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A SIMPLE BOOTSTRAP METHOD FOR CONSTRUCTING
NONPARAMETRIC CONFIDENCE BANDS FOR FUNCTIONS

By Peter Hall∗,†,§, and Joel Horowitz‡,¶

University of Melbourne∗ and University of California, Davis†

and Northwestern University‡

Standard approaches to constructing nonparametric confidence
bands for functions are frustrated by the impact of bias, which gen-
erally is not estimated consistently when using the bootstrap and
conventionally smoothed function estimators. To overcome this prob-
lem it is common practice to either undersmooth, so as to reduce the
impact of bias, or oversmooth, and thereby introduce an explicit or
implicit bias estimator. However, these approaches, and others based
on nonstandard smoothing methods, complicate the process of in-
ference, for example by requiring the choice of new, unconventional
smoothing parameters and, in the case of undersmoothing, produc-
ing relatively wide bands. In this paper we suggest a new approach,
which exploits to our advantage one of the difficulties that, in the
past, has prevented an attractive solution to the problem—the fact
that the standard bootstrap bias estimator suffers from relatively
high-frequency stochastic error. The high frequency, together with
a technique based on quantiles, can be exploited to dampen down
the stochastic error term, leading to relatively narrow, simple-to-
construct confidence bands.

1. Introduction.

1.1. Motivation. There is an extensive literature, summarised in Section 1.4 below, on construct-
ing nonparametric confidence bands for functions. However, this work generally does not suggest
practical solutions to the critical problem of choosing tuning parameters, for example smoothing
parameters or the nominal coverage level of the confidence band, to ensure a high degree of cov-
erage accuracy or to produce bands that err on the side of conservatism. In this paper we suggest
new, simple bootstrap methods for constructing confidence bands using conventional smoothing
parameter choices.

In particular, our approach does not require a nonstandard smoothing parameter. The basic
algorithm requires only a single application of the bootstrap, although a more refined, double
bootstrap technique is also suggested. The greater part of our attention is directed to regression
problems, but we also discuss the application of our methods to constructing confidence bands for
density functions.

The resulting confidence regions depend on choice of two parameters α and ξ, in the range
0 < α, ξ < 1, and the methodology results in confidence bands that, asymptotically, cover the
regression mean at x with probability at least 1−α, for at least a proportion 1−ξ of values of x. In
particular, the bands are pointwise, rather than simultaneous. Pointwise bands are more popular
with practitioners, and are the subject of a substantial majority of research on nonparametric
confidence bands for functions.

§Research supported by ARC and NSF grants.
¶Research supported by NSF grant SES-0817552.
Keywords and phrases: Bandwidth, bias, bootstrap, confidence interval, conservative coverage, coverage error,

kernel methods, statistical smoothing.
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1.2. Features of our approach, and competing methods. The “exceptional” 100 ξ% of points that
are not covered are typically close to the locations of peaks and troughs, and so are discernible from
a simple estimate of the regression mean. Their location can also be determined using a theoretical
analysis—points near peaks and troughs potentially cause difficulties because of bias. See Section 2.6
for theoretical details, and Section 3 for numerical examples.

Our approach accommodates bias by increasing the width of confidence bands. However, the
amount by which we increase width is no greater than a constant factor, rather than the polynomial
amount (as a function of n) associated with most suggestions for undersmoothing.

Methods based on either under- or oversmoothing are recommended often in the literature.
However, there are no empirical techniques, where the data determine the amount of smoothing,
that are used even moderately widely in either case. In particular, although theoretical arguments
demonstrate clearly the advantages of under- or oversmoothing if appropriate smoothing parameters
are chosen, there are no attractive, effective empirical ways of selecting those quantities. Indeed, it
is not uncommon to suggest that the issue be avoided altogether, by ignoring the effects of bias.
For example, this approach is recommended in textbooks; see Ruppert et al. (2003, p. 133ff), who
refer to the resulting bands as “variability bands,” and Efron and Tibshirani (1993, pp. 79–80),
who suggest plotting many realisations of bootstrapped curve estimators without bias corrections.

In addition to needing unavailable bandwidth choice methods, the drawbacks of undersmoothing
include the fact that the confidence bands become both wider and more wiggly as the amount
of undersmoothing increases. The increase in wiggliness is so great that, unless sample size is
very large, the coverage accuracy does not necessarily improve as the amount of undersmoothing
increases. Details are given in Section 3.

Wiggliness can likewise be a problem for bands that result from using oversmoothing to remove
bias explicitly. Here the relatively high level of variability from which function derivative estimators
suffer means that the confidence bands may again oscillate significantly, and can be difficult to
interpret. These results, and those reported in the previous paragraph, are for optimal choices of
the amount of under- or oversmoothing. In practice the amount has to be chosen empirically, and
that introduces additional noise, which further reduces performance.

1.3. Intuition. Our methodology exploits, to our advantage, a difficulty that in the past has
hindered a simple solution to the confidence band problem. To explain how, we note first that
if nonparametric function estimators are constructed in a conventional manner then their bias is
of the same order as their error about the mean, and accommodating the bias has been a major
obstacle to achieving good coverage accuracy. Various methods, based on conventional smoothing
parameters, can be used to estimate the bias and reduce its impact, but the bias estimators fail to
be consistent, not least because the stochastic noise from which they suffer is highly erratic. (In the
case of kernel methods, the frequency of the noise is proportional to the inverse of the bandwidth.)
However, as we show in this paper, this erratic behaviour is actually advantageous, since if we
average over it then we can largely eliminate the negative impact that it has on the bias estimation
problem. We do the averaging implicitly, not by computing means but by working with quantiles
of the “distribution” of coverage.

1.4. Literature review. We shall summarise previous work largely in terms of whether it involved
undersmoothing or oversmoothing; the technique suggested in the present paper is almost unique
in that it requires neither of these approaches. Härdle and Bowman (1988), Härdle and Marron
(1991), Hall (1992a), Eubank and Speckman (1993), Sun and Loader (1994), Härdle et al. (1995)
and Xia (1998) suggested methods based on oversmoothing, using either implicit or explicit bias
correction. Hall and Titterington (1988) also used explicit bias correction, in the sense that their
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bands required a known bound on an appropriate derivative of the target function. Bjerve et al.
(1985), Hall (1992b), Hall and Owen (1993), Neumann (1995), Chen (1996), Neumann and Polzehl
(1998), Picard and Tribouley (2000), Chen et al. (2003) (in the context of hypothesis testing),
Claeskens and Van Keilegom (2003), Härdle et al. (2004) and McMurry and Politis (2008) employed
methods that involve undersmoothing. There is also a theoretical literature which addresses the
bias issue through consideration of the technical function class from which a regression mean or
density came; see e.g. Low (1997) and Genovese and Wasserman (2008). This work sometimes
involves confidence balls, rather than bands, and in that respect is connected to research such as
that of Eubank and Wang (1994) and Genovese and Wasserman (2005). Wang and Wahba (1995)
considered spline and Bayesian methods. The notion of “honest” confidence bands, which have
guaranteed coverage for a rich class of functions, was pioneered by Li (1989). Recent contributions
include those of Cai and Low (2006), Giné and Nickl (2010) and Hoffmann and Nickl (2011).

2. Methodology.

2.1. Model. Suppose we observe data pairs in a sample Z = {(Xi, Yi), 1 ≤ i ≤ n}, generated
by the model

Yi = g(Xi) + εi , (2.1)

where the experimental errors εi are independent and identically distributed with finite variance
and zero mean conditional on X. Our aim is to construct a pointwise confidence band for the true
g in a closed, bounded region R. A more elaborate, heteroscedastic model will be discussed in
Section 2.4; we omit it here only for the sake of simplicity. We interpret g(x) in the conventional
regression manner, as E(Y |X = x), but our theoretical analysis takes account of the fact that
although we condition on the Xis at this point we consider that they originated as random variables,
with density fX .

2.2. Properties of function estimators and conventional confidence bands. Let ĝ denote a con-
ventional estimator of g. We assume that ĝ incorporates smoothing parameters computed empiri-
cally from the data, using for example cross-validation or a plug-in rule, and that the variance of
ĝ can be estimated consistently by s(X )2 σ̂2, where s(X ) is a known function of the set of design
points X = {X1, . . . , Xn} and the smoothing parameters, and σ̂2 is an estimator of the variance,
σ2, of the experimental errors εi, computed from the dataset Z. The case of heteroscedasticity is
readily accommodated too; see Section 2.4. We write ĝ∗ for the version of ĝ computed using a
conventional bootstrap argument. For details of the construction of ĝ∗, see step 4 of the algorithm
in Section 2.3.

