Horowitz, Joel

Working Paper

Ill-posed inverse problems in economics

cemmap working paper, Centre for Microdata Methods and Practice, No. CWP37/13

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Horowitz, Joel (2013) : Ill-posed inverse problems in economics, cemmap working paper, Centre for Microdata Methods and Practice, No. CWP37/13, http://dx.doi.org/10.1920/wp.cem.2013.3713

This Version is available at:
http://hdl.handle.net/10419/79509

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Ill-posed inverse problems in economics

Joel Horowitz

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP37/13
ILL-POSED INVERSE PROBLEMS IN ECONOMICS

by

Joel L. Horowitz
Department of Economics
Northwestern University
Evanston, IL 60208
joel-horowitz@northwestern.edu

August 2013

ABSTRACT

A parameter of an econometric model is identified if there is a one-to-one or many-to-one mapping from the population distribution of the available data to the parameter. Often, this mapping is obtained by inverting a mapping from the parameter to the population distribution. If the inverse mapping is discontinuous, then estimation of the parameter usually presents an ill-posed inverse problem. Such problems arise in many settings in economics and other fields where the parameter of interest is a function. This paper explains how ill-posedness arises and why it causes problems for estimation. The need to modify or “regularize” the identifying mapping is explained, and methods for regularization and estimation are discussed. Methods for forming confidence intervals and testing hypotheses are summarized. It is shown that a hypothesis test can be more “precise” in a certain sense than an estimator. An empirical example illustrates estimation in an ill-posed setting in economics.

Keywords: regularization, nonparametric estimation, density estimation, deconvolution, nonparametric instrumental variables, Fredholm equation

I thank Joachim Freyberger and Chuck Manski for very helpful comments on a previous draft of this paper.
TABLE OF CONTENTS

1. INTRODUCTION 1

2. MOTIVATING EXAMPLES 4
 2.1 Examples of Continuous and Discontinuous Identifying Relations 4
 2.2 The Control Function Model 11

3. EXAMPLES FROM OTHER FIELDS 13
 3.1 Computerized Tomography and the Radon Transformation 13
 3.2 Restoration of a Distorted and Noisy Image 16

4. REGULARIZATION AND ESTIMATION OF MODELS WITH ILL-POSED INVERSES 18
 4.1 Nonparametric Density Estimation 18
 4.2 Deconvolution 21
 4.3 Nonparametric IV Estimation 23
 4.4 The Difference between Parametric and Nonparametric IV Estimation 29

5. INFERENCE 30
 5.1 Confidence Regions 31
 5.2 Hypothesis Tests 37

6. AN EMPIRICAL ILLUSTRATION 41

7. CONCLUSIONS 43

8. APPENDIX 44
 8.1 An Example that Illustrates the Discontinuity of the Inverse of Mapping (15) 44
 8.2 Procedure for Regularizing and Estimating g in Model (13) 45

REFERENCES 50
ILL-POSED INVERSE PROBLEMS IN ECONOMICS

1. INTRODUCTION

A parameter of an econometric model is said to be identified if it is uniquely determined by the probability distribution from which the available data are sampled (hereinafter the population distribution). In other words, a parameter is identified if there is a one-to-one or many-to-one mapping from the population distribution to the parameter. The parameter may be a scalar, vector, or function. In many familiar economic settings, such as least squares (LS) or instrumental variables (IV) estimation of a linear model, the parameter of interest is a scalar or vector, and the identifying mapping is continuous. That is, small changes in the population distribution of the data produce only small changes in the identified parameter. When this happens, the parameter of interest can be estimated consistently by replacing the unknown population distribution with a consistent sample analog, such as the empirical distribution of the data (Manski 1988). Consistency of the sample analog implies that the difference between the sample analog and true population distribution is small when the sample size is large. The estimated parameter is consistent for the true parameter because continuity of the identifying mapping implies that the difference between the estimated and true parameter values is small if the difference between the sample analog and true population distribution is small.

This approach to estimation does not necessarily work if the mapping that identifies the parameter of interest is discontinuous. Nonparametric IV estimation and deconvolution are examples of discontinuous mappings in economics in which the parameter of interest cannot be estimated consistently by replacing the unknown population distribution with a consistent sample analog. Nonparametric IV estimation is a generalization of conventional IV estimation of a linear model. Deconvolution and closely related estimation problems are important in models
with errors in variables (Chen, Hong, and Nekipilov 2011; Li 2002; Li and Hsiao 2004; Schennach 2004a; Schennach 2004b), panel-data models (Horowitz and Markatou 1996), models with latent factors (Bonhomme and Robin 2010), empirical models of auctions (Li, Perrigne, and Vuong 2000), and estimation using aggregated data (Linton and Whang 2002). Many other examples of discontinuous mappings arise in mathematics, statistics, and engineering. Some of these are described in Section 3 of this paper. Others are described by O’Sullivan (1986) and Engl, Hanke, and Neubauer (1996). In each case, the parameter of interest cannot be estimated consistently by replacing the population distribution of the data with a consistent sample analog in the identifying mapping. This is because the estimated and true values of the parameter may be very different, even if the sample size is large enough to make the difference between the sample analog and population distribution negligibly small.

An estimation problem is called ill posed if the identifying mapping is discontinuous in a way that prevents consistent estimation of the parameter of interest by replacing the population distribution of the data with a consistent sample analog. The problem is called an ill-posed inverse problem if the discontinuous identifying mapping is obtained by inverting another mapping that is continuous. The concept of ill-posedness is usually attributed to Hadamard (1923), who called a problem well-posed if it has a unique solution that depends continuously on the available data. An ill-posed problem is one that is not well-posed. This concept can be formalized (e.g., Kress (1999, Definition 15.1)), but formalization is not needed for the discussion in this paper. In the context of this paper, the uniqueness condition for well-posedness is equivalent to identification of the parameter of interest. The continuity condition means that replacing the population distribution of the data with a consistent sample analog in the identifying mapping yields a consistent estimator of the parameter. The concept of ill-
posedness differs from non-robustness (Huber 1981). Non-robustness refers to a situation in which the population distribution of the data differs from the one assumed in a model. Ill-posedness refers to a type of estimation problem that arises in a correct model.

This paper shows how ill-posed inverse problems arise, explains how estimation and inference can be carried out in ill-posed settings, and explains why estimation in these settings is important in economics. The paper focuses on three examples that illustrate the issues and methods associated with ill-posed inverse problems. These are nonparametric estimation of a probability density function, deconvolution density estimation, and nonparametric IV estimation.

The remainder of the paper is organized as follows. Section 2 provides examples of continuous and discontinuous identifying mappings. These illustrate how discontinuity can arise in problems that are important in economics. Section 2 also explains why discontinuity causes problems for estimation and inference. Section 3 presents examples of ill-posed inverse problems in mathematics, statistics, and engineering. The econometrics literature on ill-posed inverse problems builds on research in these fields, some of which is over 100 years old and very important in modern medicine and image processing. Section 4 treats regularization and estimation of models that present ill-posed inverse problems. The term “regularization” refers to methods for removing the discontinuity in the identifying mapping in order to facilitate estimation. Different models and estimation problems require different regularization methods depending, especially, on the source of discontinuity in the identifying mapping. Section 4 discusses regularization and estimation of the models described in Section 2. Section 5 discusses confidence intervals and hypothesis tests based on these models. Section 6 presents an empirical example that illustrates estimation in an ill-posed setting in economics. Section 7 presents concluding comments. Section 8 is an appendix that presents technical material that is not
essential for understanding the main ideas of the paper. Unless otherwise stated, it is assumed throughout this paper that all random variables are continuously distributed.

2. MOTIVATING EXAMPLES

This section provides examples that illustrate the difference between continuous and discontinuous identifying mappings and how a discontinuous mapping can arise in settings that are important in economics. The examples help to motivate the discussion in Sections 4 and 5 of estimation and inference in ill-posed problems.

2.1. Examples of Continuous and Discontinuous Identifying Relations

The first example of a continuous mapping is the identifying relation of the familiar linear mean-regression model. The model is

(1) \(Y = X\beta + U; \ E(U \mid X) = 0, \)

where \(Y \) is the scalar-valued dependent variable, \(X \) is a \(1 \times p \) vector of explanatory variables, \(U \) is an unobserved, scalar random variable, and \(\beta \) is a \(p \times 1 \) vector of constants. Let \(X_j \) denote the \(j \)’th component of \(X \). Assume that \(E(Y^2) \leq M \) and \(E(X_j^2) \leq M \) for each \(j = 1, \ldots, p \) and some constant \(M < \infty \). Equation (1) implies that

(2) \(E(X'Y) = [E(X'X)]\beta. \)

Inversion of (2) yields the relation

(3) \(\beta = [E(X'X)]^{-1}E(XY). \)

Equation (3) determines \(\beta \) uniquely if \(E(X'X) \) is a non-singular matrix. Thus, (3) identifies \(\beta \). Moreover \(\beta \) is a continuous function of \(E(X'X), E(X'Y), \) and the probability distribution of \((Y, X) \). Small changes in these quantities cause only small changes in \(\beta \).
Another example of a continuous mapping is obtained by allowing \(X \) to be endogenous but assuming that an instrumental variable \(Z \) is available. Model (1) then becomes

\[
Y = X \beta + U; \quad E(U | Z) = 0, \tag{4}
\]

where \(Z \) is a \(1 \times q \) vector and \(q \geq p \). As before, assume that \(E(Y^2) \leq M \) and \(E(X_j^2) \leq M \) for some constant \(M < \infty \). Also assume that each component \(Z_j \) of \(Z \) satisfies \(E(Z_j^2) \leq M \).

Equation (4) implies that

\[
E(Z'Y) = [E(Z'X)]\beta
\]

and, therefore,

\[
E(XZ)[E(Z'Z)]^{-1}E(Z'Y) = E(XZ)[E(Z'Z)]^{-1}[E(Z'X)]\beta \tag{5}
\]

Inversion of (5) yields

\[
\beta = \{E(XZ)[E(Z'Z)]^{-1}E(Z'X)]^{-1}E(XZ)[E(Z'Z)]^{-1}E(Z'Y) . \tag{6}
\]

The parameter \(\beta \) is uniquely determined if the inverse matrices on the right-hand side of (6) exist. Thus, (6) identifies \(\beta \) in model (4). Moreover, \(\beta \) is a continuous function of the moments and the probability distributions of the random variables on the right-hand side of (6).

