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IDENTIFICATION AND ESTIMATION IN A

CORRELATED RANDOM COEFFICIENTS BINARY RESPONSE MODEL

By Stefan Hoderlein and Robert Sherman1

October, 2011.

Abstract

We study identification and estimation in a binary response model with random coefficients

B allowed to be correlated with regressors X . Our objective is to identify the mean of the distri-

bution of B and estimate a trimmed mean of this distribution. Like Imbens and Newey (2009),

we use instruments Z and a control vector V to make X independent of B given V . A consequent

conditional median restriction identifies the mean of B given V . Averaging over V identifies

the mean of B. This leads to an analogous localize-then-average approach to estimation. We

estimate conditional means with localized smooth maximum score estimators and average to

obtain a
√

n-consistent and asymptotically normal estimator of a trimmed mean of the distri-

bution of B. The method can be adapted to models with nonrandom coefficients to produce

√
n-consistent and asymptotically normal estimators under the conditional median restrictions.

We explore small sample performance through simulations, and present an application.

Keywords: Heterogeneity, Correlated Random Coefficients, Endogeneity, Binary Response

Model, Instrumental Variables, Control Variables, Conditional Median Restrictions.

1. Introduction

Individuals with the same observed characteristics often respond in systematically different ways

to the same stimulus, especially when that stimulus is chosen by the individual. For example, people

of the same race and gender, with the same level of education from the same school and in the same

1We thank the seminar participants at Rochester as well as Kim Border and Lan Nguyen for helpful discussions.
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area of study, may realize different rates of return to education due to unobserved variables like

ability and motivation. This is an example of the phenomenon of heterogeneous marginal effects. In

linear regression, for example, this type of heterogeneity can be modeled with coefficients that are

random, and so vary across the population. Of interest are various characteristics of the distribution

of random coefficients, such as the mean. Each component of the mean is the average marginal

effect of the corresponding regressor on the structural conditional expectation.

Unobserved factors may cause random coefficients and observed regressors to be correlated. For

example, love of learning may motivate a person to pursue an academic career, even though that

person could succeed in a more lucrative profession. Such a person may acquire more education

but earn less money than a counterpart who is otherwise identical, but loves learning less. In other

words, ceteris paribus, the more one loves learning, the more education one may seek at the expense

of the rate of return to education. But rate of return to education is the coefficient of education

in a standard linear model of wages. Thus, this coefficient and education may be negatively

correlated. Heckman and Vytlacil (1998) note the plausibility of this negative correlation and

show that nonzero correlation makes education endogenous, resulting in inconsistency of the least

squares estimator of the mean of the distribution of random coefficients. This leads these authors

to posit a correlated random coefficients model and to develop corresponding estimation procedures

to consistently estimate the mean.

Similar considerations motivate the development of binary response models that allow for cor-

related random coefficients. For example, the decision of a married woman to work or not may

depend on education level, and the coefficient of education may be positively correlated with ed-

ucation. Unobserved ability and motivation may drive this correlation. It may be that women of

higher ability and motivation not only seek more education but give greater weight to education in
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making their work decisions. If so, then the coefficient of education is not the same positive con-

stant for all women, but tends to be higher for more educated women. As with the linear model,

this type of heterogeneity can be modeled with a binary response model with random coefficients

allowed to be correlated with regressors. We call such a model a correlated random coefficients

binary response model, or a CRCBR model, for short. The objective of this paper is to identify the

mean of the distribution of random coefficients in a CRCBR model, and then develop an estimator

of a trimmed mean of this distribution.

More formally, let a latent scalar random variable Y ∗ = XB∗, where X = (X1,X2, . . . ,Xk) is

a 1 × k vector of random explanatory variables and B∗ = (B∗
1 , B∗

2 , . . . , B∗
k)′ is a k × 1 vector of

random coefficients allowed to be correlated with X. Take X2 ≡ 1, the intercept term. Then XB∗ =

X1B
∗
1 + B∗

2 + X3B
∗
3 + · · ·+ XkB

∗
k. Define Y = {Y ∗ > 0} = {XB∗ > 0}. Note that Y = {XB > 0}

where B = λB∗ for any λ > 0. That is, Y is invariant to positive scale normalizations of B∗, and so

the distribution of B∗ can only be identified up to scale. We assume that B∗
1 > 0 and take λ = 1/B∗

1 ,

so that the vector of random coefficients that can be identified is B = B∗/B∗
1 = (1, B2, . . . , Bk).

For simplicity, from now on, we take Y ∗ = XB = X1 + B2 + X3B3 + · · · + XkBk.

As indicated in the last paragraph, we normalize on the coefficient of X1. For ease of exposition,

throughout this paper we assume that X1 has support IR. However, we stress that this support

assumption is not necessary. For example, as we discuss later, X1 could have bounded support.

Apart from special cases, what is necessary for purposes of identification is that X1 be continuously

distributed. The full support assumption is invoked simply to make subsequent identification and

trimming arguments more transparent.
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For ease of exposition, we assume that the mean of B exists and write β = IEB.2 The model is

Y = {XB > 0} (1)

= {ǫ < Xβ} (2)

where ǫ = −X(B − β). This is the general CRCBR model.

The general CRCBR model nests a number of special cases that are interesting in their own

right. For example, it reduces to the standard nonrandom coefficients binary response model with

X exogenous when B2, the coefficient of the intercept term, is the only random coefficient. In

this model, B2 plays the role of the error term (plus nonrandom intercept) and is uncorrelated

with X. Another special case is the standard nonrandom coefficients binary choice model with

endogenous regressors. Again, the only random coefficient is B2, but this coefficient is allowed to

be correlated with components of X. In addition, the CRCBR model reduces to the independent

random coefficients binary response model when B is independent of X.

While the CRCBR model nests a number of interesting special cases, these special cases allow

either no correlation between B and X, or correlation only between B2 and X. The general

model allows a richer correlation structure between B and X, and so can capture richer forms of

heterogeneity, as suggested previously.

Refer to (2) and recall that ǫ = −X(B − β). We see that if any component of X is correlated

with any component of B, then IEX ′ǫ 6= 0. In this sense, correlation between regressors and

random coefficients implies endogeneity. Thus, we say that a component of X is endogenous if it is

correlated with at least one component of B. To handle this endogeneity, we require instruments

2Our methods do not require that the mean of B exists, and even if the mean exists, β need not be the mean, but
can denote any reasonable measure of center of the distribution of B.
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and control variables.

Let X1 denote an endogenous component of X. We assume that there exists a vector of instru-

ments, Z, for X1. This means that at least one component of Z is correlated with X1, and Z is

unrelated to B in a sense to be defined shortly. In addition, we assume that X1 = φ1(Z, V1) where

V1 is a random variable independent of Z, and φ1 is a real-valued function invertible in V1 for each

possible value of Z. If Z is independent of B given V1, then X1 is independent of B given V1, and

so V1 is a control variable for X1 with respect to B, as defined in Imbens and Newey (2009). Under

these restrictions, X1 can be either a separable or nonseparable function of Z and V1. For example,

we allow the standard separable case X1 = φ1(Z, V1) = M(Z) + V1 where M(Z) = IE(X1 | Z) and

V1 = X1 − M(Z).

Let e denote the number of endogenous components of X and let X = (X1, . . . ,Xe) denote the

vector of endogenous components of X. For simplicity, assume that Z is a vector of instruments

for each component of X . Let V = (V1, . . . , Ve) denote the vector of control variables for X . That

is, as above, for each j, Xj = φj(Z, Vj) where Vj is independent of Z and φj is a invertible in Vj

conditional on Z. If Z is independent of B given V , then X is independent of B given V . If, in

addition, the exogenous components of X are independent of B, then X is independent of B given

V . In this setting, conditioning on V , the source of endogeneity, produces conditional independence.

This suggests a localize-then-average approach to both identification and estimation.

If X is independent of B given V , and (B,V ) satisfies a type of joint symmetry condition,

then certain conditional median restrictions hold, which generalize the median restrictions of Man-

ski (1975,1985). These conditional median restrictions are sufficient to identify IE(B | V ) in a

distribution-free way that allows arbitrary forms of heteroscedasticity in a conditional error term.

Averaging over V then identifies β.
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We estimate IE(B | V ) with a localized version of the smoothed maximum score estimator of

Horowitz (1992), and then average the trimmed estimated conditional expectations to obtain an

estimator of a trimmed mean of the distribution of B. This trimmed mean can be made arbitrarily

close to β by choosing a large enough trimming constant. The conditional expectation estimators

suffer from a curse of dimensionality, but the estimator of the trimmed mean does not. The

averaging overcomes the curse and yields a
√

n-consistent and asymptotically normal estimator of

the trimmed mean. An interesting aspect of the estimation procedure is the localization step. We

do not localize directly on V , which would require estimating V , a difficult task, in general. Rather,

we localize on an invertible transformation of V , which is easily estimated with kernel regression

methods. This simplified localization step is made possible by a simple generalization of a result

in Matzkin (2003).

If the conditional median restrictions hold, then the localize-then-average method can be adapted

to models with nonrandom slope coefficients, with either exogenous or endogenous regressors, to

produce
√

n-consistent and asymptotically normal estimators of the nonrandom slope coefficients.

For example, under the conditional median restrictions, it is possible to construct
√

n-consistent

and asymptotically normal estimators of the nonrandom slope coefficients in the models of Man-

ski (1975,1985) and Horowitz (1992). It is well known (Horowitz, 1993) that it is not possible to

achieve
√

n-consistency under the maintained assumptions of these authors. However, the extra

information provided by instruments, along with the stronger conditional median restrictions and

the estimation procedure that exploits this information, makes this possible.

Our localize-then-average identification and estimation strategy is very similar in spirit to that

of Imbens and Newey (2009). These authors use instruments and condition on unobserved control

variables to break the dependence of endogenous regressors on multiple sources of unobserved

6



heterogeneity, and then average over the control variables to identify various structural effects of

interest. They average over estimated control variables to estimate these effects. They do this

in the context of nonseparable models with continuous outcomes. By contrast, we treat the case

of binary outcomes and estimate a measure of center of the distribution of random coefficients,

leading to a very different type of estimator and analysis. Altonji and Matzkin (2005) use a similar

localize-then-average identification and estimation strategy in their earlier work, but do not consider

random coefficients. Blundell and Powell (2004) and Petrin and Train (2006) use related control

function strategies. Our approach is also related to the work of Matzkin (1992), who was the first

to consider nonparametric identification in the exogenous binary choice model.

Lewbel (2000) can estimate a measure of center of the distribution of random coefficients in

a CRCBR model provided there exists a special regressor with heavy tails that, conditional on

instruments, is independent of the structural error and the other regressors in the model. Bajari,

Fox, Kim, and Ryan (2008) and Gautier and Kitamura (2009) identify and estimate the entire

distribution of random coefficients in a binary response model, but focus on the case of exogenous

regressors. Fox and Ghandi (2010) focus on identification of the distribution of random coefficients

in a more general nonlinear set-up. Hoderlein (2010) identifies and estimates the mean of the

distribution of random coefficients in a binary response model, allowing correlation between a ran-

dom intercept coefficient and regressors. However, he does not allow correlation between random

slope coefficients and regressors. He also does not allow endogenous regressors to be nonseparable

functions of control variables and instruments. As already mentioned, in the linear model, Heck-

man and Vytlacil (1998) identify and estimate the mean of the distribution of correlated random

coefficients. However, their approach does not extend to the binary response model.

A number of authors study identification and estimation of nonrandom coefficients in the binary
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response model, allowing correlation between the structural error term and the regressors, the usual

notion of endogeneity. Rivers and Voung (1988) treat the parametric case. Lewbel (2000), men-

tioned previously, treats the semiparametric case. Vytlacil and Yildiz (2007) treat nonparametric

identification and estimation of the effect of an endogenous binary regressor.

There is a huge semiparametric literature treating identification and estimation of nonrandom

coefficients in the binary response model with exogenous regressors. A seminal reference for a

direct, or nonoptimization, approach, is the work of Powell, Stock and Stoker (1989) on average

derivative estimation. There are many optimization estimators, including the semiparametric least

squares estimator of Ichimura (1993) and the semiparametric maximum likelihood estimator of

Klein and Spady (1993). Most of these of estimators do not handle general forms of heteroscedas-

ticity in X, even when X is exogenous. A notable exception is the maximum score (MS) estimator

of Manski (1975,1985). However, the MS estimator converges at rate n−1/3 and has a nonstan-

dard limiting distribution, making asymptotic inference problematic. In response to this difficulty,

Horowitz (1992) develops the smoothed maximum score (SMS) estimator. The SMS estimator also

handles general forms of heteroscedasticity, but can converge at a rate arbitrarily close to the para-

metric rate of n−1/2, depending on the smoothness of the distribution of model primitives, and has

a limiting normal distribution, making standard asymptotic inference possible. Because of these

attractive properties, we use a localized version of the SMS estimator in our localization step in

estimation.

The rest of the paper is organized as follows. The next section develops the localize-then-

average approach to identifying β = IEB. Section 3 develops the localize-then-average approach to

estimating a trimmed mean of the distribution of B. We sketch an outline of the argument and state

and discuss the assumptions used to prove that this estimator is
√

n-consistent and asymptotically
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normally distributed. The proof is quite complicated due to the fact that the estimator is an

average of optimization estimators evaluated at generated variables. A technical innovation involves

establishing a uniform strong maximization condition, used to prove a consistency result uniform

over the localizing variable. A formal statement of the asymptotic result is given for the special case

of one endogenous regressor. We also discuss application of the asymptotic result to a number of

interesting special cases. Section 4 presents simulation results and Section 5 presents an application.

We conclude and give directions for future work in Section 6. A complete proof of the asymptotic

result for the special case of one endogenous regressor is given in Appendix A. Issues of trimming

and local polynomial estimation are addressed in Appendix B.

2. Identification

Recall the CRCBR model as defined in (1) and (2). Recall the definition of the vector of

instruments Z and the vector of control variables V . We observe (Y,X,Z). Our objective is to

identify β = IEB. We do so in two stages. In the first stage, we develop conditions under which

IE(B | V ) is identified. We then average over V to identify IEB. Moreover, we identify IE(B | V )

without assuming knowledge of the functional form of distribution of B, while at the same time

allowing arbitrary forms of heteroscedasticity, in X and V , in a conditional error term. Because

of this, conditional versions of the sort of median restrictions imposed by Manski (1975,1985) and

Horowitz (1992) play a role.

Let SV denote the support of V . Define the conditional expectation β(v) ≡ IE(B | V = v).

For each x ∈ SX and each v ∈ SV , we make the following conditional median independence and

conditional median zero assumptions:

CMI. med(x(B − β(v)) | X = x, V = v) = med(x(B − β(v)) | V = v).
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CMZ. med(x(B − β(v)) | V = v) = 0.