The smoothing parameters used for ĝ would generally be chosen to optimise a measure of accu-
racy, for example in a weighted Lp metric where 1 ≤ p < ∞, and we shall make this assumption
implicitly in the discussion below. In particular, it implies that the asymptotic effect of bias, for
example as represented by the term b(x) in (2.4) below, is finite and typically nonzero.

An asymptotic, symmetric confidence band for g, constructed naively without considering bias,
and with nominal coverage 1− α, has the form:

B(α) =
{

(x, y) : x ∈ R , ĝ(x)− s(X )(x) σ̂ z1−(α/2) ≤ y ≤ ĝ(x) + s(X )(x) σ̂ z1−(α/2)

}
, (2.2)

where zβ = Φ−1(β) is the β-level critical point of the standard normal distribution, and Φ is the
standard normal distribution function. Unfortunately, the coverage of B(α) at a point x, given by

π(x, α) = P{(x, g(x)) ∈ B(α)} , (2.3)
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is usually incorrect even in an asymptotic sense, and in fact the band typically undercovers, often
seriously, in the limit as n → ∞. The reason is that the bias of ĝ, as an estimator of g, is of the
same size as the estimator’s stochastic error, and the confidence band allows only for the latter
type of error. As a result the limit, as n→∞, of the coverage of the band is given by

πlim(x, α) = lim
n→∞

π(x, α) = Φ{z + b(x)} − Φ{−z + b(x)} , (2.4)

where z = z1−(α/2) and b(x) describes the asymptotic effect that bias has on coverage. (A formula
for b(x) in a general multivariate setting is given in (4.7), and a formula in the univariate case is
provided in Section 2.6.) The right-hand side of (2.4) equals Φ(z) − Φ(−z) = 1 − α if and only if
b(x) = 0. For all other values of b(x), πlim(x, α) < 1−α. This explains why the band at (2.2) almost
always undercovers unless some sort of bias correction is used.

The band potentially can be recalibrated, using the bootstrap, to correct for coverage errors
caused by bias, but now another issue causes difficulty: the standard bootstrap estimator of bias,
E{ĝ∗(x) | Z} − ĝ(x), is inconsistent, in the sense that the ratio of the estimated bias to its true
value does not converge to 1 in probability as n → ∞. This time the problem is caused by the
stochastic error of the bias estimator; it is of the same size as the bias itself. The problem can be
addressed using an appropriately oversmoothed version of ĝ when estimating bias, either explicitly
or implicitly, but the degree of oversmoothing has to be determined from the data, and in practice
this issue is awkward to resolve. Alternatively, the estimator ĝ can be undersmoothed, so that the
influence of bias is reduced, but now the amount of undersmoothing has to be determined, and that
too is difficult. Moreover, confidence bands computed from an appropriately undersmoothed ĝ are
an order of magnitude wider than those at (2.2), and so the undersmoothing approach, although
more popular than oversmoothing, is unattractive for at least two reasons.

A simpler bootstrap technique, described in detail in the next section, overcomes these problems.

2.3. The algorithm.

Step 1. Estimators of g and σ2. Construct a conventional nonparametric estimator ĝ of g. Use
a standard empirical method (for example, cross-validation or a plug-in rule), designed to minimise
mean Lp error for some p in the range 1 ≤ p < ∞, to choose the smoothing parameters on which
ĝ depends. For example, if the design is univariate then a local linear estimator of g(x) is given by

ĝ(x) =
1

n

n∑
i=1

Ai(x)Yi , (2.5)

where

Ai(x) =
S2(x)− {(x−Xi)/h}S1(x)

S0(x)S2(x)− S1(x)2
Ki(x) , (2.6)

Sk(x) = n−1 ∑
i {(x−Xi)/h}kKi(x), Ki(x) = h−1K{(x−Xi)/h}, K is a kernel function and h is

a bandwidth.
There is an extensive literature on computing estimators σ̂2 of the error variance σ2 = var(ε);

see, for example, Rice (1984), Buckley et al. (1988), Gasser et al. (1986), Müller and Stadtmüller
(1987, 1992), Hall et al. (1990), Hall and Marron (1990), Seifert et al. (1993), Neumann (1994),
Müller and Zhao (1995), Dette et al. (1998), Fan and Yao (1998), Müller et al. (2003), Munk et
al. (2005), Tong and Wang (2005), Brown and Levine (2007), Cai et al. (2009) and Mendez and
Lohr (2011). It includes residual-based estimators, which we introduce at (2.8) below, and methods
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based on differences and generalised differences. An example of the latter approach, in the case of
univariate design, is the following estimator due to Rice (1984):

σ̂2 =
1

2 (n− 1)

n∑
i=2

(Y[i] − Y[i−1])
2 , (2.7)

where Y[i] is the concomitant of X(i) and X(1) ≤ . . . ≤ X(n) is the sequence of order statistics
derived from the design variables.

As in Section 2.2, let s(X )(x)2 σ̂2 denote an estimator of the variance of ĝ(x), where s(X )(x)
depends on the data only through the design points, and σ̂2 estimates error variance, for example
being defined as at (2.7) or (2.8). In the local linear example, introduced at (2.5) and (2.6), we
take s(X )(x)2 = κ/{nh f̂X(x)}, where κ =

∫
K2 and f̂X(x) = (nh1)−1 ∑

1≤i≤n K1{(x−Xi)/h1} is
a standard kernel density estimator, potentially constructed using a bandwidth h1 and kernel K1

different from those used for ĝ. There are many effective, empirical ways of choosing h1, and any
of those can be used.

Step 2. Computing residuals. Using the estimator ĝ from step (1), calculate initial residuals
ε̃i = Yi − ĝ(Xi), put ε̄ = n−1 ∑

i ε̃i, and define the centred residuals by ε̂i = ε̃i − ε̄.
A conventional, residual-based estimator of σ2, alternative to the estimator at (2.7), is

σ̂2 =
1

n

n∑
i=1

ε̂2i . (2.8)

The estimator at (2.7) is root-n consistent for σ2, whereas the estimator at (2.8) converges at a
slower rate unless an undersmoothed estimator of ĝ is used when computing the residuals. This
issue is immaterial to the theory in Section 4, although it tends to make the estimator at (2.7) a
little more attractive.

Step 3. Computing bootstrap resample. Construct a resample Z∗ = {(Xi, Y
∗
i ), 1 ≤ i ≤ n}, where

Y ∗i = ĝ(Xi) + ε∗i and the ε∗i s are obtained by sampling from ε̂1, . . . , ε̂n randomly, with replacement,
conditional on X . Note that, since regression is conventionally undertaken conditional on the design
sequence, then the Xis are not resampled, only the Yis.

Step 4. Bootstrap versions of ĝ, σ̂2 and B(α). From the resample drawn in step 3, but using the
same smoothing parameter employed to construct ĝ, compute the bootstrap version ĝ∗ of ĝ. (See
Section 2.4 for discussion of the smoothing parameter issue.) Let σ̂∗2 denote the bootstrap version
of σ̂2, obtained when the latter is computed from Z∗ rather than Z, and construct the bootstrap
version of B(α), at (2.2):

B∗(α) =
{

(x, y) : x ∈ R , ĝ∗(x)− s(X )(x) σ̂∗ z1−(α/2) ≤ y ≤ ĝ∗(x) + s(X )(x) σ̂∗ z1−(α/2)

}
. (2.9)

Note that s(X ) is exactly the same as in (2.2); again this is a consequence of the fact that we are
conducting inference conditional on the design points.

If, as in the illustration in step 1, the design is univariate and local linear estimators are employed,
then ĝ∗(x) = n−1 ∑

1≤i≤n Ai(x)Y ∗i where Ai(x) is as at (2.6). The bootstrap analogue of the
variance formula (2.7) is σ̂∗2 = {2 (n− 1)}−1 ∑

2≤i≤n (Y ∗[i] − Y
∗

[i−1])
2, where, if the ith largest order

statistic X(i) equals Xj , then Y ∗[i] = ĝ(Xj) + ε∗j .