Now consider estimation of \(\beta \) in models (1) and (4). Suppose the data available for estimating \(\beta \) in (1) are a random sample from the probability distribution of \((Y, X)\). Then \(\beta \) in (1) can be estimated by replacing the unknown population expectations in (3) with sample averages. This is equivalent to replacing the unknown distribution of \((Y, X)\) with the empirical distribution of the data. Denote the data by \(\{Y_i, X_i : i = 1, \ldots, n\} \). Define the sample averages

\[
m_{XY} = n^{-1} \sum_{i=1}^{n} X_i'Y_i
\]

and
\[m_{XX} = n^{-1} \sum_{i=1}^{n} X_i'X_i. \]

Then \(\beta \) in model (1) is estimated by replacing \(E(X'Y) \) with \(m_{XY} \) and \(E(X'X) \) with \(m_{XX} \) in (3) to obtain the ordinary least squares estimator

\[\hat{\beta}_{LS} = m_{XX}^{-1}m_{XY}. \]

Now suppose the data for estimating \(\beta \) in (4) are a random sample from the probability distribution of \((Y, X, Z) \). Then \(\beta \) in model (4) can be estimated by replacing the unknown population expectations in (6) with sample averages. Denote the data by \(\{Y_i, X_i, Z_i : i = 1, ..., n\} \).

Define the sample averages

\[m_{ZY} = n^{-1} \sum_{i=1}^{n} Z_i'Y_i, \]

\[m_{ZZ} = n^{-1} \sum_{i=1}^{n} Z_i'Z_i \]

and

\[m_{ZX} = n^{-1} \sum_{i=1}^{n} Z_i'X_i. \]

Then replacing \(E(X'Z), E(Z'Z), \) and \(E(Z'Y) \), respectively, with \(m_{XZ}, m_{ZZ}, \) and \(m_{ZY} \) in (6) yields the two-stage least squares estimator

\[\hat{\beta}_{IV} = (m_{XZ}^{-1}m_{ZZ}^{-1}m_{XZ})^{-1}m_{XZ}^{-1}m_{ZZ}^{-1}m_{ZY}. \]

The estimators \(\hat{\beta}_{LS} \) and \(\hat{\beta}_{IV} \) are consistent for \(\beta \) in their respective models. This is because (1) the sample averages entering \(\hat{\beta}_{LS} \) and \(\hat{\beta}_{IV} \) are consistent for their corresponding population moments and (2) the identifying relations (3) and (6) are continuous functions of the
population expectations on their right-hand sides. Consistency of the sample averages implies that they are arbitrarily close to the corresponding population moments when \(n \) is sufficiently large. Consistency combined with continuity of (3) and (6) implies that \(\hat{\beta}_{LS} \) and \(\hat{\beta}_{IV} \) are arbitrarily close to \(\beta \) when \(n \) is sufficiently large.

As was discussed in Section 1, however, there are important settings in which the relation that identifies a parameter is discontinuous. Discontinuous identifying relations often arise when the parameter of interest is a function, rather than a finite-dimensional quantity. An example is the relation that identifies the probability density function of a scalar, continuously distributed random variable in terms of that variable’s cumulative distribution function. The relation is

\[
(7) \quad f(x) = \frac{dF(x)}{dx},
\]

where \(f \) is the probability density function and \(F \) is the cumulative distribution function. The mapping (7) from \(F \) to \(f \) is discontinuous. Equation (7) is the inverse of

\[
(8) \quad F(x) = \int_{-\infty}^{x} I(v \leq x) f(v) dv,
\]

where \(I(\cdot) \) is the indicator function. Equation (8) is a continuous mapping, but (7) is not. In (8), small changes in \(f \) can induce only small changes in \(F \), but the converse is not true. Arbitrarily small changes in \(F \) can induce large changes in \(f \). To see this, suppose that \(f(x) \leq a \) for some \(a < \infty \). Then \(F \) can be approximated arbitrarily well uniformly in \(x \) by a step function. Given any \(\varepsilon > 0 \), there is a step function, \(F_{\text{Step}} \), such that

\[
(9) \quad \sup_{-\infty < x < \infty} | F_{\text{Step}}(x) - F(x) | < \varepsilon .
\]

Define

\[
f_{\text{Step}}(x) = \frac{dF_{\text{Step}}(x)}{dx} .
\]
Then $f_{\text{Step}}(x) = \infty$ at jumps of F_{Step}, and $f_{\text{Step}}(x) = 0$ elsewhere. Therefore, $|f_{\text{Step}}(x) - f(x)|$ can be arbitrarily large, even if $|F_{\text{Step}}(x) - F(x)|$ is arbitrarily small. Accordingly, estimation of f in (7) (nonparametric density estimation) is an ill-posed inverse problem. The probability density function f cannot be estimated consistently by replacing F on the right-hand side of (7) by the empirical distribution function

$$F_n(x) = n^{-1} \sum_{i=1}^{n} I(X_i \leq x).$$

Although F_n is a uniformly consistent estimator of F, it is a step function. Its derivative is always 0 or ∞ and never approaches $f(x)$ when $0 < f(x) < \infty$, regardless of how large n is.

Deconvolution provides a second example of an ill-posed inverse problem that is important in economics. The source of the problem is illustrated by a simple, idealized model of measurement error. More realistic versions of deconvolution are described by Horowitz and Markatou (2006); Delaigle, Hall, and Meister (2008); Johannes (2009); Li (2002); Li, Perrigne, and Vuong (2000); Schennach (2004a, 2004b); and Linton and Whang (2002), among many others. Suppose one wants to know the distribution of a continuously distributed random variable X that is measured with error. X is not observed. Rather, one observes the random variable Y that is related to X by

$$Y = X + \epsilon; \quad \epsilon \sim N(0,1).$$

The data, $\{Y_i : i = 1, \ldots, n\}$ are a random sample of Y. Let f_Y and f_X, respectively, denote the probability density functions of Y and X. Let ϕ denote the standard normal probability density function. Then f_Y is identified by the sampling process, can be estimated by nonparametric density estimation, and is related to f_X, the density of interest, by
\[(11) \quad f_Y(y) = \int_{-\infty}^{\infty} f_X(v) \phi(y-v) dv. \]

Thus, \(f_Y \) is the convolution of \(f_X \) and \(\phi \). The density \(f_X \) is identified as the solution to the integral equation (11) (thus, the term “deconvolution”). The solution to (11) and the mapping that identifies \(f_X \) is

\[(12) \quad f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\pi y^2/2} h_Y(t) dt, \]

where \(h_Y \) is the characteristic function of the distribution of \(Y \). The mapping (11) from \(f_X \) to \(f_Y \) is continuous, but the inverse mapping (12) is not. To see why, define

\[
\tilde{f}_Y(y) = (1 - \delta) f_Y(y) + \delta f_C(y),
\]

where \(f_C \) is the standard Cauchy density function and \(\delta \) is a constant satisfying \(0 < \delta < 1 \).

Then \(\sup_{-\infty < y < \infty} | f_Y(y) - \tilde{f}_Y(y) | \) can be made arbitrarily small by making \(\delta \) sufficiently small.

The characteristic function of the standard Cauchy distribution is \(h_C(t) = e^{-|t|} \). Therefore,

\[
\tilde{f}_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\pi y^2/2} [(1 - \delta) h_Y(t) + \delta e^{-|t|}] dt
\]

\[
= (1 - \delta) f_X(x) + \delta \int_{-\infty}^{\infty} e^{-i\pi y^2/2 - |t|} dt = \infty
\]

for every \(x \). Thus, the difference between \(\tilde{f}_X \) and \(f_X \) can be infinite, although the difference between \(\tilde{f}_Y \) and \(f_Y \) may be is arbitrarily small. Accordingly, estimation of \(f_X \) in (10) is an ill-posed inverse problem.

Nonparametric IV estimation, which has received much recent attention in econometrics, is a third example of an ill-posed inverse problem. The model for nonparametric IV estimation is
In this model, X is a possibly endogenous, continuously distributed explanatory variable, Z is a continuously distributed instrument for X, and U is an unobserved random variable. The objective is to estimate the function g, which is assumed to satisfy mild regularity conditions but is otherwise unknown. The data are a random sample $\{Y_i, X_i, Z_i: i = 1, \ldots, n\}$ from the distribution of (Y, X, Z). The main issues involved in nonparametric IV estimation can be explained most simply by assuming that X and Z are scalars, and this assumption is made throughout this paper.

A quantile version of model (13) can be obtained by replacing $E(U | Z = z)$ in (13) with the conditional quantile restriction $P(U \leq 0 | Z = z) = q$ for some q satisfying $0 < q < 1$. Under appropriate conditions, $g(X) + U$ in (13) can be replaced by the nonseparable function $g(X, U)$. Quantile nonparametric IV estimation is discussed in detail by Horowitz and Lee (2007) and Chen and Pouzo (2012). It is not discussed further in this paper.

To see why nonparametric IV estimation presents an ill-posed inverse problem, let f_{XZ} and f_Z, respectively, denote the probability density functions of (X, Z) and Z. Let $f_{X|Z}$ denote the probability density function of X conditional on Z. Assume that the support of (X, Z) is $[0,1]^2$. There is no loss of generality in this assumption because it can always be satisfied by, if necessary, replacing X and Z with $\Phi(X)$ and $\Phi(Z)$, respectively, where Φ is the standard normal distribution function. Model (13) implies that
Define $r(z) = E(Y \mid Z = z) f_Z(z)$. It follows from (14) that

\begin{equation}
(15) \quad r(z) = \int_0^1 g(x) f_{xz}(x, z) dx.
\end{equation}

Equation (15) shows that g is the solution to an integral equation. The integral equation is called a Fredholm equation of the first kind in honor of the Swedish mathematician Erik Ivar Fredholm.

The mapping (15) from g to r is continuous if f_{iz} is bounded. That is, small changes in g produce small changes in r. However, the inverse mapping from r to g is discontinuous, and estimation of g in (13) is an ill-posed inverse problem. This is illustrated by an example in the appendix. Although the example is a special case, the discontinuity that it illustrates holds whenever f_{xz} is square-integrable on $[0, 1]^2$.

2.2. The Control Function Model

The control function model is a flexible alternative to (13) and the nonparametric IV approach to estimating a model with an endogenous explanatory variable. The identifying relation in the control function model is continuous. The control function model and its relation to nonparametric IV estimation are discussed in this section.

In the control function model, endogeneity is treated as an omitted variables problem. The assumptions of the model permit identification of a control function or variable whose
inclusion in the model removes endogeneity. Blundell and Powell (2003) provide a general
description of the control function model. Here, we describe the use of a control function to
achieve identification in a model that is similar to the nonparametric IV model (13). Newey,
Powell, and Vella (1999) present the details of the argument and explain how to estimate the
model.