Under CMI and CMZ in the general CRCBR model, we get that

med(Y ∗ | X = x, V = v) = med(Xβ(V ) + X(B − β(V )) | X = x, V = v)

= xβ(v) + med(x(B − β(v)) | X = x, V = v)

= xβ(v) + med(x(B − β(v)) | V = v) (CMI)

= xβ(v) (CMZ) .

It follows that

Y = {XB > 0}

= {ǫ(V ) < Xβ(V )}

where ǫ(V ) = −X(B−β(V )). Thus, if CMI and CMZ hold, then for each x ∈ SX and each v ∈ SV ,

med(ǫ(v) | X = x, V = v) = 0 . (3)

This is the key result used to identify β(v) = IE(B | V = v) for each v ∈ SV . It also follows from

this result that arbitrary forms of heteroscedasticity in x and v are allowed in ǫ(v). By averaging

out over v, we identify β = IEB.

Assumption CMI defines the precise sense in which Z is assumed to be unrelated to B. Stronger,

more intuitive conditions imply CMI. For example, if Z is independent of B given V and the

exogenous components of X are independent of B, then X is independent of B given V , which

implies CMI. When β(v) = IE(B | V = v), CMZ is implied by a type of joint symmetry condition.
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For example, CMZ holds if (B,V ) is distributed multivariate normal. Both CMI and CMZ are

satisfied if B = β(V ) + ν, where ν is a k-vector, independent of Z and V , whose components

are independent and symmetric about zero. These conditions can be relaxed. For example, the

symmetry conditions can be relaxed if we make a different choice of β(v).3

In the next section, we show how to estimate a trimmed mean of the distribution of B with

an analogous two-stage, localize-then-average estimation procedure. One possibility is to localize

directly on the unknown vector V . This requires estimating V , which can be difficult without further

information about the φj functions. Other possibilities arise from the fact that β(V ) = β(M(V ))

for any e-dimensional invertible function M . It follows that β = IEβ(V ) = IEβ(M(V )) where the

expectation can either be over V or M(V ). If CMI and CMZ (and therefore condition (3)) hold for

V , then they must hold with M(V ) in place of V . Thus, by choosing M judiciously, we may replace

localization on V with localization on M(V ) and thereby simplify the localization step. There are

many possible choices for M . We choose one that leads to the simplest estimation procedure.

Recall that X = (X1, . . . ,Xe) denotes the vector of endogenous components of X. Write SX

for the support of X . Also, write SZ for the support of Z. Fix v ∈ SV and note that v =

(φ−1
1 (x1, z), . . . , φ−1

e (xe, z)) for some x = (x1, . . . , xe) ∈ SX and z ∈ SZ . It is easy to show (see

Lemma 0 in Appendix A) that there exists an invertible function M such that

M(v) = (IP{X1 ≤ x1 | Z = z}, . . . , IP{Xe ≤ xe | Z = z}) .

3The symmetry conditions reflect the choice β(v) = IE(B | V = v). We make this choice for ease of exposition, so
that β is the familiar object IEB. However, other measures of center, corresponding to other localizing functions, are
possible. For example, take β̃(v) to be the parameter of interest in a localized version of the binary median regression
models of Manski (1975,1985) and Horowitz (1992). For fixed v, CMI and CMZ combined constitute a localized
version of their median independence assumption, which does not require symmetry. Define β̃ = IEβ̃(V ). In general,
β̃ 6= IEB, but β̃ may still be a reasonable measure of center of the distribution of B.
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For example, when e = 1, v = v1 = φ−1
1 (x1, z) and

M(v1) = FV1
(v1) = FV1

(φ−1
1 (x1, z)) = IP{X1 ≤ x1 | Z = z}

where FV1
is the invertible cdf of V1. Therefore, direct localization on v can be replaced by local-

ization on M(v), where each component of M(v) can be easily estimated with kernel regression

methods. We adopt this approach in the next section.

3. Estimation and Asymptotics

In this section, we develop a two-stage, localize-then-average estimator of a trimmed mean of

the distribution of B. We prove that this estimator is
√

n-consistent and asymptotically normally

distributed. Since the asymptotic analysis is complicated, we first discuss the overall strategy used

to prove the result. Then, after stating and discussing assumptions used to obtain the general result,

we state the main theorem for the special case of one endogenous regressor. Finally, we discuss

application of the result to other models, including binary response models where X is exogenous

or endogenous, and slope coefficients are nonrandom. A formal proof of the main theorem for the

case of one endogenous regressor is given in Appendix A.

We begin by describing some of the model primitives in more detail. Let the instrument vector

Z be a 1 × m vector, and let c denote the number of components of Z that are continuous. We

allow the case c = 0, and since Z contains the intercept term, we have that 0 ≤ c ≤ m− 1. Let ZC

denote the 1 × c vector of continuous components of Z.

Recall that e denotes the number of endogenous components of X and X = (X1, . . . ,Xe) denotes

the 1 × e vector of endogenous components of X. For now, we assume that e ≥ 1, and since X2 is
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unity, we have that 1 ≤ e ≤ k− 1.4 Recall that V = (V1, . . . , Ve) denotes the 1× e vector of control

variables corresponding to X . Let d ≤ e denote the number of continuous components of X and

let XC denote the 1 × d vector of continuous components of X .

We now develop the first-stage estimator. As discussed at the end of the last section, instead

of localizing directly on V = v we localize on

M(v) = (IP{X1 ≤ x1 | Z = z}, . . . , IP{Xe ≤ xe | Z = z})

where v = (φ−1
1 (x1, z), . . . , φ−1

e (xe, z)), with x ∈ SX and z ∈ SZ .

Let (Yi,Xi, Zi), i = 1, 2, . . . , n, denote iid observations from the CRCBR model described

previously. Then Vi = (Vi1, . . . , Vie) where, for j = 1, . . . , e, Vij = φ−1
j (Xij , Zi). Define Ui =

(Ui1, . . . , Uie) where, for j = 1, . . . , e, Uij = IP{Xj ≤ Xij | Z = Zi}. Note that Ui = M(Vi). We

estimate Uij with the standard kernel regression estimator:

Ûij = ÎP{Xj ≤ Xij | Z = Zi} =
n
∑

a=1

{Xaj ≤ Xij}Kn(Za − Zi)/
n
∑

a=1

Kn(Za − Zi) (4)

where Kn(t) = K(t/αn) with t ∈ IRm and αn a positive bandwidth, and K an m-dimensional

kernel function. Define Ûi = (Ûi1, . . . , Ûie). For t = (t1, . . . , tm), we take

K(t) =
m
∏

b=1

K(b)(tb) . (5)

That is, the m-dimensional multivariate kernel is a product of m univariate kernels. If the bth

component of Z is discrete, then K(b)(tb) ≡ {tb = 0}. If the bth component of Z is continuous,

4The case e = 0 is the exogenous case. We stress that our methods cover this important special case, and we say
more about this case at the end of this section. However, different notation is required and so for now, we take e ≥ 1.
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then K(b)(tb) is a smooth univariate kernel function, defined in A14 below.5

Write U for M(V ) and SU for the support of U . We assume SU = [0, 1]⊗· · ·⊗ [0, 1] (e factors).6

Note that β(V ) = β(M−1(U)). By a slight abuse of notation, for each u ∈ SU , we write β(u)

for IE(B | U = u). Fix u ∈ SU . Write Bu for a compact set known to contain β(u). Following

Horowitz (1992), we estimate β(u) with β̂(u) = argmax
b∈Bu

Ŝn(b | u) where

Ŝn(b | u) =
1

nτ e
n

n
∑

j=1

(2Yj − 1)K∗
n(Xjb)Kn(Ûj − u)τκ(ZC

j ) (6)

where K∗
n(t) = K∗(t/σn) with t ∈ IR and σn a positive bandwidth, and Kn(t) = K(t/τn) with

t ∈ IRe, τn a positive bandwidth, and K an e-dimensional kernel function. For κ > 0, the trimming

function τκ(z) = {|z| ≤ κ}.

In (6), the function K∗
n(t) smoothly approximates the indicator function {t > 0}. The function

K∗(t) is the integral of a smooth univariate kernel function, defined in A14 below. We define K(t)

as in (5), with e replacing m. Since all the components of U are continuous, each K(b)(tb) is a

smooth univariate kernel function, also defined in A14 below.

In (6), note that we only trim on ZC , the continuous components of Z. For ease of expo-

sition, we assume that ZC has support IRc. Then τκ trims the jth summand in (6) when the

(rescaled) denominator of Ûj gets too close to zero. This prevents so-called ratio bias, as explained

in Appendix B. If c = 0, then Z is discrete and so we do not trim. Equivalently, τκ(z) ≡ 1.

5We need not condition on all the components of the instrument vector Zi. If the jth component of X is
endogenous, we may define Uij = IP{Xj ≤ Xij | Z = Zj

i } where Zj
i is comprised of any nonnull subset of the

components of Zi that are instruments for Xij . Then Ûij is defined as in (4) above, except the regression is on a
smaller set of instruments, a computational advantage. We have chosen not to present the estimator in this generality
to avoid the extra notational burden this would entail.

6This support assumption is made for convenience. It is not necessary, as we later discuss prior to the proof
of Lemma 0 in Appendix A. However, this assumption does imply that U is continuously distributed. Since V =
M−1(U), if M−1 is continuous, then V is continuously distributed. Note, however, that this need not imply that X
has all continuous components. That is, this support assumption does not preclude discrete endogenous regressors.
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Recall that β = IEB = IEβ(U). For κ > 0, define the trimmed mean

βκ = IEβ(U)τκ(XC , ZC) . (7)

where τκ(x, z) = {|x| ≤ κ}{|z| ≤ κ}. We view βκ as the parameter of interest. If β < ∞, then

βκ → β as κ → ∞. That is, βκ can be made arbitrarily close to β by choosing κ large enough.7 The

trimming in (7) prevents boundary bias and ratio bias in the estimator of βκ. If c = d = 0, then

X and Z, and therefore, U , are discrete and so we do not trim. Equivalently, we take τκ(x, z) ≡ 1

and the estimand is β. If β = ∞, then βκ can be viewed as a robust measure of the center of the

distribution of B.

We estimate βκ with

β̂κ =
1

n

n
∑

i=1

β̂(Ûi)τκ(XC
i , ZC

i ) . (8)

As explained in Appendix B, trimming on both XC
i and ZC

i prevents boundary bias by trimming

β̂(Ûi) when Ûi gets too close to the boundary of SU , while trimming on ZC
i prevents ratio bias by

trimming β̂(Ûi) when the denominator of Ûi gets too close to zero.8

We get that

β̂κ − βκ =
1

n

n
∑

i=1

[

β̂(Ûi) − β(Ui)
]

τκ(XC
i , ZC

i ) +
1

n

n
∑

i=1

[

β(Ui)τκ(XC
i , ZC

i ) − βκ

]

. (9)

7It is not necessary to use the same trimming constant for XC and ZC . Also, if we divide the RHS of (7) by
pκ = IEτκ(XC , ZC), then in some special cases, βκ = β for all κ > 0. This is true, for example, in the separable
model X = M(Z) + V where M(Z) = IE(X | Z) and V = X − M(Z), when (B,X, Z) is multivariate normal and X
and Z have zero means. Nonzero means can be accommodated by subtracting them in the trimming functions. If the
RHS of (7) is divided by pκ, then the RHS of (8) must be divided by the sample analogue of pκ. Such an adjustment
makes a first order contribution to the asymptotic distribution of β̂κ. This contribution is small when κ is large.

8It may be possible to eliminate boundary bias by using a higher-order local polynomial estimator of Ui. While
this would eliminate the need to trim on XC

i in (7) and (8), it would still be necessary to trim on ZC
i to prevent ratio

bias. As explained in Appendix B, higher-order local polynomial estimation may prevent boundary bias, but it does
not prevent ratio bias. It also leads to a much more complicated analysis.
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The second term on the RHS of (9) converges to zero as n → ∞ by the LIE and a LLN, and when

rescaled by
√

n, has an asymptotic normal distribution by a standard CLT. The first term on the

RHS of (9) equals

1

n

n
∑

i=1

[

β̂(Ûi) − β̂(Ui)
]

τκ(XC
i , ZC

i ) +
1

n

n
∑

i=1

[

β̂(Ui) − β(Ui)
]

τκ(XC
i , ZC

i ) . (10)

Write δ̂(u) for the k×e matrix ∂
∂u β̂(u). By a Taylor expansion of each β̂(Ûi) about the corresponding

Ui, we get that the first term in (10) equals

1

n

n
∑

i=1

δ̂(Û∗
i )(Ûi − Ui)

′τκ(XC
i , ZC

i ) (11)

where Û∗
i is between Ûi and Ui.

Three of the above terms make first order contributions to the asymptotic distribution of β̂κ: the

second term in (9), the second term in (10), and the term in (11). The second term in (9) quantifies

the first order contribution to the asymptotic distribution of β̂κ when the Ui’s are observed. The

second term in (10) and the term in (11) quantify the penalties paid for having to estimate each

Ui. We show that the second term in (10) can be decomposed into two terms, each of which makes

a first order asymptotic contribution.

Notice that β̂κ is not a standard optimization estimator, but rather an average of optimization

estimators. Moreover, each component optimization estimator is based on generated variables. As

such, β̂κ requires a different method of analysis than a more standard estimator. We now sketch

the basic strategy used in establishing the limiting distribution of β̂κ. We begin by stating and

discussing the significance of several results that will be useful in this regard.

The first is a uniform consistency result. Recall that SU = [0, 1] ⊗ · · · ⊗ [0, 1] (e factors). Let
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Uκ denote a compact subset of SU defined below. We show that as n → ∞,

sup
u∈Uκ

|β̂(u) − β(u)| = op(1) . (12)

We use (12) to help establish a rate of uniform consistency, stated and discussed next. A technical

novelty in proving (12) involves establishing a uniform version of an identification condition called

a strong maximization condition. That is, we show that for any δ > 0,

inf
u∈Uκ

[

S(β(u) | u) − sup
|b−β(u)|≥δ

S(b | u)

]

> 0 (13)

where S(b | u) is the population analogue of Ŝn(b | u).

Standard results can be used to establish
√

n-consistency and asymptotic normality of the

second term in (9). However, more is needed to handle the second term in (10) and the term in

(11). These terms are averages of differences (or derivatives) of optimization estimators involving

generated variables. The strategy used to analyze these terms is to replace each summand involving

generated variables with a summand that involves only original observations plus a remainder term

that has order op(1/
√

n) uniformly over SU . One can then neglect the average of remainder terms

and analyze the friendlier average of approximating terms using more standard methods. The

principal means to this end are two results involving rates of uniform convergence.