6 P. HALL AND J. HOROWITZ

Step 5. Estimator of coverage error. The bootstrap estimator π̂(x, α) of the probability π(x, α)
that B(α) covers (x, g(x)) is defined by:

π̂(x, α) = P
{
(x, ĝ(x)) ∈ B∗(α)

∣∣ X} , (2.10)

and is computed, by Monte Carlo simulation, in the form

1

B

B∑
b=1

I
{
(x, ĝ(x)) ∈ B∗b (α)

}
, (2.11)

where I(E) denotes the indicator function of an event E , and B∗b (α) is the bth out of B bootstrap
replicates of B∗(α), where the latter is as at (2.9). The estimator at (2.10) is completely conventional,
and in particular, no additional or nonstandard smoothing is needed.

Step 6. Constructing final confidence band. Define β̂(x, α0) to be the solution, in α, of π̂(x, α) =
1−α0, and let α̂ξ(α0) denote the ξ-level quantile of points in the set {β̂(x, α0) : x ∈ R}. Specifically:

take R to be a subset of IRr, superimpose on R a regular, r-dimensional, rectan-
gular grid with edge width δ, let x1, . . . , xN ∈ R be the grid centres, let α̂ξ(α0, δ)
denote the ξ-level empirical quantile of the points α̂(x1, α0), . . . , α̂(xN , α0), and,
for ξ ∈ (0, 1), let α̂ξ(α0) denote the limit infimum, as δ → 0, of the sequence
α̂ξ(α0, δ).

(2.12)

(We use the limit infimum to avoid ambiguity, although under mild conditions the limit exists.) For
a value ξ ∈ (0, 1

2 ], construct the band B{α̂ξ(α0)}. In practice we have found that taking 1− ξ = 0.9
generally gives a slight to moderate degree of conservatism, except for the exceptional points x that
comprise asymptotically a fraction ξ of R. Taking 1 − ξ = 0.95 may be warranted in the case of
large samples.

2.4. Three remarks on the algorithm.

Remark 1. Calibration. In view of the undercoverage property discussed below (2.4), we expect
β̂(x, α0), defined in step 6, to be less than α0. Equivalently, we anticipate that the nominal coverage
of the band has to be increased above 1−α0 in order for the band to cover (x, g(x)) with probability
at least 1−α0. Conventionally we would employ β̂(x, α0) as the nominal level, but, owing to the large
amount of stochastic error in the bootstrap bias estimator that is used implicitly in this technique,
it produces confidence bands with poor coverage accuracy. This motivates coverage correction by
calibration, along lines suggested by Hall (1986), Beran (1987) and Loh (1987), and resulting in
our use of the adjusted nominal level α̂ξ(α0), defined in step 6.

Remark 2. Smoothing parameter for ĝ∗. An important aspect of step 4 is that we use the same
empirical smoothing parameters for both ĝ∗ and ĝ, even though, in some respects, it might seem
appropriate to use a bootstrap version of the smoothing parameters for ĝ when estimating ĝ∗.
However, since smoothing parameters should be chosen to effect an optimal tradeoff between bias
and stochastic error, and the bias of ĝ is not estimated accurately by the conventional bootstrap
used in step 3 above, then the bootstrap versions of smoothing parameters, used to construct ĝ∗, are
generally not asymptotically equivalent to their counterparts used for ĝ. This can cause difficulties.
The innate conservatism of our methodology accommodates the slightly nonstandard smoothing
parameter choice in step 4. Moreover, by not having to recompute the bandwidth at every bootstrap
step we substantially reduce computational labour.
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Remark 3. Heteroscedasticity. A heteroscedastic generalisation of the model at (2.1) has the
form

Yi = g(Xi) + σ(Xi) εi , (2.13)

where the εis have zero mean and unit variance, and σ(x) is a nonnegative function that is estimated
consistently by σ̂(x), say, computed from the dataset Z using either parametric or nonparametric
methods. In this setting the variance of ĝ(x) generally can be estimated by s(X )2 σ̂(x)2, where s(X )
is a known function of the design points, and the confidence band at (2.2) should be replaced by

B(α) =
{

(x, y) : x ∈ R , ĝ(x)− s(X )(x) σ̂(x) z1−(α/2) ≤ y ≤ ĝ(x) + s(X )(x) σ̂(x) z1−(α/2)

}
.

The model for generating bootstrap data now has the form: Y ∗i = ĝ(Xi) + σ̂(Xi) ε
∗
i , instead of:

Y ∗i = ĝ(Xi) + ε∗i in step 4; and the ε∗i s are resampled conventionally from residual approximations
to the εis.

With these modifications, the algorithm described in steps 1–6 can be implemented as before,
and the resulting confidence bands have similar properties. In particular, if we redefine B∗(α) by

B∗(α) =
{

(x, y) : x ∈ R , ĝ∗(x)− s(X )(x) σ̂∗(x) z1−(α/2) ≤ y ≤ ĝ∗(x) + s(X )(x) σ̂∗(x) z1−(α/2)

}
(compare (2.9)), and, using this new definition, continue to define π̂(x, α) as at (2.10) (computed
as at (2.11)); and if we continue to define β = β̂(x, α0) to be the solution of π̂(x, β) = 1− α0, and
to define α̂ξ(α0) as in (2.12); then the confidence band B{α̂ξ(α0)} is asymptotically conservative
for at least a proportion 1 − ξ of values x ∈ R. This approach can be justified intuitively as in
Appendix B.1 in the supplementary file, noting that, in the context of the model at (2.13), the
expansion at (B.1) in the supplement should be replaced by:

E{ĝ∗(x) | Z} − ĝ(x) = c1 g
′′(x)h2 + (nh)−1/2 σ(x) fX(x)−1/2W (x/h) + negligible terms .

2.5. Percentile bootstrap confidence bands. The methods discussed above are based on the sym-
metric, asymptotic confidence band B(α), which in turn is founded on a normal approximation.
This approach is attractive because it requires only a single application of the bootstrap for cali-
bration, but it is restrictive in that it dictates a conventional, symmetric “template” for the bands,
because the normal model is symmetric. However, particularly if we would prefer the bands to be
placed asymmetrically on either side of the estimator ĝ so as to reflect skewness of the distribution
of experimental errors, the initial confidence band B(α), at (2.2), can be constructed using boot-
strap methods, and a second iteration of the bootstrap, resulting in a double bootstrap method,
can be used to refine coverage accuracy. This allows us to use, for example, equal-tailed intervals
(where the amount of probability in either tail is taken to be the same) and so-called “shortest”
intervals (where the confidence interval is chosen to be as short as possible, subject to having the
desired nominal coverage). Of course, one-sided intervals can be constructed using either a normal
approximation or a bootstrap approach, and our method carries over without difficulty to those
settings.

The first bootstrap implementation is undertaken using step 4 of the algorithm in Section 2.3,
and allows us to define the critical point ẑβ(x) by

P
{
ĝ∗(x)− ĝ(x) ≤ s(X ) ẑβ | Z} = β , (2.14)

for β ∈ (0, 1). The confidence band B(α) is now re-defined as

B(α) =
{

(x, y) : x ∈ R , ĝ(x) + s(X )(x) ẑα/2 ≤ y ≤ ĝ(x) + s(X )(x) ẑ1−(α/2)

}
. (2.15)
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The remainder of the methodology can be implemented in the following six-step algorithm.
(1) Calculate the uncentred bootstrap residuals, ε̃∗i = Y ∗i − ĝ∗(Xi). (2) Centre them to obtain

ε̂∗i = ε̃∗i − ε̄∗i , where ε̄∗ = n−1 ∑
i ε̃
∗
i . (3) Draw a double-bootstrap resample, Z∗∗ = {(Xi, Y

∗∗
i ), 1 ≤

i ≤ n}, where Y ∗∗i = ĝ∗(Xi) + ε∗∗i and the ε∗∗i s are sampled randomly, with replacement, from the
ε̂∗i s. (4) Construct the bootstrap-world version B∗(α) of the band B(α) at (2.15), defined by

B∗(α) =
{

(x, y) : x ∈ R , ĝ∗(x) + s(X )(x) ẑ∗α/2 ≤ y ≤ ĝ
∗(x) + s(X )(x) ẑ∗1−(α/2)

}
,

where, reflecting (2.14), ẑ∗β is defined by

P
{
ĝ∗∗(x)− ĝ∗(x) ≤ s(X ) ẑ∗β | Z∗} = β ,

and Z∗ is defined as in step 3 of the algorithm in Section 2.3. (5) For this new definition of B∗(α),
define π̂(x, α) as at (2.10). (6) Define α̂ξ(α0) as in (2.12), and take the final confidence band to be
B{α̂ξ(α0)}, where B(α) is as at (2.15).