The model is
\[(16) \quad Y = g(X) + U \]
and
\[(17) \quad X = r(Z) + V, \]
where \(g \) and \(r \) are unknown functions,
\[(18) \quad E(V | Z = z) = 0 \]
for all \(z \), and
\[(19) \quad E(U | X = x, V = v) = E(U | V = v) \]
for all \(x \) and \(v \). If the mean of \(X \) conditional on \(Z \) exists, (17) and (18) can always be made to
hold by setting \(r(z) = E(X | Z = z) \). Identification in the control function model comes from
(19). It follows from (16) and (19) that
\[E(Y | X = x, V = v) = g(x) + E(U | V = v) \]
\[= g(x) + h(v), \]
where \(h(v) = E(U | V = v) \) and \(V = X - r(Z) \). Therefore, \(g \) is identified by the relation
\[g(x) = E(Y | X = x, V = v) - h(v). \]
The mapping from the conditional expectations on the right-hand side of this relation to \(g \) is
continuous, so the control function model does not present an ill-posed inverse problem.
Model (13) for nonparametric IV estimation and the control function model (16)-(19) are non-nested, so the two models are not substitutes for one another. It is possible for $E(U \mid Z = z) = 0$ to hold but not $E(U \mid X = x, V = v) = E(U \mid V = v)$ and vice-versa. Therefore, neither model is more general than the other. It is possible to test the hypothesis that there is a random variable U such that $E(U \mid X = x, V = v) = E(U \mid V = v)$ in the control function model and the hypothesis that there is a (possibly different) U satisfying $E(U \mid Z = z) = 0$ in the nonparametric IV model (Horowitz 2012a). However, it is not possible to determine whether one model fits the available data better than the other if both hypotheses are true. The control function model is not discussed further in this paper.

3. EXAMPLES FROM OTHER FIELDS

This section presents two examples of settings from fields other than economics in which ill-posed inverse problems arise. These settings illustrate the wide occurrence of ill-posed problems and their long history in mathematics and related fields. The examples also illustrate similarities and an important difference between ill-posed problems in economics and many other fields.

3.1 Computerized Tomography and the Radon Transformation

Computerized tomography presents an ill-posed inverse problem that has been studied extensively because of its importance to modern medicine. In computerized tomography, a cross section of the human body is scanned by a thin X-ray beam that moves across or in a half circle around the body. The intensity of the beam upon entering the cross section is known. The intensity upon exit is recorded as a function of the line the beam traverses. The objective is to
recover the X-ray absorptivity or density of the body as a function of location in the cross section.

To formulate the tomography problem mathematically, let L denote a line through the cross section of the body, and let x denote a point in the cross section. Let $f(x,L)$ denote the X-ray absorptivity at point x along line L. Let $I(x,L)$ denote the intensity of the beam at point x along line L and $I_0 = I(0,L)$ denote the intensity of the entering beam. The reduction in intensity at point x on line L is

$$dI(x,L) = -I(x,L)f(x,L)dx.$$

Therefore, holding L fixed,

$$\frac{1}{I(x,L)} \frac{dI(x,L)}{dx} = -f(x,L).$$

Let $I_e(L)$ denote the intensity of the beam that exits along line L. $I_e(L)$ is the solution to the differential equation (20) with the initial condition $I(0,L) = I_0$. Therefore,

$$I_e(L) = I_0 \exp \left[-\int_L f(x,L)dx \right].$$

Equivalently,

$$J(L) = \log \left[\frac{I_e(L)}{I_0} \right] = -\int_L f(x,L)dx.$$

The integral on the right-hand side of (21) is called the Radon transform of $f(x,L)$ in honor of the Austrian mathematician Johann Radon, who studied it in the early 20th century. Hoderlein, Klemelä, and Mammen (2010) and Gautier and Kitamura (2013) present applications of the Radon transformation and its higher dimensional extensions to econometric models with random coefficients.
In computerized tomography, \(J(L) \) is observed for some set of lines \(L \), so recovering \(f(x,L) \) amounts to reconstructing a function from its line integrals or, equivalently, inverting the Radon transformation. Radon (1917) derived an analytic expression for the inverse transformation. To state it and see why the Radon transformation presents an ill-posed inverse problem, let \(x = (x_1, x_2)' \) and \(\theta = (\theta_1, \theta_2) \) be vectors in two-dimensional space with \(\|\theta\|^2 \equiv \theta_1^2 + \theta_2^2 = 1 \). Then each line \(L \) can be written as \(\{x: \theta'x = s\} \) for some real \(s \) in a set \(S(\theta) \) that, in the case of computerized tomography, is determined by the geometry of the cross section being examined. Equation (21) can be written as

\[
J(L) = g(\theta, s) = \int_{\theta'x=s} f(x)dx,
\]

where, now, \(f(x) \) denotes the X-ray absorptivity at the vector point \(x \). Equivalently,

\[
(22) \quad g(\theta, s) = \int \delta(\theta'x - s)f(x)dx,
\]

where \(\delta \) is the Dirac delta function. Radon (1917) showed that if the ranges of \(s \) and \(\theta \) are sufficiently large, then

\[
(23) \quad f(x) = \frac{1}{4\pi^2} \int_{\|\theta\|=1} \int_{S(\theta)} \frac{g_s(\theta, s)}{\theta'x - s} dsd\theta,
\]

where \(g_s(\theta, s) = dg(\theta, s) / ds \). Natterer (1986, Section II.2) and Natterer and Wübbeling (2001, Section 2.1) provide derivations of (23).

Equation (23) is a mapping that identifies the absorptivity \(f(x) \) in terms of the observed quantity \(g(\theta, s) \). However, (23) is discontinuous, because the integrand on the right-hand side of (23) involves the derivative \(g_s \). For reasons explained in connection with nonparametric density estimation in Section 2.1, an arbitrarily small change in \(g(\theta, s) \) can produce a large
change in $g_s(\theta, s)$ and, therefore, in the integral on the right-hand side of (23). For example, if $g_s(\theta, s)$ is a smooth function of s at each θ, it can be approximated arbitrarily well at each θ by a step function of s. The derivative of a step function is zero almost everywhere, so the resulting approximation of $f(x)$ is zero, although the true $f(x)$ may be very different from zero.

In practice, g may not be observed on a continuum of θ and s values, and the inverse of the Radon transformation must be found numerically. Therefore, in practice, the true g is replaced by an approximation. The “data” in (22)-(23) are observations or numerical approximations to g at a possibly discrete set of values of θ and s. Because the Radon transformation is discontinuous, its inverse is not necessarily close to the true f even g is observed on a very fine grid of s and θ values and the approximation to g is very accurate.

3.2 Restoration of a Distorted and Noisy Image

Restoration of a distorted and noisy image presents an ill-posed inverse problem that is closely related to nonparametric IV estimation. Systematic distortion of an image can occur, for example, if the receiver of the image is faulty (e.g., the original mirror of the Hubble space telescope or a camera that is out of focus) or if the signal carrying the image passes through a refractive medium such as the earth’s atmosphere. An image becomes noisy if, for example, random noise is generated in the receiver. Image restoration has received much attention in mathematics, statistics, and engineering due to its importance in modern astronomy, communications, and medicine, among other fields. Chalmond (2003, Ch. 1) provides many examples of problems in image restoration or transformation. This section provides one brief example.
Let the intensity (or darkness) of a two-dimensional image at the point x be given by the function $g(x)$. Suppose that g is not observed. Instead, the distorted, noisy image $Y(\cdot)$, is observed. A model for relating g to Y is

$$ (24) \quad Y(z) = \int f(z, x)g(x)dx + \epsilon, $$

where $Y(z)$ is the distorted, noisy image at the point z and ϵ is an unobserved random variable satisfying $E(\epsilon | z) = 0$. The first term on the right-hand side of (24) represents systematic distortion of the image. The function f depends on the distortion mechanism (e.g., passage of light through a refractive medium). The second term on the right-hand side of (24) represents random noise in the image. Taking expectations conditional on z on both sides of (24) yields

$$ (25) \quad EY(z) \equiv r(z) = \int f(z, x)g(x)dx. $$

Equation (25) is similar to (15), which is the identifying mapping for nonparametric IV estimation. As in nonparametric IV estimation, the inverse of the mapping (25) is discontinuous, so (25) presents an ill-posed inverse problem.

The most obvious difference between (15) and (25) is that f_{XZ} in (15) is a probability density function, whereas f in (25) is not necessarily a probability density function. A more important difference between image restoration and nonparametric IV estimation is that the function f in image restoration is often known (e.g., through knowledge of the distortion mechanism), whereas the density f_{XZ} in nonparametric IV estimation is unknown. Similarly, the function that takes the place of f in the Radon transformation, $\delta(\theta'x - s)$ in (22), is known. The fact that f_{XY} is unknown in nonparametric IV estimation does not affect identification or the existence of an ill-posed inverse problem, but it makes estimation of g in the nonparametric
IV model different from estimation in tomography and image restoration. Estimation is discussed in Section 4.

4. REGULARIZATION AND ESTIMATION OF MODELS WITH ILL-POSED INVERSES

Estimation of a model with a discontinuous identifying mapping begins by modifying the mapping to remove the discontinuity. This is called “regularization.” Estimation is then carried out by replacing unknown population parameters in the modified mapping with consistent sample analogs. Modification of the identifying mapping changes the population parameter that is identified. To ensure identification and estimation of the correct parameter, the amount of modification decreases to zero as the sample size increases. The methods used for regularization and their consequences for estimation accuracy depend on the model under consideration. This section discusses regularization and estimation of the models described in Section 2.

The discussion here aims at presenting methods for regularization and estimation in as straightforward and intuitive a way as possible. Accordingly, the methods are not presented in full generality, and many technical details are omitted. Generalizations and technical details are available in the references that are cited.

4.1 Nonparametric Density Estimation

This section discusses regularization for estimation of the probability density function f_X of the continuously distributed random variable X.

As was explained in Section 2, the identifying relation (7) is discontinuous because there are step functions and, more generally, functions whose derivatives are very different from f, that are arbitrarily close to F. This problem can be overcome by smoothing (7) so that it
becomes a continuous relation. To do this, let \(K \) denote a probability density function that is supported on \([-1,1]\), bounded, symmetrical around 0, and non-zero on \((-1,1)\). One possibility is

\[
K(v) = (15/16)(1-v^2)^2 I(|v| \leq 1),
\]

but there are many others. \(K \) is called a kernel function. The smoothed or regularized version of (7) is

\[
\tilde{f}_X(x,h) = \frac{1}{h} \int_{-1}^{1} K\left(\frac{x-\xi}{h}\right) dF(\xi),
\]

where \(h > 0 \) is a constant called a bandwidth. It follows from the Helly-Bray theorem of integration theory (see, e.g., Rao 1973, p. 117) that (26) is a continuous mapping from \(F \) to \(\tilde{f}_X \). Therefore, a consistent estimator of \(\tilde{f}_X \) can be obtained by replacing \(F \) on the right-hand side of (26) with the empirical distribution function \(F_n \). The resulting estimator, \(\hat{f}_X \), is the kernel nonparametric density estimator

\[
\hat{f}_X(x,h) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-X_i}{h}\right),
\]

where the data, \(\{X_i : i=1,...,n\} \), are a random sample of \(X \).