Recall X = (X1, . . . ,Xe) denotes the vector of endogenous components of X, and SX the

support of X . For x = (x1, . . . , xe) ∈ SX and z ∈ SZ , define U(x, z) = (U1(x1, z), . . . , Ue(xe, z))

where Uj(xj , z) = IP{Xj ≤ xj | Z = z) and Û(x, z) = (Û1(x1, z), . . . , Ûe(xe, z)) where Ûj(xj , z) =

ÎP{Xj ≤ xj | Z = z). For each x ∈ SX , define xC to be the subvector of x corresponding to the

continuous components of X . For each z ∈ SZ define zC to be the subvector of z corresponding to
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the continuous components of Z. Define Xκ = {x ∈ SX : |xC | ≤ κ} and Zκ = {z ∈ SZ : |zC | ≤ κ}.

Define Uκ = {U(x, z) ∈ SU : x ∈ Xκ, z ∈ Zκ}, a compact subset of SU . We show that

sup
x∈Xκ,z∈Zκ

|Û(x, z) − U(x, z)| = Op(1/
√

nαc
n) (14)

sup
u∈Uκ

|β̂(u) − β(u)| = Op(1/
√

nαc
nσnτ e+1

n ) . (15)

An analysis of the second term in (10) leads to an influence function representation for β̂(u)−β(u).

A remainder term associated with this representation is a product of two factors, one associated

with the gradient of Ŝn(b | u), the other associated with the hessian of Ŝn(b | u). (Of all the

remainder terms associated with β̂κ, this one requires the most delicate analysis.) Using (14) and

(15), we show that the factor associated with the gradient has order Op(1/
√

nαc
nσnτ e+1

n ) and the

factor associated with the hessian has order Op(1/
√

nαc
nσ2

nτ e+1
n ). The product of these two factors

has order Op(1/nα2c
n σ3

nτ2e+2
n ). Provided α2c

n σ3
nτ2e+2

n ≫ n−1/2, this product has order op(1/
√

n) and

so can be ignored.

It is instructive to identify the sources of the term α2c
n σ3

nτ2e+2
n in the rates just discussed. The

gradient contributes a factor of αc
nσnτ e+1

n : a factor of τ e
n is automatically inherited from Ŝn(b | u),

while the σn factor comes from differentiating Ŝn(b | u) with respect to b to form the gradient. The

additional factor αc
nτn comes from a one term Taylor expansion of the jth summand of the gradient

about Uj : the linear term, Ûj −Uj, accounts for the factor of αc
n, while the coefficient of this linear

term accounts for the factor of τn, since differentiating a kernel function results in a rescaling by

the reciprocal of the bandwidth. Next, consider the factor of αc
nσ2

nτ e+1
n contributed by the hessian

of Ŝn(b | u). The sources of bandwidth factors are the same as for the gradient, except there is an

extra factor of σn from differentiating Ŝn(b | u) twice with respect to b to form the hessian.
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Note that, especially when both e and c are positive, there is a curse of dimensionality when

estimating β(u) for each u ∈ Uκ. However, there is no curse of dimensionality when estimating βκ,

no matter how large the values of e and c. This is due to averaging the optimization estimators

to construct β̂κ. Consider once again the second term in (10). When the influence function

representation of β̂(Ui) − β(Ui) is expanded and combined with the sum over i, what remains are

essentially various zero-mean U -statistics of orders two, three and four. We apply the Hoeffding

decomposition to represent each as a sum of degenerate U -statistics. The higher order degenerate

statistics are negligible, while the degenerate U -statistics of order one drive the asymptotics. But

these statistics are averages of summands that are themselves population averages over all but one

of their arguments. Through a sequence of conditional expectations, each of which involves a change

of variable resulting in a rescaling by a bandwidth factor, we flush out all bandwidth factors from

denominators. This results in a
√

n rate of convergence for the second term in (10) for arbitrary

e and c. Something similar happens for other terms, leading to a
√

n rate of convergence for β̂κ.

It is also important to note that to flush out all the bandwidth factors it is critical that the bias

reducing kernels that are used have derivatives that are odd functions over symmetric intervals.

Bias reducing kernels that are sums of even degree polynomials defined on symmetric intervals (cf.

Müller (1984)) possess this property, for example.

We now formally state the assumptions used to derive the limiting distribution of β̂κ. Recall

the definitions of the regressor vectors X, X , and XC , along with their respective supports SX ,

SX , and IRd, with respective dimensions k, e, and d satisfying k ≥ e ≥ d. Recall the definitions of

the instrument vectors Z and ZC , with respective supports SZ and IRc, with respective dimensions

m and c satisfying m ≥ c. Recall the definitions of the latent random vectors V and U , with

respective supports SV and SU . Finally, recall the definitions of Xκ, Zκ, and Uκ, the respective
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trimmed supports of XC , ZC , and U .

A1. (Yi,Xi, Zi), i = 1, . . . , n are iid observations from the CRCBR model. (Y,X,Z) is a generic

observation from this model: Y = {XB > 0} where X = (X1,X2, . . . ,Xk) ≡ (X1, X̃). X1

has support IR. X2 ≡ 1, the intercept term. B = (1, B2, . . . , Bk), where Bi = B∗
i /B∗

1 , with

B∗
1 > 0. X = (X1. . . . ,Xe) is the vector of endogenous components of X. Each Xj = φj(Z, Vj)

where Vj is independent of Z and φj is differentiable in Vj and invertible in Vj given Z.

V = (V1, . . . , Ve).

A2. U ≡ M(V ), where M is a differentiable, invertible function from SV onto SU such that for

each u ∈ SU with corresponding v ∈ SV , there exist x = (x1, . . . , xe) ∈ SX and z ∈ SZ such

that u = M(v) = (IP{X1 ≤ x1 | Z = z}, . . . , IP{Xe ≤ xe | Z = z}).

A3. At least one component of Z is correlated with each endogenous component of X.

A4. The support of X given U = u is not contained in any proper linear subspace of IRk.

A5. The distribution of X1 conditional on X̃ = x̃ and U = u has an everywhere positive density.

A6. f(x1 | x̃, u) denotes the pdf of X1 given X̃ = x̃ and U = u, and is continuous in x1 and u.

A7. f(x̃ | u) denotes the pdf/pmf of X̃ given U = u, and is continuous in u.

A8. β(u) is a twice continuously differentiable function of u on SU .

A9. For each u ∈ Uκ, there exists a known compact set Bu containing β(u).

A10. The correspondence from u ∈ Uκ to Bu is upper hemi-continuous.

A11. med(x(B − β(u)) | X = x,U = u) = med(x(B − β(u)) | U = u).

A12. med(x(B − β(u)) | U = u) = 0.
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A13. When c = 0 and e > 0, take αn ≡ 1, σn ∝ n−σ, and τn ∝ n−τ , with 0 < σ < 1/6,

0 < τ < 1/(4e + 4), σ < τ , and 3σ + τ(2e + 2) < 1/2. When c > 0 and e > 0, take αn ∝ n−α,

σn ∝ n−σ, and τn ∝ n−τ , with 0 < α < 1/4c, 0 < σ < 1/6, 0 < τ < 1/(4e + 4), σ < τ , and

2αc + 3σ + τ(2e + 2) < 1/2.

A14. When estimating Uij in (4), K(t) =
∏m

b=1 K(b)(tb), with K(b)(t) = {t = 0} when tb is discrete,

and K(b)(t) = Kα(t) when tb is continuous. Kα(t) has support T = [−1, 1], integrates to unity,

and satisfies
∫

T tpKα(t)dt = 0, p = 1, . . . , pα, where pα is the smallest even integer greater

that 1/2α. K∗(t) satisfies d
dtK

∗(t) = Kσ(t) where Kσ(t) has support T , integrates to unity,

and satisfies
∫

T tpKσ(t)dt = 0, p = 1, . . . , pσ, where pσ is the smallest even integer greater that

1/2σ. When localizing on u in (6), K(t) =
∏e

b=1 K(b)(tb), with K(b)(t) = Kτ (t) where Kτ (t)

has support T , integrates to unity, and satisfies
∫

T tpKτ (t)dt = 0, p = 1, . . . , pτ , where pτ is the

smallest even integer greater that 1/2τ . Moreover, K′
τ (t) exists and satisfies

∫

T K′
τ (t)dt = 0.

A15. ZC ≡ (Z1, . . . , Zc). Let Dz be the vector of discrete components of Z. Let f(ZC | Dz) denote

the density of ZC given Dz. Then f(ZC | Dz) = f(Z1 | Z2, . . . , Zc,Dz) × · · · × f(Zc | Dz).

Each univariate conditional density in this product is bounded away from zero on Zκ, and

has pa bounded derivatives. On Xκ ⊗ Zκ, U(x, z) has pα bounded partial derivatives with

respect to each component of ZC .

A16. Let f(U | Z,Xβ(u)) denote the density of U given Z and Xβ(u). Then f(U | Z,Xβ(u)) =

f(U1 | U2, . . . , Ue, Z,Xβ(u))×· · ·×f(Ue | Z,Xβ(u)). Each univariate density in this product

has pτ bounded derivatives. Define g(U,Z) ≡ 2IP (ǫ(U) < Xβ(U) | U,Z) − 1, where ǫ(U) =

−X(B − β(U)). g(U,Z) has pτ bounded partial derivatives with respect to each component

of U . The marginal density of U is continuously differentiable.
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A17. The pdf/pmf of Z given Xβ(u) = s and the marginal pdf of Xβ(u) at s have pσ bounded

derivatives with respect to s.

A18. Let S(b | u) = IEg(u,Z)f(u | Z){Xb > 0}τκ(Z). Let H(b | u) denote the hessian matrix

∂2

∂b∂b′ S(b | u). Each component of H(b | u) is continuously differentiable with respect to b.

A19. For each u ∈ Uκ, H(β(u) | u) is positive definite.

Assumption A1 describes the sampling assumptions as well as properties of X and B. Assuming

that X1 has support IR is done for ease of exposition. X1 can have bounded support, in which

case a straightforward adaptation of Corollary 3.1.1 in Horowitz (1998) suffices for identification.

Trimming is also more complicated in the bounded support case. It is convenient, but not necessary

to include an intercept term. Assumption A2 concerns localization. Lemma 0 in Appendix A states

conditions under which A2 holds. A3 describes the relationship between Z and X. A4 and A5,

along with A11 and A12, serve to identify β(u) for each u ∈ Uκ. A11 is CMI and A12 is CMZ,

with U in place of V . These last two conditions imply the key identification condition

med(ǫ(u) | X = x,U = u) = 0 (16)

for all x ∈ SX and u ∈ SU , where ǫ(U) = −X(B − β(U)). Note that (16) is just (3) with

U in place of V . Assumptions A6 and A7 are used to show the negligibility of a bias term in

the proof of (12). Assumptions A8 through A10 relate to the conditional expectation β(u). A8

imposes smoothness assumptions on β(u) needed to carry out various Taylor expansions. A9 is a

standard compactness assumption. A10 is a mild regularity condition used in establishing (13).

A13 gives sufficient conditions on bandwidths αn, σn, and τn for allowable values for e and c.
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Note that σ < τ . This implies that n−σ ≫ n−τ . That is, σn, the bandwidth used to smoothly

approximate {t > 0}, is asymptotically wider than τn, the bandwidth used to localize on U . This

is used to handle a bias term in a consistency proof. Note that the bandwidths must be wide to

overcome the estimation uncertainty introduced by the generated regressor vector Û . For example,

if e = c = 1 and α = σ = τ − ǫ, for ǫ very small positive, then A13 states that the bandwidths

must be proportional to n−α where α < 1/18. We conjecture that the values of α, σ, and τ in A13

can all be multiplied by two using more refined uniformity methods such as those in Bickel and

Rosenblatt (1973), but we do not pursue this here. A14 gives conditions on the kernel functions.

Note that we use the same univariate kernel function, namely Kα, for each continuous component

of Z. Likewise, we use the same univariate kernel function, Kσ, for each component of U . This is

done for notational convenience. Bias reducing kernels satisfying the stated conditions are found

in Müller (1984). A15 gives conditions on the joint density of the continuous components of Z

given the discrete components of Z, as well as conditions on U(x, z). These conditions are used

along with A14 to show that the bias term IEÛ (x, z)−U(x, z) is negligible. A16 gives smoothness

conditions on the components of the joint density of U given Z and Xβ(u). It also gives conditions

on a certain conditional expectation. Note that A16 implies that d ≥ 1. That is, at least one of

the endogenous regressors must be continuously distributed. A17 gives smoothness conditions on

other densities. A16 and A17 are used along with A14 to show that a bias term consisting of a

certain expected gradient is negligible. A18 and A19 give regularity conditions on the Hessian of

the population analogue of the sample criterion function Sn(b | u).

Under assumptions A1 through A19, we can show that β̂κ − βκ = 1
n

∑n
i=1 fn(Wi) + op(1/

√
n)

where Wi = (Yi,Xi, Zi, Ui) and fn(Wi) has mean zero and finite variance. Moreover, we can show

that fn(Wi) = f (1)(Wi) + f
(2)
n (Wi)+ f

(3)
n (Wi) + f

(4)
n (Wi) where each term has mean zero and finite
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variance. The term f (1)(Wi) comes from the second term in (9), both f
(2)
n (Wi) and f

(3)
n (Wi) come

from the second term in (10), and f
(4)
n (Wi) comes from the term in (11). It follows from a standard

CLT and Slutsky’s theorem that

√
n(β̂κ − βκ) ; N(0,Σ)

where Σ = IEfn(W )fn(W )′. This result holds for e > 0 and c ≥ 0.9 The cases e > 0 and c = 0

require the choice of bandwidths σn and τn for smoothly approximating the indicator {t > 0} and

localizing on U , respectively. The cases e > 0 and c > 0 are more complex to analyze since they

require the choice of bandwidths αn, σn, and τn for estimating U , approximating {t > 0}, and

localizing on U , respectively. Proving the asymptotic results in complete generality is quite tedious

and adds nothing to understanding. Because of this, we prove the result for the case e = c = 1,

while letting k, the number of components of X, and m, the number of components of Z, be

arbitrary. The arguments used to handle this special case readily extend to cover general e > 0

and c > 0.

Consider the special case e = c = 1 with k and m arbitrary. Assumption A16 requires that

d ≥ 1, and so when e = 1 we require that d = 1. In this case, X = XC , U = M(V ) denotes the

scalar random error associated with X , and from A15, ZC denotes the single continuous instrument

for X . For ease of notation, we write Z for ZC . Recall from A14 the definitions of Kα, Kσ, and Kτ .

For ease of notation, we suppress the subscripts α, σ, and τ , because each kernel function is easily

identified by its argument. Thus, we write Kn(Zk − Zi) for Kα((Zk − Zi)/αn), Kn((Xjβ(Ui)) for

Kσ(Xjβ(Ui))/σn), and Kn(Uj − Ui) for Kτ ((Uj − Ui)/τn).

9The result also holds for the case e = 0 of no endogenous regressors, but under slightly different conditions. We
briefly discuss these conditions at the end of this section.
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We begin by noting that the term f (1)(Wi) has the same form for all values of e and c. We get

f (1)(Wi) = β(Ui)τκ(Xi)τκ(Zi) − βκ .