There is also a percentile-t version of this methodology, using our our quantile-based definition
of α̂ξ(α0).

2.6. Values of x that asymptotically are covered with probability at least 1− α0. Define ‖R‖ to
equal the Lebesgue measure ofR, let S equal the set of x ∈ R such that b(x) = 0, put ξ0 = ‖S‖/‖R‖,
define β(x, α0) to be the solution, in β, of Φ{z1−(β/2) + b(x)} −Φ{−z1−(β/2) + b(x)} = 1− α0, and
let αξ(α0) denote the 100 ξ% quantile of values of β(x, α0) for x ∈ R. Then αξ(α0) is the solution
in γ of (∫

R
dx

)−1 ∫
R
I{β(x, α0) ≤ γ} dx = ξ .

As ξ decreases, in order for the identity above to hold the value of γ should decrease. Hence, in
accordance with intuition, αξ(α0) decreases as ξ decreases.

It can be proved that αξ(α0) is the limit in probability of α̂ξ(α0). Assume that the design points
Xi are univariate and that fX and g′′ are bounded and continuous.

We showed in Section 2.2 that the naive confidence band B(α0), defined at (2.2) and having
coverage 1 − α0, strictly undercovers g(x) when evaluated at x, in the asymptotic limit, unless
b(x) = 0, and that in the latter case the coverage is asymptotically correct, i.e. equals 1− α0.

Noting that β(x, α0) is a monotone increasing function of |b(x)|, and that b(x) = −C g′′(x) fX(x)1/2

for a positive constant C, we see that if we define R(ξ) = {x ∈ R : β(x, α0) > αξ(α0)}, and
c(ξ) = sup {C |g′′(x)| fX(x)1/2 : x ∈ R(ξ)}, then the set of exceptional x, for which the confi-
dence band B{α̂ξ(α0)} asymptotically undercovers (x, g(x)), is the set Sexcep of x ∈ R such that
C |g′′(x)| fX(x)1/2 > c(ξ). The Lebesgue measure of Sexcep equals max(0, ξ − ξ0) ‖R‖. See (2.2) for
a definition of B(α), and step 6 of Section 2.3 for a definition of α̂ξ(α0) and a detailed account of
the construction of B{α̂ξ(α0)}.

Typically the points in Sexcep are close to peaks and troughs, which can be identified from a
graph of ĝ. In Section 3 we pay particular attention to numerical aspects of this issue.

2.7. Confidence bands for probability densities. Analogous methods can be used effectively to
construct confidence bands for probability densities. We consider here the version of the single-
bootstrap technique introduced in Section 2.3, when it is adapted so as to construct confidence
bands for densities of r-variate probability distributions. Specifically, let X = {X1, . . . , Xn} denote
a random sample drawn from a distribution with density f , let h be a bandwidth and K a kernel,
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and define the kernel estimator of f by

f̂(x) =
1

nhr

n∑
i=1

K
(x−Xi

h

)
.

This estimator is asymptotically normally distributed with variance (nhr)−1 κ f(x), where κ =∫
K2, and so a naive, pointwise confidence band for f(x) is given by

B(α) =
{

(x, y) : x ∈ R , f̂(x)−
[
(nhr)−1 κ f̂(x)

]1/2
z1−(α/2) ≤ y

≤ f̂(x) +
[
(nhr)−1 κ f̂(x)

]1/2
z1−(α/2)

}
;

compare (2.2).
To correct B(α) for coverage error, draw a random sample X ∗ = {X∗1 , . . . , X∗n} from the distri-

bution with density f̂X , and define f̂∗ to be the corresponding kernel estimator of f̂ , based on X
rather than X ∗:

f̂∗(x) =
1

nhr

n∑
i=1

K
(x−X∗i

h

)
.

Importantly, we do not generate X ∗ simply by resampling from X . Analogously to (2.9), the boot-
strap version of B(α) is

B∗(α) =
{

(x, y) : x ∈ R , f̂∗(x)−
[
(nhr)−1 κ f̂∗(x)

]1/2
z1−(α/2) ≤ y

≤ f̂∗(x) +
[
(nhr)−1 κ f̂∗(x)

]1/2
z1−(α/2)

}
.

For the reasons given in Remark 2 in Section 2.4 we use the same bandwidth, h, for both B(α)
and B∗(α).

Our bootstrap estimator π̂(x, α) of the probability π(x, α) = P{(x, f(x)) ∈ B(α)} that B(α)
covers (x, f(x)), is given by π̂(x, α) = P{(x, ĝ(x)) ∈ B∗(α) | X}. As in step 6 of the algorithm in
Section 2.3, for a given desired coverage level 1− α0, let β = β̂(x, α0) be the solution of π̂(x, β) =
1−α0, and define α̂ξ(α0) as in (2.12). Our final confidence band is B{α̂ξ(α0)}. For a proportion of
at least 1− ξ of the values of x ∈ R, the limit of the probability that this band covers f(x) is not
less than 1− α0, and for the remainder of values x the coverage error is close to 0.

In the cases r = 1 and 2, which are really the only cases where confidence bands can be depicted,
theoretical results analogous to those in Section 4, for regression, can be developed using Hungarian
approximations to empirical distribution functions. See, for example, Theorem 3 of Komlós, Major
and Tusnády (1976) for the case r = 1, and Tusnády (1977) and Massart (1989) for r ≥ 2. To
link this argument to the theoretical development in Appendix B.1 in the supplementary file, we
mention that in the univariate case, the analogue of (B.1) in that file is

E{f̂∗(x) | Z} − f̂(x) =
1

2
κ2 f

′′(x)h2 + (nh)−1/2 f(x)1/2 V (x/h) + negligible terms , (2.16)

and (B.3) also holds. By way of notation in (2.16) and (B.3), κ2 =
∫
u2K(u) du and, for constants c1

and c2, we define b(x) = −c1 f
′′(x) f(x)−1/2 and ∆(x) = −c2 V (x); and V is a stationary Gaussian

process with zero mean and covariance K ′′ ∗K ′′.
Alternative to the definition of B(α) above, a confidence band based on the square-root transform,

reflecting the fact that the asymptotic variance of f̂ is proportional to f , could be used. Percentile
and percentile-t methods, using our quantile-based method founded on α̂ξ(α0), can also be used.
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3. Numerical properties.

3.1. Parameter settings and comparisons. In Section 3 we summarise the results of a simulation
study addressing the finite-sample performance of methodology described in Section 2. In particular,
we report empirical coverage probabilities of nominal 95% confidence intervals for g(x), for different
x, different values of 1− ξ, different choices of g, different error variances σ2, and different sample
sizes n.

For n = 100, 200 or 400 we generated data pairs (Xi, Yi) randomly from the model at (2.1), where
the experimental errors εi were distributed independently as N(0, σ2) with σ = 1, 0.5 or 0.2, and
the explanatory variables Xi were distributed uniformly on [−1, 1]. We worked with the functions
g1, g2 and g3, defined by g1(x) = x + 5φ(10x), g2(x) = sin(3πx/2) /{1 + 18x2 (sgnx + 1)} and
g3(x) = sin(πx/2) /{1 + 2x2 (sgnx+ 1)}, where φ is the standard normal density and sgnx = 1, 0
or −1 according as x > 0, x = 0 or x < 0, respectively. The function g1 was used by Horowitz and
Spokoiny (2001), and also by many subsequent authors; g2 is the function given by formula (7) of
Berry et al. (2002), rescaled here to the interval [−1, 1], and used extensively by Berry et al. (2002)
and in subsequent work of other researchers; and g3 is the version of g2 obtained by truncating g2

to the central one third of its support interval, and rescaling so that it is supported on [−1, 1].
The results reported here were obtained using a standard plug-in bandwidth, computed as sug-

gested by Ruppert et al. (1995) but employing the variance estimator at (2.8). The cross-validation
bandwidth gives slightly better coverage results for our method, apparently because, on average,
it undersmooths a little. However, since computing the plug-in and cross-validation bandwidths
involves O(n) and O(n2) calculations, respectively, then the plug-in method is more attractive in
a numerical study that requires 1000 simulations in each setting and sample sizes up to 400. The
differences between plug-in and cross-validation were minor in the case of competing methods since,
as discussed below, we optimised those methods over the second bandwidth.