The strong law of large numbers implies that \(\hat{f}_X(x,h) \) is a consistent estimator of \(\tilde{f}_X(x,h) \) for each \(x \in (-\infty, \infty) \) and \(h > 0 \). Indeed, it can be shown that \(\hat{f}_X(\cdot,h) \) estimates \(\tilde{f}_X(\cdot,h) \) consistently uniformly over \(x \in (-\infty, \infty) \). However, \(\tilde{f}_X(\cdot,h) \neq f_X(\cdot) \) for any fixed \(h > 0 \). Rather, \(\tilde{f}_X(\cdot,h) \) is the probability density function of the random variable \(X + h\varepsilon \), where \(\varepsilon \) is a random variable whose probability density function is \(K \). Thus, regularization distorts
the identifying mapping and prevents consistent estimation of f_X if h is held constant. A consistent estimator of f_X, can be obtained by letting $h \to 0$ as $n \to \infty$. In other words, the amount of regularization or modification of (7) decreases to zero as n increases. The rate at which h decreases must not be too fast. Otherwise, there is not enough regularization to overcome the discontinuity of (7). It can be shown that if f_X is uniformly continuous, $h \to 0$, and $nh / \log n \to \infty$, then

$$\lim_{n \to \infty} \sup_{-\infty < x < \infty} | \hat{f}_X(x, h) - f_X(x) | \to 0$$

with probability 1. See, for example, Silverman (1978). Thus, with the proper amount of regularization, the regularized estimator of f_X is uniformly consistent.

There is a large literature on the properties of kernel nonparametric density estimators, methods for estimating the densities of random vectors, and methods for choosing h in applications. Silverman (1986) provides a broad discussion of the topic. Härdle and Linton (1994) provide a variety of technical details. They also discuss a regularization method that is different from the one presented here and leads to a kernel estimator that is different from $\hat{f}_X(x, h)$.

An important characteristic of \hat{f}_X that is shared by all estimators in ill-posed inverse problems (not only estimators of probability density functions) is slow convergence in probability of the estimator to the identified function. This is unavoidable, regardless of the method of regularization or the function being estimated, although the precise rate of convergence depends on the details of the estimation problem. In practice, slow convergence in probability of an estimator implies that the estimator may be imprecise.
The rate of convergence in probability of any nonparametric density estimator, including the kernel estimator \(\hat{f}_X(x,h) \), depends on the smoothness of the target density, \(f_X \), as measured by the number of derivatives that it has. When \(f_X \) has two continuous derivatives, the fastest possible rate of convergence is \(n^{-2/5} \) (Stone 1982). In contrast, estimators such as \(\hat{\beta}_{LS} \) and \(\hat{\beta}_{IV} \) that are based on continuous identifying mappings typically converge in probability at the rate \(n^{-1/2} \). The rate of convergence of a nonparametric density estimator can approach but never achieve \(n^{-1/2} \) if \(f_X \) has more than two derivatives, but the resulting estimator can behave poorly with samples of practical size.

4.2 Deconvolution

This section discusses regularization for estimation of the probability density function \(f_X \) in the deconvolution model (10). The mapping (12) that identifies \(f_X \) is discontinuous because the integrand on the right-hand side of (12) may be unbounded as \(t \to \pm \infty \). This problem can be overcome by modifying (12) so that integration is over the finite interval \([c, c] \) for some finite \(c > 0 \). The modified identifying relation is

\[
(27) \quad \tilde{f}_X(x,c) = \frac{1}{2\pi} \int_{-c}^{c} e^{-itx+t^2/2} h_Y(t) dt,
\]

where \(\tilde{f}_X(x,c) \) is defined as the quantity on the right-hand side of (27). The mapping (27) is continuous in the sense that arbitrarily small changes in \(h_Y \) produce arbitrarily small changes in \(\tilde{f}_X(\cdot,c) \). A consistent estimator of \(\tilde{f}_X \) can be obtained by replacing \(h_Y \) on the right-hand side of (27) with the empirical characteristic function of \(Y \). The empirical characteristic function is
\[\hat{h}_Y(t) = n^{-1} \sum_{j=1}^{n} \exp(itY_j). \]

The resulting estimator of \(\hat{f}_X \) is
\[\hat{f}_X(x,c) = \frac{1}{2\pi} \int_{-c}^{c} e^{-ixc} \hat{h}_Y(t) dt. \]

The function \(\hat{f}_X(\cdot,c) \) estimates \(\hat{f}_X(\cdot,c) \) consistently uniformly over \(x \in (-\infty, \infty) \). However, \(\hat{f}_X(\cdot,c) \neq f_X(\cdot) \) for any fixed \(c > 0 \). Thus, as with nonparametric density estimation, regularization distorts the identifying mapping and prevents consistent estimation of \(f_X \) if \(c \) is held constant. A consistent estimator of \(f_X \), can be obtained by letting \(c \to \infty \) as \(n \to \infty \) so as to decrease the amount of regularization or modification of (12) as \(n \) increases. Delaigle and Gijbels (2004) describe methods for choosing the value of \(c \) in applications.

The rate of convergence in probability of \(\hat{f}_X \) to \(f_X \) in deconvolution is determined by minimizing the sum of the variance of \(\hat{f}_X \) and the square of the bias caused by truncating the range of the integral on the right-hand side of (12). The variance increases and the bias decreases as \(c \) increases. The rate of convergence of \(\hat{f}_X \) or any other estimator of \(f_X \) is especially slow when \(\varepsilon \) in (10) is normally distributed. If \(f_X \) has \(k \) bounded derivatives, then the fastest possible rate of convergence when \(\varepsilon \sim N(0,1) \) is \((\log n)^{-k/2} \) (Carroll and Hall 1988). Slow convergence of \(\hat{f}_X \) is an unavoidable consequence of the rapid rate at which the characteristic function of \(\varepsilon \), \(h_\varepsilon(t) \), approaches 0 as \(|t| \to \infty \) when \(\varepsilon \sim N(0,1) \). Specifically, \(h_\varepsilon(t) \propto \exp(-t^2/2) \). Faster convergence of \(\hat{f}_X \) is possible if \(h_\varepsilon(t) \) converges to 0 more slowly as \(|t| \to \infty \). This happens if the probability density function of \(\varepsilon \) has a limited number of
derivatives in a neighborhood of the origin (Carroll and Hall 1988, Fan 1991a). For example, if
ε has the Laplace (double exponential) distribution, then \hat{f}_X can converge to f_X at the rate $n^{-k/(2k+5)}$. This rate approaches the parametric rate of $n^{-1/2}$ if f_X is sufficiently smooth in the sense of having sufficiently many bounded derivatives. Thus, increased smoothness of the distribution of X increases the achievable rate of convergence of \hat{f}_X, whereas increased smoothness of the distribution of ε decreases the achievable rate of convergence of \hat{f}_X. The practical consequence of slow convergence of \hat{f}_X is that estimating f_X in model (10) accurately may be impossible if the distribution of ε is very smooth.

The relation between smoothness and the rate of convergence of an estimator carries over to nonparametric IV estimation of g in model (13). As will be discussed in Section 4.3, the achievable rate of convergence of an estimator of g becomes faster as g becomes smoother. It becomes slower as f_{XZ}, the probability density function of (X,Z), becomes smoother. If f_{XZ} is very smooth – for example if (X,Z) has a bivariate normal distribution – then the fastest possible rate of convergence of an estimator of g is $(\log n)^{-s}$ for some $s > 0$ that increases as g becomes smoother. Thus, as in estimation of f_X in model (10), accurate nonparametric IV estimation of g may be impossible if the distribution if f_{XZ} is very smooth.

4.3 Nonparametric IV Estimation

This section discusses regularization and estimation of the function g in model (13). There are several methods for regularizing (13). The method discussed here is that of Horowitz (2011). Similar regularization methods are presented by Blundell, Chen, and Kristensen (2007) and Newey (2013). Other approaches to regularizing (13) are described by Darolles, Fan,
Florens, and Renault (2011); Carrasco, Florens, and Renault (2007); Hall and Horowitz (2005); and Newey and Powell (2003).

To explain the regularization method and derive the estimator of g, assume that (X, Z) in (13) is supported on $[0,1]^2$. As was explained in Section 2, there is no loss of generality in this assumption. Let $L_2[0,1]$ denote the set of functions whose squares are integrable on $[0,1]$. That is

\[L_2[0,1] = \left\{ h : \int_0^1 h(x)^2 \, dx < \infty \right\}. \]

Define the norm $\|h\|$ of any function $h \in L_2[0,1]$ by

\[\|h\| = \left[\int_0^1 h(x)^2 \, dx \right]^{1/2}. \]

For any functions $h_1, h_2 \in L_2[0,1]$, define the inner product

\[\langle h_1, h_2 \rangle = \int_0^1 h_1(x)h_2(x) \, dx. \]

Finally, define the operator A on $L_2[0,1]$ by

\[(28) \quad (Ah)(z) = \int_0^1 f_{XZ}(x, z)h(x) \, dx. \]

A is the infinite-dimensional generalization of a square matrix. The adjoint of A, denoted by A^*, is defined by the relation

\[\langle A^*h_2, h_1 \rangle = \langle h_2, Ah_1 \rangle \]

for any $h_1, h_2 \in L_2[0,1]$. A^* is the infinite-dimensional generalization of the transpose of a square matrix. Assume that
Let $\{\lambda_j : j = 1, 2, \ldots\}$ denote the eigenvalues of A^*A. That is, λ_j satisfies

$$A^*Ah = \lambda_j h$$

for some function h such that $\|h\| = 1$. Order the eigenvalues so that $\lambda_1 \geq \lambda_2 \geq \ldots > 0$. If A^*A is one-to-one and, therefore, invertible, $\lambda_j > 0$ for all j. However, if (29) holds, then 0 is a limit point of the eigenvalues of A^*A. That is, $\lambda_j \to 0$ as $j \to \infty$, and there are infinitely many λ_j's within any arbitrarily small neighborhood of 0. This is the source of the ill-posed inverse problem in nonparametric IV estimation and the consequent need for regularization of (13) to estimate g.