We now give the forms for f
(2)
n (Wi), f

(3)
n (Wi), and f

(4)
n (Wi) for the special case e = c = 1, with

k and m arbitrary.

We start with the most complicated term, f
(2)
n (Wi). For i 6= j 6= k 6= i, define the function

fn(Wi,Wj ,Wk) =
τκ(Xi,Zi)τκ(Zj)

αnσnτ2
n

H(β(Ui) | Ui)]
−1 (17)

× (2Yj − 1)Kn(Xjβ(Ui))X̃
′
jK′

n(Uj − Ui)

× {Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj} − IEj{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}
f(Zj,Dj)

where the expectation IEj in the last line of the display is an expectation over Wk given Wj .

Next, for (i, j, k, l) with no equal components, define the function

fn(Wi,Wj ,Wk,Wl) =
τκ(Xi,Zi)τκ(Zj)

α2
nσnτ2

n

[H(β(Ui) | Ui)]
−1 (18)

× (2Yj − 1)Kn(Xjβ(Ui))X̃
′
jK′

n(Uj − Ui)

× {Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}
f(Zj,Dj)

× IEjKn(Zl −Zj){Dl = Dj} − Kn(Zl −Zj){Dl = Dj}
f(Zj,Dj)

where the expectation IEj in the last line of the display is an expectation over Wl given Wj.

Finally, define f
(2)
n (Wi) = fn(P,P,Wi)+fn(P,P, P,Wi), where, for example, fn(P,P,Wi) is the

expectation of fn(Wi,Wj ,Wk) over Wi and Wj given Wk, evaluated at Wk = Wi.
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Next, we define f
(3)
n (Wi). For i 6= j, define the function

fn(Wi,Wj) =
τκ(Xi,Zi)τκ(Zj)

σnτn
[H(β(Ui) | Ui)]

−1(2Yj − 1)Kn(Xjβ(Ui))X̃
′
jKn(Uj − Ui) . (19)

Define f
(3)
n (Wi) = fn(P,Wi) − fn(P,P ).

Finally, we define f
(4)
n (Wi). Let δ(u) = ∂

∂uβ(u). For i 6= j and i 6= j 6= k 6= i, define the

functions

fn(Wi,Wj) =
τκ(Xi,Zi)

αn
δ(Ui) (20)

× {Xj ≤ Xi}Kn(Zj −Zi){Dj = Di} − IEi{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di}
f(Zi,Di)

fn(Wi,Wj ,Wk) =
τκ(Xi,Zi)

α2
n

δ(Ui) (21)

× {Xj ≤ Xi}Kn(Zj −Zi){Dj = Di}
f(Zi,Di)

× IEiKn(Zk −Zi){Dk = Di} − Kn(Zk −Zi){Dk = Di}
f(Zi,Di)

where IEi in fn(Wi,Wj) denotes expectation over Wj given Wi, and IEi in fn(Wi,Wj ,Wk) denotes

expectation over Wk given Wi. Define f
(4)
n (Wi) = fn(P,Wi) + fn(P,P,Wi).

We are now in a position to state the formal result.

Theorem 1. Let e = c = 1 with k and m arbitrary. If assumptions A1 through A19 hold,

then

√
n(β̂κ − βκ) ; N(0,Σ)

where Σ = IEfn(Wi)fn(Wi)
′ with fn(Wi) = f (1)(Wi) + f

(2)
n (Wi) + f

(3)
n (Wi) + f

(4)
n (Wi).

The proof of this result is given in Appendix A. A consistent estimator of Σ is obtained by
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replacing, in the expressions above, P s with Pns, Uis with Ûis and IEs with the corresponding

sample averages.

Remarks. Various special cases of the
√

n-consistency and asymptotic normality result for β̂κ are

of interest.

Consider the binary response model analyzed by Manski (1975, 1985) and Horowitz (1992). In

this model, Y ∗ = Xβ+ǫ, where X is exogenous and β = (1, β2, β3, . . . , βk)′ is a vector of nonrandom

coefficients defined implicitly by the median independence restriction med(ǫ | X = x) = 0 for each

x ∈ SX . In the terminology of the random coefficients model, the only random coefficient is

B2 = β2 + ǫ. That is, B = β +(0, ǫ, 0, . . . , 0) and the object of interest is the nonrandom coefficient

vector β. It is well known (see Horowitz, 1993) that no estimator of β can achieve
√

n-consistency

under the assumptions maintained by these authors.

However, the localize-then-average procedure can produce a
√

n-consistent and asymptotically

normal estimator of β if instruments exist and assumptions A1 through A19 hold. Suppose there

is a component of X, say X1, for which there exists an instrument Z that is not a component of

X. Formally, X1 plays the role of an endogenous regressor, even though X1 is exogenous. Further,

assume that A1 through A19 hold where, for convenience, we take β(U) to be the componentwise

median of B. That is, β(U) = (1, β2 + med(ǫ | U), β3 . . . βk). Note that for this choice of β(U), the

conditional median zero assumption A12 automatically holds. This implies, in particular, that no

symmetry assumption on the distribution of ǫ given U is required. We get

βκ ≡ IEβ(U)τκ(XC , ZC) = βIEτκ(XC , ZC) + (0, IEmed(ǫ | U)τκ(XC , ZC), 0, . . . , 0) .

It follows from Theorem 1 that for all κ > 0, β̂κ is a
√

n-consistent and asymptotically nor-
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mal estimator of βκ. Deduce that β̂κ/ÎEτκ(XC , ZC), where ÎEτκ(XC , ZC) = 1
n

∑n
i=1 τκ(XC

i , ZC
i ),

provides a
√

n-consistent and asymptotically normal estimator of the vector of nonrandom slope

coefficients (β3, . . . , βk). The additional information provided by the instruments and assumptions,

together with the localize-then-average estimation procedure which exploits this extra information,

makes this possible. Suppose that med(ǫ | U) ≡ IE(ǫ | U), and we make the additional palatable

assumption that IE(ǫ | X,Z) ≡ 0. Since U is a deterministic function of X and Z, it follows

that IE(ǫ | U) ≡ 0. In this case, βκ reduces to βIEτκ(XC , ZC), and so β̂κ/ÎEτκ(XC , ZC) is a

√
n-consistent and asymptotically normal estimator of the entire vector β.

Next, consider the same set-up as in the previous paragraph, except that X contains endoge-

nous components. This model includes the very interesting subcase where one of the endogenous

regressors is a binary treatment. Under A1 through A19, for all κ > 0, β̂κ/ÎEτκ(XC , ZC) provides

a
√

n-consistent and asymptotically normal estimator of the nonrandom slope coefficient vector

(β3, . . . , βk).

Finally, consider the independent random coefficients model, where X is independent of B. As

in the case of the correlated random coefficients model, we exploit instruments to localize on U

and then average to achieve a
√

n-consistent and asymptotically normal estimator of βκ, a robust

measure of center of the distribution of B.

4. Simulations

In this section, we report results of several simulations exploring aspects of the finite sample

behavior of the estimator β̂κ. We study the effects of varying bandwidths, sample sizes, and the

number of estimated coefficients. We also compare β̂κ to two estimators of nonrandom coefficients

in a binary response model. While these estimators are not designed to handle correlated random

coefficients, they can account for endogeneity and so may be considered competitors of β̂κ in
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practice. Specifically, we consider the parametric estimator of Rivers and Voung (1988) and the

semiparametric 2SLS estimator assuming the linear probability model.

We start by considering the following DGP: For i = 1, . . . , n, let

Yi = {Xi1 + Bi2 + Bi3Xi3 > 0}

Xi1 = Zi1 + Vi .

We consider the case of one endogenous regressor. We take Xi1 to be the endogenous regressor and

the vector of instruments Zi = (Zi1,Xi3). We specify the random coefficients to be functions of Vi to

generate the correlation with Xi1. Specifically, for i = 1, . . . , n and j = 2, 3, we take Bij = 1+Vi+νij

where the νij are exogenous components. To summarize the dependence structure, we assume that

the drivers of the data (Zi, Vi, νi) are iid draws from the following distribution: Vi ∼ U [−.5, .5],

νi ∼ N(02,Σν), and Zi ∼ N(02,ΣZ) where Vi, νi, and Zi are mutually independent. Here, 0k is a

vector of zeros of length k, Σν = 0.5ΣZ , and

ΣZ =











2 1

1 2











.

Note that in this simulation, the endogenous regressor is an additively separable function of

instruments and control variables. In the notation of the paper, X1 = φ(Z, V1) = IE(X1 | Z) + V1

where IE(X1 | Z) = Z1 and V1 = X1 − IE(X1 | Z). In this standard set-up, it is straightforward

to directly estimate V1 with V̂1 = X1 − ÎE(X1 | Z) where ÎE(X1 | Z) is the usual kernel regression

estimator of the conditional mean IE(X1 | Z). In other words, it is just as easy to localize directly

on V̂1 as it is to localize indirectly on Û1 = ÎP{X1 ≤ x | Z = z}, as in the main text. Moreover,
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either localization is valid. All definitions and the theoretical results go through with V̂1 in place

of Û1 and V1 in place of U1. We illustrate the use of both localizations in our simulations.

Both V̂1 and Û1 are estimated using a product kernel with higher order “Epanechnikov type”

kernel in every dimension. The individual kernel function is

K(t) = c0(6864 − 240240 t2 + 2450448 t4 − 11085360 t6

+ 25865840 t8 − 32449872 t10 + 20801200 t12 − 5348880 t14){−1 ≤ t ≤ 1}

where c0 = 0.0006712228. We use this same kernel to localize. In addition, we take K∗ in (6) to be

the integral of this kernel. This kernel satisfies the conditions of A13 and A14 when c = 2, e = 1,

and α = σ = τ − ǫ, for ǫ very small positive. The optimization is performed via the R routine

nlminb, a program for unconstrained and constrained optimization using PORT routines.10 We

need to select the grid over which the search is performed, and the absolute or relative numerical

tolerance. We have chosen the first to be the rectangle [−10, 10] × [−10, 10], while we specified the

absolute tolerance to be e−15. We take τκ(Zi) = {|Zi1| ≤ κ}{|Zi2| ≤ κ} and τκ(Xi1) = {|Xi1| ≤ κ}

where κ = 3.25. This corresponds to trimming 5.2% of the data.

The results in the following table are for localization on Û1, with a sample size of n = 2000

observations and 100 Monte Carlo repetitions. Recall that αn denotes the bandwidth for estimating

Û1, σn the bandwidth for the integrated kernel function K∗, and τn the bandwidth for localizing.

In all the reported simulations we take αn = 1.5 and vary the values of σn and τn as indicated in

the tables. In other simulations which we do not report, we varied αn and found that results were

robust to moderate changes in this bandwidth.

10A detailed description of the PORT-routines involved can be found in “Usage Summary for Selected Optimization
Routines”, at http://netlib.bell-labs.com/cm/cs/cstr/153.pdf.
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Table 1: RMSE results for β̂κ at different bandwidths for n = 2000

(localizing on Û1)

(τn, σn) RMSE on Coefficient 1 RMSE on Coefficient 2

(0.12, 2.0) 0.1049993 0.1176348

(0.16, 2.0) 0.1134255 0.1114663

(0.08, 2.0) 0.1517702 0.1212661

(0.24, 2.0) 0.1137844 0.1168878

(0.16, 1.4) 0.1520292 0.1204596

(0.24, 0.8) 0.1913334 0.1534957

(0.08, 4.0) 0.1812628 0.2651299

Several things are noteworthy: First, there is a large area of plausible bandwidths where the

MSE is of the same order of magnitude, meaning that our method is rather robust to changes in

bandwidth. Second, the two coefficients are differently affected by the two bandwidths. Given that

only the first regressor is endogenous, it is not surprising that the coefficients on the two regressors

exhibit different behavior. Third, compared to an estimator which does not use trimming, the

RMSE is slightly smaller, and in particular, the bias reduces significantly.11

Qualitatively similar results were obtained with n = 500 observations. To focus on essentials,

we do not report the table, but note that the RMSE is again rather insensitive to bandwidth choice

in a large area. The RMSE becomes uniformly larger, compared to n = 2000. At the optimal

bandwidth (0.16, 2.5), the RMSE of the first components of β̂κ is 0.225062 while the RMSE on

the second component is 0.190486. The steady improvement with sample size is corroborated for

11Results are available from the authors upon request. The estimator also becomes less sensitive to bandwidth
choice, which reflects the fact that the model becomes more robust as tail behavior plays less of a role.
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n = 5000. At the optimal bandwidth (0.08, 2.0) the RMSE on the first coefficient is 0.06960242,

while the RMSE on the second is 0.07380443. As expected, the RMSE decreases steadily as the

sample size increases.

It is interesting to compare the estimator with alternative estimators. The first comparison is

with a Linear Probability Model (LProb). Among the advantages conventional wisdom attributes

to the LProb is that it lets one tackle the issue of endogeneity by using standard IV methods. The

logic is that, despite its apparent misspecification in terms of the discrete nature of the dependent

variable, the LProb captures endogeneity well. That is, provided the misspecification in the error

distribution is not too severe (e.g., we are in the center of the cdf of an unimodal symmetric cdf),

it provides a way to capture the first order effect due to endogeneity. Note that this is the case

with our simulation design, and so a priori one might expect somewhat satisfactory performance

from the LProb.

However, our results strikingly belie these expectations. Running a standard 2SLS model and

normalizing all coefficients such that the coefficient on X1 is unity, we obtain the following results:

Table 2: RMSE results for the LProb procedure at different sample sizes

Sample Size RMSE on Coefficient 1 RMSE on Coefficient 2

500 2.177558 0.3459466

2000 2.151667 0.3226654

5000 2.159087 0.3058008

Observe that the first coefficient in particular is estimated much more imprecisely than the

second one. In particular, the means of the intercept (whose true value is 1) stay close to 3

(3.091092, 3.084162, and 3.091984, respectively) and so are severely biased. Also, compared to β̂κ,
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the second coefficient has roughly two to five times the RMSE, while the first has more than ten

times the RMSE. This reflects the feature that endogeneity, and apparently also misspecification,

seems to have a much stronger effect on the intercept. Finally, note that both RMSEs decrease

slowly with sample size, indicating that the main problem is the fairly persistent bias, which in

the case of the second coefficient diminishes very slowly. In particular, the mean is 0.6235943,

0.6225125, and 0.6428279, respectively.

The second commonly used estimator with which we compare our results is the estimator of

Rivers and Voung (1988), henceforth, RV. This estimator features a probit, but adds an estimated

control function residual as additional regressor, and probably corresponds to standard practise

in good applied work. Note that, compared to our approach, the RV estimator is twice misspeci-

fied. First, it does not account for the heteroscedasticity that inevitably results from the random

coefficients structure; second, it imposes a parametric structure on the link function (i.e., probit).