In Section 3.2 we report results obtained using our method, undersmoothing without explicit
bias correction, and explicit bias correction using an oversmoothed bandwidth to estimate bias. In
the latter case we employed the regression version of a bias estimator suggested by Schucany and
Sommers (1977). For each parameter setting (that is, each sample size n, each error variance σ2 and
each function gj), when using undersmoothing we took the bandwidth to be γ h; and when using
explicit bias correction we took the bandwidth to be h/λ. The values of γ and λ were chosen to
optimise the performance of the two competing methods, and in particular so that those methods
had as large as possible a proportion of values x ∈ R = [−0.9, 0.9] that were covered with probability
at least 0.95. To determine the best γ and λ, for n = 100 we varied γ and λ in the ranges 0.1 (0.1) 0.9
and 0.01, 0.02, 0.05, 0.1 (0.1) 0.9, respectively. For n = 200 and 400, to reduce computation time we
took the respective ranges to be 0.2 (0.2) 1.0 and 0.1 (0.2) 0.9.

This approach favours the two competing methods. It is required because there do not exist,
in either case, any alternative approaches that are even moderately widely used. Of course, this
situation, which arises because of the sheer difficulty of producing appropriate empirical bandwidths
for the competing methods, is one of the motivations for our work. Choosing γ and λ empirically,
as would be necessary in practice, would introduce significant extra variability into the competing
methodologies, and so would downgrade their performance. Even the approach taken here, which
gives competing methods every opportunity to show their advantages, typically produces competing
techniques which perform less well than ours.

3.2. Main results, and discussion. Graphs of g1, g2 and g3 are shown in Figure 1. The order
g1, g2, g3 arranges those functions in terms of decreasing difficulty experienced by each method. In
particular, g1, a single peak on a linear slope, is more challenging than g2, which represents a deep
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trough followed by a moderately high peak, and is more challenging still then g3, which involves a
moderately steep uphill slope followed by a gentle decrease. The extent of difficulty can be deduced
from Tables 1–3, which reveal that the proportion of values of x that are covered with probability
at least 0.95 increases, for each of the three methods, as we pass from g1 to g2 and then to g3.

-1
0

1
2

g(
x)

-1 -.5 0 .5 1
X

Fig 1: Conditional mean functions. Solid line is g1(x). Long dashes are g2(x). Short dashes are
g3(x).

Table 1 treats the case n = 100, and shows, in the first column, the values of σ; in the second
column, the index j of the function gj ; in the third column, the method; in the fourth column,
the value of 1 − ξ (for our method), of the optimal γ (for the undersmoothing method), and of
the optimal λ (for explicit bias correction); in the fifth column, the proportion of x ∈ [−0.9, 0.9]
for which the confidence band covered gj(x) with probability not less than 0.95 (referred to below
as the “covered proportion”); in the sixth column, the integral average of the absolute values of
coverage errors over x ∈ [−0.9, 0.9]; and in the seventh and last column, the average widths of
the confidence intervals, i.e. the average widths of the bands constructed on R. See Section 3.1 for
definitions of γ and λ, and Section 2 for a definition of ξ.

Tables 2 and 3 provide the same information in the cases n = 200 and 400, respectively, although
for brevity we give results only for σ = 1. The numerical values in Tables 1–3 were derived by taking
averages over 1000 simulations in each parameter setting. In each instance, for the sake of brevity
the tables give results only for three values of 1−ξ, specifically 0.8, 0.9 and 0.95. When interpreting
our results, and comparing them with those of the other methods, the reader should bear in mind
that in practice we suggest taking 1 − ξ = 0.9, whereas the competing methods have a major
advantage in that we chose the tuning parameters there to give them the largest possible value of
covered proportion.

Panels (a), (b) and (c) of Figure 2 each show three typical confidence bands in the cases of our
method, of undersmoothing and of explicit bias correction, respectively, for g = g1, n = 100 and
σ = 1. (By “typical” bands we mean bands computed from the dataset for which the integrated
squared error (ISE) of the estimator took the median value among 101 different datasets, and from
the two datasets for which ISE was closest to but not equal to the median value.) To construct
those bands in the case of our method we used 1−ξ = 0.9. For bands in the other two cases we used
the values of γ and λ that maximised covered proportions in the respective parameter settings.
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σ j Method 1 − ξ, Prop. with Av. abs. error Av.
γ, or λ cov. prob. ≥ 0.95 of cov. prob. width

1 1 Ours 0.80 0.685 0.040 1.172

0.90 0.774 0.041 1.217

0.95 0.884 0.042 1.397

2 0.80 0.702 0.025 0.970

0.90 0.812 0.027 1.146

0.95 1.000 0.034 1.322

3 0.80 0.945 0.019 1.009

0.90 0.995 0.033 1.096

0.95 1.000 0.042 1.316

1 Undersmooth 0.70 0.801 0.022 1.105

2 0.60 0.840 0.018 1.076

3 0.50 1.000 0.019 0.989

1 Bias Corr. 0.05 0.737 0.034 0.924

2 0.05 0.740 0.031 0.834

3 0.10 0.901 0.015 0.700

0.5 1 Ours 0.80 0.724 0.038 0.949

0.90 0.812 0.038 1.114

0.95 0.895 0.039 1.197

2 0.80 0.823 0.019 0.822

0.90 0.945 0.027 0.924

0.95 0.995 0.034 0.993

3 0.80 0.923 0.018 0.482

0.90 1.000 0.031 0.562

0.95 1.000 0.041 0.642

1 Undersmooth 0.80 0.785 0.024 0.595

2 0.70 0.856 0.018 0.642

3 0.70 1.000 0.019 0.452

1 Bias Corr. 0.40 0.768 0.027 0.533

2 0.20 0.785 0.019 0.573

3 0.05 0.906 0.015 0.380

0.2 1 Ours 0.80 0.409 0.019 0.421

0.90 0.834 0.020 0.497

0.95 0.930 0.027 0.555

2 0.80 0.879 0.020 0.366

0.90 0.950 0.029 0.395

0.95 0.961 0.036 0.424

3 0.80 0.945 0.022 0.231

0.90 1.000 0.033 0.257

0.95 1.000 0.041 0.293

1 Undersmooth 0.90 0.801 0.020 0.399

2 0.80 0.818 0.021 0.282

3 0.70 0.978 0.020 0.217

1 Bias Corr. 0.20 0.790 0.022 0.378

2 0.20 0.796 0.019 0.252

3 0.90 0.995 0.019 0.190

Table 1
Simulation results for n = 100.
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σ j Method 1 − ξ, Prop. with Av. abs. error Av.
γ, or λ cov. prob. ≥ 0.95 of cov. prob. width

1 1 Ours 0.80 0.745 0.043 0.967

0.90 0.843 0.042 1.105

0.95 0.921 0.043 1.243

2 0.80 0.751 0.023 0.878

0.90 0.850 0.027 0.920

0.95 1.000 0.033 0.962

3 0.80 0.900 0.019 0.734

0.90 0.995 0.031 0.801

0.95 1.000 0.041 0.968

1 Undersmooth 0.40 0.989 0.017 1.266

2 0.40 1.000 0.020 1.228

3 0.70 1.000 0.024 0.545

1 Bias Corr. 0.10 0.762 0.034 0.800

2 0.20 0.796 0.022 0.777

3 0.10 0.928 0.018 0.456

Table 2
Simulation results for n = 200.

σ j Method 1 − ξ, Prop. with Av. abs. error Av.
γ, or λ cov. prob. ≥ 0.95 of cov. prob. width

1 1 Ours 0.80 0.746 0.052 0.963

0.90 0.807 0.048 1.005

0.95 0.895 0.046 1.005

2 0.80 0.818 0.022 0.911

0.90 0.972 0.029 0.953

0.95 1.000 0.036 0.953

3 0.80 0.840 0.018 0.907

0.90 0.995 0.030 0.948

0.95 1.000 0.041 0.948

1 Undersmooth 0.30 1.000 0.019 1.208

2 0.70 1.000 0.024 0.637

3 0.70 1.000 0.024 0.429

1 Bias Corr. 0.40 0.801 0.027 0.662

2 0.30 0.994 0.016 0.533

3 0.10 0.956 0.019 0.356

Table 3
Simulation results for n = 400.
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(a) Proposed new method: 0.90 quantile.
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(b) Conventional method with undersmoothing: γ = 0.7

−4
−2

0
2

4

−1 −.5 0 .5 1
x

(c) Conventional method with explicit bias correction: λ = 0.05

Fig 2: Comparison of three methods, each panel showing three confidence bands for interval
[−0.9, 0.9] with n = 100, σ2 = 1, and g(x) = x + 5φ(10x), X ∼ U [−1, 1]. Solid line is g(x).
Lower and upper limits of the bands indicated by dashes, dots and dash-dots.
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The three panels in Figure 3 plot, as functions of x, unsmoothed values of the proportions of times,
out of 1000 simulations, that the confidence band covered (x, g(x)). Each plot is for the case n = 100
and σ = 1, and panels (a), (b) and (c) in Figure 3 are for g = g1, g2 and g3, respectively. The three
curves in each panel represent the method suggested in this paper, the undersmoothing method
and the explicit bias correction method, respectively. To illustrate coverage levels at endpoints our
plots extend right across [−1, 1]; they are not restricted to R = [−0.9, 0.9].