Now write (15) as

$$r = Ag.$$

Equation (30) is a system of infinitely many linear equations in infinitely many unknowns. If A is one-to-one, then the solution to (30) is

$$g = A^{-1}r.$$

Equivalently,

$$g = (A^*A)^{-1}A^*r.$$

Equations (31) and (32) are mappings from the distribution of (Y, X, Z) to g. Therefore, they identify g. If A and A^*A were finite-dimensional, non-singular matrices, then g could be estimated consistently by replacing the unknown population quantities A and r with consistent estimators. However, this procedure does not work when A is infinite dimensional. As is
explained by Horowitz (2011), the fact that $\lambda_j \to 0$ as $j \to \infty$ guarantees that (31) and (32) are discontinuous mappings of r to g. Roughly speaking, this is because A and A^*A are “nearly singular” infinite-dimensional matrices. This could not happen if A and A^* were finite-dimensional, because the eigenvalues of a non-singular finite-dimensional matrix are bounded away from zero.

This problem can be solved and regularization achieved by approximating A by a finite-dimensional matrix and r by a function that is known up to a finite-dimensional parameter. The approximations to A and r are constructed so that their approximation errors converge to zero in an appropriate sense as the dimension of the approximations increases. The resulting regularized version of g can be estimated consistently by using standard IV methods for linear models. Of course, the regularized version of g does not satisfy (13). A consistent estimator of g in (13) can be obtained by letting the dimensions of the finite-dimensional approximations to A and r increase as the sample size increases. This procedure and the method for implementing it by using standard IV methods are described in detail in the appendix.

Let J denote the dimension of the finite-dimensional approximations to A and r. Specifically, the approximation to A is a $J \times J$ matrix, and the approximation to r has J unknown parameters. Denote the resulting estimator of g by \hat{g}_J. A consistent estimator of g is obtained by letting $J \to \infty$ as $n \to \infty$. The optimal rate of increase of J is obtained by minimizing the sum of the (asymptotic) variance of \hat{g}_J and the square of the bias caused by replacing A and r by finite-dimensional approximations. The variance increases and the bias decreases as J increases. If g has s derivatives, f_{XZ} has $q < \infty$ derivatives with respect to any combination of its arguments, and certain other regularity conditions hold, the variance is of
order J^{2q+1}/n (Horowitz 2012b). Minimizing the sum of the squared bias plus the variance yields $J = O[n^{1/(2s+2q+1)}]$ and

$$\|\hat{g}_J - g\| = O_p[n^{-s/(2s+2q+1)}].$$

Chen and Reiss (2007) show that $n^{-s/(2s+2q+1)}$ is the fastest possible rate of convergence in probability that is achievable uniformly over functions g and f_{XZ} satisfying reasonable regularity conditions. The rate of convergence of \hat{g}_J to g becomes faster as g becomes smoother (s increases) and slower as f_{XZ} becomes smoother (q increases).

The rate of convergence of \hat{g}_J to g is even slower if f_{XZ} has infinitely many derivatives. For example, if f_{XZ} is the bivariate normal density (or the density a smooth monotone transformation of bivariate normals to the unit square), the size of the optimal J is $O(\log n)$, and the rate of convergence of $\|\hat{g}_J - g\|$ is $O_p[(\log n)^{-s}]$. When f_{XZ} is very smooth, the data contain little information about g in (13). Unless g is restricted in other ways, such as assuming that it belongs to a low-dimensional parametric family of functions, a very large sample may be needed to estimate g accurately when f_{XZ} is very smooth.

The foregoing discussion shows the importance of choosing J well in nonparametric IV estimation. Indeed, as is explained in Section 4.4, the dependence of J on the sample is the main difference between parametric and nonparametric estimation of g. The choice of J in applications is a difficult topic on which research has only recently begun. Newey (2013) and Horowitz and Lee (2012) describe heuristic methods for choosing J. Horowitz (2012b) describes a mathematically rigorous way to choose J by minimizing a sample analog of the asymptotic expectation of $\|\hat{g}_J - g\|^2$.

27
The operator A in (30) must be one-to-one to ensure identification of g in model (13). This requirement is often called the completeness condition of nonparametric IV estimation and is the nonparametric analog of the rank condition of parametric IV estimation. If A is not one-to-one, then (30) is satisfied by two or more different functions g, so g is not identified. The rank condition of parametric estimation can be tested empirically. In contrast, the condition that A is one-to-one in nonparametric IV estimation cannot be tested (Canay, Santos, and Shaikh 2013). The condition that A is one-to-one requires the eigenvalues of A^*A to exceed zero. However, as was discussed in the paragraph following (30), there are infinitely many eigenvalues in any arbitrarily small neighborhood of zero. With a finite sample, regardless of how large that sample is, random sampling error makes it impossible to distinguish between eigenvalues that are very close to zero and eigenvalues that are equal to zero. Therefore, with a finite sample, it is not possible to distinguish empirically between an operator A for which all the eigenvalues of A^*A are strictly positive and an operator for which some eigenvalues of A^*A equal zero.

Now let \hat{g}_J denote the function that is obtained by replacing A and r in (31) by their finite-dimensional approximations. The inability to test whether A is one-to-one in applications and the resulting possibility that g in (13) is not identified does not prevent point estimation of \hat{g}_J for a fixed J using the method described in this section. If the $J \times J$ matrix approximating A is non-singular, then \hat{g}_J is a consistent estimator of g_J. Moreover, for each J, the vector $[n^{1/2}(\hat{g}_1 - \bar{g}_1), \ldots, n^{1/2}(\hat{g}_J - \bar{g}_J)]'$ is asymptotically multivariate normally distributed with a mean of 0. Therefore, inference about \hat{g}_J can be carried out using the standard methods of parametric
IV estimation. Santos (2012) describes some ways to do inference about g when A is not one-to-one. This is an important topic for future research.

4.4 The Difference between Parametric and Nonparametric IV Estimation

The estimator \hat{g}_J described in Section 4.3 is a standard IV estimator for the parametric model

$$Y = \sum_{j=1}^{J} g_j \psi_j(X) + U; \ E(U \mid Z) = 0,$$

where the functions $\{\psi_j : j = 1,2,...\}$ are an orthonormal basis for $L_2[0,1]$. The g_j’s are the unknown parameters in this model. As is explained in the appendix, they can be estimated consistently by using standard IV methods for linear models. Therefore, it is reasonable to ask whether there is any practical difference between parametric and nonparametric IV estimation. The answer is “yes.” Except in special cases, parametric and nonparametric methods give different estimates of g, confidence intervals, and outcomes of hypothesis tests. As is discussed in Horowitz (2011) and Newey (2013), the reason for this is that parametric estimation treats the model as fixed and exact, whereas nonparametric estimation treats it as an approximation that depends on the size of the sample. Specifically, in nonparametric estimation, J or the “size” of the model is larger with large samples than with small ones. In contrast, J is fixed in parametric estimation. This makes estimates of g based on parametric and nonparametric methods different unless the value of J used for parametric estimation happens to coincide with the appropriate value for nonparametric estimation. Moreover, because parametric estimation assumes a fixed model that does not depend on the sample size, parametric methods typically
indicate that the estimates are more precise than they really are. Consequently, conclusions that
are supported by a parametric estimator may not be supported by a nonparametric estimator.

5. INFEERENCE

This section discusses methods for forming confidence regions and testing hypotheses in
ill-posed inverse problems. There are important differences between inference in parametric and
nonparametric models, including the nonparametric models that give rise to ill-posed inverse
problems. One difference concerns the relation between optimal point estimators and confidence
regions. In a finite-dimensional parametric model, an asymptotically optimal (or, equivalently,
efficient), asymptotically normal estimator of a parameter can be used to form an asymptotic
confidence interval for the parameter. However, this does not happen in nonparametric
estimation because of the phenomenon of “asymptotic bias.” In nonparametric estimation,
forming confidence intervals and optimal point estimation are separate tasks. A second
difference between parametric and nonparametric models concerns the relation between
confidence regions and hypothesis tests. In a finite-dimensional parametric model, a hypothesis
about the parameter of interest can be accepted or rejected according to whether the hypothesized
value is contained in a confidence region for the parameter. Conversely, a confidence region can
be obtained by inverting a statistic for testing a hypothesis. This duality between confidence
regions and hypothesis tests does not hold in nonparametric models, including models that
present ill-posed inverse problems. A hypothesis test can often be made “more precise” than a
confidence region, and useful confidence regions cannot necessarily be obtained by inverting test
statistics. Consequently, forming confidence regions and testing hypotheses in nonparametric
models are distinct tasks.
5.1 Confidence Regions

The estimator of a parameter of a finite-dimensional parametric model usually has a normal asymptotic distribution that is centered at the true parameter value. Specifically, if $\hat{\theta}$ is an estimator of a scalar parameter whose true value is θ_0, then

$$n^{1/2}(\hat{\theta} - \theta_0) / s_\theta \rightarrow^d N(0,1),$$

where s_θ is a standard error. It follows from this result that as $n \rightarrow \infty$,

$$P[-z < n^{1/2}(\hat{\theta} - \theta_0) / s_\theta \leq z] \rightarrow \Phi(z) - \Phi(-z) = 2\Phi(z) - 1,$$

for any z, where Φ is the standard normal distribution function. Let $z_{\alpha/2}$ denote the $1 - \alpha / 2$ quantile of the standard normal distribution. That is, $z_{\alpha/2}$ satisfies

$$\Phi(z_{\alpha/2}) = 1 - \alpha / 2.$$

Then an asymptotic $1 - \alpha / 2$ confidence interval for θ_0 is

$$\hat{\theta} - n^{-1/2}z_{\alpha/2}s_\theta \leq \theta_0 \leq \hat{\theta} + n^{-1/2}z_{\alpha/2}s_\theta.$$

The kernel nonparametric density estimator $\hat{f}_X(x,h)$ in Section 4.1, deconvolution density estimator $\hat{f}_X(x,c)$ in Section 4.2, and nonparametric IV estimator $\hat{g}_J(x)$ in Section 4.3 are also asymptotically normally distributed for each x. However, the asymptotic distributions of these estimators are not centered at the true function values, $f_X(x)$ in the cases of kernel density estimation and deconvolution density estimation, and $g(x)$ in the case of nonparametric IV estimation. Rather, the asymptotic distributions are centered at $\tilde{f}_X(x,h)$, $\tilde{f}_X(x,c)$, and $\tilde{g}_J(x)$ for kernel nonparametric density estimation, deconvolution density estimation, and nonparametric IV estimation, respectively. Thus, as $n \rightarrow \infty$
\[
\begin{align*}
&d_{n1}[\hat{f}_X(x,h) - f_X(x,h)]/s_{n1}(x,h) \\
&d_{n2}[\hat{f}_X(x,c) - f_X(x,c)]/s_{n2}(x,c) \\
&d_{n3}[\hat{g}_J(x) - g_J(x)]/s_{n3}(x,J)
\end{align*}
\rightarrow^d N(0,1)
\]

for any \(x \), where \(d_{n1}, d_{n2}, \) and \(d_{n3} \) are normalization constants and \(s_{n1}(x,h), s_{n2}(x,c), \) and \(s_{n3}(x,J) \) are standard errors. The normalization constants increase without bound as \(n \to \infty \). If \(h, c, \) and \(J \) remain fixed as \(n \to \infty \), then \(d_{n1}, d_{n2}, d_{n3} = n^{1/2} \). If \(h, c, \) and \(J \) change as \(n \) increases so that \(\hat{f}_X(x,h), \hat{f}_X(h,c), \) and \(\hat{g}_J \), respectively, estimate \(f_X, f_X, \) and \(g \) consistently, then \(d_{n1}, d_{n2}, \) and \(d_{n3} \) increase at rates that depend on the details of the model being considered but are always slower than \(n^{1/2} \).