With this procedure, we obtain the following results:

Table 3: RMSE results for the Rivers-Voung procedure at different sample sizes

Sample Size RMSE on Coefficient 1 RMSE on Coefficient 2

500 1.066009 0.3608533

2000 1.091336 0.3460289

5000 1.125813 0.3322708

It is noteworthy that the bias of the estimator for the intercept increases, with the mean of the inter-

cept moving further away from the true mean of 1 (-0.1003702, -0.146636 and -0.17692040, respec-

tively) as n increases, while the mean of the second coefficient stays roughly constant (0.6028553,

0.6095537, and 0.6159592, respectively). This is also reflected in the RMSE which is two to three
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times as large as the corresponding RMSE for β̂κ. Once again, most of the RMSE is due to the

bias component.

To represent our results graphically, we display estimated densities in Figures 1 through 6. In

these graphs, the estimator β̂κ is referred to as the Hoderlein-Sherman estimator. The graphs

differ according to sample size. Figures 1 through 3 show the behavior of the RV estimator for the

first coefficient compared to ours (the density of the LProb is in fact so far outside of the graph

that we do not display it here) at n = 500, 2000, 5000. The true trimmed mean, βκ, in our setup is

0.948. The estimated means for β̂κ are 0.8622154, 0.904023 and 0.9158743, respectively, for the first

coefficient (the intercept), while the means of the RV estimator remain slightly below zero regardless

of sample size. In fact, the bias seems to increase slightly in absolute value. Figures 4 through

6 show the same results for the second coefficient, but now including the LProb, which in fact is

slightly less biased than the RV estimator, though both have a downward bias of around 0.4, while

β̂κ has a slight and rapidly diminishing upward bias, with values 1.029436, 0.961271 0.9585179,

respectively, while the true trimmed mean βκ = 0.948. We see that both misspecified estimators

exhibit a significant downward bias, though slightly less variance due to the parametric nature of

the estimators. The fact that the variance vanishes for all estimators can be clearly seen by the

fact that the area of positive density is diminishing. As expected the parametric estimators are less

dispersed, though not by too much. In summary, the simulation results confirm the consistency

of β̂κ and the inconsistency of two likely competitors, both of which exhibit a large and persistent

bias.

Next, we perform an exercise where we make explicit use of the additive form in the IV equation.

Moreover, we slightly stack the deck against β̂κ by ignoring the fact that β̂κ estimates the trimmed

mean βκ, rather than the mean β, and we report all RMSE results relative to the β. Thus the
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RMSE results for β̂κ are slightly inflated. The DGP is exactly as before, but we change the uniform

distribution of the residual to Vi ∼ N(0, 1). The estimation procedure is exactly as before, except

now we localize directly on the V̂i, the estimated mean regression residuals. We consider this setup

particularly relevant for applications.

For β̂κ, we obtain the following results at the optimal bandwidths:

Table 4: RMSE results for β̂κ for different sample sizes

(localizing on V̂1)

Sample Size and Bandwidth RMSE on Coefficient 1 RMSE on Coefficient 2

n = 500, (τn, σn) = (1.0, 4) 0.3198675 0.2658185

n = 2000, (τn, σn) = (0.8, 3) 0.1999790 0.1607219

n = 5000, (τn, σn) = (0.7, 2.3) 0.1765224 0.1069096

Comparing these RMSE results with those for the LProb and the RV estimators again clearly

demonstrates the superiority of β̂κ. And this is in spite of the fact that the RMSE results for β̂κ

are inflated. The results for the LProb procedure are displayed in the following table.

Table 5: RMSE results for Lprob Procedure for different sample sizes

Sample Size RMSE on Coefficient 1 RMSE on Coefficient 2

500 4.60288 0.48481

2000 4.41378 0.37517

5000 4.33741 0.34142

Not surprisingly, the results are very similar to those previously obtained. In fact, the results are

even less flattering to the LProb procedure. The same is true for the RV estimator, as the following

table illustrates.
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Table 6: RMSE results for RV Procedure for different sample sizes

Sample Size RMSE on Coefficient 1 RMSE on Coefficient 2

500 0.77488 0.51530

2000 0.73682 0.43207

5000 0.72775 0.40373

Observe that even compared to the untrimmed population mean of unity, the RMSE of β̂κ is at

most half as large, and in some cases one tenth of the RMSE of the LProb and the RV estimators.

In particular, the bias of the latter two estimators is much larger, even when we ignore the fact

that β̂κ estimates the trimmed mean βκ = .948.

Finally, we examine the effect of increasing the number of regressors in the previous set-up.

Considering the following DGP: For i = 1 . . . , n, we take

Yi = {Xi1 + Bi2 + Bi3Xi3 + Bi4Xi4 + Bi5Xi5 + Bi6Xi6 > 0}

Xi1 = Zi1 + Xi4 + Vi .

As before, we take Xi1 to be the single endogenous regressor, and we take the vector of instruments

to be Zi = (Zi1,Xi2, ...,Xi5). We specify the random coefficients as functions of Vi to generate the

correlation with Xi1. Specifically, for i = 1, . . . , n and j = 1, . . . , 5 we take Bij = 1 + Vi + νij

where the νij are exogenous components. To summarize the dependence structure, we assume

that the drivers of the data (Zi, Vi, νi), i = 1, .., n, are iid draws from the following distribution:

Vi ∼ N(0, 1), νi ∼ N(05,Σν), and Zi ∼ N(05,ΣZ) where Vi, νi, and Zi are mutually independent.

36



Here 05 is a vector of zeros of length 5, Σν = 0.5ΣZ , and

ΣZ =





































2 1 0 0 0

1 2 0 0 0

0 0 2 1 1

0 0 1 2 1

0 0 1 1 2





































.

Finally, when implementing the estimator, we follow exactly the same strategy as above, and the

kernels are again product kernels of the higher order Epanechnikov type kernel variety in every

dimension, where we use the same higher order Epanechnikov integral kernel as above.12

Table 7: RMSE results for β̂κ for different sample sizes

(localizing on V̂1)

Sample Size 1 2 3 4 5

n = 500 0.56025 0.42609 0.43926 0.38557 0.39332

n = 2000 0.36793 0.31890 0.27856 0.26856 0.25894

n = 5000 0.32034 0.23281 0.20177 0.19483 0.19227

The reduction in RMSE with increasing sample size is obvious. Note also that due to the largely

symmetric setup, all four slope coefficients are equally affected, even those whose regressors less

correlated with the endogenous one, Xi1. Observe, however, that the intercept exhibits a larger

RMSE, as was also the case in the two-dimensional model.

12Technically, A13 and A14 must be satisfied for c = 5 and e = 1, but, in terms of bias reduction, there is no
practical difference between using the previous kernel and using a technically correct one.
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5. Application: The Effect of Smoking on Abnormal Birth Conditions

Among the most harmful effects of smoking are the effects of a mother’s smoking during preg-

nancy on the health of her newborn child. Therefore, these effects have been extensively studied

in the health economics literature (e.g., Rosenzweig and Schultz (1983), Evans and Ringel (1999),

Lien and Evans (2005)). In this paper, we study whether children are more likely to be born with

abnormal birth conditions, like congenital abnormalities or low birth weight, when their mothers

increase the number of cigarettes smoked during pregnancy. The goal of our analysis is to provide

a detailed assessment of the effect of smoking. In particular, we want to allow for heterogeneous

marginal effects of an extra cigarette smoked, and for endogenous choice of the number of cigarettes

smoked, reflecting the fact that smoking more is a deliberate decision. This is important because

women who smoke more may be more likely to exhibit other types of behavior that increase the

risk of health defects in their newborns. That is, we suspect that the coefficient of the regressor

“number of cigarettes smoked daily” is positively correlated with this regressor, and so our meth-

ods apply. Throughout this section, we condition on mothers who already smoke, since we want to

isolate the effect of smoking an additional cigarette each day, not the effect of smoking as opposed

to not smoking.

To account for the endogenous nature of the regressor “number of cigarettes smoked daily”,

we use an older idea of Evans and Ringel (1999) who use cigarette excise tax rate as a source of

exogenous variation to mitigate confounding factors in identifying the effects of smoking. To see why

this is a sensible instrument, observe that this tax is set on the state level by the state government.

Since setting the cigarette tax is only one of many issues, and certainly not an issue that decides

elections or causes people to move on a large scale, it can be seen as exogenous to the individuals’

choice set. We follow this idea, letting the tax rate (denoted Z1) be the principal instrument for
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number of cigarettes smoked per day (X3), the principal endogenous regressor. Other variables

included in the model are an indicator of alcohol consumption during pregnancy (X1), the number

of live births experienced (X4), and mother’s age (X5). The latter three variables are associated

with congenital abnormalities or abnormal conditions at birth. We let Y denote an indicator of the

above mentioned abnormalities at a child’s birth.

The causal model is thus given by

Y = {B∗
1X1 + B∗

2 + B∗
3X3 + B∗

4X4 + B∗
5X5 > 0}

X1 = IE(X1 | Z) + V

where V = X1 − IE(X1 | Z) and the instrument vector Z = (Z1,X1,X4,X5). The components

of B∗ = (B∗
1 , . . . , B∗

5)′ are unobserved factors related to the lifestyle of the mother that impact

the child’s health at birth. Subsequently, we compare our estimator of a trimmed mean of B,

where B = B∗/B∗
1 , to analogous estimators based on Rivers and Vuong (1988) and 2SLS. These

comparison estimators directly estimate five unknown parameters, corresponding to each of the

regressors in the model.

5.1 Description of Data and Variables

We use a cross section of the natality data from the Natality Vital Statistics System of the

National Center for Health Statistics. From this data set we extract a random sample of size

100,000 from the time period between 1989 to 1999.

We focus on the subset of this sample who smoke, since there are serious discontinuities in

terms of unobservables near zero.13 If interest centered on the total effect of smoking, then the

13The difference between the population that does not smoke and the one that smokes one cigarette a day is
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decision to smoke would have to be modeled as well. However, we argue that understanding the

effect of smoking an additional cigarette for the subpopulation of smokers is of interest, since any

government tax measure aimed at reducing adverse health consequences may primarily affect the

amount smoked rather than the decision to smoke or not.

Given our simulation results, we think that a subsample of smokers of size n = 10000 is sufficient

to obtain a precise estimate, and we therefore draw such a subsample randomly without replacement

from the data. The descriptive statistics for this sample can be found in Table 12.

5.2 Empirical Results

Recall that our aim is to determine the effect of smoking more cigarettes on abnormal birth

conditions. To show the performance of our estimator in this regard, it is instructive to start

with the standard practise of estimating a linear probability model. This procedure suffers from

misspecification that yields highly implausible results. We condition on the subsample of males.

The result is as follows:

Table 8: OLS estimates of Linear Probability Model

Variable Estimate Std. Error t value p value

Intercept 0.126150 0.0210541 5.992 0.000

Number of cigs −0.000532 0.0005853 −0.909 0.3633

Age of mother −0.000750 0.0008328 −0.901 0.3677

Number of births 0.002097 0.0040905 0.513 0.6081

Alcohol 0.056212 0.0235104 2.391 0.0168

qualitatively different from the difference between the population that smokes one cigarette a day and the one that
smokes two cigarettes a day.
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Observe that the only significant coefficients are those on the alcohol indicator and the intercept.

Indeed, the former shows the expected positive sign: if women drink alcohol during pregnancy, the

children are more likely to develop abnormal birth conditions. No other variables show a significant

effect - including number of cigarettes. Indeed, even very heavy smokers have the same probability

of giving birth to healthy children after a full 40 weeks of pregnancy. According to these results,

they may even be more likely to have healthy children, since the point estimate is negative.

An obvious flaw in this approach is that it does not account for endogeneity in the choice of

the number of cigarettes smoked. We now try to correct for endogeneity using 2SLS. The results

are displayed in Table 9:

Table 9: Linear Probability Model - 2SLS

Variable Estimate Std. Error t value p value

Intercept 0.123846 0.021232 5.833 0.000

Number of cigs −0.001376 0.001162 −1.184 0.2364

Age of mother −0.000683 0.000836 −0.816 0.4143

Number of births 0.002970 0.004220 0.704 0.4815

Alcohol 0.056432 0.023512 2.400 0.0164

The results are qualitatively the same as those for the OLS estimator. Note that the estimate

of the coefficient of number of cigarettes is actually more negative and slightly more significant,

suggesting that more smoking, if it has any systematic effect, is actually beneficial to the health of

newborns. Clearly a nonintuitive result. Since we want to compare the effects with our theoretically

superior estimator, and we know that βκ is only identified up to scale, for reference we divide all

coefficients by the coefficient on alcohol. We obtain values of 2.194613, -0.02438979, -0.0121049,

and 0.05264387, in the order of appearance.
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We conclude that the linear probability model shows strong signs of misspecification. But as we

have seen from the simulation evidence, we would also expect the linear probability model to be the

most biased. Hence we implement the less biased model of Rivers and Voung (1988), using a probit

and nonparametric control function residuals estimated in the same fashion as in the simulation

part and enter additively. The results are displayed in the following table.

Table 10: Rivers Voung Estimator

Variable Estimate Std. Error t value p value

Intercept −1.14901 0.11721 −9.803 0.000

Number of cigs −0.00786 0.00656 −1.199 0.2307

Age of mother −0.00370 0.00463 −0.798 0.4251

Number of births 0.01596 0.02313 0.690 0.4903

Alcohol 0.27001 0.11668 2.314 0.0207

Control Function 0.13911 0.16507 0.843 0.3994

The main results very much correspond to the linear model. Alcohol is again the only significant

explanatory variable. The odd effect of cigarettes and its rather low p-value is also in line with

the above results. The misspecification seems to have a comparable effect. Finally, again for

comparison, we have that the coefficient relative to alcohol are, again in order of appearance -

4.255303, -0.02912374, -0.01370293, and 0.05911417. Note the similarity with the 2SLS estimates

of the effect of number of cigarettes.

Finally, we implement β̂κ. The individual elements are exactly as in the simulation section.

Since the coefficient is only identified up to scale and sign, we choose to normalize on alcohol.

All scientific evidence as well as the rather shaky evidence obtained in this paper point to alcohol
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having an adverse effect on the pregnancy. We hence assume that the sign is positive and the

coefficient is unity. Moreover, we use the bootstrap to compute the variance σ2
boot, and construct

the confidence intervals using the normal approximation with ±1.96σboot.

Relative to the alcohol coefficient, we obtain the following results.

