0, and for k = 0, 1, 2,

P

[
sup

h2∈H(n)
sup

x∈S(n)

∣∣(1− E)Sk(h2, x)
∣∣ > (nh2)

−1/2 nB50

]
= O

(
n−B51

)
. (B.59)

Approximating to Sk(h2, x) on a polynomially fine lattice of values of h2 and x, we deduce from
(B.59) that, for all B50, B51 > 0, and for k = 0, 1, 2,

P

[
sup
h2∈H

sup
x∈S

∣∣(1− E)Sk(h2, x)
∣∣ > (nh2)

−1/2 nB50

]
= O

(
n−B51

)
. (B.60)

Choose S sufficiently large to contain an open set, O, which contains R and has the property
that, for some δ > 0, the set of all closed balls of radius δ and centred at a point in O is contained
in S. Since K is compactly supported and h2 ∈ H satisfies h2 ≤ n−B48 , it can be proved from
(4.2)(f) that from some BA > 0,

sup
h2∈H

sup
x∈O

[
|E{S0(x)} − fX(x)|+ |E{S1(x)}|+ |E{S2(x)} − κ2 fX(x)|

]
= O

(
n−BA

)
.

Therefore, defining `k(x) = fX(x), 0, κ2 fX(x) according as k = 0, 1, 2, respectively, we deduce from
(B.60) that for a sequence η = η(n) decreasing to 0 at a polynomial rate in n as n → ∞, for
k = 0, 1, 2, and for all B51 > 0,

P

[
sup
h2∈H

sup
x∈O

∣∣Sk(h2, x)− `k(x)
∣∣ > η

]
= O

(
n−B51

)
. (B.61)

Results (B.16) and (B.17) follow from (B.61) on noting the properties on h in (4.2)(g); we can take
C3 and C4 there to be B48 and B49 above.
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