It follows from (33) that as \(n \to \infty \)

\[
\begin{align*}
&d_{n1}[\hat{f}_X(x,h) - f_X(x)]/s_{n1}(x,h) \to^d N[\Delta_{n1}(x)/s_1(x,h),1], \\
&d_{n2}[\hat{f}_X(x,c) - f_X(x,c)]/s_{n2}(x,c) \to^d N[\Delta_{n2}(x)/s_2(x,c),1],
\end{align*}
\]

and

\[
\begin{align*}
&d_{n3}[\hat{g}_J(x) - g(x)]/s_{n3}(x,J) \to^d N[\Delta_{n3}(J)/s_3(x,J),1],
\end{align*}
\]

where

\[
\begin{align*}
\Delta_{n1}(x) &= d_{n1}[\hat{f}_X(x,h) - f_X(x)], \\
\Delta_{n2}(x) &= d_{n2}[\hat{f}_X(x,c) - f_X(x)],
\end{align*}
\]

and

\[
\Delta_{n3}(x) = d_{n3}[\hat{g}_J(x) - g(x)].
\]

The quantities \(\Delta_{n1}(x), \Delta_{n2}(x), \) and \(\Delta_{n3}(x) \) are called asymptotic biases. The word “bias” applies to the asymptotic distributions of \(d_{n1}[\hat{f}_X(x,h) - f_X(x)], \ d_{n2}[\hat{f}(x,c) - f_X(x)], \) and
\[d_{n_j}[\hat{g}_j(x) - g(x)], \] which are not centered at zero if the corresponding functions \(\Delta_{n_j} \) \((j = 1, \ldots, 3)\) are non-zero. It follows from (34)-(36) that asymptotic \(1 - \alpha\) confidence intervals for \(f_X(x) \) in density estimation and deconvolution and \(g(x) \) in nonparametric IV estimation, respectively, are

\[
\hat{f}_X(x, h) - \frac{1}{n_1} z_{\alpha/2} s_1(x, h) \leq f_X(x) \leq \hat{f}_X(x, h) - d_{n_1}^{-1} z_{\alpha/2} s_1(x, h),
\]

(37)

\[
\hat{f}_X(x, c) - \frac{1}{n_2} z_{\alpha/2} s_2(x, c) \leq f_X(x) \leq \hat{f}_X(x, c) - d_{n_2}^{-1} z_{\alpha/2} s_2(x, c),
\]

(38)

and

\[
\hat{g}_J(x) - \frac{1}{n_3} z_{\alpha/2} s_3(x, J) \leq g(x) \leq \hat{g}_J(x) - d_{n_3}^{-1} z_{\alpha/2} s_3(x, J).
\]

(39)

The asymptotic bias terms, \(\Delta_{n_j}(x) \) \((j = 1, \ldots, 3)\) depend on population parameters that are unknown in applications, and the standard errors \(s_{n_k} \) \((k = 1, \ldots, 3)\) converge to non-zero limits as \(n \to \infty \). Therefore, the confidence intervals (37)-(39) cannot be used in applications unless the bias terms converge to zero as \(n \to \infty \) more rapidly than the inverses of the normalization factors, \(d_{n_j}^{-1} \) \((j = 1, \ldots, 3)\). Equivalently, feasibility of (37)-(39) in applications requires \(\Delta_{n_j}(x)^2 = o(d_{n_j}^{-2}) \) as \(n \to \infty \). However, the optimal values of the regularization parameters, \(h \), \(c \), and \(J \), minimize the mean-square errors (MSE’s) of the corresponding estimators or, possibly, integrals of the MSE’s over the range of \(x \). The MSE’s are the squares of the biases plus the variances of the estimators. Thus, for example, the MSE of the kernel nonparametric density estimator \(\hat{f}_X(x, h) \) is

\[
E[\hat{f}_X(x, h) - f_X(x)]^2 \approx \Delta_{n_1}(x)^2 + d_{n_1}^{-2} s_{n_1}(x, h)^2
\]

when \(n \) is large. Similar expressions hold for deconvolution and nonparametric IV estimators.
Because the asymptotic variance term \(s_{nj}^2 (j = 1, \ldots, 3) \) converges to a non-zero limit as \(n \to \infty \), the optimal value of the regularization parameter equates the rates of convergence of \(\Delta_{nj}(x)^2 \) and \(d_{nj}^{-2} \). Therefore, the asymptotic bias is non-negligible. Moreover, it can be shown that the optimal regularization parameter also achieves the fastest possible rates of convergence in probability of \(\hat{f}_X(x, h), \hat{f}_X(x, c), \) and \(\hat{g}_f(x) \) to \(f_X(x), f_X(x), \) and \(g(x), \) respectively. Because the choices of regularization parameters that produce asymptotically optimal point estimators of \(f_X(x) \) and \(g(x) \) have non-negligible asymptotic biases, these estimators cannot be used to form confidence intervals in applications. In contrast to the situation with finite-dimensional parametric models, nonparametric point estimation of \(f_X(x) \) and \(g(x) \) and formation of confidence intervals for these quantities are distinct tasks. Methods for dealing with asymptotic bias are described in the paragraphs below. All methods produce confidence intervals that are wider than the intervals that would be obtained from (37)-(39) if the \(\Delta_{nj}'s \) were known and asymptotically optimal values of the regularization parameters were used. Relatively wide confidence intervals are unavoidable in nonparametric estimation.

The asymptotic bias terms in (37)-(39) are caused by regularization. They decrease as the amount of regularization decreases (that is, as \(h \) decreases and \(c \) or \(J \) increase). In addition, \(d_{nj}'s \) decrease as the amount of regularization decreases. Therefore, the asymptotic bias terms can be made negligible by using less than the optimal amount of regularization (that is, choosing a value of \(h \) that decreases more rapidly than the optimal rate for kernel nonparametric density estimation and values of \(c \) and \(J \) that increase more rapidly than the optimal rates for deconvolution density estimation and nonparametric IV estimation). This is called “undersmoothing.” The main problem with undersmoothing is that although empirical
methods are available for estimating the optimal value of the regularization parameter in many applications, there is no satisfactory empirical way to choose an undersmoothed value. At present, the undersmoothed parameter value must be chosen by using an essentially arbitrary rule of thumb. For example, one might use the estimated optimal parameter value to a power that is less than one in the case of kernel density estimation and greater than one in the case of deconvolution density estimation or nonparametric IV estimation.

Having selected an undersmoothed value of the regularization parameter by using a rule of thumb or other method, a confidence interval can be constructed by dropping the asymptotic bias terms from (37)-(39). Methods for calculating the required standard errors are presented by (Silverman 1978), among others, for kernel nonparametric density estimation; Fan (1991b) for deconvolution density estimation; and Horowitz (2007), Horowitz and Lee (2012), and Newey (2013) for nonparametric IV estimation.

Another way to deal with asymptotic bias is to estimate $\Delta_{nj}(x)$ and subtract the estimated bias from the estimator of $f_X(x)$ or $g(x)$. In the case of kernel nonparametric density estimation, for example, this procedure replaces $\hat{f}_X(x)$ with $\hat{f}_X(x) - \hat{\Delta}_{n1}(x)$, where $\hat{\Delta}_{n1}(x)$ is the estimator of $\Delta_{n1}(x)$. This procedure is called explicit bias correction. Schucany and Sommers (1977) describe a simple procedure for carrying out explicit bias correction in kernel nonparametric density estimation. Similar procedures can be developed for deconvolution density estimation and nonparametric IV estimation, although this has not been done. Explicit bias correction requires selection of an auxiliary value of the regularization parameter for use in estimating the bias. Satisfactory empirical methods for doing this have not been developed.

A third way to deal with asymptotic bias is to modify the critical value, $z_{\alpha/2}$, so that a confidence interval that is based on a conventional estimate of the asymptotically optimal
regularization parameter but ignores asymptotic bias has the correct asymptotic coverage probability. In the case of kernel nonparametric density estimation, the resulting $1 - \alpha$ confidence interval is

$$\hat{f}_X(x, h) - \tilde{z}d_n^{-1}s_n(x) \leq f_X(x) \leq \hat{f}_X(x, h) + \tilde{z}d_n^{-1}s_n(x),$$

where \tilde{z} is the modified critical value. Hall and Horowitz (2013) present a bootstrap-based method for selecting \tilde{z} for nonparametric density estimation. This method has the advantage of not requiring selection of a value of h that undersmooths or an auxiliary value for bias estimation. It is likely that the method can be extended to deconvolution and nonparametric IV estimators, but the required research has not yet been carried out.

Regardless of how asymptotic bias is handled, confidence intervals based on (37)-(39) are pointwise intervals. That is, they have the correct asymptotic coverage probabilities at only one value of x. They do not have correct coverage probabilities simultaneously at several or a continuum of values of x. A band that contains $f_X(x)$ or $g(x)$ with known probability for all values of x is called a uniform confidence band. A uniform confidence band is wider than a pointwise confidence band with the same coverage probability. The general form of a uniform confidence band is

$$|\text{Estimated function}(x) - \text{True function}(x)| \leq z(x) \text{ for all } x,$$

where $z(x)$ depends on the details of the estimation problem and is chosen so that (40) holds asymptotically with a specified probability.