Table 11: β̂κ with bootstrap standard errors

Estimate Bootstrap Std. Err 95% CI Lower Bound 95% CI Upper Bound

Intercept −0.73961406 0.08695773 −0.9100512 −0.5691769

Nr cigarettes 0.25516531 0.03810400 0.1804815 0.3298491

Age mother −0.05818467 0.03069635 −0.1183495 0.0019801

Nr. births −0.04479768 0.04838861 −0.1396394 0.0500440

First, note that neither the estimated coefficient on age nor that on the number of births is

significant at the 95% confidence level, though the former is significant at the 90% level. However,

what is highly significant is the number of cigarettes. More important, the coefficient on number

cigarettes has the expected sign, as well as a very plausible magnitude. One may object that the

magnitude seems somewhat large. Note, however, that the alcohol indicator covers cases where

individuals consume from small to large amounts, and it is not really clear whether a low level of

consumption has a strong effect. Also, there may be a problem with underreporting so that there

may be measurement error, whereas we expect the number of cigarettes to be more accurately

reported, since the mother has already admitted to smoking. For both reasons, the coefficient on

alcohol may in fact be larger. In either case, it is conceivable that smoking four additional cigarettes

(say, six instead of two per day, i.e., switching from being an occasional smoker to a moderate one)

has a negative effect which on average is as bad as consuming alcohol. The bottom line is that only

43



β̂κ identifies a higher number of cigarettes to be a serious risk in the health development of a child,

while the other two estimators do not identify smoking more as a health risk. The policy advice is

clear: Pregnant women should reduce smoking as much as possible if they do not find the strength

to quit outright.

Table 12: Descriptive Statistics

Variable Description(10000 obs) Mean SD min max

fipsst State of Residence 1 56

stoccfip State of Occurrence 1 56

monpre Month of Pregnancy Prenatal Care Began 2.72 1.55 0 9

nprevist Total number of Prenatal Visits 11.1 4.14 0 45

weight 3162 581 225 5410

dplural 1=single 2=twin 3=triplet 4=quadruplet 5=Quintuplet or highrt 1.02 .162 1 4

apgar1 One minute Apgar Score (not observed after 1994) 8.01 1.32 0 10

apgar5 Five minute Apgar Score 8.95 .746 0 10

gestat Gestation 39.0 2.81 18 47

momage Age in years 25.7 5.73 13 47

momedu Education in years 11.7 1.75 0 17

cigar average number of cigarettes per day 12.3 7.72 1 75

alcohol Alcohol use during pregnancy .038 .191 0 1

drink average number of drinks per day .129 1.23 0 44

dadedu (not observed after 1994) 11.8 1.82 0 17

male newborn is male .514 .499 0 1

lbw 1 if birth weight below 2500 .104 .305 0 1

ormoth Hispanic Origin of Mother .051 .413 0 5

mrace 1=white 2=black 3=american indian 4=chinese 5=japanese 6=hawaiian 1.28 3.03 1 78

7=filipino 8=other asian 9=all other race

biryr year of birth 1993 3.10 1989 1999

lmpyr year last normal menses began 1993 3.13 1988 1999

nlbnl number of live birth, now living 1.17 1.22 0 11

married 1 if mother married .617 .485 0 1

vaginal method of delivery is vaginal .788 .408 0 1

vbac method of delivery is vaginal birth after previous C-section .027 .162 0 1

primac method of delivery is Primary C-section .127 .333 0 1

repeac method of delivery is Repeat C-section .084 .277 0 1

44



Variable Description(10000 obs) Mean SD min max

forcep method of delivery is Forceps .041 .199 0 1

vacuum method of delivery is vacuum .056 .230 0 1

weekday day of week child born 1 7

datayear 1989 1999

mhisp 1 if race of mother is hispanic .022 .147 0 1

mblack 1 if race of mother is black .104 .305 0 1

masian 1 if race of mother is asian .003 .058 0 1

multbirth 1 if multiple birth .024 .155 0 1

abnormalc 1 if abnormal conditions of newborn reported .083 .276 0 1

abnmcong 1 if congenital abnormalities reported .017 .130 0 1

abnm 1 if abnormalc+abnmcong > 0 .094 .293 0 1

gestun37 1 if gestation < 37 .115 .320 0 1

state

year 1993 3.10 1989 1999

sttax state tax in cents per pack 26.3 17.7 2 100

pcpacks pe capita packs 102 21.3 32.5 186

p nominal price per pack 169 31.2 103 327

taxbyp % of retail price that is tax 27.0 6.27 13.6 44.6

fedtax federal tax per pack 21.8 3.09 16 24

tottax total tax per pack 48.2 18.7 18 124

For more details, see User’s Guide in http://www.cdc.gov/nchs/data access/Vitalstatsonline.htm

6. Summary and Directions for Future Work

This paper identifies and estimates a measure of center of the distribution of random coeffi-

cients in a binary response model where the random coefficients are allowed to be correlated with

regressors. Like Imbens and Newey (2009), we use instruments and control variables to break the

dependence of regressors on coefficients. Independence of regressors and coefficients given controls

implies conditional median restrictions which drive identification of the mean of the coefficients

given controls. Averaging over controls identifies the mean of the coefficients. This suggests an
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analogous two-stage, localize-then-average approach to estimation. We first estimate unknown

controls, and then estimate conditional means with localized smooth maximum score estimators.

We average the estimated conditional means to obtain a
√

n-consistent and asymptotically nor-

mal estimator of a trimmed mean of the distribution of coefficients. The asymptotic analysis of

the estimator, though conceptually fairly straightforward, is very complicated due to the fact that

the estimator is an average of optimization estimators evaluated at generated variables. Technical

novelties include localizing indirectly on a monotone transformation of the control variable, and

establishing a uniform strong maximization condition for a uniform consistency proof. Simulations

illustrate that the estimator performs well relative to likely competitors. We apply our estimator

to data on the effect of mothers’ smoking on the health of their newborns. We find that the new

estimator gives more sensible estimates of the effect of smoking than those of likely competitors.

The results of this paper have interesting implications for more standard models. For example,

with the addition of instruments, we show how to use the new estimator to obtain a
√

n-consistent

and asymptotically normal estimator of the vector of slope parameters in the model proposed by

Manski (1975,1985) and Horowitz (1992).

In future work, we plan to estimate other characteristics of the distribution of correlated random

coefficients in the binary response model. In particular, we plan to adapt the localize-then-average

procedure to estimate the distribution of each random coefficient, conditional on centered values of

the other coefficients. We propose to do this by first estimating a center of the distribution as done

in this paper. The center need not be the mean of the distribution and so need not require strong

symmetry assumptions. Then, using the estimator of Kordas (2006) to estimate the quantiles of the

distribution of a given random coefficient conditional on the centered values of the other coefficients,

we recover the entire conditional distribution of that random coefficient.
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Appendix A

In this appendix, we prove Theorem 1, which treats the case e = c = 1, with k and m arbitrary.

We start by proving some preliminary lemmas.

The first lemma states conditions under which assumption A2 holds. We begin by developing

a key localization condition. For j = 1, . . . , e, write FVj
(·) for the cdf of Vj .

L1. For each j = 1, . . . , e, FVj
(·) is an invertible map from the support of Vj onto [0, 1].

In L1, it is not necessary that the maps be onto [0, 1]. More generally, we allow maps onto

compact subsets of [0, 1], but then more complicated notation is needed. We avoid this by making

the stronger assumption. We do note that isolated jumps in the cdfs can be accommodated. For

example, it is possible to accommodate discrete marginal distributions. However, nonisolated jumps

and flat spots in the cdfs are not allowed. Informally, nonisolated jumps imply that close vj values

(vj values on either side of a point v0 at which a jump occurs) do not correspond to close uj

values (cdf values). Flat spots imply the reverse: close uj values (uj values on either side of a

point u0 equal to the cdf value on the flat spot) do not correspond to close vj values. When either

nonisolated jumps or flat spots occur, localization on u ∈ SU does not correspond to localization

on v ∈ SV .

Lemma 0 (Localization). If L1 holds, then

M(v) = (FV1
(v1), . . . , FVe(ve))

is an invertible map from SV onto SU . If, in addition, A1 holds, then for each u ∈ SU with
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corresponding v ∈ SV , there exist x = (x1, . . . , xe) ∈ SX and z ∈ SZ such that

u = M(v) = (IP{X1 ≤ x1 | Z = z}, . . . , IP{Xe ≤ xe | Z = z}) .

Proof for e = 2. Let (u1, u2) = (FV1
(v1), FV2

(v2)) and (ũ1, ũ2) = (FV1
(ṽ1), FV2

(ṽ2)). Check

that equal images imply equal preimages: (u1, u2) = (ũ1, ũ2) and the invertibility of FV1
and FV2

imply that (v1, v2) = (ṽ1, ṽ2). That the mapping is onto SU follows from L1. This proves the first

part of the Lemma.

Assume, for simplicity, that φ1 and φ2 are strictly increasing in their first arguments. Fix v ∈ SV .

By A1, there exist x = (x1, x2) ∈ SX and z ∈ SZ such that v = (v1, v2) = (φ−1
1 (x1, z), φ−1

2 (x2, z)).

It follows that

(u1, u2) ≡ (IP{X1 ≤ x1 | Z = z}, IP{X2 ≤ x2 | Z = z})

= (IP{φ1(z, V1) ≤ x1 | Z = z}, IP{φ2(z, V2) ≤ x2 | Z = z})

= (IP{V1 ≤ φ−1
1 (x1, z) | Z = z}, IP{V2 ≤ φ−1

2 (x2, z) | Z = z})

= (IP{V1 ≤ φ−1
1 (x1, z)}, IP{V2 ≤ φ−1

2 (x2, z)}) (V independent of Z)

= (FV1
(φ−1

1 (x1, z)), FV2
(φ−1(x2, z)))

= (FV1
(v1), FV2

(v2)) .

By the first part of the Lemma, each u = (u1, u2) ∈ SU can be so represented. This proves the

second part of the Lemma. 2

Remark. Note that L1 does not preclude a discrete endogenous regressor. For example, take
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e = 1 and X1 binary. By A1, IP{X1 = 1 | Z = z} = FV1
(φ−1

1 (1, z)). Deduce that L1 holds if

IP{X1 = 1 | Z = z} takes on all values in [0, 1] as z ranges over SZ .

LEMMA 1 (Uniform Consistency). If assumptions A1 through A19 hold, then

sup
u∈Uκ

|β̂(u) − β(u)| = op(1) .

as n → ∞.

Proof. Fix u ∈ Uκ. Since e = 1, we estimate β(u) with β̂(u) = argmax
b∈Bu

Ŝn(b | u) where

Ŝn(b | u) =
1

nτn

n
∑

j=1

(2Yj − 1)K∗
n(Xjb)Kn(Ûj − u)τκ(Zj) .

Define

Sn(b | u) =
1

nτn

n
∑

j=1

(2Yj − 1)K∗
n(Xjb)Kn(Uj − u)τκ(Zj)

S̄n(b | u) = IESn(b | u) =
1

τn
IE(2Y − 1)K∗

n(Xb)Kn(U − u)τκ(Z) .

Note that given U and Z, X is determined. By iterated expectations, with the inner expectation

over Y given U and Z, we get that

S̄n(b | u) =
1

τn
IEg(U,Z)K∗

n(Xb)Kn(U − u)τκ(Z)

where the expectation IE in the last expression is over U and Z and

g(U,Z) = 2IP (ǫ(U) < Xβ(U) | U,Z) − 1 (22)
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where ǫ(U) = −X(B − β(U)). It follows from (16) that g(u,Z) = 0 whenever Xβ(u) = 0. This

is a critical fact used in what follows. A1 and A2 imply that X = φ(Z,M−1(U)), and we write

X ≡ X(U,Z) to acknowledge the functional dependence of X on U and Z. Apply a change of

variable argument with r = (U − u)/τn, to get

S̄n(b | u) = IE

[
∫

g(u + rτn, Z)K∗
n((X(u + rτn, Z)b)f(u + rτn)K(r)dr

]

τκ(Z)

where the expectation IE is over Z and f(·) is the marginal density of U .

Next, define

S̃n(b | u) = IE

[
∫

g(u + rτn, Z)f(u + rτn)K(r)dr

]

{X(u,Z)b > 0}τκ(Z)

S(b | u) = IEg(u,Z)f(u){X(u,Z)b > 0}τκ(Z) .

To show uniform consistency, we show that (i) a standard identification condition, called a

strong maximization condition, holds uniformly over Uκ and (ii) as n → ∞, Ŝn(b | u) converges in

probability to S(b | u) uniformly over the compact set Uκ⊗Bu. (Pointwise strong maximization and

a weak law of large numbers holding uniformly over Bu are sufficient to prove pointwise consistency

while the stronger conditions (i) and (ii) are sufficient to prove uniform consistency.)

Start with the uniform strong maximization condition (i) above, which says that for any δ > 0,

inf
u∈Uκ

[

S(β(u) | u) − sup
|b−β(u)|≥δ

S(b | u)

]

> 0 .

To establish this uniform condition, we first show the pointwise condition, namely, that the term

53



in brackets above is positive for each u ∈ Uκ.14

Fix u ∈ Uκ. To prove the pointwise result, we show that S(b | u) is continuous in b on the

compact set Bu, and is uniquely maximized at β(u). To see this, note that S(b | u) is continuous in b

by a dominated convergence argument using the almost sure continuity and uniform boundedness of

the integrand g(u,Z)f(u){X(u,Z)b > 0}τκ(Z). By condition (16), for each z ∈ SZ , the integrand

attains its maximum value of max{0, g(u, z)f(u)τκ(z)} at b = β(u). It follows that S(b | u)

is maximized at b = β(u). Unique maximization follows from (16), A4, A5, and arguments in

Horowitz (1998, pp.59-60). This establishes the pointwise result.

We now establish the uniform result. By A16, g(u, z)f(u) is a continuous function of u. This

and a dominated convergence argument similar to the one used to prove that S(b | u) is continuous

in b, imply that S(b | u) is also continuous in u. Since S(b | u) is continuous in both b and

u, the maximum theorem implies that β(u) is an UHC correspondence. This and the fact that

β(u) uniquely maximizes S(b | u) imply that β(u) is a continuous function. Since Bu is compact,

the correspondence from u to Bu is compact-valued. These last two facts and A10 imply that

the constraint set {b ∈ Bu : |b − β(u)| ≥ δ} is a compact-valued UHC correspondence. This and

continuity of S(b | u) in both b and u imply that the constrained value function sup|b−β(u)|≥δ S(b | u)

is an USC function of u. Since the unconstrained value function S(β(u) | u) is continuous in u, it

follows that S(β(u) | u)−sup|b−β(u)|≥δ S(b | u) is a LSC function of u. By the Weierstrass Theorem,

this function must attain its minimum value on the compact set Uκ. By the pointwise result, this

function is positive for each u ∈ Uκ. It follows that its minimized value must also be positive, which

establishes condition (i). See Aliprantis and Border (1994) and Berge (1997) for references.

14It is possible to replace Uκ with SU in the uniform strong maximization argument. But this would require that
SV be compact.
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To show (ii), we note that

|Ŝn(b | u) − S(b | u)| ≤ |Ŝn(b | u) − Sn(b | u)|

+ |Sn(b | u) − S̄n(b | u)|

+ |S̄n(b | u) − S̃n(b | u)|

+ |S̃n(b | u) − S(b | u)| .

Consider the first term on the RHS of the last expression. An argument based on a Taylor

expansion of each Ûj about Uj (as in the proof of (35) in Lemma 2 below) shows that the first

term on the RHS is op(1) uniformly over Uκ ⊗ Bu. Standard empirical process results (see, for

example, Lemma 3A in Sherman (1994)) show that as n → ∞, the second term on the RHS is

op(1) uniformly over Uκ ⊗Bu. A Taylor expansion of g(u + rτn, Z)f(u + rτn) about u implies that

the fourth term is also op(1) uniformly over Uκ ⊗ Bu.

We now turn to the third term, which requires a bit more work. Recall the definition of S̄n(b | u)

and that τn ≪ σn. Write b0 for the component of b corresponding to X . By a Taylor expansion

about u, we get that

K∗(X(u + rτn, Z)b) = K∗(X(u,Z)b) + (rτn/σn)b0Kn(X∗b)

= K∗(X(u,Z)b) + o(1)

as n → ∞ uniformly over r ∈ [−1, 1] and (u, b) ∈ Uκ ⊗ Bu. Assumption A16 implies that |g(u +

rτn, Z)f(u + rτn)| is bounded. Deduce that for some c > 0,

|S̄n(b | u) − S̃n(b | u)| ≤ cIE |K∗(X(u,Z)b/σn) − {(X(u,Z)b > 0}| + o(1)
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where the last expectation is over X(u,Z).

Recall that X = (X1, X̃). Also, recall that the coefficient of X1 is unity. Let W = Xb = X1+X̃b̃

and consider the transformation (X1, X̃) 7→ (W, X̃). This transformation is 1-1 and onto and the

Jacobian of the transformation is unity. Let f(x1 | x̃, u) denote the density of X1 given X̃ = x̃ and

U = u. By A6, this density is continuous in x1. It follows that the last expectation is equal to

∫

x̃

[
∫

w
|K∗(w/σn) − {w > 0}|f(w − x̃b̃ | x̃, u) dw

]

f(x̃ | u) dx̃ .

Note that this transformation shifts the dependence on u and b from the integrand, which depends

on n, to the argument of the conditional density, which does not depend on n. Since Bu and Uκ

are compact, A6 implies that there exist b∗ ∈ Bu and u∗ ∈ Uκ such that f(w − x̃b̃∗ | x̃, u∗) =

supb∈Bu,u∈Uκ
f(w− x̃b̃ | x̃, u). It follows that f(w− x̃b̃∗ | x̃, u∗) is a density with respect to lebesgue

measure on IR, and the integral in brackets is bounded by the integral with f(w− x̃b̃ | x̃, u) replaced

by f(w− x̃b̃∗ | x̃, u∗). For each fixed w, |K∗(w/σn)−{w > 0}| is bounded and converges to zero as

n → ∞. By the DCT, the integral in brackets converges to zero as n → ∞. Since Uκ is compact, A7

implies that there exists u∗ ∈ Uκ such that f(x̃ | u∗) = supu∈Uκ
f(x̃ | u). A similar DCT argument

shows that the outer integral also converges to zero as n → ∞. Moreover, this convergence is

uniform over Uκ ⊗ Bu. This establishes (ii), proving Lemma 1. 2

LEMMA 2 (Rates of Uniform Convergence). If assumptions A1 through A19 hold,

then

sup
x∈Xκ,z∈Zκ

|Û(x, z) − U(x, z)| = Op(1/
√

nαn)

as n → ∞.
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Proof. Recall that Z denotes the 1 × m vector of instruments for the single endogenous

regressor X , and that Z denotes the single continuous instrument for X . Also, recall that D

denotes the 1 × (m − 1) vector of discrete instruments for X . We write z = (z0, d) for a typical

point in the support of Z, where z0 is a point in the support of Z, and d is a point in the support

of D. Fix x ∈ Xκ and z = (z0, d) ∈ Zκ. We have that

Û(x, z) =
1

nαn

n
∑

k=1

{Xk ≤ x}Kn(Zk − z0){Dk = d}/f̂(z0, d) (23)

where

f̂(z0, d) =
1

nαn

n
∑

k=1

Kn(Zk − z0){Dk = d} .

Note that f̂(z0, d) estimates f(z0, d) = f(z0 | d)IP{D = d} where f(z0 | d) denotes the conditional

density of Z given d evaluated at z0. Abbreviate f̂(z0, d) to f̂ and f(z0, d) to f . Note that

Û(x, z) =
1

nαn

∑n
k=1{Xk ≤ x}Kn(Zk − z0){Dk = d}

f(z0, d)

[

f

f̂

]

=
1

nαn

∑n
k=1{Xk ≤ x}Kn(Zk − z0){Dk = d}

f(z0, d)

[

1 −
(

1 − f̂

f

)]−1

=
1

nαn

∑n
k=1{Xk ≤ x}Kn(Zk − z0){Dk = d}

f(z0, d)



1 +

(

1 − f̂

f

)

+

(

1 − f̂

f

)2

+ · · ·


 .

We now analyze the leading term in this last expansion. Nonleading terms can be handled similarly

and have smaller stochastic order. By a slight abuse of notation, we take

Û(x, z) =
1

nαn

∑n
k=1{Xk ≤ x}Kn(Zk − z0){Dk = d}

f(z0, d)
.
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Write

Û(x, z) − U(x, z) = Û(x, z) − IEzÛ(x, z) + IEzÛ(x, z) − U(x, z)

where the expectation IEz is conditional on Z = (z0, d). By the first part of A15, f(z0 | d) is

bounded above zero on Zκ, precluding ratio bias. Since x ∈ Xκ, U(x, z) is eventually more than a

bandwidth αn from either boundary of SU (0 or 1), precluding boundary bias. These facts, A14, the

second part of A15, and a standard change of variable argument followed by a Taylor expansion to

pa terms implies that the bias term IEzÛ(x, z) − U(x, z) has order op(1/
√

n) as n → ∞, uniformly

over Xκ ⊗ Zκ. Note that

Û(x, z)−IEzÛ(x, z) =
1

nαn

∑n
k=1{Xk ≤ x}Kn(Zk − z0){Dk = d} − IEz{Xk ≤ x}Kn(Zk − z0){Dk = d}

f(z0, d)
.

(24)

This is a zero-mean empirical process. A1, A14, and standard empirical process results (see,

for example, the proof of Lemma 3A in Sherman (1994)) imply that this last term has order

Op(1/
√

nαn) as n → ∞, uniformly over Xκ ⊗ Zκ. This proves Lemma 2. 2

LEMMA 3 (Rates of Uniform Consistency). If assumptions A1 through A19 hold, then

sup
u∈Uκ

|β̂(u) − β(u)| = Op

(

1/
√

nαnσnτ2
n

)

as n → ∞.

Proof. Fix u ∈ Uκ. Recall Sn(b | u) = 1
nτn

∑n
j=1(2Yj − 1)K∗

n(Xjb)Kn(Uj − u)τκ(Zj). Define

β̄(u) = argmax
b∈Bu

Sn(b | u). Then

β̂(u) − β(u) = [β̂(u) − β̄(u)] + [β̄(u) − β(u)] . (25)
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Start with the second term on the RHS of (25). Define the gradient and hessian of Sn(b | u):

Gn(b | u) =
1

nσnτn

n
∑

j=1

(2Yj − 1)Kn(Xjb)X̃
′
jKn(Uj − u)τκ(Zj)

Hn(b | u) =
1

nσ2
nτn

n
∑

j=1

(2Yj − 1)K′
n(Xjb)X̃

′
jX̃jKn(Uj − u)τκ(Zj) .

The gradient and hessian of population criterion function S(b | u) are denoted G(b | u) and H(b | u).

By definition of β̄(u), 0 = Gn(β̄(u) | u). A one term Taylor expansion of Gn(β̄(u) | u) about β(u)

implies that

β̄(u) − β(u) = −[Hn(β̄∗(u) | u)]−1Gn(β(u) | u) (26)

where β̄∗(u) is between β̄(u) and β(u). Note that for each u ∈ Uκ,

Hn(β̄∗(u) | u) = Hn(β̄∗(u) | u) − H(β̄∗(u) | u)

+ H(β̄∗(u) | u) − H(β(u) | u) .

The first term on the RHS of the last expression is bounded by

sup
(u,b)∈Uκ⊗Bu

|Hn(b | u) − H(b | u)| .

The difference Hn(b | u) − H(b | u) has mean zero for each (u, b) ∈ Uκ ⊗ Bu. Standard empirical

process arguments (once again, see Lemma 3A in Sherman (1994)) show that this last expression has

order Op(1/
√

nσ2
nτn) as n → ∞. Invoke A18. By a Taylor expansion of each of the k2 components

of H(β̄∗(u) | u) about β(u), we get that the (i, j)th component of H(β̄∗(u) | u)−H(β(u) | u) equals

Dij(β̄
∗∗(u) | u)(β̄∗(u) − β(u)), where Dij(b | u) is the partial derivative of the ijth component of
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H(b | u) with respect to b, and β̄∗∗(u) is between β̄(u) and β(u). By A18, Dij(b | u) is a continuous

function on the compact set Bu ⊗ Uκ. Thus, this term has order op(1) uniformly over u ∈ Uκ

provided supu∈Uκ
|β̄(u) − β(u)| = op(1) as n → ∞. But this uniformity result holds by arguments

similar to (and simpler than) those used to prove Lemma 1. Provided σ2
nτn ≫ n−1/2, we get that

uniformly over u ∈ Uκ, as n → ∞,

Hn(β̄∗(u) | u) − H(β(u) | u) = Op(1/
√

nσ2
nτn) + Op( sup

u∈Uκ

|β̄(u) − β(u)|) = op(1)

Now apply a Taylor expansion of
[

Hn(β̄∗(u) | u)
]−1

about H(β(u) | u). Provided σ2
nτn ≫ n−1/2,

we get that uniformly over u ∈ Uκ, as n → ∞,

[

Hn(β̄∗(u) | u)
]−1 − [H(β(u) | u)]−1 = Op(1/

√
nσ2

nτn) + Op( sup
u∈Uκ

|β̄(u) − β(u)|) = op(1) . (27)

Further, note that A8, A18, A19, and continuity of the inverse function imply that uniformly over

u ∈ Uκ,

[H(β(u) | u)]−1 = O(1) . (28)

Deduce from (26), (27), and (28) that, uniformly over u ∈ Uκ, as n → ∞,

β̄(u) − β(u) = −
[

[H(β(u) | u)]−1 + op(1)
]

Gn(β(u) | u) = Op(1)Gn(β(u) | u) . (29)

We now turn to an analysis of Gn(β(u) | u). We have that

Gn(β(u) | u) = [Gn(β(u) | u) − IEGn(β(u) | u)] + IEGn(β(u) | u) . (30)
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Note that the term in brackets is a zero-mean empirical process. Standard empirical process

arguments show that, uniformly over u ∈ Uκ, as n → ∞,

Gn(β(u) | u) − IEGn(β(u) | u) = Op(1/
√

nσnτn) . (31)

We now show that the bias term IEGn(β(u) | u) can be neglected. That is, we show that, uniformly

over u ∈ Uκ, as n → ∞,

IEGn(β(u) | u) = op(1/
√

n) . (32)

Note that

IEGn(β(u) | u) =
1

σnτn
IE(2Yj − 1)Kn(Xjβ(u))X̃ ′

jKn(Uj − u)τκ(Zj) . (33)

Holding u fixed, we will evaluate this expectation in four steps: (i) average over Yj given Uj and

Zj (ii) average over Uj given Zj and Xjβ(u) (iii) average over Zj given Xjβ(u) and (iv) average

over Xjβ(u).

Recall the definition of g(U,Z) given in (22), as well as the key identification result in (16)

which follows from A11 and A12. After applying step (i), we get that the integrand in (33) equals

1

σnτn
g(Uj , Zj)Kn(Xjβ(u))X̃ ′

jKn(Uj − u)τκ(Zj) .

In applying step (ii), there are two cases to consider. The first is the case where Uj = Uj1. The

second is the case where Uj 6= Uj1. We will analyze the former. The analysis of the latter is similar.

Note that when Uj = Uj1, the random variable X̃j does not involve Uj . Apply step (ii), making
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the change of variable r = (Uj − u)/τn. After step (ii), the integrand in (33) equals

1

σn

[
∫

g(u + τnr, Zj)f(u + τnr | Zj ,Xjβ(u))K(r)dr

]

Kn(Xjβ(u))X̃ ′
jτκ(Zj)

where f(· | Z,Xβ(u)) denotes the density of U given Z and Xβ(u).

In applying step (iii), write Γn(Xjβ(u)) for the expectation over Zj given Xjβ(u) of

[
∫

g(u + τnr, Zj)f(u + τnr | Zj,Xjβ(u))K(r)dr

]

X̃ ′
jτκ(Zj) .

After applying step (iii), the integrand in (33) equals

1

σn
Kn(Xjβ(u))Γn(Xjβ(u)) .

Finally, apply step (iv), making the change of variable s = Xjβ(u)/σn to get that the bias term in

(33) equals
∫

Γn(σns)f(σns)K(s)ds

where f(·) denotes the density of Xjβ(u). Apply assumptions A14 and A16, and expand the product

g(u + τnr, Zj)f(u + τnr | Zj,Xjβ(u)) about Uj = u to pτ terms to replace it with g(u,Zj)f(u |

Zj ,Xjβ(u)) plus a term that is op(1/
√

n) as n → ∞. Then, apply A14 and A17 and expand

Γn(σns)f(σns) about Xjβ(u) = 0 to pσ terms to replace Γn(σns)f(σns) with zero plus a term that

is op(1/
√

n) as n → ∞. The leading term in this expansion is zero because g(u,Zj) = 0 when

Xjβ(u) = 0. The latter follows from (16). This proves (32).
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It follows from (29), (30), (31), and (32) that, as n → ∞,

sup
u∈Uκ

|β̄(u) − β(u)| = Op(1/
√

nσnτn) . (34)

Next we show that, as n → ∞,

sup
u∈Uκ

|β̂(u) − β̄(u)| = Op(1/
√

nαnσnτ2
n) . (35)

Define the gradient and hessian of Ŝn(b | u):

Ĝn(b | u) =
1

nσnτn

n
∑

j=1

(2Yj − 1)Kn(Xjb)X̃
′
jKn(Ûj − u)τκ(Zj)

Ĥn(b | u) =
1

nσ2
nτn

n
∑

j=1

(2Yj − 1)K′
n(Xjb)X̃

′
jX̃jKn(Ûj − u)τκ(Zj) .