It can be seen from Table 1 that, when n = 100, σ2 = 1 and 1 − ξ = 0.9, the proportion of
values x for which gj(x) is covered with probability at least 0.95, when using our method, increases
from 0.77 to 0.81 and then to 0.995, for j = 1, 2 and 3, respectively. The corresponding values
of the “covered proportion” are 0.80, 0.84 and 1.0 for the undersmoothing method, and 0.74, 0.74
and 0.90 in the case of explicit bias correction. In particular, in this respect explicit bias correction
is slightly inferior to our approach, and the undersmoothing method is slightly superior, at least
in terms of the size of the covered proportion. However, this advantage is of undersmoothing is
reversed when σ = 0.5 or 0.2.

In the case of undersmoothing, the value of the covered proportion can drop sharply if there
is stochastic error in choice of the bandwidth fraction, γ. Recall that in our simulation study
we determine γ so that undersmoothing performs at its best, although in practice γ would be
chosen implicitly using an algorithm based on estimating the second derivative of gj ; this is a noisy
procedure at the best of times. To illustrate the difficulty of choosing γ in practice, we mention
that, by Table 1, when n = 100 the optimal values of γ are 0.7, 0.6 and 0.5 when estimating g1, g2

and g3, respectively, yielding covered proportions 0.801, 0.840 and 1.0, respectively. However, if we
were to mistakenly use γ = 0.4, 0.3 or 0.2 in these respective cases, the covered proportions would
drop to 0.558, 0.354 and 0.425, respectively.

Turning to panel (b) in Figure 2, which graphs typical confidence bands computed using the
undersmoothing method, we see that the level of undersmoothing needed to achieve a relatively
high level of covered proportion has made the band particularly wiggly, and hence very difficult to
interpret. In practice this would be quite unsatisfactory. In comparison, the explicit bias corrected
band is about as wiggly as the band constructed using our method (compare panels (a) and (c) in
Figure 2), and both are easy to interpret.

This trend can be seen generally, for different values of σ2 and different sample sizes: The level
of undersmoothing that must be used if the undersmoothing approach is to enjoy good coverage
performance, produces bands that are distinctly unattractive because they exhibit a high degree of
spatial variability that has nothing to do with actual features of the function g.

We should point out too that, in the case of undersmoothing, the proportion of values x ∈ R that
are covered with probability at least 0.95 at first increases as the bandwidth decreases, but then
starts to decrease. This is a consequence of the fact that the confidence band quickly becomes more
erratic as the bandwidth is reduced, even more so than is shown in Figure 2. A similar phenomenon
occurs when using explicit bias correction. Here the conservatively covered proportion of R at first
increases as we decrease λ, but then it increases again. The reason is clear: If we were to use a large
bandwidth then the bias estimator itself would be too heavily biased, with a consequent decline in
coverage performance.

The plots in Figure 3 illustrate clearly the difficulty that each approach has with the bump
function g1 in the interval (−0.3, 0.3), where the gradient of g1 changes relatively quickly. Our
approach undercovers most seriously at x = 0, but then again, it is honest about this; since we
use ξ = 0.1 then our approach concedes from the outset that it can be expected to undercover
approximately 10% of points in R, and reflecting this the coverage accuracy improves relatively
quickly away from the origin. For example, it is about 0.95 for x = ±0.15, although it drops briefly
down to 0.9 in the near vicinity of ±0.3. By way of comparison, the undersmoothing and explicit
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(a) g(x) = x+ 5φ(10x).
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(b) g(x) = sin(3πx/2)/{1 + 18x2[sgn(x) + 1]}.

.8
.8

5
.9

.9
5

1
C

ov
er

ag
e 

P
ro

ba
bi

lit
y

-1 -.5 0 .5 1
x

(c) g(x) = sin(πx/2)/{1 + 2x2[sgn(x) + 1]}

Fig 3: Coverage probabilities of nominal 95% confidence band. Each plot is for the case n = 100,
σ2 = 1 and X ∼ U [−1, 1], and panels (a), (b) and (c) are for g = g1, g2 and g3, respectively. Solid
line: proposed new method. Dashes: conventional method with undersmoothing. Dots: Conventional
method with explicit bias correction.
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bias correction approaches perform relatively well at x = 0, but drop away on either side.
All three methods have less difficulty with the function g2, although it can be seen that they

have more problems near the peak and the trough than anywhere else on R. Finally, each method
finds g3 relatively easy. The same trends are seen also for larger sample sizes and smaller values of
σ, although they are less marked in those cases.

The average lengths of confidence bands constructed using different methods vary in ways that
are, in many instances, rather predictable. For example, when our method produces bands with
larger covered proportion, which it does in most of the cases were considered, the bands themselves
tend to be wider, as we would expect. It is of perhaps greater interest to focus on cases where our
method has smaller covered proportion, i.e. the case σ = 1.0 with n = 100, 200 and 400. When
n = 100 our bands are longer by between 7% (in the case of g2) and 16% (for g1), despite having
lower coverage. However, when n = 200 our bands tend to be shorter in two out of three cases (the
cases of g1 and g2), and when n = 400 they are shorter in one out of three cases (the case of g1).
For each method the average lengths of bands decrease relatively slowly as sample size increases.

4. Theoretical properties.

4.1. Theoretical background. In the present section we describe theoretical properties of boot-
strap methods for estimating the distribution of ĝ. In Section 4.2 we apply our results to underpin
the arguments in Section 2 that motivated our methodology. A proof of Theorem 4.1, below, is
given in Appendix B.2 of Hall and Horowitz (2013).

We take ĝ(x) to be a local polynomial estimator of g(x), defined by (2.5) and (2.6). The asymp-
totic variance, Avar, of the local polynomial estimator ĝ at x is given by

Avar{ĝ(x)} = D1 σ
2 fX(x)−1 (nhr1)−1 , (4.1)

where D1 > 0 depends only on the kernel and σ2 = var(ε). (If r = k = 1 then D1 = κ ≡
∫
K2.)

With this in mind we take the estimator s(X )(x)2 σ̂2, introduced in Section 2.2, of the variance
of ĝ(x), to be D1 σ̂

2 f̂X(x)−1 (nhr)−1, where f̂X is an estimator of the design density fX and was
introduced in step 1 of the algorithm in Section 2.3.

We assume that:

(a) the data pairs (Xi, Yi) are generated by the model at (2.1), where the design
variables Xi are identically distributed, the experimental errors εi are identi-
cally distributed, and the design variables and errors are totally independent;
(b) R is a closed, nondegenerate rectangular prism in IRr; (c) the estimator ĝ is

constructed by fitting a local polynomial of degree 2k− 1, where k ≥ 1; (d) f̂X
is weakly and uniformly consistent, on R, for the common density fX of the
r-variate design variables Xi; (e) g has 2k Hölder-continuous derivatives on an
open set containing R; (f) fX is bounded on IRr, and Hölder continuous and
bounded away from zero on an open subset of IRr containing R; (g) the band-
width, h, used to construct ĝ, is a function of the data in Z and, for constants
C1, C2 > 0, satisfies P{|h − C1 n

−1/(r+4k)| > n−(1+C2)/(r+4k)} → 0, and more-
over, for constants 0 < C3 < C4 < 1, P (n−C4 ≤ h ≤ n−C3) = 1−O(n−C) for all
C > 0; (h) the kernel used to construct ĝ, at (2.5), is a spherically symmetric,
compactly supported probability density, and has C5 uniformly bounded deriva-
tives on IRr, where the positive integer C5 is sufficiently large and depends on
C2; and (j) the experimental errors satisfy E(ε) = 0 and E|ε|C6 < ∞, where
C6 > 2 is chosen sufficiently large, depending on C2.

(4.2)
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The model specified by (c) is standard in nonparametric regression. The assumptions imposed in
(b), on the shape of R, can be generalised substantially and are introduced here for notational
simplicity. The restriction to polynomials of odd degree, in (c), is made so as to eliminate the
somewhat anomalous behaviour in cases where the degree is even. See Ruppert and Wand (1994)
for an account of this issue in multivariate problems. Condition (d) asks only that the design density
be estimated uniformly consistently. The assumptions imposed on g and fX in (e) and (f) are close
to minimal when investigating properties of local polynomial estimators of degree 2k−1. Condition
(g) is satisfied by standard bandwidth choice methods, for example those based on cross-validation
or plug-in rules. The assertion, in (g), that h be approximately equal to a constant multiple of
n−1/(r+2k) reflects the fact that h would usually be chosen to minimise a measure of asymptotic
mean Lp error, for 1 ≤ p < ∞. Condition (h) can be relaxed significantly if we have in mind a
particular method for choosing h. Smooth, compactly supported kernels, such as those required by
(h), are commonly used in practice. The moment condition imposed in (j) is less restrictive than,
for example, the assumption of normality.

In addition to (4.2) we shall, on occasion, suppose that:

the variance estimators σ̂2 and σ̂∗2 satisfy P (|σ̂ − σ| > n−C8)→ 0 and
P (|σ̂∗ − σ̂| > n−C8)→ 0 for some C8 > 0.

(4.3)

In the case of the estimators σ̂2 defined at (2.7) and (2.8), if (4.2) holds then so too does (4.3).
Let h1 = C1 n

−1/(r+4k) be the deterministic approximation to the empirical bandwidth h asserted
in (4.2)(g). Under (4.2) the asymptotic bias of a local polynomial estimator ĝ of g, evaluated at x, is
equal to h2k

1 ∇ g(x), where ∇ is a linear form in the differential operators (∂/∂x(1))j1 . . . (∂/∂x(r))jr ,
for all choices of j1, . . . , jr such that each js is an even, positive integer, j1 + . . .+jr = 2k (the latter
being the number of derivatives assumed of g in (4.2)(e)), and x = (x(1), . . . , x(r)). For example, if
r = k = 1 then ∇ = 1

2 κ2 (d/dx)2, where κ2 =
∫
u2K(u) du.

Recall that σ2 is the variance of the experimental error εi. Let L = K∗K, denoting the convolution
of K with itself, and put M = L −K. Let W1 be a stationary Gaussian process with zero mean
and the following covariance function:

cov{W1(x1),W1(x2)} = σ2 (M ∗M)(x1 − x2) . (4.4)

Note that, since h1 depends on n, then so too does the distribution of W1. Our first result shows
that (4.2) is sufficient for a stochastic approximation of local polynomial estimators.

Theorem 4.1. If (4.2) holds then, for each n, there exists a zero-mean Gaussian process W ,
having the distribution of W1 and defined on the same probability space as the data Z, such that
for constants D2, C7 > 0,

P

[
sup
x∈R

∣∣∣∣E{ĝ∗(x) | Z} − ĝ(x)−
{
h2k

1 ∇ g(x)

+D2
(
nhr1

)−1/2
fX(x)−1/2W (x/h1)

}∣∣∣∣ > h2r
1 n−C7

]
→ 0 (4.5)

as n→∞. If, in addition to (4.2), we assume that (4.3) holds, then for some C7 > 0,

P

(
sup
x∈R

sup
z∈IR

∣∣∣∣P[ĝ∗(x)− E{ĝ∗(x) | Z}

≤ z
{
D1 σ̂

2 f̂X(x)−1 (nhr)−1}1/2
∣∣∣∣ Z]− Φ(z)

∣∣∣∣ > n−C7

)
→ 0 (4.6)

as n→∞.
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Theorem 4.1 is generically similar to other strong approximations in the literature, although
there are two differences that are crucial to our work: the bandwidth in the theorem is a function
of the data, and has specific properties, whereas other strong approximations in nonparametric
function estimation take the bandwidth to be deterministic; and the theorem treats data obtained
using a particular residual-based approach to resampling, and does not treat the originally sampled
data.

Result (4.6) asserts that the standard central limit theorem for ĝ∗(x) applies uniformly in x ∈ R.
In particular, the standard deviation estimator {D1 σ̂

2f̂X(x)−1 (nhr)−1}1/2, used to standardise
ĝ∗ −E(ĝ∗ | Z) on the left-hand side of (4.6), is none other than the conventional empirical form of
the asymptotic variance of ĝ at (4.1), and was used to construct the confidence bands discussed
in Sections 2.2 and 2.3. The only unconventional aspect of (4.6) is that the central limit theorem
is asserted to hold uniformly in x ∈ R, but this is unsurprising, given the moment assumption
in (4.2)(j).

4.2. Theoretical properties of coverage error. Let D3 = D
−1/2
1 σ−1 and D4 = D2D3, and define

b(x) = −D3 fX(x)1/2∇ g(x) , ∆(x) = −D4W (x/h1) , (4.7)

where W is as in (4.5). To connect these definitions to the theoretical outline in Appendix B.1
in the supplementary file, we note that in the present setting these are the versions of b(x) and
∆(x) at (B.2) and (B.4), respectively (D4W in (4.7) equals W in (B.4)), and our first result in this
section is a detailed version of (B.3):

Corollary 4.1. If (4.2) and (4.3) hold then, with z = z1−(α/2) and b(x) and ∆(x) defined as
above, we have for some C9 > 0,

P

(
sup
x∈R

∣∣∣π̂(x, α)−
[
Φ
{
z + b(x) + ∆(x)

}
− Φ

{
− z + b(x) + ∆(x)

}]∣∣∣ > n−C9

)
→ 0 (4.8)

as n→∞.

Next we give notation that enables us to assert, under specific assumptions, properties of coverage
error of confidence bands. See particularly (4.13) in Corollary 4.2, below. Results (4.11) and (4.12)
are used to derive (4.13), and are of interest in their own right because they describe large-sample
properties of the quantities β̂(x, α0) and α̂ξ(α0), respectively, in terms of which our confidence
bands are defined; see Section 2.3.

Given a desired coverage level 1−α0 ∈ (1
2 , 1), define β̂(x, α0) and α̂ξ(α0) as in step 6 of Section 2.3,

and as at (2.12), respectively. Let b(x) and ∆(x) be as at (4.7), put d = b + ∆, and define T =
T (x, α0) to be the solution of

Φ{T + d(x)} − Φ{−T + d(x)} = 1− α0 .

Then T (x, α0) > 0, and A(x, α0) = 2 [1− Φ{T (x, α0)}] ∈ (0, 1). Define β = β(x, α0) > 0 to be the
solution of

Φ{z1−(β/2) + b(x)} − Φ{−z1−(β/2) + b(x)} = 1− α0 , (4.9)

and let αξ(α0) be the ξ-level quantile of the values of β(x, α0). Specifically, γ = αξ(α0) solves the
equation (∫

R
dx

)−1 ∫
R
I{β(x, α0) ≤ γ} dx = ξ . (4.10)

Define Rξ(α0) = {x ∈ R : I[β(x, α0) > αξ(α0)]}. Let the confidence band B(α) be as at (2.2).
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Corollary 4.2. If (4.2) and (4.3) hold, then, for each C10, C11 > 0, and as n→∞,

P

{
sup

x∈R : |∆(x)|≤C10

|β̂(x, α0)−A(x, α0)| > C11

}
→ 0 , (4.11)

P
{
α̂ξ(α0) ≤ αξ(α0) + C11

}
→ 1 , (4.12)

for each x ∈ Rξ(α0) the limit infimum of the probability P [(x, g(x)) ∈
B{α̂ξ(α0)}], as n→∞, is not less than 1− α0.

(4.13)

Property (4.12) implies that the confidence band B(β), computed using β = α̂ξ(α0), is no less
conservative, in an asymptotic sense, than its counterpart when β = αξ(α0). This result, in company
with (4.13), underpins our claims about the conservatism of our approach. Result (4.13) asserts
that the asymptotic coverage of (x, g(x)) by B{α̂ξ(α0)} is, for at most a proportion ξ of values of
x, not less than 1− α0. Proofs of Corollaries 4.1 and 4.2 are given in Appendix A, below.

APPENDIX A: OUTLINE PROOFS OF COROLLARIES 4.1 AND 4.2

A.1. Proof of Corollary 4.1. Define

d̂∗(x) =
ĝ(x)− E{ĝ∗(x) | Z}

{D1 σ̂∗2 f̂X(x)−1 (nhr)−1}1/2
, d̂(x) =

ĝ(x)− E{ĝ∗(x) | Z}
{D1 σ2 fX(x)−1 (nhr1)−1}1/2

.

Recall that, motivated by the variance formula (4.1), we take s(X )(x)2 σ̂2, in the definition of
the confidence band B(α) at (2.2), to be D1 σ̂

2 f̂X(x)−1 (nhr)−1. The bootstrap estimator π̂(x, α),
defined at (4.10), of the probability π(x, α), at (2.3), that the band B(α) covers the the point
(x, g(x)), is given by

π̂(x, α) = P
{
ĝ∗(x)− s(X )(x) σ̂∗ z1−(α/2) ≤ ĝ(x) ≤ ĝ∗(x) + s(X )(x) σ̂∗ z1−(α/2)

∣∣∣ Z}
= P

[
− z1−(α/2) ≤

ĝ∗(x)− ĝ(x){
D1 σ̂∗2 f̂X(x)−1 (nhr)−1

}1/2
≤ z1−(α/2)

∣∣∣∣∣ Z
]

= P

[
− z1−(α/2) + d̂∗(x) ≤ ĝ∗(x)− E{ĝ∗(x) | Z}{

D1 σ̂∗2 f̂X(x)−1 (nhr)−1
}1/2

≤ z1−(α/2) + d̂∗(x)

∣∣∣∣∣ Z
]
. (A.1)

If both (4.2) and (4.3) hold then, by (4.5), (4.6), (A.1) and minor additional calculations,

P

(
sup
x∈R

∣∣∣π̂(x, α)−
[
Φ
{
z1−(α/2) + d̂(x)

}
− Φ

{
− z1−(α/2) + d̂(x)

}]∣∣∣ > n−C9

)
→ 0 . (A.2)

Now, −d̂(x) = D3 fX(x)1/2∇ g(x) +D4W (x/h1) where D3 = D
−1/2
1 σ−1 and D4 = D2D3, and so

(4.8) follows from (A.2).

A.2. Proof of Corollary 4.2. Result (4.11) follows from (4.8). Shortly we shall outline a
proof of (4.12); at present we use (4.12) to derive (4.13). To this end, recall that γ = αξ(α0) solves
equation (4.10) when z = z1−(β/2), and β = β(x, α0) > 0 denotes the solution of equation (4.9).
If (4.12) holds then (4.13) will follow if we establish that result when α̂ξ(α0), in the quantity
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P [(x, g(x)) ∈ B{α̂ξ(α0)}] appearing in (4.13), is replaced by αξ(α0). Call this property (P). Now,
the definition of αξ(α0), and the following monotonicity property,

Φ(z + b)−Φ(−z + b) is a decreasing (respectively, increasing) function of b for
b > 0 (respectively, b < 0) and for each z > 0,

(A.3)

ensure that
lim inf
n→∞

P [(x, g(x)) ∈ B{αξ(α0)}] ≥ 1− α0

whenever β(x, α0) ≤ αξ(α0), or equivalently, whenever x ∈ Rξ(α0). This establishes (P).
Finally we derive (4.12), for which purpose we construct a grid of edge width δ, where δ is small

(see (A.4) below), and show that if this grid is used to define α̂ξ(α0) (see (2.12)) then (4.12) holds.
Let x′1, . . . , x

′
N1

be the centres of the cells, in a regular rectangular grid in IRr with edge width δ1,
that are contained within R. (For simplicity we neglect here cells that overlap the boundaries of
R; these have negligible impact.) Within each cell that intersects R, construct the smaller cells
(referred to below as subcells) of a subgrid with edge width δ = m−1δ1, where m = m(δ1) ≥ 1 is an
integer and m ∼ δ−c1 for some c > 0. Put N = mrN1; let xj`, for j = 1, . . . , N1 and ` = 1, . . . ,mr,
denote the centres of the subcells that are within the cell that has centre x′j ; and let x1, . . . , xN
be an enumeration of the values of xj`, with x11, . . . , x1m listed first, followed by x21, . . . , x2m, and
so on. Recalling the definition of α̂ξ(α0) at (2.12), let α̂ξ(α0, δ) denote the ξ-level quantile of the
sequence α̂(x1, α0), . . . , α̂(xN , α0).

Let h1 = C1 n
−1/(r+4k) represent the asymptotic size of the bandwidth asserted in (4.2)(g), and

assume that
δ = O

(
n−B1

)
, 1/(r + 4k) < B1 <∞ . (A.4)

Then
δ = O

(
h1 n

−B2
)

(A.5)

for some B2 > 0. In particular, δ is an order of magnitude smaller than h1.
Recall that A(x, α0) = 2 [1− Φ{Z(x, α0)}] ∈ (0, 1), where Z = Z(x, α0) > 0 is the solution of

Φ{Z + b(x) + ∆(x)} − Φ{−Z + b(x) + ∆(x)} = 1− α0 ,

and ∆(x) = −D4W (x/h1); and that β = β(x, α0) > 0 solves Φ{β+ b(x)}−Φ{−β+ b(x)} = 1−α0.
Define e(x, α0) = 2 [1 − Φ{β(x, α0)}]. Given a finite set S of real numbers, let quantξ(S) and
med(S) = quant1/2(S) denote, respectively, the ξ-level empirical quantile and the empirical median
of the elements of S. Noting (A.3), and the fact that the stationary process W is symmetric (W
is a zero-mean Gaussian process the distribution of which does not depend on n), it can be shown
that P{Z(x, α0) > β(x, α0)} = P{Z(x, α0) ≤ β(x, α0)} = 1

2 . Therefore the median value of the
random variable A(x, α0) equals e(x, α0). Hence, since the lattice subcell centres xj1, . . . , xjmr are
clustered regularly around xj , it is unsurprising, and can be proved using (A.5), that the median
of A(xj1, α0), . . . , A(xjmr , α0) is closely approximated by e(x, α0), and in particular that for some
B3 > 0 and all B4 > 0,

P

{
max

j=1,...,N1

∣∣∣med{A(xj1, α0), . . . , A(xjmr , α0)} − e(xj , α0)
∣∣∣ > n−B3

}
= O

(
n−B4

)
.

Therefore, since the ξ-level quantile of the points in the set

N1⋃
j=1

{A(xj1, α0), . . . , A(xjmr , α0)}
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is bounded below by {1 + op(1)} multiplied by the ξ-level quantile of the N1 medians

med{A(xj1, α0), . . . , A(xjmr , α0)} , 1 ≤ j ≤ N1 ,

then for all η > 0,

P

[
quant1−ξ {A(x, α0) : x ∈ R} ≤ quant1−ξ {e(x, α0) : x ∈ R}+ η

]
→ 1 . (A.6)

Since quant1−ξ {e(x, α0) : x ∈ R} = αξ(α0) then, by (A.6),

P

[
quant1−ξ {A(x, α0) : x ∈ R} ≤ αξ(α0) + η

]
→ 1 . (A.7)

In view of (4.11),

P

[∣∣∣quant1−ξ {A(x, α0) : x ∈ R} − quant1−ξ {β̂(x, α0) : x ∈ R}
∣∣∣ > η

]
→ 0 (A.8)

for all η > 0, and moreover, if δ satisfying (A.4) is chosen sufficiently small,

quant1−ξ {β̂(x, α0) : x ∈ R} − α̂ξ(α0)→ 0 (A.9)

in probability. (This can be deduced from the definition of α̂ξ(α0) at (2.12).) Combining (A.7)–(A.9)
we deduce that P

{
α̂ξ(α0) ≤ αξ(α0) + η

}
→ 1 for all η > 0, which is equivalent to (4.12).

SUPPLEMENTARY MATERIAL

Appendix B: Supplementary material
(doi: 10.1214/13-AOS1137SUPP). The supplementary material in Appendix B.1 outlines theoretical
properties underpinning our methodology, while Appendix B.2 contains a proof of Theorem 4.1.
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HÄRDLE, W., HUET, S. and JOLIVET, S. (1995). Better bootstrap confidence-intervals for regression curve esti-

mation. Statistics 26 287–306.
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