Bickel and Rosenblatt (1973) derive a uniform confidence band for f_X based on kernel nonparametric density estimation. Bissantz, Dümbgen, Holtzmann, and Munk (2007) derive a uniform band for $f_X(x)$ based on a deconvolution density estimator and present a bootstrap method for implementing the band. The bands for nonparametric density estimation and
deconvolution are obtained by showing that suitably centered and normalized differences between the estimated and true functions converge to a Gaussian process as \(n \to \infty \). Horowitz and Lee (2012) present a bootstrap method for obtaining a uniform confidence band for \(g \) in nonparametric IV estimation. They use the bootstrap to obtain joint confidence intervals for a normalized version of \(\hat{g}_J(x_1)-g(x_1), \ldots, \hat{g}_J(x_K)-g(x_K) \) on a discrete set of points \(x_1, \ldots, x_K \). They then show that a uniform confidence band for \(g \) can is obtained by letting the number of points, \(K \), increase to \(\infty \) and the distance between points decrease to 0 as \(n \to \infty \).

4.2 Hypothesis Tests

This section discusses tests of hypotheses about a function whose estimation presents an ill-posed inverse problem. The discussion focusses on nonparametric IV estimation and shows that it is possible to construct powerful tests of hypotheses about the function \(g \) in (13), despite the imprecision of estimates of \(g \) that is an unavoidable consequence of the ill-posed inverse problem. As is discussed briefly at the end of this section, methods similar to those described here for nonparametric IV estimation are available for kernel nonparametric density estimation and deconvolution density estimation.

A hypothesis about \(g \) in (13) (the null hypothesis) can be written

\[
H_0: g \in \mathcal{G},
\]

where \(\mathcal{G} \) is a set of functions in \(L_2[0,1] \). For example, the hypothesis that \(g \) belongs to a specified, finite-dimensional parametric family corresponds to

\[
(41) \quad \mathcal{G} = \{G(x, \theta) : \theta \in \Theta \},
\]
for almost every x in the support of X, where G is a known function and Θ is a compact subset of a finite-dimensional Euclidean space. The hypothesis that X in (13) is exogenous corresponds to letting G consist of the single function

(42) \[G(x) = E(Y \mid X = x). \]

In what follows, hypothesis (41) is denoted by H_{0a}. Hypothesis (42) is denoted by H_{0b}.

The alternative hypothesis is

\[H_1 : g \notin G. \]

For example, if H_0 is that $g = G(x, \theta)$ for some $\theta \in \Theta$, H_1 is that there is no $\theta \in \Theta$ such that $g(x) = G(x, \theta)$ for almost every x in the support of X. If H_0 is that X is exogenous, then H_1 is that $g(x) \neq E(Y \mid X = x)$ on some set of x values with non-zero probability.

Let \hat{g} be a nonparametric IV estimator of g. Let $\hat{\theta}$ be an estimator of θ that is consistent under H_{0a}, and let $\hat{E}(Y \mid X = x)$ be a nonparametric estimator of $E(Y \mid X = x)$. Under H_{0a}, $\|g - G(\cdot, \theta)\| = 0$ for some $\theta \in \Theta$, and $\|g - E(Y \mid X = \cdot)\| = 0$ under H_{0b}. Therefore, H_{0a} can be tested by determining whether $\|\hat{g} - G(\cdot, \hat{\theta})\|$ is larger than can be explained by random sampling error in \hat{g} and $\hat{\theta}$. H_{0b} can be tested by determining whether $\|\hat{g} - \hat{E}(Y \mid X = \cdot)\|$ is large. However, these tests have low power because \hat{g} is an unavoidably imprecise estimator of g.

Tests that are more powerful can be obtained by observing that because the operator A defined at (28) is one-to-one, $g \in G$ is equivalent to

\[Ag \in H = \{h = Ag : g \in G\}. \]

Because $r = Ag$ by (29), H_{0a} is equivalent to
\[H_{0a}^* : r - AG(\cdot, \theta) = 0 \]

for some \(\theta \in \Theta \). \(H_{0b} \) is equivalent to

\[H_{0b}^* : r - AE(Y \mid X = \cdot) = 0 \].

\(A \) is a continuous operator, so there is no ill-posed inverse problem in estimating \(r - AG \) or \(r - AE(Y \mid X = \cdot) \). Consequently, it is possible to construct tests based on \(H_{0a}^* \) and \(H_{0b}^* \) that are much more powerful than tests based directly on \(H_{0a} \) and \(H_{0b} \).

Horowitz (2006) presents a statistic for testing \(H_{0a}^* \) based on data \(\{Y_i, X_i, Z_i : i = 1, \ldots, n\} \) that are a random sample of \((Y, X, Z)\). The statistic is

\[T_{na} = \| S_{na} \|^2, \]

where

\[S_{na}(v) = n^{-1/2} \sum_{i=1}^{n} [Y_i - G(X_i, \hat{\theta})] \hat{f}_{XZ}(v, Z_i), \]

\(\hat{f}_{XZ} \) is a kernel nonparametric estimator of the probability density function of \((X, Z)\), and \(\hat{\theta} \) is a generalized method of moments estimator of \(\theta \). \(T_{na} \) can be understood intuitively by observing that \(n^{-1} \sum_{i=1}^{n} Y_i \hat{f}_{XZ}(v, Z_i) \) is a consistent estimator of \(r(v) \) and \(n^{-1} \sum_{i=1}^{n} G(X_i, \hat{\theta}) \hat{f}_{XZ}(v, Z_i) \) is a consistent estimator of \([AG(\cdot, \theta)](v)\). Blundell and Horowitz (2007) present a statistic for testing \(H_{0b}^* \). The statistic is

\[T_{nb} = \| S_{nb} \|^2, \]

where
\[S_{nb}(v) = n^{-1/2} \sum_{i=1}^{n} [Y_i - \hat{G}(X_i)] \hat{f}_{XZ}(v, Z_i), \]

\(\hat{f}_{XZ} \) is again a kernel nonparametric estimator of the probability density function of \((X, Z)\), and \(\hat{G}(\cdot) \) is kernel nonparametric regression estimator of \(E(Y \mid X = \cdot) \). \(T_{nb} \) can be understood intuitively by observing that \(n^{-1} \sum_{i=1}^{n} \hat{G}(X_i) \hat{f}_{XZ}(v, Z_i) \) is a consistent estimator of \([AE(Y \mid X = \cdot)](v)\).

Under \(H_{0a}^* \) and \(H_{0b}^* \) (or, equivalently, \(H_{0a} \) and \(H_{0b} \)), the statistics \(T_{na} \) and \(T_{nb} \) are asymptotically distributed as weighted sums of independent random variables that have chi-squared distributions with one degree of freedom. Horowitz (2006) and Blundell and Horowitz (2007) present methods for computing critical values for \(T_{na} \) and \(T_{nb} \). In addition, Horowitz (2006) and Blundell and Horowitz (2007) show that tests based on \(T_{na} \) and \(T_{nb} \) have non-trivial power against alternative hypotheses whose distances from \(H_{0a}^* \) and \(H_{0b}^* \) (or, equivalently, \(H_{0a} \) and \(H_{0b} \)) are \(O(n^{-1/2}) \). Non-trivial power means that the probability of rejecting a false null hypothesis exceeds the level of the test. \(T_{na} \) and \(T_{nb} \) have non-trivial power against alternatives that are much closer to the null hypotheses of these statistics than is possible with tests based on \(\| \hat{g} - G(\cdot, \hat{\theta}) \| \) and \(\| \hat{g} - \hat{E}(Y \mid X = \cdot) \| \).

Because of the unavoidable imprecision of estimates of \(g \) in model (13), the half-width of a confidence interval for \(g \) is always larger than \(O(n^{-1/2}) \) and can be as large as \(O[(\log n)^{-s}] \) for some finite \(s > 0 \). In contrast, tests based on \(T_{na} \) and \(T_{nb} \) have non-trivial power against alternative hypotheses whose distance from the null hypothesis is \(O(n^{-1/2}) \) and power
approaching 1 as \(n \to \infty \) against alternatives whose distance from the null hypothesis exceeds \(O(n^{-1/2}) \). Therefore, these tests can detect an erroneous null hypothesis about \(g \) whose distance from the correct alternative hypothesis is much smaller than the half-width of a confidence interval for \(g \). This is the sense in which a hypothesis test can be more precise than a confidence region.

Methods similar those just discussed are applicable to testing hypotheses about \(f_X \) in kernel nonparametric density estimation and deconvolution density estimation. Both estimation problems begin with an operator equation of the form

\[
h = Bf_X,
\]

where \(h \) is an easily estimated function and \(B \) is a continuous, one-to-one operator that is known in the cases of kernel density estimation and deconvolution density estimation. Accordingly, testing the hypothesis \(f_X \in \mathcal{H} \) for a suitable set \(\mathcal{H} \) is equivalent to testing the hypothesis that \(\|h - Bf_X\| = 0 \) for some \(f_X \in \mathcal{H} \). Statistics similar to \(T_{na} \) and \(T_{nb} \) can be used to test this hypothesis.

6. AN EMPIRICAL ILLUSTRATION

This section presents an empirical example consisting of nonparametric IV estimation of an Engel curve for food. The data are 1655 household-level observations from the British Family Expenditure Survey. The households consist of married couples with an employed head-of-household between the ages of 25 and 55 years. The model is specified as in (13). In this model, \(Y \) denotes a household's expenditure share on food, \(X \) denotes the logarithm of the household’s total expenditures, and \(Z \) denotes the logarithm of the household’s gross earnings. The basis functions are B-splines with four knots. The estimation method is that of Section 4.3.
The Engel curve estimated here is the same as the one reported by Horowitz (2011). The results presented in this section include a uniform 95 percent confidence band as well as the estimated Engel curve. Blundell, Chen, and Kristensen (2007) used data from the Family Expenditure Survey in nonparametric IV estimation of Engel curves and investigated the validity of Z as an instrument for X.

The estimated Engel curve and a uniform 95 percent confidence band for the unknown true Engel curve are shown in Figure 1. The uniform confidence band is obtained using the methods of Horowitz and Lee (2012). It can be seen from Figure 1 that the estimated curve is nonlinear and different from what would be obtained with a linear, quadratic, or cubic model. The hypotheses that the Engel curve is quadratic or cubic is rejected by Horowitz’s (2006) test of hypothesis H_{0a} ($p < 0.05$ in both cases). Thus, the nonparametric estimate provides information about the shape of the Engel curve that would be difficult to obtain using conventional parametric methods.

The average half-width of the confidence band is approximately 40 percent of the estimated value of \hat{g}. The band is wide because of the unavoidable imprecision of nonparametric IV estimates. These estimates are imprecise because the data contain little information about g in model (13). Of course, a sufficiently careful specification search may produce a parametric model that gives a curve similar to the nonparametric one and the appearance of greater precision. However, a specification search provides no information about the accuracy of the curve it produces, and its results cannot be used for statistical inference. A confidence band based on a model found through a specification search would be misleadingly narrow. Its apparent or nominal coverage probability would be much larger than its true coverage probability.
7. CONCLUSIONS

The term “ill-posed inverse problem” refers to a condition in which the mapping from the population distribution of observables to the object identified by a statistical or econometric model is discontinuous. Moreover, in an ill-posed inverse problem, the identified object cannot be estimated consistently by replacing the population distribution with a consistent sample analog. This paper has presented examples of ill-posed inverse problems in economics and other fields. The paper has explained how ill-posedness arises, why it causes difficulty for estimation and inference, and how estimation and inference can be carried out.

Ill-posed inverse problems have been studied in mathematics and related fields for over 100 years and have recently been the objects of intensive research in econometrics. Methods for estimation and inference in ill-posed inverse problems are used routinely in many fields, but there have been few economic applications of these methods. This is undoubtedly due in part to the newness of methods such as nonparametric IV estimation. Another possible reason is that models that give rise to ill-posed inverse problems are semi- or nonparametric, whereas economists tend to prefer finite-dimensional parametric models for empirical research. However, economic theory does not provide parametric models. A parametric model is arbitrary and can be highly misleading. This is true even if it is obtained through a specification search in which several different models are estimated and conclusions are based on the one that appears to fit the data best. There is no guarantee that a specification search will include the correct model or a good approximation to it, and there is no guarantee that the correct model will be selected if it happens to be included in the search. Moreover, a model obtained through a specification search cannot be used for valid statistical inference.
Applications of nonparametric methods, including methods for ill-posed inverse problems, that have been carried out so far demonstrate the feasibility of these methods in empirical economics and the ability of the methods to provide results that differ in important ways from those obtained with standard parametric models. See, for example, Blundell, Chen, and Kristensen (2007); Blundell, Horowitz, and Parey (2012); Haag, Hoderlein, and Pendakur (2009); Hausman and Newey (1995); Hoderlein and Holzmann (2011); Horowitz (2011); and Horowitz and Härdle (1996). Even an imprecise semi- or nonparametric estimate can be useful by revealing the extent to which conclusions drawn from a parametric model are consequences of the parametric assumptions as opposed to information contained in the data (Horowitz 2011). Thus, semi- and nonparametric methods, including methods for estimation and inference in ill-posed inverse problems, have much to offer empirical economics.

8. APPENDIX

8.1 An Example that Illustrates the Discontinuity of the Inverse of Mapping (15)

Let

\[f_{XZ}(x, z) = \sum_{j=1}^{\infty} \lambda_j^{1/2} \phi_j(x) \phi_j(z); \quad 0 \leq x, z \leq 1, \]

where \(\phi_1(v) = 1 \), \(\phi_j(v) = \sqrt{2} \cos((j-1)\pi v) \) for \(j \geq 2 \), \(\lambda_1 = 1 \), and \(\lambda_j = 0.2(j-1)^{-4} \) for \(j \geq 2 \).

With this \(f_{XZ} \), the marginal distributions of \(X \) and \(Z \) are uniform on \([0,1]\), but \(X \) and \(Z \) are not independent of one another. Moreover, the functions \(\phi_j \) are orthonormal. That is,

\[\int_{-1}^{1} \phi_j(v) \phi_k(v) dv = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases} \]

Under very general conditions \(r(z) \) has the infinite series representation

44
\[r(z) = \sum_{j=1}^{\infty} c_j \phi_j(z), \]

where the coefficients \(\{c_j\} \) satisfy \(\sum_{j=1}^{\infty} c_j^2 < \infty \). It follows from Picard’s theorem for integral equations (Kress 1999, Theorem 15.18) that

\[(43) \quad g(x) = \sum_{j=1}^{\infty} \frac{c_j}{\lambda_j^{1/2}} \phi_j(x). \]

Now, let \(\delta > 0 \) be an arbitrary constant, and define

\[\tilde{r}_j(z) = r(z) + \delta \sum_{j=2}^{\infty} (j-1)^{-3/2} \phi_j(z). \]

Then \(\sup_{0 \leq z \leq 1} |\tilde{r}(z) - r(z)| \) can be made arbitrarily small by letting \(\delta \) be sufficiently small.

However, it follows from (43) that with \(\tilde{r} \) in place of \(r \), the solution to (15) is

\[\tilde{g}(x) = g(x) + \delta \sum_{j=2}^{\infty} \frac{1}{\lambda_j^{1/2} (j-1)^{3/2}} \phi_j(x) \]

and that

\[\int_{-1}^{1} [g(x) - \tilde{g}(x)]^2 dx = \infty. \]

Thus, the difference between \(\tilde{g}(x) \) and \(g(x) \) is infinite on a set of \(x \) values with positive Lebesgue measure, although the difference between \(\tilde{r}(x) \) and \(r(x) \) may be arbitrarily small.

8.2 Procedure for Regularizing and Estimating \(g \) in Model (13)

The procedure has two steps: (1) Form finite-dimensional approximations to \(r \) and \(A \), and form the regularized version of (31); (2) consistently estimate unknown population quantities in the approximations to obtain the regularized estimator of \(g \).
Step 1: To form the desired approximations to \(r \) and \(A \), let \(\{ \psi_j : j = 1, 2, \ldots \} \) be an orthonormal basis for \(L_2[0,1] \). Then we can write

\[
(44) \quad r(z) = \sum_{j=1}^{\infty} r_j \psi_j(z)
\]

and

\[
(45) \quad f_{XZ}(x, z) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \psi_j(x) \psi_k(z),
\]

where \(r_j = \langle r, \psi_j \rangle \) and

\[
a_{jk} = \int_0^1 \int_0^1 \psi_j(x) \psi_k(z) f_{XZ}(x, z) dx dz.
\]

Moreover, for any \(h \in L_2[0,1] \),

\[
(Ah)(z) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \langle h, \psi_j \rangle \psi_k(z).
\]

In particular,

\[
(Ag)(z) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \langle g, \psi_j \rangle \psi_k(z).
\]

The finite-dimensional approximations to \(r \) and \(A \) are obtained by truncating the series (44) and (45) at \(J < \infty \) terms. Let \(r_J \) and \(A_J \) denote the resulting approximations. Then

\[
r_j(z) = \sum_{j=1}^{J} r_j \psi_j(z),
\]

and for any \(h \in L_2[0,1] \),

\[
(A_J h)(z) = \sum_{j=1}^{J} \sum_{k=1}^{J} a_{jk} \langle h, \psi_j \rangle \psi_k(z).
\]
Note that A_j is a $J \times J$ matrix and $(A_j h)(z)$ is a $J \times 1$ vector of functions of z. The regularized versions of (30) and (31) are

(46) \[r_j = A_j \tilde{g} \]

and

(47) \[\tilde{g}_j = A_j^{-1} r. \]

The notation \tilde{g}_j is used instead of g to emphasize that the function identified by (46) and (47) is a finite-dimensional approximation to g and is not the same as the function identified by (30) and (31). Let a^{jk} $(j, k = 1, \ldots, J)$ denote the (j, k) element of the inverse of the $J \times J$ matrix $[a_{jk}]$. Then it follows from (47) that

(48) \[\tilde{g}_j = \sum_{k=1}^{J} a^{jk} r_k. \]

To estimate \tilde{g}_j consistently, it suffices to estimate the a^{jk}'s and r_k's consistently.

Step 2: Let the data used to estimate g be a random sample $\{Y_i, X_i, Z_i : i = 1, \ldots, n\}$ from the distribution of (Y, X, Z). It follows from (15) and $r_j = \langle r, \psi_j \rangle$ that

\[r_j = E[Y \psi_j(Z)]. \]

Therefore, r_j is a population moment and is estimated $n^{-1/2}$-consistently by the analogous sample average.
\[\hat{r}_j = n^{-1} \sum_{i=1}^{n} Y_i \psi_j(Z_i). \]

In addition, \(a_{jk} \) is the population moment
\[a_{jk} = E[\psi_j(X)\psi_k(Z)] \]
and is estimated \(n^{-1/2} \) consistently by the sample average
\[\hat{a}_{jk} = n^{-1} \sum_{i=1}^{n} \psi_j(X_i)\psi_k(Z_i). \]

\(A_J \) is estimated consistently by the operator \(\hat{A}_J \), which is defined by
\[(\hat{A}_J h)(z) = \sum_{j=1}^{J} \sum_{k=1}^{J} \hat{a}_{jk} \langle h, \psi_j \rangle \psi_k(z) \]
for any function \(h \in L_2[0,1] \). Let \(\hat{a}^{jk} \) \((j,k = 1,\ldots,J)\) denote the \((j,k)\) element of the inverse of the \(J \times J \) matrix \([\hat{a}_{jk}] \). Then the sample analog of (48) is
\[\hat{g}_j = \sum_{k=1}^{J} \hat{a}^{jk} \hat{r}_k. \]
Moreover, for any \(J < \infty \), \(\hat{g}_J \) is estimated consistently by
\[(49) \quad \hat{g}_J = \sum_{j=1}^{J} \hat{g}_j \psi_j. \]
In particular, as \(n \to \infty \) \(\| \hat{g}_J - \tilde{g}_J \| \to 0 \), and \(\| \hat{g}_J - g \| \to 0 \) if \(J \to \infty \) at a suitable rate.

The estimator \(\hat{g}_J \) in (49) can be put into the form of a conventional linear IV estimator, which makes it easy to compute \(\hat{g}_J \) using standard software. Let \(Z \) and \(\mathcal{X} \), respectively,
denote the $n \times J$ matrices whose (i,j) elements are $\psi_j(Z_i)$ and $\psi_j(X_i)$. Define the $n \times 1$ vector $\mathbf{Y} = (Y_1, \ldots, Y_n)'$. Define the $J \times 1$ vector $\hat{\mathbf{G}} = (\hat{g}_1, \ldots, \hat{g}_J)'$. Then (49) is equivalent to

$$\hat{\mathbf{G}} = (Z'\mathbf{X})^{-1} Z'\mathbf{Y}.$$

$\hat{\mathbf{G}}$ has the form of an IV estimator for a linear model in which the matrix of variables is \mathbf{X} and the matrix of instruments is \mathbf{Z}.

REFERENCES

Figure 1

Nonparametric IV Estimate of an Engel curve. Solid line is the estimated curve. Dashed lines indicate a uniform 95 percent confidence band for the unknown true curve.