By definition of β̂(u), 0 = Ĝn(β̂(u) | u). A one term Taylor expansion of Ĝn(β̂(u) | u) about β(u)

implies that

β̂(u) − β(u) = −[Ĥn(β̂∗(u) | u)]−1Ĝn(β(u) | u) (36)

where β̂∗(u) is between β̂(u) and β(u). Deduce from (26) and (36) that

β̂(u) − β̄(u) = −
[

Ĥn(β̂∗(u) | u)
]−1

Ĝn(β(u) | u) +
[

Hn(β̄∗(u) | u)
]−1

Gn(β(u) | u) . (37)

Note that

Ĝn(β(u) | u) =
1

nσnτn

n
∑

j=1

(2Yj − 1)Kn(Xjβ(u))X̃ ′
jKn(Ûj − u)τκ(Zj) .

If we Taylor expand each summand about Uj , then the sum of the first terms in these expansions
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equals Gn(β(u) | u), a useful quantity to isolate in the subsequent analysis. By applying these

expansions we get

Ĝn(β(u) | u) = Gn(β(u) | u) +
1

nσnτn

n
∑

j=1

Λn(Û∗
j , u)(Ûj − Uj)τκ(Zj) (38)

where Û∗
j is between Ûj and Uj, and

Λn(U, u) =
∂

∂U

[

(2Y − 1)Kn(Xβ(u))X̃ ′Kn((U − u)
]

= (2Y − 1)Kn(Xβ(u))X̃ ′K′
n((U − u)/τn .

Deduce from A14 that Λn(U, u)τκ(Z) = O(1/τn) as n → ∞. Then apply Lemma 2 and (38) to

get that, uniformly over u ∈ Uκ, as n → ∞,

Ĝn(β(u) | u) = Gn(β(u) | u) + Op(1/
√

nαnσnτ2
n) . (39)

Note that (31) and (32) imply that, uniformly over u ∈ Uκ, as n → ∞,

Gn(β(u) | u) = Op(1/
√

nσnτn) . (40)

Now, consider the term Ĥn(β̂∗(u) | u) in (36). We have that

Ĥn(β̂∗(u) | u) − H(β(u) | u) = Ĥn(β̂∗(u) | u) − Hn(β̂∗(u) | u)

+ Hn(β̂∗(u) | u) − H(β̂∗(u) | u)

+ H(β̂∗(u) | u) − H(β(u) | u) .
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By arguments very similar to those used to establish (39), we get that the first term in the decompo-

sition, uniformly over u ∈ Uκ, has order Op(1/
√

nαnσ2
nτ2

n) as n → ∞. Arguments made previously

show that the second term in the decomposition, uniformly over u ∈ Uκ, has order Op(1/
√

nσ2
nτn)

as n → ∞, while the third term, uniformly over u ∈ Uκ, has order Op(supu∈Uκ
|β̂(u)−β(u)|) = op(1)

as n → ∞. Then the Taylor expansion arguments used to establish (27) can be used to show that

uniformly over u ∈ Uκ, as n → ∞,

[

Ĥn(β̂∗(u) | u)
]−1

− [H(β(u) | u)]−1 = Op(1/
√

nαnσ2
nτ2

n) + Op(1/
√

nσ2
nτn) + Op( sup

u∈Uκ

|β̂(u) − β(u)|)

= op(1) . (41)

Recall (37). Deduce from (28), (41), and (39), and then (28), (27), and (40), that (35) holds.

Lemma 3 now follows from (25), (35), and (34). 2

We are now in a position to prove that β̂κ is a
√

n-consistent and asymptotically normally

distributed estimator of βκ.

LEMMA 4 (the second term in (10)). If A1 through A19 hold, then

1

n

n
∑

i=1

[

β̂(Ui) − β(Ui)
]

τκ(Xi,Zi) =
1

n

n
∑

i=1

f (2)
n (Wi) +

1

n

n
∑

i=1

f (3)
n (Wi) + op(1/

√
n)

as n → ∞, where f
(2)
n (Wi) = fn(P,P,Wi) + fn(P,P, P,Wi) and f

(3)
n (Wi) = fn(P,Wi), with

fn(Wi,Wj ,Wk), fn(Wi,Wj ,Wk,Wl), and fn(Wi,Wj) defined in (17), (18), and (19), respectively.
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Proof. Consider the second term in (10). This term equals

1

n

n
∑

i=1

[

β̂(Ui) − β(Ui)
]

τκ(Xi,Zi) . (42)

For ease of notation, we suppress the trimming function τκ(Xi,Zi). We get

1

n

n
∑

i=1

[

β̂(Ui) − β̄(Ui)
]

+
1

n

n
∑

i=1

[

β̄(Ui) − β(Ui)
]

. (43)

Start with the first term in (43). By (37), this term equals

− 1

n

n
∑

i=1

[

[

Ĥn(β̂∗(Ui) | Ui)
]−1

Ĝn(β(Ui) | Ui) −
[

Hn(β̄∗(Ui) | Ui)
]−1

Gn(β(Ui) | Ui)

]

. (44)

By (41) and Lemma 3 we get that uniformly over u ∈ Uκ, as n → ∞,

[

Ĥn(β̂∗(u) | u)
]−1

= [H(β(u) | u)]−1 + Op(1/
√

nαnσ2
nτ2

n) . (45)

By (27) and (34) we get that uniformly over u ∈ Uκ, as n → ∞,

[

Hn(β̄∗(u) | u)
]−1

= [H(β(u) | u)]−1 + Op(1/
√

nσ2
nτn) . (46)

By (39) and (40), we get that uniformly over u ∈ Uκ, as n → ∞,

Ĝn(β(u) | u) = Op(1/
√

nαnσnτ2
n) . (47)
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Equations (45) and (47), together with (46) and (40), imply that the expression in (44) equals

1

n

n
∑

i=1

[

[H(β(Ui) | Ui)]
−1
[

Ĝn(β(Ui) | Ui) − Gn(β(Ui) | Ui)
]]

+ Op(1/nα2
nσ3

nτ4
n) . (48)

Note that the Op(1/nα2
nσ3

nτ4
n) term has order op(1/

√
n) provided α2

nσ3
nτ4

n ≫ n−1/2. By (38),

Ĝn(β(Ui) | Ui) − Gn(β(Ui) | Ui) =
1

nσnτn

n
∑

j=1

Λn(Û∗
j , Ui)(Ûj − Uj)τκ(Zj) .

Lemma 2 and a Taylor expansion of Λn(Û∗
j , Ui) about Uj (see the expression following (38)) imply

that, uniformly over i and j, as n → ∞,

Ĝn(β(Ui) | Ui) − Gn(β(Ui) | Ui) =
1

nσnτn

n
∑

j=1

Λn(Uj , Ui)(Ûj − Uj)τκ(Zj) + Op(1/nα2
nσnτ3

n) . (49)

Note that the Op(1/nα2
nσnτ3

n) term has order op(1/
√

n) provided α2
nσnτ3

n ≫ n−1/2.

As in the proof of Lemma 2, we have that

Ûj =
1

nαn

n
∑

k=1

{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}/f̂(Zj ,Dj) (50)

where

f̂(Zj ,Dj) =
1

nαn

n
∑

k=1

Kn(Zk −Zj){Dk = Dj} .

Note that f̂(Zj ,Dj) estimates f(Zj,Dj) = f(Zj | Dj)IP{D = Dj} where f(Zj | Dj) denotes the

conditional density of Zj given Dj . Abbreviate f̂(Zj,Dj) to f̂ and f(Zj,Dj) to f . Then

Ûj =
1

nαn

∑n
k=1{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}

f(Zj,Dj)

[

f

f̂

]
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=
1

nαn

∑n
k=1{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}

f(Zj,Dj)

[

1 −
(

1 − f̂

f

)]−1

=
1

nαn

∑n
k=1{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}

f(Zj,Dj)



1 +

(

1 − f̂

f

)

+

(

1 − f̂

f

)2

+ · · ·


 . (51)

The first two terms in the last expansion, when combined with (49) and (48), make first order

asymptotic contributions. The remaining terms lead to contributions of order op(1/
√

n) and so can

be neglected.15

We now analyze the leading term in this last expansion. Analysis of the second term is very

similar and so is omitted. By a slight abuse of notation, take

Ûj =
1

nαn

∑n
k=1{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}

f(Zj,Dj)
.

Write

Ûj − Uj = Ûj − IEjÛj + IEjÛj − Uj

where the expectation IEj is conditional on (Zj ,Dj). Invoke A13, A14, and A15 and apply a change

of variable followed by a Taylor expansion to pa terms to show that the bias term IEjÛj − Uj has

order op(1/
√

n). Therefore, it is enough to analyze

Ûj −IEjÛj =
1

nαn

n
∑

k=1

{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj} − IEj{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}
f(Zj,Dj)

.

(52)

15The first two terms in the last expansion, apart from a op(1/
√

n) bias term, are zero-mean U -statistics of orders
three and four, respectively. Each of these U -statistics has a nondegenerate projection (the first term in the Hoeffding
decomposition), resulting in a first order asymptotic contribution. We demonstrate this fact with the first term in
the expansion. However, this does not happen with the higher order terms in the expansion. Take the third term, for
example. Apart from a op(1/

√
n) bias term, this term is a zero-mean U -statistic of order five. It is straightforward

to show that the average of its kernel function over either of two arguments, conditional on the remaining four
arguments, is zero. This implies a zero projection, resulting in no first order asymptotic contribution. Moreover, the
tail process is easily shown to be op(1/

√
n).
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Substitute (52) for Ûj − Uj in (49), then combine with (48) and expand sums to get

1

n3

∑

i,j,k

[H(β(Ui) | Ui)]
−1 Λn(Uj , Ui)

{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj} − IEj{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}
αnσnτnf(Zj,Dj)

(53)

where, to save space we suppress the trimming function τκ(Zj). Note that there are n3 summands

in (53). Define n(3) = n(n− 1)(n− 2) and i3 = (i, j, k) where i 6= j 6= k 6= i. Then the term in (53)

equals

1

n(3)

∑

i3

[H(β(Ui) | Ui)]
−1 Λn(Uj , Ui)

{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj} − IEj{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}
αnσnτnf(Zj,Dj)

(54)

plus a term that can be neglected asymptotically. The reason is that there are only O(n2) terms

in the difference between the triple sums in (53) and (54). If αnσnτn ≫ n−1/2, then the difference

between (53) and (54) has order op(1/
√

n) as n → ∞.

The term in (54) is a zero-mean U -statistic of order three. Define Wi = (Yi,Xi, Zi, Ui) and

fn(Wi,Wj ,Wk) to be the (i, j, k)th summand in expression (54). Define n(2) = n(n − 1) and

i2 = (i, j) where i 6= j. Apply the Hoeffding decomposition (see Serfling, 1980,Chapter 5) to get

that

1

n(3)

∑

i3

fn(Wi,Wj ,Wk) =
1

n

n
∑

i=1

[fn(Wi, P, P ) + fn(P,Wi, P ) + fn(P,P,Wi)] (55)

+
1

n(2)

∑

i2

gn(Wi,Wj) +
1

n(3)

∑

i3

hn(Wi,Wj ,Wk)

where the second average in the decomposition is a degenerate U -statistic of order two, and the third

average is a degenerate U -statistic of order three. It follows that as n → ∞, the second and third

averages have order Op(1/nαnσnτn) and Op(1/n
3/2αnσnτn), respectively. Thus, if αnσnτn ≫ n−1/2,
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then both of these terms have order op(1/
√

n) and so can be ignored.

We now show that the first term in (55) is
√

n-consistent and asymptotically normally dis-

tributed. First note that fn(Wi, P, P ) = fn(P,Wi, P ) = 0. To see this, fix Wi and Wj and note

that fn(Wi,Wj , P ) = 0. So, it suffices to analyze the average of the fn(P,P,Wi)’s in (55). For

convenience, we will write this term as

1

n

n
∑

k=1

fn(P,P,Wk) . (56)

The claim that this term is
√

n-consistent might initially be viewed with some suspicion. To see

why, note that

fn(Wi,Wj,Wk) =
1

αnσnτ2
n

H(β(Ui) | Ui)]
−1

× (2Yj − 1)Kn(Xjβ(Ui))X̃
′
jK′

n(Uj − Ui)

× {Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj} − IEj{Xk ≤ Xj}Kn(Zk −Zj){Dk = Dj}
f(Zj,Dj)

.

We see that fn(Wi,Wj ,Wk) is a product of terms divided by αnσnτ2
n. However, this product

involves only three kernel function factors: the kernel function used to estimate U corresponding

to αn, the kernel function used to smooth the indicator {t > 0} corresponding to σn, and the

derivative of the kernel function used to localize on U corresponding to τn. Integrating a kernel

function or its derivative involves a change of variable, resulting in a rescaling by the corresponding

bandwidth factor. Thus, one might expect that the one αn factor, the one σn factor, and one of the

τn factors can be accounted for, but not the remaining τn factor. If true, this would imply that the

expression in (56) is at best
√

nτn-consistent, but not
√

n-consistent. But, in fact, the expression

in (56) is
√

n-consistent. The reason is that the derivative of the bias reducing kernel we use is an
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odd function, which, when integrated, annihilates a leading constant term, thus accounting for the

fourth bandwidth factor. We now show this.

To save space, we will consider the case m = 1 so that Zj = Zj . The case of general m adds

nothing to understanding and follows immediately from the argument given below by replacing

marginal densities with joint densities (products of conditional and marginal densities) and adding

summations over the discrete conditioning variables. From (54) and the expression following (38),

we get that the term in question equals

1

n

n
∑

k=1

f (1)
n (P,P,Wk) (57)

where f
(1)
n (P,P,Wk) equals

1

αnσnτ2
n

IEkh(Ui)(2Yj−1)Kn(Xjβ(Ui))X̃
′
jK′

n(Uj−Ui)
{Xk ≤ Xj}Kn(Zk −Zj) − IEj{Xk ≤ Xj}Kn(Zk −Zj)

f(Zj)

(58)

where the expectation IEk is over Wi and Wj given Wk, h(Ui) = [H(β(Ui) | Ui)]
−1, and the expec-

tation IEj is the expectation over Wk given Wj.

In evaluating the expectation IEk in (58), we first fix Wi and average over Wj . Note that the

integrand depends on Wi only through Ui. For ease of notation, when averaging out over Wj, we

will replace each Ui with u. The averaging over Wj will be done in 4 steps: (i) average over Yj

given Uj and Zj (ii) average over Uj given Zj and Xjβ(u) (iii) average over Zj given Xjβ(u) and

(iv) average over Xjβ(u). After step (iv), we will average over u to get f
(1)
n (P,P,Wk).

71



Recall the definition of g(·, ·) in (22). After applying step (i) the integrand in (58) equals

1

αnσnτ2
n

h(u)g(Uj , Zj)Kn(Xjβ(u))X̃ ′
jK′

n(Uj−u)
{Xk ≤ Xj}Kn(Zk −Zj) − IEj{Xk ