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ABSTRACT 
 

 A parameter of an econometric model is identified if there is a one-to-one or many-to-one 
mapping from the population distribution of the available data to the parameter.  Often, this 
mapping is obtained by inverting a mapping from the parameter to the population distribution.  If 
the inverse mapping is discontinuous, then estimation of the parameter usually presents an ill-
posed inverse problem.  Such problems arise in many settings in economics and other fields 
where the parameter of interest is a function.  This paper explains how ill-posedness arises and 
why it causes problems for estimation.  The need to modify or “regularize” the identifying 
mapping is explained, and methods for regularization and estimation are discussed.  Methods for 
forming confidence intervals and testing hypotheses are summarized.  It is shown that a 
hypothesis test can be more “precise” in a certain sense than an estimator.  An empirical example 
illustrates estimation in an ill-posed setting in economics. 
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ILL-POSED INVERSE PROBLEMS IN ECONOMICS 

1.  INTRODUCTION 

 A parameter of an econometric model is said to be identified if it is uniquely determined 

by the probability distribution from which the available data are sampled (hereinafter the 

population distribution).  In other words, a parameter is identified if there is a one-to-one or 

many-to-one mapping from the population distribution to the parameter.  The parameter may be 

a scalar, vector, or function.  In many familiar economic settings, such as least squares (LS) or 

instrumental variables (IV) estimation of a linear model, the parameter of interest is a scalar or 

vector, and the identifying mapping is continuous.  That is, small changes in the population 

distribution of the data produce only small changes in the identified parameter.  When this 

happens, the parameter of interest can be estimated consistently by replacing the unknown 

population distribution with a consistent sample analog, such as the empirical distribution of the 

data (Manski 1988).  Consistency of the sample analog implies that the difference between the 

sample analog and true population distribution is small when the sample size is large.  The 

estimated parameter is consistent for the true parameter because continuity of the identifying 

mapping implies that the difference between the estimated and true parameter values is small if 

the difference between the sample analog and true population distribution is small. 

 This approach to estimation does not necessarily work if the mapping that identifies the 

parameter of interest is discontinuous.  Nonparametric IV estimation and deconvolution are 

examples of discontinuous mappings in economics in which the parameter of interest cannot be 

estimated consistently by replacing the unknown population distribution with a consistent sample 

analog.  Nonparametric IV estimation is a generalization of conventional IV estimation of a 

linear model.  Deconvolution and closely related estimation problems are important in models 
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with errors in variables (Chen, Hong, and Nekipilov 2011; Li 2002; Li and Hsiao 2004; 

Schennach 2004a; Schennach 2004b), panel-data models (Horowitz and Markatou 1996), models 

with latent factors (Bonhomme and Robin 2010), empirical models of auctions (Li, Perrigne, and 

Vuong 2000), and estimation using aggregated data (Linton and Whang 2002).  Many other 

examples of discontinuous mappings arise in mathematics, statistics, and engineering.  Some of 

these are described in Section 3 of this paper.  Others are described by O’Sullivan (1986) and 

Engl, Hanke, and Neubauer (1996).  In each case, the parameter of interest cannot be estimated 

consistently by replacing the population distribution of the data with a consistent sample analog 

in the identifying mapping.  This is because the estimated and true values of the parameter may 

be very different, even if the sample size is large enough to make the difference between the 

sample analog and population distribution negligibly small.   

 An estimation problem is called ill posed if the identifying mapping is discontinuous in a 

way that prevents consistent estimation of the parameter of interest by replacing the population 

distribution of the data with a consistent sample analog.  The problem is called an ill-posed 

inverse problem if the discontinuous identifying mapping is obtained by inverting another 

mapping that is continuous.  The concept of ill-posedness is usually attributed to Hadamard 

(1923), who called a problem well-posed if it has a unique solution that depends continuously on 

the available data.  An ill-posed problem is one that is not well-posed.  This concept can be 

formalized (e.g., Kress (1999, Definition 15.1)), but formalization is not needed for the 

discussion in this paper.  In the context of this paper, the uniqueness condition for well-

posedness is equivalent to identification of the parameter of interest.  The continuity condition 

means that replacing the population distribution of the data with a consistent sample analog in 

the identifying mapping yields a consistent estimator of the parameter.  The concept of ill-
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posedness differs from non-robustness (Huber 1981).  Non-robustness refers to a situation in 

which the population distribution of the data differs from the one assumed in a model.  Ill-

posedness refers to a type of estimation problem that arises in a correct model. 

This paper shows how ill-posed inverse problems arise, explains how estimation and 

inference can be carried out in ill-posed settings, and explains why estimation in these settings is 

important in economics.  The paper focusses on three examples that illustrate the issues and 

methods associated with ill-posed inverse problems.  These are nonparametric estimation of a 

probability density function, deconvolution density estimation, and nonparametric IV estimation.  

 The remainder of the paper is organized as follows.  Section 2 provides examples of 

continuous and discontinuous identifying mappings.  These illustrate how discontinuity can arise 

in problems that are important in economics.  Section 2 also explains why discontinuity causes 

problems for estimation and inference.  Section 3 presents examples of ill-posed inverse 

problems in mathematics, statistics, and engineering.  The econometrics literature on ill-posed 

inverse problems builds on research in these fields, some of which is over 100 years old and very 

important in modern medicine and image processing.  Section 4 treats regularization and 

estimation of models that present ill-posed inverse problems.  The term “regularization” refers to 

methods for removing the discontinuity in the identifying mapping in order to facilitate 

estimation.  Different models and estimation problems require different regularization methods 

depending, especially, on the source of discontinuity in the identifying mapping.  Section 4 

discusses regularization and estimation of the models described in Section 2.  Section 5 discusses 

confidence intervals and hypothesis tests based on these models.  Section 6 presents an empirical 

example that illustrates estimation in an ill-posed setting in economics.  Section 7 presents 

concluding comments.  Section 8 is an appendix that presents technical material that is not 
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essential for understanding the main ideas of the paper.  Unless otherwise stated, it is assumed 

throughout this paper that all random variables are continuously distributed. 

2.  MOTIVATING EXAMPLES 

 This section provides examples that illustrate the difference between continuous and 

discontinuous identifying mappings and how a discontinuous mapping can arise in settings that 

are important in economics.  The examples help to motivate the discussion in Sections 4 and 5 of 

estimation and inference in ill-posed problems.   

2.1.  Examples of Continuous and Discontinuous Identifying Relations   

The first example of a continuous mapping is the identifying relation of the familiar 

linear mean-regression model.  The model is 

(1) ; ( | ) 0Y X U E U Xβ= + = , 

where Y  is the scalar-valued dependent variable, X  is a 1 p×  vector of explanatory variables, 

U  is an unobserved, scalar random variable, and β  is a 1p×  vector of constants.  Let jX  

denote the j ’th component of X .  Assume that 2( )E Y M≤  and 2( )jE X M≤  for each 

1,...,j p=  and some constant M < ∞ .  Equation (1) implies that 

(2) ( ) [ ( )]E X Y E X X β′ ′= . 

Inversion of (2) yields the relation 

(3) 1[ ( )] ( )E X X E X Yβ −′ ′= . 

Equation (3) determines β  uniquely if ( )E X X′  is a non-singular matrix.  Thus, (3) identifies β . 

Moreover β  is a continuous function of ( )E X X′ , ( )E X Y′ , and the probability distribution of 

( , )Y X .  Small changes in these quantities cause only small changes in β . 
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 Another example of a continuous mapping is obtained by allowing X  to be endogenous 

but assuming that an instrumental variable Z  is available.  Model (1) then becomes 

(4) ; ( | ) 0Y X U E U Zβ= + = , 

where Z  is a 1 q×  vector and q p≥ .  As before, assume that 2( )E Y M≤  and 2( )jE X M≤  for 

some constant M < ∞ .  Also assume that each component jZ  of Z  satisfies 2( )jE Z M≤ .  

Equation (4) implies that 

 ( ) [ ( )]E Z Y E Z X β′ ′=  

and, therefore,  

(5) 1 1( )[ ( )] ( ) ( )[ ( )] [ ( )]E X Z E Z Z E Z Y E X Z E Z Z E Z X β− −′ ′ ′ ′ ′ ′=  

Inversion of (5) yields 

(6) 1 1 1{ ( )[ ( )] ( )} ( )[ ( )] ( )E X Z E Z Z E Z X E X Z E Z Z E Z Yβ − − −′ ′ ′ ′ ′ ′= . 

The parameter β  is uniquely determined if the inverse matrices on the right-hand side of (6) 

exist.  Thus, (6) identifies β  in model (4).  Moreover, β  is a continuous function of the 

moments and the probability distributions of the random variables on the right-hand side of (6).   

 Now consider estimation of β  in models (1) and (4).  Suppose the data available for 

estimating β  in (1) are a random sample from the probability distribution of ( , )Y X .  Then β  in 

(1) can be estimated by replacing the unknown population expectations in (3) with sample 

averages.  This is equivalent to replacing the unknown distribution of ( , )Y X  with the empirical 

distribution of the data.  Denote the data by { , : 1,..., }i iY X i n= .  Define the sample averages 

 1

1

n

XY i i
i

m n X Y−

=

′= ∑  

and 
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 1

1

n

XX i i
i

m n X X−

=

′= ∑ . 

Then β  in model (1) is estimated by replacing ( )E X Y′  with XYm  and ( )E X X′  with XXm  in (3) 

to obtain the ordinary least squares estimator 

 1ˆ
LS XX XYm mβ −= . 

Now suppose the data for estimating β  in (4) are a random sample from the probability 

distribution of ( , , )Y X Z .  Then β  in model (4) can be estimated by replacing the unknown 

population expectations in (6) with sample averages.  Denote the data by { , , : 1,..., }i i iY X Z i n= .  

Define the sample averages 

1

1

n

ZY i i
i

m n Z Y−

=

′= ∑ , 

 1

1

n

ZZ i i
i

m n Z Z−

=

′= ∑  

and 

 1

1

n

ZX i i
i

m n Z X−

=

′= ∑ . 

Then replacing ( )E X Z′ , ( )E Z Z′ , and ( )E Z Y′ , respectively, with XZm , ZZm , and ZYm  in (6) 

yields the two-stage least squares estimator 

 1 1 1ˆ ( )IV XZ ZZ XZ XZ ZZ ZYm m m m m mβ − − −′ ′= . 

 The estimators ˆ
LSβ  and ˆ

IVβ  are consistent for β  in their respective models.  This is 

because (1) the sample averages entering ˆ
LSβ  and ˆ

IVβ  are consistent for their corresponding 

population moments and (2) the identifying relations (3) and (6) are continuous functions of the 
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population expectations on their right-hand sides.  Consistency of the sample averages implies 

that they are arbitrarily close to the corresponding population moments when n  is sufficiently 

large.  Consistency combined with continuity of (3) and (6) implies that ˆ
LSβ  and ˆ

IVβ  are 

arbitrarily close to β  when n  is sufficiently large.   

As was discussed in Section 1, however, there are important settings in which the relation 

that identifies a parameter is discontinuous.  Discontinuous identifying relations often arise when 

the parameter of interest is a function, rather than a finite-dimensional quantity.  An example is 

the relation that identifies the probability density function of a scalar, continuously distributed 

random variable in terms of that variable’s cumulative distribution function.  The relation is 

(7) ( )( ) dF xf x
dx

= , 

where f  is the probability density function and F  is the cumulative distribution function.  The 

mapping (7) from F  to f  is discontinuous.  Equation (7) is the inverse of 

(8) ( ) ( ) ( )F x I v x f v dv
∞

−∞
= ≤∫ , 

where ( )I ⋅  is the indicator function.  Equation (8) is a continuous mapping, but (7) is not.  In (8), 

small changes in f  can induce only small changes in F , but the converse is not true.  

Arbitrarily small changes in F  can induce large changes in f .  To see this, suppose that 

( )f x a≤  for some a < ∞ .  Then F  can be approximated arbitrarily well uniformly in x  by a 

step function.  Given any 0ε > , there is a step function, StepF , such that 

(9) sup | ( ) ( ) |Step
x

F x F x ε
−∞< <∞

− < . 

Define 

 ( ) ( ) /Step Stepf x dF x dx= . 
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Then ( )Stepf x = ∞  at jumps of StepF , and ( ) 0Stepf x =  elsewhere.  Therefore, | ( ) ( ) |Stepf x f x−  

can be arbitrarily large, even if | ( ) ( ) |StepF x F x−  is arbitrarily small.  Accordingly, estimation of 

f  in (7) (nonparametric density estimation) is an ill-posed inverse problem.  The probability 

density function f  cannot be estimated consistently by replacing F  on the right-hand side of (7) 

by the empirical distribution function 

 1

1
( ) ( )

n

n i
i

F x n I X x−

=

= ≤∑ . 

Although nF  is a uniformly consistent estimator of F , it is a step function.  Its derivative is 

always 0 or ∞  and never approaches ( )f x  when 0 ( )f x< < ∞ , regardless of how large n  is. 

 Deconvolution provides a second example of an ill-posed inverse problem that is 

important in economics.  The source of the problem is illustrated by a simple, idealized model of 

measurement error.  More realistic versions of deconvolution are described by Horowitz and 

Markatou 2006); Delaigle, Hall, and Meister (2008); Johannes (2009); Li (2002); Li, Perrigne, 

and Vuong (2000); Schennach (2004a, 2004b); and Linton and Whang (2002), among many 

others.  Suppose one wants to know the distribution of a continuously distributed random 

variable X  that is measured with error.  X  is not observed.  Rather, one observes the random 

variable Y  that is related to X  by 

(10) ; ~ (0,1)Y X Nε ε= + . 

The data, { : 1,..., }iY i n=  are a random sample of Y .  Let Yf  and Xf , respectively, denote the 

probability density functions of Y  and X .  Let φ  denote the standard normal probability density 

function.  Then Yf  is identified by the sampling process, can be estimated by nonparametric 

density estimation, and is related to Xf , the density of interest, by 
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(11) ( ) ( ) ( )Y Xf y f v y v dvφ
∞

−∞
= −∫ . 

Thus, Yf  is the convolution of Xf  and φ .  The density Xf  is identified as the solution to the 

integral equation (11) (thus, the term “deconvolution”).  The solution to (11) and the mapping 

that identifies Xf  is 

(12) 
2 /21( ) ( )

2
itx t

X Yf x e h t dt
π

∞ − +
−∞

= ∫ , 

where Yh  is the characteristic function of the distribution of Y .  The mapping (11) from Xf  to 

Yf  is continuous, but the inverse mapping (12) is not.  To see why, define 

 ( ) (1 ) ( ) ( )Y Y Cf y f y f yδ δ= − + , 

where Cf  is the standard Cauchy density function and δ  is a constant satisfying 0 1δ< <  .  

Then sup | ( ) ( ) |y Y Yf y f y−∞< <∞ −   can be made arbitrarily small by making δ  sufficiently small.  

The characteristic function of the standard Cauchy distribution is | |( ) t
Ch t e−= .  Therefore, 

 

2

2

/2 | |

/2 | |

1( ) [(1 ) ( ) ]
2

(1 ) ( )
2

itx t t
X Y

itx t t
X

f x e h t e dt

f x e dt

δ δ
π

δδ
π

∞ − + −
−∞

∞ − + −
−∞

= − +

= − + = ∞

∫

∫



 

for every x .  Thus, the difference between Xf  and Xf  can be infinite, athough the difference 

between Yf  and Yf  may be is arbitrarily small.  Accordingly, estimation of Xf  in (10) is an ill-

posed inverse problem. 

 Nonparametric IV estimation, which has received much recent attention in econometrics, 

is a third example of an ill-posed inverse problem.  The model for nonparametric IV estimation 

is 
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(13) ( ) ; ( | ) 0Y g X U E U Z z= + = = . 

In this model, X  is a possibly endogenous, continuously distributed explanatory variable, Z  is a 

continuously distributed instrument for X , and U  is an unobserved random variable.  The 

objective is to estimate the function g , which is assumed to satisfy mild regularity conditions 

but is otherwise unknown.  The data are a random sample { , , : 1,..., }i i iY X Z i n=  from the 

distribution of ( , , )Y X Z .  The main issues involved in nonparametric IV estimation can be 

explained most simply by assuming that X  and Z  are scalars, and this assumption is made 

throughout this paper.   

 A quantile version of model (13) can be obtained by replacing ( | )E U Z z=  in (13) with 

the conditional quantile restriction ( 0 | )P U Z z q≤ = =  for some q  satisfying 0 1q< < .  Under 

appropriate conditions, ( )g X U+  in (13) can be replaced by the nonseparable function ( , )g X U .  

Quantile nonparametric IV estimation is discussed in detail by Horowitz and Lee (2007) and 

Chen and Pouzo (2012).  It is not discussed further in this paper. 

 To see why nonparametric IV estimation presents an ill-posed inverse problem, let XZf  

and Zf , respectively, denote the probability density functions of ( , )X Z  and Z .  Let |X Zf  

denote the probability density function of X  conditional on Z .  Assume that the support of 

( , )X Z  is 2[0,1] .  There is no loss of generality in this assumption because it can always be 

satisfied by, if necessary, replacing X  and Z  with ( )XΦ  and ( )ZΦ , respectively, where Φ  is 

the standard normal distribution function.  Model (13) implies that 
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1
|0

1

0

(14) ( | ) [ ( ) | ]

( ) ( , )

( , )( ) .
( )

X Z

XZ

Z

E Y Z z E g X Z z

g x f x z dx

f x zg x dx
f z

= = =

=

=

∫

∫

 

Define ( ) ( | ) ( )Zr z E Y Z z f z= = .  It follows from (14) that 

(15) 
1

0
( ) ( ) ( , )XZr z g x f x z dx= ∫ . 

Equation (15) shows that g  is the solution to an integral equation.  The integral equation is 

called a Fredholm equation of the first kind in honor of the Swedish mathematician Erik Ivar 

Fredholm.   

 The mapping (15) from g  to r  is continuous if YZf  is bounded.  That is, small changes 

in g  produce small changes in r .  However, the inverse mapping from r  to g  is discontinuous, 

and estimation of g  in (13) is an ill-posed inverse problem.  This is illustrated by an example in 

the appendix.  Although the example is a special case, the discontinuity that it illustrates holds 

whenever XZf  is square-integrable on 2[0,1] .   

2.2.  The Control Function Model 

The control function model is a flexible alternative to (13) and the nonparametric IV 

approach to estimating a model with an endogenous explanatory variable.  The identifying 

relation in the control function model is continuous.  The control function model and its relation 

to nonparametric IV estimation are discussed in this section. 

In the control function model, endogeneity is treated as an omitted variables problem.  

The assumptions of the model permit identification of a control function or variable whose 
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inclusion in the model removes endogeneity.  Blundell and Powell (2003) provide a general 

description of the control function model.  Here, we describe the use of a control function to 

achieve identification in a model that is similar to the nonparametric IV model (13).  Newey, 

Powell, and Vella (1999) present the details of the argument and explain how to estimate the 

model.   

The model is 

(16) ( )Y g X U= +  

and 

(17) ( )X r Z V= + , 

where g  and r  are unknown functions, 

(18) ( | ) 0E V Z z= =  

for all z , and 

(19) ( | , ) ( | )E U X x V v E U V v= = = =  

for all x  and v .  If the mean of X  conditional on Z  exists, (17) and (18) can always be made to 

hold by setting ( ) ( | )r z E X Z z= = .  Identification in the control function model comes from 

(19).  It follows from (16) and (19) that 

 
( | , ) ( ) ( | )

( ) ( ),

E Y X x V v g x E U V v

g x h v

= = = + =

= +
 

where ( ) ( | )h v E U V v= =  and ( )V X r Z= − .  Therefore, g  is identified by the relation 

 ( ) ( | , ) ( )g x E Y X x V v h v= = = − . 

The mapping from the conditional expectations on the right-hand side of this relation to g  is 

continuous, so the control function model does not present an ill-posed inverse problem. 
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 Model (13) for nonparametric IV estimation and the control function model (16)-(19) are 

non-nested, so the two models are not substitutes for one another.  It is possible for 

( | ) 0E U Z z= =  to hold but not ( | , ) ( | )E U X x V v E U V v= = = =  and vice-versa.  Therefore, 

neither model is more general than the other.  It is possible to test the hypothesis that there is a 

random variable U  such that ( | , ) ( | )E U X x V v E U V v= = = =  in the control function model 

and the hypothesis that there is a (possibly different) U  satisfying ( | ) 0E U Z z= =  in the 

nonparametric IV model (Horowitz 2012a).  However, it is not possible to determine whether 

one model fits the available data better than the other if both hypotheses are true.  The control 

function model is not discussed further in this paper. 

3.  EXAMPLES FROM OTHER FIELDS 

 This section presents two examples of settings from fields other than economics in which 

ill-posed inverse problems arise.  These settings illustrate the wide occurrence of ill-posed 

problems and their long history in mathematics and related fields.  The examples also illustrate 

similarities and an important difference between ill-posed problems in economics and many 

other fields. 

3.1 Computerized Tomography and the Radon Transformation 

 Computerized tomography presents an ill-posed inverse problem that has been studied 

extensively because of its importance to modern medicine.  In computerized tomography, a cross 

section of the human body is scanned by a thin X-ray beam that moves across or in a half circle 

around the body.  The intensity of the beam upon entering the cross section is known.  The 

intensity upon exit is recorded as a function of the line the beam traverses.  The objective is to 
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recover the X-ray absorptivity or density of the body as a function of location in the cross 

section. 

 To formulate the tomography problem mathematically, let L  denote a line through the 

cross section of the body, and let x  denote a point in the cross section.  Let ( , )f x L  denote the 

X-ray absorptivity at point x  along line L .  Let ( , )I x L  denote the intensity of the beam at point 

x  along line L  and 0 (0, )I I L=  denote the intensity of the entering beam.  The reduction in 

intensity at point x  on line L  is 

 ( , ) ( , ) ( , )dI x L I x L f x L dx= − . 

Therefore, holding L  fixed, 

(20) 1 ( , ) ( , )
( , )

dI x L f x L
I x L dx

= − . 

Let ( )eI L  denote the intensity of the beam that exits along line L .  ( )eI L  is the solution to the 

differential equation (20) with the initial condition 0(0, )I L I= .  Therefore, 

 0( ) exp ( , ) .e L
I L I f x L dx = −  ∫  

Equivalently, 

(21) 
0

( )( ) log ( , )e
L

I LJ L f x L dx
I

 
≡ = − 

 
∫ . 

The integral on the right-hand side of (21) is called the Radon transform of ( , )f x L  in honor of 

the Austrian mathematician Johann Radon, who studied it in the early 20th century.  Hoderlein, 

Klemelä, and Mammen (2010) and Gautier and Kitamura (2013) present applications of the 

Radon transformation and its higher dimensional extensions to econometric models with random 

coefficients. 
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 In computerized tomography, ( )J L  is observed for some set of lines L , so recovering 

( , )f x L  amounts to reconstructing a function from its line integrals or, equivalently, inverting 

the Radon transformation.  Radon (1917) derived an analytic expression for the inverse 

transformation.  To state it and see why the Radon transformation presents an ill-posed inverse 

problem, let 1 2( , )x x x ′=  and 1 2( , )θ θ θ=  be vectors in two-dimensional space with 

2 2 2
1 2 1θ θ θ≡ + = .  Then each line L  can be written as { : }x x sθ ′ =  for some real s  in a set 

( )S θ  that, in the case of computerized tomography, is determined by the geometry of the cross 

section being examined.  Equation (21) can be written as 

 ( ) ( , ) ( )
x s

J L g s f x dx
θ

θ
′ =

= = ∫ , 

where, now, ( )f x  denotes the X-ray absorptivity at the vector point x .  Equivalently, 

(22) ( , ) ( ) ( )g s x s f x dxθ δ θ ′= −∫ , 

where δ  is the Dirac delta function.  Radon (1917) showed that if the ranges of s  and θ  are 

sufficiently large, then 

(23) 2 1 ( )

( , )1( )
4

s
S

g sf x dsd
x sθ θ

θ
θ

θπ =
=

′ −∫ ∫ , 

where ( , ) ( , ) /sg s dg s dsθ θ= .  Natterer (1986, Section II.2) and Natterer and Wübbeling (2001, 

Section 2.1) provide derivations of (23).   

 Equation (23) is a mapping that identifies the absorptivity ( )f x  in terms of the observed 

quantity ( , )g sθ .  However, (23) is discontinuous, because the integrand on the right-hand side 

of (23) involves the derivative sg .  For reasons explained in connection with nonparametric 

density estimation in Section 2.1, an arbitrarily small change in ( , )g sθ  can produce a large 
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change in ( , )sg sθ  and, therefore, in the integral on the right-hand side of (23).  For example, if 

( , )sg sθ  is a smooth function of s  at each θ , it can be approximated arbitrarily well at each θ  

by a step function of s .  The derivative of a step function is zero almost everywhere, so the 

resulting approximation of ( )f x  is zero, although the true ( )f x  may be very different from 

zero. 

 In practice, g  may not be observed on a continuum of θ  and s  values, and the inverse of 

the Radon transformation must be found numerically.  Therefore, in practice, the true g  is 

replaced by an approximation.  The “data” in (22)-(23) are observations or numerical 

approximations to g  at a possibly discrete set of values of θ  and s .  Because the Radon 

transformation is discontinuous, its inverse is not necessarily close to the true f  even g  is 

observed on a very fine grid of s  and θ  values and the approximation to g  is very accurate. 

3.2  Restoration of a Distorted and Noisy Image 

 Restoration of a distorted and noisy image presents an ill-posed inverse problem that is 

closely related to nonparametric IV estimation.  Systematic distortion of an image can occur, for 

example, if the receiver of the image is faulty (e.g., the original mirror of the Hubble space 

telescope or a camera that is out of focus) or if the signal carrying the image passes through a 

refractive medium such as the earth’s atmosphere.  An image becomes noisy if, for example, 

random noise is generated in the receiver.  Image restoration has received much attention in 

mathematics, statistics, and engineering due to its importance in modern astronomy, 

communications, and medicine, among other fields.  Chalmond (2003, Ch. 1) provides many 

examples of problems in image restoration or transformation.  This section provides one brief 

example.  
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 Let the intensity (or darkness) of a two-dimensional image at the point x  be given by the 

function ( ).g x   Suppose that g  is not observed.  Instead, the distorted, noisy image ( )Y ⋅ , is 

observed.  A model for relating g  to Y  is 

(24) ( ) ( , ) ( )Y z f z x g x dx ε= +∫ , 

where ( )Y z  is the distorted, noisy image at the point z  and ε  is an unobserved random variable 

satisfying ( | ) 0E zε = .  The first term on the right-hand side of (24) represents systematic 

distortion of the image.  The function f  depends on the distortion mechanism (e.g., passage of 

light through a refractive medium).  The second term on the right-hand side of (24) represents 

random noise in the image.  Taking expectations conditional on z  on both sides of (24) yields 

(25) ( ) ( ) ( , ) ( )EY z r z f z x g x dx≡ = ∫ . 

Equation (25) is similar to (15), which is the identifying mapping for nonparametric IV 

estimation.  As in nonparametric IV estimation, the inverse of the mapping (25) is discontinuous, 

so (25) presents an ill-posed inverse problem.   

The most obvious difference between (15) and (25) is that XZf  in (15) is a probability 

density function, whereas f  in (25) is not necessarily a probability density function.  A more 

important difference between image restoration and nonparametric IV estimation is that the 

function f  in image restoration is often known (e.g., through knowledge of the distortion 

mechanism), whereas the density XZf  in nonparametric IV estimation is unknown.  Similarly, 

the function that takes the place of f  in the Radon transformation, ( )x sδ θ ′ −  in (22), is known.  

The fact that XYf  is unknown in nonparametric IV estimation does not affect identification or 

the existence of an ill-posed inverse problem, but it makes estimation of g  in the nonparametric 
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IV model different from estimation in tomography and image restoration. Estimation is discussed 

in Section 4. 

4.  REGULARIZATION AND ESTIMATION OF MODELS WITH ILL-POSED INVERSES  

 Estimation of a model with a discontinuous identifying mapping begins by modifying the 

mapping to remove the discontinuity.  This is called “regularization.”  Estimation is then carried 

out by replacing unknown population parameters in the modified mapping with consistent 

sample analogs.  Modification of the identifying mapping changes the population parameter that 

is identified.  To ensure identification and estimation of the correct parameter, the amount of 

modification decreases to zero as the sample size increases.  The methods used for regularization 

and their consequences for estimation accuracy depend on the model under consideration.  This 

section discusses regularization and estimation of the models described in Section 2.   

The discussion here aims at presenting methods for regularization and estimation in as 

straightforward and intuitive a way as possible.  Accordingly, the methods are not presented in 

full generality, and many technical details are omitted.  Generalizations and technical details are 

available in the references that are cited. 

4.1  Nonparametric Density Estimation 

 This section discusses regularization for estimation of the probability density function 

Xf  of the continuously distributed random variable X .   

As was explained in Section 2, the identifying relation (7) is discontinuous because there 

are step functions and, more generally, functions whose derivatives are very different from f , 

that are arbitrarily close to F .  This problem can be overcome by smoothing (7) so that it 
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becomes a continuous relation.  To do this, let K  denote a probability density function that is 

supported on [ 1,1]− , bounded, symmetrical around 0, and non-zero on ( 1,1)− .  One possibility is 

 2 2( ) (15 /16)(1 ) (| | 1)K v v I v= − ≤ , 

but there are many others.  K  is called a kernel function.  The smoothed or regularized version 

of (7) is 

(26) 
1

1

1( , ) ( )X
xf x h K dF

h h
ξ ξ

−

− =  
 ∫ , 

where 0h >  is a constant called a bandwidth.  It follows from the Helly-Bray theorem of 

integration theory (see, e.g., Rao 1973, p. 117) that (26) is a continuous mapping from F  to Xf .  

Therefore, a consistent estimator of Xf  can be obtained by replacing F  on the right-hand side 

of (26) with the empirical distribution function nF .  The resulting estimator, ˆ
Xf , is the kernel 

nonparametric density estimator 

1

1

1

1ˆ ( , ) ( )

1 ,

X n

n
i

i

xf x h K dF
h h

x XK
nh h

ξ ξ
−

=

− =  
 

− =  
 

∫

∑

 

where the data, { : 1,..., }iX i n= , are a random sample of X . 

 The strong law of large numbers implies that ˆ ( , )Xf x h  is a consistent estimator of 

( , )Xf x h  for each ( , )x ∈ −∞ ∞  and 0h > .  Indeed, it can be shown that ˆ ( , )Xf h⋅  estimates 

( , )Xf h⋅  consistently uniformly over ( , )x ∈ −∞ ∞ .  However, ( , ) ( )X Xf h f⋅ ≠ ⋅  for any fixed 

0h > .  Rather, ( , )Xf h⋅  is the probability density function of the random variable X hε+ , where 

ε  is a random variable whose probability density function is K .  Thus, regularization distorts 
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the identifying mapping and prevents consistent estimation of Xf  if h  is held constant.  A 

consistent estimator of Xf , can be obtained by letting 0h →  as n → ∞ .  In other words, the 

amount of regularization or modification of (7) decreases to zero as n  increases.  The rate at 

which h  decreases must not be too fast.  Otherwise, there is not enough regularization to 

overcome the discontinuity of (7).  It can be shown that if Xf  is uniformly continuous, 0h → , 

and / lognh n → ∞ , then 

 ˆlim sup | ( , ) ( ) | 0X Xn x
f x h f x

→∞ −∞< <∞
− →  

with probability 1.  See, for example, Silverman (1978).  Thus, with the proper amount of 

regularization, the regularized estimator of Xf  is uniformly consistent.   

 There is a large literature on the properties of kernel nonparametric density estimators, 

methods for estimating the densities of random vectors, and methods for choosing h  in 

applications.  Silverman (1986) provides a broad discussion of the topic.  Härdle and Linton 

(1994) provide a variety of technical details.  They also discuss a regularization method that is 

different from the one presented here and leads to a kernel estimator that is different from 

ˆ ( , )Xf x h . 

 An important characteristic of ˆ
Xf  that is shared by all estimators in ill-posed inverse 

problems (not only estimators of probability density functions) is slow convergence in 

probability of the estimator to the identified function.  This is unavoidable, regardless of the 

method of regularization or the function being estimated, although the precise rate of 

convergence depends on the details of the estimation problem.  In practice, slow convergence in 

probability of an estimator implies that the estimator may be imprecise.   
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The rate of convergence in probability of any nonparametric density estimator, including 

the kernel estimator ˆ ( , )Xf x h , depends on the smoothness of the target density, Xf , as measured 

by the number of derivatives that it has.  When Xf  has two continuous derivatives, the fastest 

possible rate of convergence is 2/5n−  (Stone 1982).  In contrast, estimators such as ˆ
LSβ  and ˆ

IVβ  

that are based on continuous identifying mappings typically converge in probability at the rate 

1/2n− .  The rate of convergence of a nonparametric density estimator can approach but never 

achieve 1/2n−  if Xf  has more than two derivatives, but the resulting estimator can behave poorly 

with samples of practical size.   

4.2  Deconvolution 

 This section discusses regularization for estimation of the probability density function 

Xf  in the deconvolution model (10).  The mapping (12) that identifies Xf  is discontinuous 

because the integrand on the right-hand side of (12) may be unbounded as t → ±∞ .  This 

problem can be overcome by modifying (12) so that integration is over the finite interval [ , ]c c−  

for some finite 0c > .  The modified identifying relation is 

(27) 
2 /21( , ) ( )

2
c itx t

X Yc
f x c e h t dt

π
− +

−
= ∫ , 

where ( , )Xf x c  is defined as the quantity on the right-hand side of (27).  The mapping (27) is 

continuous in the sense that arbitrarily small changes in Yh  produce arbitrarily small changes in 

( , )Xf c⋅ .  A consistent estimator of Xf  can be obtained by replacing Yh  on the right-hand side 

of (27) with the empirical characteristic function of Y .  The empirical characteristic function is 
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 1

1

ˆ ( ) exp( )
n

Y j
j

h t n itY−

=

= ∑ . 

The resulting estimator of Xf  is 

 
2 /21ˆ ˆ( , ) ( )

2
c itx t

X Yc
f x c e h t dt

π
− +

−
= ∫ . 

 The function ˆ ( , )Xf c⋅  estimates ( , )Xf c⋅  consistently uniformly over ( , )x ∈ −∞ ∞ .  

However, ( , ) ( )X Xf c f⋅ ≠ ⋅  for any fixed 0c > .  Thus, as with nonparametric density estimation, 

regularization distorts the identifying mapping and prevents consistent estimation of Xf  if c  is 

held constant.  A consistent estimator of Xf , can be obtained by letting c → ∞  as n → ∞  so as 

to decrease the amount of regularization or modification of (12) as n  increases.  Delaigle and 

Gijbels (2004) describe methods for choosing the value of c  in applications. 

 The rate of convergence in probability of ˆ
Xf  to Xf  in deconvolution is determined by 

minimizing the sum of the variance of ˆ
Xf  and the square of the bias caused by truncating the 

range of the integral on the right-hand side of (12).  The variance increases and the bias 

decreases as c  increases.  The rate of convergence of ˆ
Xf  or any other estimator of Xf  is 

especially slow when ε  in (10) is normally distributed.  If Xf  has k  bounded derivatives, then 

the fastest possible rate of convergence when ~ (0,1)Nε  is /2(log ) kn −  (Carroll and Hall 1988).  

Slow convergence of ˆ
Xf  is an unavoidable consequence of the rapid rate at which the 

characteristic function of ε , ( )h tε , approaches 0 as | |t → ∞  when ~ (0,1)Nε .  Specifically, 

2( ) exp( / 2)h t tε ∝ − .  Faster convergence of ˆ
Xf  is possible if ( )h tε  converges to 0 more slowly 

as | |t → ∞ .  This happens if the probability density function of ε  has a limited number of 
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derivatives in a neighborhood of the origin (Carroll and Hall 1988, Fan 1991a).  For example, if 

ε  has the Laplace (double exponential) distribution, then ˆ
Xf  can converge to Xf  at the rate 

/(2 5)k kn− + .  This rate approaches the parametric rate of 1/2n−  if Xf  is sufficiently smooth in the 

sense of having sufficiently many bounded derivatives.  Thus, increased smoothness of the 

distribution of X  increases the achievable rate of convergence of ˆ
Xf , whereas increased 

smoothness of the distribution of ε  decreases the achievable rate of convergence of ˆ
Xf .  The 

practical consequence of slow convergence of ˆ
Xf  is that estimating Xf  in model (10) accurately 

may be impossible if the distribution of ε  is very smooth. 

 The relation between smoothness and the rate of convergence of an estimator carries over 

to nonparametric IV estimation of g  in model (13).  As will be discussed in Section 4.3, the 

achievable rate of convergence of an estimator of g  becomes faster as g  becomes smoother.  It 

becomes slower as XZf , the probability density function of ( , )X Z , becomes smoother.  If XZf  

is very smooth – for example if ( , )X Z  has a bivariate normal distribution – then the fastest 

possible rate of convergence of an estimator of g  is (log ) sn −  for some 0s >  that increases as g  

becomes smoother.  Thus, as in estimation of Xf  in model (10), accurate nonparametric IV 

estimation of g  may be impossible if the distribution if XZf  is very smooth.  

4.3  Nonparametric IV Estimation 

 This section discusses regularization and estimation of the function g  in model (13).  

There are several methods for regularizing (13).  The method discussed here is that of Horowitz 

(2011).  Similar regularization methods are presented by Blundell, Chen, and Kristensen (2007) 

and Newey (2013).  Other approaches to regularizing (13) are described by Darolles, Fan, 
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Florens, and Renault (2011); Carrasco, Florens, and Renault (2007); Hall and Horowitz (2005); 

and Newey and Powell (2003). 

 To explain the regularization method and derive the estimator of g , assume that ( , )X Z  

in (13) is supported on 2[0,1] .  As was explained in Section 2, there is no loss of generality in 

this assumption.  Let 2[0,1]L  denote the set of functions whose squares are integrable on [0,1] .  

That is 

 { }1 2
2 0
[0,1] : ( )L h h x dx= < ∞∫ . 

Define the norm h  of any function 2[0,1]h L∈  by 

 
1/21 2

0
( )h h x dx =   ∫ . 

For any functions 1 2 2, [0,1]h h L∈ , define the inner product 

 
1

1 2 1 20
, ( ) ( )h h h x h x dx= ∫ . 

Finally, define the operator A  on 2[0,1]L  by 

(28) 
1

0
( )( ) ( , ) ( )XZAh z f x z h x dx= ∫ . 

A  is the infinite-dimensional generalization of a square matrix.  The adjoint of A , denoted by 

*A , is defined by the relation  

*
2 1 2 1, ,A h h h Ah=  

for any 1 2 2, [0,1]h h L∈ .  *A  is the infinite-dimensional generalization of the transpose of a 

square matrix.  Assume that  
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(29) 
1 1 2
0 0

( , )XZf x z dxdz < ∞∫ ∫ . 

 Let { : 1,2,...}j jλ =  denote the eigenvalues of *A A .  That is, jλ  satisfies 

 *
jA Ah hλ=  

for some function h  such that 1h = .  Order the eigenvalues so that 1 2 , , , 0λ λ≥ ≥ > .  If *A A  is 

one-to-one and, therefore, invertible, 0jλ >  for all j .  However, if (29) holds, then 0 is a limit 

point of the eigenvalues of *A A .  That is, 0jλ →  as j → ∞ , and there are infinitely many jλ ’s 

within any arbitrarily small neighborhood of 0.  This is the source of the ill-posed inverse 

problem in nonparametric IV estimation and the consequent need for regularization of (13) to 

estimate g .   

Now write (15) as 

(30) r Ag= . 

Equation (30) is a system of infinitely many linear equations in infinitely many unknowns.  If A  

is one-to-one, then the solution to (30) is 

(31) 1g A r−= . 

Equivalently, 

(32) * 1 *( )g A A A r−= . 

Equations (31) and (32) are mappings from the distribution of ( , , )Y X Z  to g .  Therefore, they 

identify g .  If A  and *A A  were finite-dimensional, non-singular matrices, then g  could be 

estimated consistently by replacing the unknown population quantities A  and r  with consistent 

estimators.  However, this procedure does not work when A  is infinite dimensional.  As is 
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explained by Horowitz (2011), the fact that 0jλ →  as j → ∞  guarantees that (31) and (32) are 

discontinuous mappings of r  to g .  Roughly speaking, this is because A  and *A A  are “nearly 

singular” infinite-dimensional matrices.  This could not happen if A  and *A  were finite-

dimensional, because the eigenvalues of a non-singular finite-dimensional matrix are bounded 

away from zero.   

 This problem can be solved and regularization achieved by approximating A  by a finite-

dimensional matrix and r  by a function that is known up to a finite-dimensional parameter.  The 

approximations to A  and r  are constructed so that their approximation errors converge to zero 

in an appropriate sense as the dimension of the approximations increases.  The resulting 

regularized version of g  can be estimated consistently by using standard IV methods for linear 

models.  Of course, the regularized version of g  does not satisfy (13).  A consistent estimator of 

g  in (13) can be obtained by letting the dimensions of the finite-dimensional approximations to 

A  and r  increase as the sample size increases.  This procedure and the method for implementing 

it by using standard IV methods are described in detail in the appendix.   

 Let J  denote the dimension of the finite-dimensional approximations to A  and r .  

Specifically, the approximation to A  is a J J×  matrix, and the approximation to r  has J  

unknown parameters.  Denote the resulting estimator of g  by ˆJg .  A consistent estimator of g  

is obtained by letting J → ∞  as n → ∞ .  The optimal rate of increase of J  is obtained by 

minimizing the sum of the (asymptotic) variance of ˆJg  and the square of the bias caused by 

replacing A  and r  by finite-dimensional approximations.    The variance increases and the bias 

decreases as J  increases.  If g  has s  derivatives, XZf  has q < ∞  derivatives with respect to 

any combination of its arguments, and certain other regularity conditions hold, the variance is of 
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order 2 1 /qJ n+  (Horowitz 2012b).  Minimizing the sum of the squared bias plus the variance 

yields 1/(2 2 1)[ ]s qJ O n + +=  and 

 /(2 2 1)ˆ [ ]s s q
J pg g O n− + +− = . 

Chen and Reiss (2007) show that /(2 2 1)s s qn− + +  is the fastest possible rate of convergence in 

probability that is achievable uniformly over functions g  and XZf  satisfying reasonable 

regularity conditions.  The rate of convergence of ˆJg  to g  becomes faster as g  becomes 

smoother ( s  increases) and slower as XZf  becomes smoother ( q  increases).   

The rate of convergence of ˆJg  to g  is even slower if XZf  has infinitely many 

derivatives.  For example, if XZf  is the bivariate normal density (or the density a smooth 

monotone transformation of bivariate normals to the unit square), the size of the optimal J  is 

(log )O n , and the rate of convergence of ˆJg g−  is [(log ) ]s
pO n − .  When XZf  is very smooth, 

the data contain little information about g  in (13).  Unless g  is restricted in other ways, such as 

assuming that it belongs to a low-dimensional parametric family of functions, a very large 

sample may be needed to estimate g  accurately when XZf  is very smooth. 

The foregoing discussion shows the importance of choosing J  well in nonparametric IV 

estimation.  Indeed, as is explained in Section 4.4, the dependence of J  on the sample is the 

main difference between parametric and nonparametric estimation of g .  The choice of J  in 

applications is a difficult topic on which research has only recently begun.  Newey (2013) and 

Horowitz and Lee (2012) describe heuristic methods for choosing J .  Horowitz (2012b) 

describes a mathematically rigorous way to choose J  by minimizing a sample analog of the 

asymptotic expectation of 2ˆJg g− .   
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The operator A  in (30) must be one-to-one to ensure identification of g  in model (13).  

This requirement is often called the completeness condition of nonparametric IV estimation and 

is the nonparametric analog of the rank condition of parametric IV estimation.  If A  is not one-

to-one, then (30) is satisfied by two or more different functions g , so g  is not identified.  The 

rank condition of parametric estimation can be tested empirically.  In contrast, the condition that 

A  is one-to-one in nonparametric IV estimation cannot be tested (Canay, Santos, and Shaikh 

2013).  The condition that A  is one-to-one requires the eigenvalues of *A A  to exceed zero.  

However, as was discussed in the paragraph following (30), there are infinitely many 

eigenvalues in any arbitrarily small neighborhood of zero.  With a finite sample, regardless of 

how large that sample is, random sampling error makes it impossible to distinguish between 

eigenvalues that are very close to zero and eigenvalues that are equal to zero.  Therefore, with a 

finite sample, it is not possible to distinguish empirically between an operator A  for which all 

the eigenvalues of *A A  are strictly positive and an operator for which some eigenvalues of *A A  

equal zero. 

Now let Jg  denote the function that is obtained by replacing A  and r  in (31) by their 

finite-dimensional approximations.  The inability to test whether A  is one-to-one in applications 

and the resulting possibility that g  in (13) is not identified does not prevent point estimation of 

Jg  for a fixed J  using the method described in this section.  If the J J×  matrix approximating 

A  is non-singular, then ˆJg  is a consistent estimator of Jg .  Moreover, for each J , the vector 

1/2 1/2
1 1ˆ ˆ[ ( ),..., ( )]J Jn g g n g g ′− −   is asymptotically multivariate normally distributed with a mean 

of 0.  Therefore, inference about Jg  can be carried out using the standard methods of parametric 
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IV estimation.  Santos (2012) describes some ways to do inference about g  when A  is not one-

to-one.  This is an important topic for future research.   

4.4  The Difference between Parametric and Nonparametric IV Estimation 

 The estimator ˆJg  described in Section 4.3 is a standard IV estimator for the parametric 

model 

 
1

( ) ; ( | ) 0
J

j j
j

Y g X U E U Zψ
=

= + =∑ , 

where the functions { : 1,2,...}j jψ =  are an orthonormal basis for 2[0,1]L .  The jg ’s are the 

unknown parameters in this model.  As is explained in the appendix, they can be estimated 

consistently by using standard IV methods for linear models.  Therefore, it is reasonable to ask 

whether there is any practical difference between parametric and nonparametric IV estimation.  

The answer is “yes.”  Except in special cases, parametric and nonparametric methods give 

different estimates of g , confidence intervals, and outcomes of hypothesis tests.  As is discussed 

in Horowitz (2011) and Newey (2013), the reason for this is that parametric estimation treats the 

model as fixed and exact, whereas nonparametric estimation treats it as an approximation that 

depends on the size of the sample.  Specifically, in nonparametric estimation, J  or the “size” of 

the model is larger with large samples than with small ones.  In contrast, J  is fixed in parametric 

estimation.  This makes estimates of g  based on parametric and nonparametric methods 

different unless the value of J  used for parametric estimation happens to coincide with the 

appropriate value for nonparametric estimation.  Moreover, because parametric estimation 

assumes a fixed model that does not depend on the sample size, parametric methods typically 
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indicate that the estimates are more precise than they really are.  Consequently, conclusions that 

are supported by a parametric estimator may not be supported by a nonparametric estimator.  

5.  INFERENCE 

 This section discusses methods for forming confidence regions and testing hypotheses in 

ill-posed inverse problems.  There are important differences between inference in parametric and 

nonparametric models, including the nonparametric models that give rise to ill-posed inverse 

problems.  One difference concerns the relation between optimal point estimators and confidence 

regions.  In a finite-dimensional parametric model, an asymptotically optimal (or, equivalently, 

efficient), asymptotically normal estimator of a parameter can be used to form an asymptotic 

confidence interval for the parameter.  However, this does not happen in nonparametric 

estimation because of the phenomenon of “asymptotic bias.”  In nonparametric estimation, 

forming confidence intervals and optimal point estimation are separate tasks.  A second 

difference between parametric and nonparametric models concerns the relation between 

confidence regions and hypothesis tests.  In a finite-dimensional parametric model, a hypothesis 

about the parameter of interest can be accepted or rejected according to whether the hypothesized 

value is contained in a confidence region for the parameter.  Conversely, a confidence region can 

be obtained by inverting a statistic for testing a hypothesis.  This duality between confidence 

regions and hypothesis tests does not hold in nonparametric models, including models that 

present ill-posed inverse problems.  A hypothesis test can often be made “more precise” than a 

confidence region, and useful confidence regions cannot necessarily be obtained by inverting test 

statistics.  Consequently, forming confidence regions and testing hypotheses in nonparametric 

models are distinct tasks.   
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5.1  Confidence Regions 

The estimator of a parameter of a finite-dimensional parametric model usually has a normal 

asymptotic distribution that is centered at the true parameter value.  Specifically, if θ̂  is an 

estimator of a scalar parameter whose true value is 0θ , then  

 1/2
0

ˆ( ) / (0,1)dn s Nθθ θ− → ,  

where sθ  is a standard error.  It follows from this result that as n → ∞ , 

 1/2
0

ˆ[ ( ) / ] ( ) ( ) 2 ( ) 1P z n s z z z zθθ θ− < − ≤ → Φ − Φ − = Φ − , 

for any z , where Φ  is the standard normal distribution function.  Let /2zα  denote the 1 / 2α−  

quantile of the standard normal distribution.  That is, /2zα  satisfies 

 /2( ) 1 / 2zα αΦ = − . 

Then an asymptotic 1 / 2α−  confidence interval for 0θ  is 

 1/2 1/2
/2 0 /2

ˆ ˆn z s n z sα θ α θθ θ θ− −− ≤ ≤ + . 

 The kernel nonparametric density estimator ˆ ( , )Xf x h  in Section 4.1, deconvolution 

density estimator ˆ ( , )Xf x c  in Section 4.2, and nonparametric IV estimator ˆ ( )Jg x  in Section 4.3 

are also asymptotically normally distributed for each x .  However, the asymptotic distributions 

of these estimators are not centered at the true function values, ( )Xf x  in the cases of kernel 

density estimation and deconvolution density estimation, and ( )g x  in the case of nonparametric 

IV estimation.  Rather, the asymptotic distributions are centered at ( , )Xf x h , ( , )Xf x c , and 

( )Jg x  for kernel nonparametric density estimation, deconvolution density estimation, and 

nonparametric IV estimation, respectively.  Thus, as n → ∞  



32 
 

(33) 
1 1

2 2

3 3

ˆ[ ( , ) ( , )] / ( , )
ˆ[ ( , ) ( , )] / ( , ) (0,1)
ˆ[ ( ) ( )] / ( , )

n X X n
d

n X X n

n J J n

d f x h f x h s x h

d f x c f x c s x c N
d g x g x s x J

−
− →
− 







 

for any x , where 1nd , 2nd , and 3nd  are normalization constants and 1( , )ns x h , 2 ( , )ns x c , and 

3( , )ns x J  are standard errors.  The normalization constants increase without bound as n → ∞ .  If 

h , c , and J  remain fixed as n → ∞ , then 1/2
1 2 3, ,n n nd d d n= .  If h , c , and J  change as n  

increases so that ˆ ( , )Xf x h , ˆ ( , )Xf h c , and ˆJg , respectively, estimate Xf , Xf , and g  

consistently, then 1nd , 2nd , and 3nd  increase at rates that depend on the details of the model 

being considered but are always slower than 1/2n .   

 It follows from (33) that as n → ∞  

(34) 1 1 1 1
ˆ[ ( , ) ( )] / ( , ) [ ( ) / ( , ),1]d

n X X n nd f x h f x s x h N x s x h− → ∆ , 

(35) 2 2 2 2
ˆ[ ( , ) ( )] / ( , ) [ ( ) / ( , ),1)d

n X X n nd f x c f x s x c N x s x c− → ∆ , 

and 

(36) 3 3 3 3ˆ[ ( ) ( )] / ( , ) [ ( ) / ( , ),1]d
n J n nd g x g x s x J N J s x J− → ∆ , 

where 

 1 1( ) [ ( , ) ( )]n n X Xx d f x h f x∆ = − , 

 2 2( ) [ ( , ) ( )]n n X Xx d f x c f x∆ = − , 

and 

 3 3( ) [ ( ) ( )]n n jx d g x g x∆ = − . 

The quantities 1( )n x∆ , 2 ( )n x∆ , and 3( )n x∆  are called asymptotic biases.  The word “bias” 

applies to the asymptotic distributions of 1
ˆ[ ( , ) ( )]n X Xd f x h f x− , 2

ˆ[ ( , ) ( )]n Xd f x c f x− , and 
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3 ˆ[ ( ) ( )]n Jd g x g x− , which are not centered at zero if the corresponding functions nj∆  ( 1,...,3)j =  

are non-zero.  It follows from (34)-(36) that asymptotic 1 α−  confidence intervals for ( )Xf x  in 

density estimation and deconvolution and ( )g x  in nonparametric IV estimation, respectively, are 

(37) 1 1
1 1 /2 1 1 1 /2 1

ˆ ˆ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )X n n n X X n n nf x h x d z s x h f x f x h x d z s x hα α
− −− ∆ − ≤ ≤ − ∆ − , 

(38) 1 1
2 2 /2 2 2 2 /2 2

ˆ ˆ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )X n n n X X n n nf x c x d z s x c f x f x c x d z s x cα α
− −− ∆ − ≤ ≤ − ∆ − , 

and 

(39) 1 1
3 3 /2 3 3 3 /2 3ˆ ˆ( ) ( ) ( , ) ( ) ( ) ( ) ( , )J n n n J n n ng x x d z s x J g x g x x d z s x Jα α

− −− ∆ − ≤ ≤ − ∆ − . 

The asymptotic bias terms, ( )nj x∆  ( 1,...,3)j =  depend on population parameters that are 

unknown in applications, and the standard errors nks  ( 1,...,3k = ) converge to non-zero limits as 

n → ∞ .  Therefore, the confidence intervals (37)-(39) cannot be used in applications unless the 

bias terms converge to zero as n → ∞  more rapidly than the inverses of the normalization 

factors, 1
njd −  ( 1,...,3j = ).  Equivalently, feasibility of (37)-(39) in applications requires 

2 2( ) ( )nj njx o d −∆ =  as n → ∞ .  However, the optimal values of the regularization parameters, h , 

c , and J , minimize the mean-square errors (MSE’s) of the corresponding estimators or, 

possibly, integrals of the MSE’s over the range of x .  The MSE’s are the squares of the biases 

plus the variances of the estimators.  Thus, for example, the MSE of the kernel nonparametric 

density estimator ˆ ( , )Xf x h  is 

2 2 2 2
1 1 1

ˆ[ ( , ) ( )] ( ) ( , )X X n n nE f x h f x x d s x h−− ≈ ∆ +  

when n  is large.  Similar expressions hold for deconvolution and nonparametric IV estimators.   
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 Because the asymptotic variance term 2
njs  ( 1,...,3j = ) converges to a non-zero limit as 

n → ∞ , the optimal value of the regularization parameter equates the rates of convergence of 

2( )nj x∆  and 2
njd − .  Therefore, the asymptotic bias is non-negligible.  Moreover, it can be shown 

that the optimal regularization parameter also achieves the fastest possible rates of convergence 

in probability of ˆ ( , )Xf x h , ˆ ( , )Xf x c , and ˆ ( )Jg x  to ( )Xf x , ( )Xf x , and ( )g x , respectively.  

Because the choices of regularization parameters that produce asymptotically optimal point 

estimators of ( )Xf x  and ( )g x  have non-negligible asymptotic biases, these estimators cannot be 

used to form confidence intervals in applications.  In contrast to the situation with finite-

dimensional parametric models, nonparametric point estimation of ( )Xf x  and ( )g x  and 

formation of confidence intervals for these quantities are distinct tasks.  Methods for dealing 

with asymptotic bias are described in the paragraphs below.  All methods produce confidence 

intervals that are wider than the intervals that would be obtained from (37)-(39) if the nj∆ ’s were 

known and asymptotically optimal values of the regularization parameters were used.  Relatively 

wide confidence intervals are unavoidable in nonparametric estimation.  

 The asymptotic bias terms in (37)-(39) are caused by regularization.  They decrease as 

the amount of regularization decreases (that is, as h  decreases and c  or J  increase).  In 

addition, njd ’s decrease as the amount of regularization decreases.  Therefore, the asymptotic 

bias terms can be made negligible by using less than the optimal amount of regularization (that 

is, choosing a value of h  that decreases more rapidly than the optimal rate for kernel 

nonparametric density estimation and values of c  and J  that increase more rapidly than the 

optimal rates for deconvolution density estimation and nonparametric IV estimation).  This is 

called “undersmoothing.”  The main problem with undersmoothing is that although empirical 



35 
 

methods are available for estimating the optimal value of the regularization parameter in many 

applications, there is no satisfactory empirical way to choose an undersmoothed value.  At 

present, the undersmoothed parameter value must be chosen by using an essentially arbitrary rule 

of thumb.  For example, one might use the estimated optimal parameter value to a power that is 

less than one in the case of kernel density estimation and greater than one in the case of 

deconvolution density estimation or nonparametric IV estimation. 

 Having selected an undersmoothed value of the regularization parameter by using a rule 

of thumb or other method, a confidence interval can be constructed by dropping the asymptotic 

bias terms from (37)-(39).  Methods for calculating the required standard errors are presented by 

(Silverman 1978), among others, for kernel nonparametric density estimation; Fan (1991b) for 

deconvolution density estimation; and Horowitz (2007), Horowitz and Lee (2012), and Newey 

(2013) for nonparametric IV estimation. 

 Another way to deal with asymptotic bias is to estimate ( )nj x∆  and subtract the 

estimated bias from the estimator of ( )Xf x  or ( )g x .  In the case of kernel nonparametric density 

estimation, for example, this procedure replaces ˆ ( )Xf x  with 1
ˆ ˆ( ) ( )X nf x x− ∆ , where 1

ˆ ( )n x∆  is 

the estimator of 1( )n x∆ .  This procedure is called explicit bias correction.  Schucany and 

Sommers (1977) describe a simple procedure for carrying out explicit bias correction in kernel 

nonparametric density estimation.  Similar procedures can be developed for deconvolution 

density estimation and nonparametric IV estimation, although this has not been done.  Explicit 

bias correction requires selection of an auxiliary value of the regularization parameter for use in 

estimating the bias.  Satisfactory empirical methods for doing this have not been developed. 

 A third way to deal with asymptotic bias is to modify the critical value, /2zα ,  so that a 

confidence interval that is based on a conventional estimate of the asymptotically optimal 
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regularization parameter but ignores asymptotic bias has the correct asymptotic coverage 

probability.  In the case of kernel nonparametric density estimation, the resulting 

1 α− confidence interval is 

 1 1
1 1 1 1

ˆ ˆ( , ) ( ) ( ) ( , ) ( )X n n X X n nf x h zd s x f x f x h zd s x− −− ≤ ≤ +  , 

where z  is the modified critical value.  Hall and Horowitz (2013) present a bootstrap-based 

method for selecting z  for nonparametric density estimation.  This method has the advantage of 

not requiring selection of a value of h  that undersmooths or an auxiliary value for bias 

estimation.  It is likely that the method can be extended to deconvolution and nonparametric IV 

estimators, but the required research has not yet been carried out.  

 Regardless of how asymptotic bias is handled, confidence intervals based on (37)-(39) 

are pointwise intervals.  That is, they have the correct asymptotic coverage probabilities at only 

one value of x .  They do not have correct coverage probabilities simultaneously at several or a 

continuum of values of x .  A band that contains ( )Xf x  or ( )g x  with known probability for all 

values of x  is called a uniform confidence band.  A uniform confidence band is wider than a 

pointwise confidence band with the same coverage probability.  The general form of a uniform 

confidence band is 

(40) |Estimated function( ) True function( ) | ( ) for all x x z x x− ≤ , 

where ( )z x  depends on the details of the estimation problem and is chosen so that (40) holds 

asymptotically with a specified probability.   

Bickel and Rosenblatt (1973) derive a uniform confidence band for Xf  based on kernel 

nonparametric density estimation.  Bissantz, Dümbgen, Holtzmann, and Munk (2007) derive a 

uniform band for ( )Xf x  based on a deconvolution density estimator and present a bootstrap 

method for implementing the band.  The bands for nonparametric density estimation and 
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deconvolution are obtained by showing that suitably centered and normalized differences 

between the estimated and true functions converge to a Gaussian process as n → ∞ .  Horowitz 

and Lee (2012) present a bootstrap method for obtaining a uniform confidence band for g  in 

nonparametric IV estimation.  They use the bootstrap to obtain joint confidence intervals for a 

normalized version of  1 1ˆ ˆ( ) ( ),..., ( ) ( )J J K Kg x g x g x g x− −  on a discrete set of points 1,..., Kx x .  

They then show that a uniform confidence band for g  can is obtained by letting the number of 

points, K , increase to ∞  and the distance between points decrease to 0 as n → ∞ .  

4.2  Hypothesis Tests 

 This section discusses tests of hypotheses about a function whose estimation presents an 

ill-posed inverse problem.  The discussion focusses on nonparametric IV estimation and shows 

that it is possible to construct powerful tests of hypotheses about the function g  in (13), despite 

the imprecision of estimates of g  that is an unavoidable consequence of the ill-posed inverse 

problem.  As is discussed briefly at the end of this section, methods similar to those described 

here for nonparametric IV estimation are available for kernel nonparametric density estimation 

and deconvolution density estimation.   

 A hypothesis about g  in (13) (the null hypothesis) can be written 

 0 :H g ∈ , 

where   is a set of functions in 2[0,1]L .  For example, the hypothesis that g  belongs to a 

specified, finite-dimensional parametric family corresponds to  

(41) { ( , ) : }G x θ θ= ∈Θ , 
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for almost every x  in the support of X , where G  is a known function and Θ  is a compact 

subset of a finite-dimensional Euclidean space.  The hypothesis that X  in (13) is exogenous 

corresponds to letting   consist of the single function  

(42) ( ) ( | )G x E Y X x= = .   

In what follows, hypothesis (41) is denoted by 0aH .  Hypothesis (42) is denoted by 0bH . 

The alternative hypothesis is 

 1 :H g ∉ . 

For example, if 0H  is that ( , )g G x θ=  for some θ ∈Θ , 1H  is that there is no θ ∈Θ  such that 

( ) ( , )g x G x θ=  for almost every x  in the support of X .  If 0H  is that X  is exogenous, then 1H  

is that ( ) ( | )g x E Y X x≠ =  on some set of x  values with non-zero probability. 

 Let ĝ  be a nonparametric IV estimator of g .  Let θ̂  be an estimator of θ  that is 

consistent under 0aH , and let ˆ ( | )E Y X x=  be a nonparametric estimator of ( | )E Y X x= .  

Under 0aH , ( , ) 0g G θ− ⋅ =  for some θ ∈Θ , and ( | ) 0g E Y X− = ⋅ =  under 0bH .  Therefore, 

0aH  can be tested by determining whether ˆˆ ( , )g G θ− ⋅  is larger than can be explained by 

random sampling error in ĝ  and θ̂ .  0bH  can be tested by determining whether 

ˆˆ ( | )g E Y X− = ⋅  is large.  However, these tests have low power because ĝ  is an unavoidably 

imprecise estimator of g . 

 Tests that are more powerful can be obtained by observing that because the operator A  

defined at (28) is one-to-one, g ∈  is equivalent to 

 { : }Ag h Ag g∈ = = ∈  . 

Because r Ag=  by (29), 0aH  is equivalent to 
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 *
0 : ( , ) 0aH r AG θ− ⋅ =  

for some θ ∈Θ .  0bH  is equivalent to 

 *
0 : ( | ) 0bH r AE Y X− = ⋅ = . 

A  is a continuous operator, so there is no ill-posed inverse problem in estimating r AG−  or 

( | )r AE Y X− = ⋅ .  Consequently, it is possible to construct tests based on *
0aH  and *

0bH  that are 

much more powerful than tests based directly on 0aH  and 0bH . 

 Horowitz (2006) presents a statistic for testing *
0aH  based on data { , , : 1,..., }i i iY X Z i n=  

that are a random sample of ( , , )Y X Z .  The statistic is 

 2
na naT S= , 

where 

 1/2

1

ˆˆ( ) [ ( , )] ( , )
n

na i i XZ i
i

S v n Y G X f v Zθ−

=

= −∑ , 

ˆ
XZf  is a kernel nonparametric estimator of the probability density function of ( , )X Z , and θ̂  is a 

generalized method of moments estimator of θ .  naT  can be understood intuitively by observing 

that 1
1

ˆ ( , )n
i XZ ii

n Y f v Z−
=∑  is a consistent estimator of ( )r v  and 1

1
ˆˆ( , ) ( , )n

i XZ ii
n G X f v Zθ−

=∑  is a 

consistent estimator of [ ( , )]( )AG vθ⋅ .  Blundell and Horowitz (2007) present a statistic for testing 

*
0bH .  The statistic is 

 2
nb nbT S= , 

where 
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 1/2

1

ˆˆ( ) [ ( )] ( , )
n

nb i i XZ i
i

S v n Y G X f v Z−

=

= −∑ , 

ˆ
XZf  is again a kernel nonparametric estimator of the probability density function of ( , )X Z , and 

ˆ ( )G ⋅  is kernel nonparametric regression estimator of ( | )E Y X = ⋅ .  nbT  can be understood 

intuitively by observing that 1
1

ˆˆ ( ) ( , )n
i XZ ii

n G X f v Z−
=∑  is a consistent estimator of 

[ ( | )]( )AE Y X v= ⋅ .   

 Under *
0aH  and *

0bH  (or, equivalently, 0aH  and 0bH ), the statistics naT  and nbT  are 

asymptotically distributed as weighted sums of independent random variables that have chi-

squared distributions with one degree of freedom.  Horowitz (2006) and Blundell and Horowitz 

(2007) present methods for computing critical values for naT  and nbT .  In addition, Horowitz 

(2006) and Blundell and Horowitz (2007) show that tests based on naT  and nbT  have non-trivial 

power against alternative hypotheses whose distances from *
0aH  and *

0bH  (or, equivalently, 0aH  

and 0bH ) are 1/2( )O n− .  Non-trivial power means that the probability of rejecting a false null 

hypothesis exceeds the level of the test.  naT  and nbT  have non-trivial power against alternatives 

that are much closer to the null hypotheses of these statistics than is possible with tests based on 

ˆˆ ( , )g G θ− ⋅  and ˆˆ ( | )g E Y X− = ⋅ .   

 Because of the unavoidable imprecision of estimates of g  in model (13), the half-width 

of a confidence interval for g  is always larger than 1/2( )O n−  and can be as large as [(log ) ]sO n −  

for some finite 0s > .  In contrast, tests based on naT  and nbT  have non-trivial power against 

alternative hypotheses whose distance from the null hypothesis is 1/2( )O n−  and power 
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approaching 1 as n → ∞  against alternatives whose distance from the null hypothesis exceeds 

1/2( )O n− .  Therefore, these tests can detect an erroneous null hypothesis about g  whose distance 

from the correct alternative hypothesis is much smaller than the half-width of a confidence 

interval for g .  This is the sense in which a hypothesis test can be more precise than a 

confidence region.   

 Methods similar those just discussed are applicable to testing hypotheses about Xf  in 

kernel nonparametric density estimation and deconvolution density estimation.  Both estimation 

problems begin with an operator equation of the form 

 Xh Bf= , 

where h  is an easily estimated function and B  is a continuous, one-to-one operator that is 

known in the cases of kernel density estimation and deconvolution density estimation.  

Accordingly, testing the hypothesis Xf ∈  for a suitable set   is equivalent to testing the 

hypothesis that 0Xh Bf− =  for some Xf ∈ .  Statistics similar to naT  and nbT  can be used to 

test this hypothesis. 

6.  AN EMPRICAL ILLUSTRATION 

 This section presents an empirical example consisting of nonparametric IV estimation of 

an Engel curve for food.  The data are 1655 household-level observations from the British 

Family Expenditure Survey.  The households consist of married couples with an employed head-

of-household between the ages of 25 and 55 years.  The model is specified as in (13).  In this 

model, Y  denotes a household's expenditure share on food, X  denotes the logarithm of the 

household’s total expenditures, and Z  denotes the logarithm of the household’s gross earnings.  

The basis functions are B-splines with four knots.  The estimation method is that of Section 4.3. 
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 The Engel curve estimated here is the same as the one reported by Horowitz (2011).  The 

results presented in this section include a uniform 95 percent confidence band as well as the 

estimated Engel curve.  Blundell, Chen, and Kristensen (2007) used data from the Family 

Expenditure Survey in nonparametric IV estimation of Engel curves and investigated the validity 

of Z  as an instrument for X .   

 The estimated Engel curve and a uniform 95 percent confidence band for the unknown 

true Engel curve are shown in Figure 1.  The uniform confidence band is obtained using the 

methods of Horowitz and Lee (2012).  It can be seen from Figure 1 that the estimated curve is 

nonlinear and different from what would be obtained with a linear, quadratic, or cubic model.  

The hypotheses that the Engel curve is quadratic or cubic is rejected by Horowitz’s (2006) test of 

hypothesis 0aH  ( 0.05p <  in both cases).  Thus, the nonparametric estimate provides 

information about the shape of the Engel curve that would be difficult to obtain using 

conventional parametric methods.   

The average half-width of the confidence band is approximately 40 percent of the 

estimated value of ĝ .  The band is wide because of the unavoidable imprecision of 

nonparametric IV estimates.  These estimates are imprecise because the data contain little 

information about g  in model (13).  Of course, a sufficiently careful specification search may 

produce a parametric model that gives a curve similar to the nonparametric one and the 

appearance of greater precision.  However, a specification search provides no information about 

the accuracy of the curve it produces, and its results cannot be used for statistical inference.  A 

confidence band based on a model found through a specification search would be misleadingly 

narrow.  Its apparent or nominal coverage probability would be much larger than its true 

coverage probability. 



43 
 

7.  CONCLUSIONS 

 The term “ill-posed inverse problem” refers to a condition in which the mapping from the 

population distribution of observables to the object identified by a statistical or econometric 

model is discontinuous.  Moreover, in an ill-posed inverse problem, the identified object cannot 

be estimated consistently by replacing the population distribution with a consistent sample 

analog.  This paper has presented examples of ill-posed inverse problems in economics and other 

fields.  The paper has explained how ill-posedness arises, why it causes difficulty for estimation 

and inference, and how estimation and inference can be carried out.   

Ill-posed inverse problems have been studied in mathematics and related fields for over 

100 years and have recently been the objects of intensive research in econometrics.  Methods for 

estimation and inference in ill-posed inverse problems are used routinely in many fields, but 

there have been few economic applications of these methods.  This is undoubtedly due in part to 

the newness of methods such as nonparametric IV estimation.  Another possible reason is that 

models that give rise to ill-posed inverse problems are semi- or nonparametric, whereas 

economists tend to prefer finite-dimensional parametric models for empirical research.  

However, economic theory does not provide parametric models.  A parametric model is arbitrary 

and can be highly misleading.  This is true even if it is obtained through a specification search in 

which several different models are estimated and conclusions are based on the one that appears 

to fit the data best.  There is no guarantee that a specification search will include the correct 

model or a good approximation to it, and there is no guarantee that the correct model will be 

selected if it happens to be included in the search.  Moreover, a model obtained through a 

specification search cannot be used for valid statistical inference.  
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Applications of nonparametric methods, including methods for ill-posed inverse 

problems, that have been carried out so far demonstrate the feasibility of these methods in 

empirical economics and the ability of the methods to provide results that differ in important 

ways from those obtained with standard parametric models.  See, for example, Blundell, Chen, 

and Kristensen (2007); Blundell, Horowitz, and Parey (2012); Haag, Hoderlein, and Pendakur 

(2009); Hausman and Newey (1995); Hoderlein and Holzmann (2011); Horowitz (2011); and 

Horowitz and Härdle (1996).  Even an imprecise semi- or nonparametric estimate can be useful 

by revealing the extent to which conclusions drawn from a parametric model are consequences 

of the parametric assumptions as opposed to information contained in the data (Horowitz 2011).  

Thus, semi- and nonparametric methods, including methods for estimation and inference in ill-

posed inverse problems, have much to offer empirical economics. 

8.  APPENDIX 

8.1  An Example that Illustrates the Discontinuity of the Inverse of Mapping (15)  

Let 

 1/2

1
( , ) ( ) ( ); 0 , 1XZ j j j

j
f x z x z x zλ φ φ

∞

=

= ≤ ≤∑ , 

where 1( ) 1vφ = , ( ) 2 cos[( 1) ]j v j vφ π= −  for 2j ≥ , 1 1λ = , and 40.2( 1)j jλ −= −  for 2j ≥ .  

With this XZf , the marginal distributions of X  and Z  are uniform on [0,1] , but X  and Z  are 

not independent of one another.  Moreover, the functions jφ  are orthonormal.  That is, 

 
1

1

1 if 
( ) ( )

0 if j k
j k

v v dv
j k

φ φ
−

=
=  ≠∫  

Under very general conditions ( )r z  has the infinite series representation 
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1

( ) ( )j j
j

r z c zφ
∞

=

= ∑ , 

where the coefficients { }jc  satisfy 2
1 jj
c∞

=
< ∞∑ .  It follows from Picard’s theorem for integral 

equations (Kress 1999, Theorem 15.18) that  

(43) 1/2
1

( ) ( )j
j

jj

c
g x xφ

λ

∞

=

= ∑ . 

Now, let 0δ >  be an arbitrary constant, and define  

 3/2

2
( ) ( ) ( 1) ( )j j

j
r z r z j zδ φ

∞
−

=

= + −∑ . 

Then 0 1sup | ( ) ( ) |z r z r z≤ ≤ −  can be made arbitrarily small by letting δ  be sufficiently small.  

However, it follows from (43) that with r  in place of r , the solution to (15) is 

 1/2 3/2
2

1( ) ( ) ( )
( 1) j

jj
g x g x x

j
δ φ

λ

∞

=

= +
−∑  

and that 

 
1 2
1
[ ( ) ( )]g x g x dx

−
− = ∞∫ . 

Thus, the difference between ( )g x  and ( )g x  is infinite on a set of x  values with positive 

Lebesgue measure, although the difference between ( )r x  and ( )r x  may be arbitrarily small. 

8.2  Procedure for Regularizing and Estimating g  in Model (13) 

 The procedure has two steps:  (1) Form finite-dimensional approximations to r  and A , 

and form the regularized version of (31); (2) consistently estimate unknown population quantities 

in the approximations to obtain the regularized estimator of g . 
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 Step 1:  To form the desired approximations to r  and A , let { : 1, 2,...}j jψ =  be an 

orthonormal basis for 2[0,1]L .  Then we can write 

(44) 
1

( ) ( )j j
j

r z r zψ
∞

=

= ∑  

and 

(45) 
1 1

( , ) ( ) ( )XZ jk j k
j k

f x z a x zψ ψ
∞ ∞

= =

= ∑∑ , 

where ,j jr r ψ=  and 

 
1 1

0 0
( ) ( ) ( , )jk j k XZa x z f x z dxdzψ ψ= ∫ ∫ . 

Moreover, for any 2[0,1]h L∈ , 

 
1 1

( )( ) , ( )jk j k
j k

Ah z a h zψ ψ
∞ ∞

= =

= ∑∑ . 

In particular, 

 
1 1

( )( ) , ( )jk j k
j k

Ag z a g zψ ψ
∞ ∞

= =

= ∑∑ . 

 The finite-dimensional approximations to r  and A  are obtained by truncating the series 

(44) and (45) at J < ∞  terms.  Let Jr  and JA  denote the resulting approximations.  Then 

 
1

( ) ( )
J

J j j
j

r z r zψ
=

= ∑ , 

and for any 2[0,1]h L∈ , 

 
1 1

( )( ) , ( )
J J

J jk j k
j k

A h z a h zψ ψ
= =

= ∑∑ . 
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Note that JA  is a J J×  matrix and ( )( )JA h z  is a 1J ×  vector of functions of z .  The regularized 

versions of (30) and (31) are 

(46) J Jr A g=   

and 

(47) 
1

J Jg A r
−

= . 

The notation Jg  is used instead of g  to emphasize that the function identified by (46) and (47) 

is a finite-dimensional approximation to g  and is not the same as the function identified by (30) 

and (31).  Let jka  ( , 1,...,j k J= ) denote the ( , )j k  element of the inverse of the J J×  matrix 

[ ]jka .  Then it follows from (47) that 

 
1

J

J j j
j

g g ψ
=

= ∑  , 

where 

(48) 
1

J
jk

j k
k

g a r
=

= ∑ . 

To estimate Jg  consistently, it suffices to estimate the jka ’s and kr ’s consistently. 

 Step 2:  Let the data used to estimate g  be a random sample { , , : 1,..., }i i iY X Z i n=  from 

the distribution of ( , , )Y X Z .  It follows from (15) and ,j jr r ψ=  that 

 [ ( )]j jr E Y Zψ= . 

Therefore, jr  is a population moment and is estimated 1/2n− -consistently by the analogous 

sample average 
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 1

1

ˆ ( )
n

j i j i
i

r n Y Zψ−

=

= ∑ . 

In addition, jka  is the population moment  

[ ( ) ( )]jk j ka E X Zψ ψ=   

and is estimated 1/2n−  consistently by the sample average 

 1

1

ˆ ( ) ( )
n

jk j i k i
i

a n X Zψ ψ−

=

= ∑ . 

JA  is estimated consistently by the operator ˆ
JA , which is defined by 

 
1 1

ˆ ˆ( )( ) , ( )
J J

J jk j k
j k

A h z a h zψ ψ
= =

= ∑∑  

for any function 2[0,1]h L∈ .  Let ˆ jka  ( , 1,...,j k J= ) denote the ( , )j k  element of the inverse of 

the J J×  matrix ˆ[ ]jka .  Then the sample analog of (48) is 

 
1

ˆ ˆ ˆ
J

jk
j k

k
g a r

=

= ∑ . 

Moreover, for any J < ∞ , Jg  is estimated consistently by 

(49) 
1

ˆ ˆ
J

J j j
j

g g ψ
=

= ∑ . 

In particular, as n → ∞  ˆ 0p
J Jg g− → , and ˆ 0p

Jg g− →  if J → ∞  at a suitable rate. 

 The estimator ˆJg  in (49) can be put into the form of a conventional linear IV estimator, 

which makes it easy to compute ˆJg  using standard software.  Let   and  , respectively, 
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denote the n J×  matrices whose ( , )i j  elements are ( )j iZψ  and ( )j iXψ .  Define the 1n×  

vector 1( ,..., )nY Y ′= .  Define the 1J ×  vector 1
ˆ ˆ ˆ( ,..., )JG g g ′= .  Then (49) is equivalent to 

 1ˆ ( )G −′ ′=    . 

Ĝ  has the form of an IV estimator for a linear model in which the matrix of variables is   and 

the matrix of instruments is  .   
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Figure 1 

Nonparametric IV Estimate of an Engel curve.  Solid line is the estimated curve.  Dashed lines 

indicate a uniform 95 percent confidence band for the unknown true curve. 

 


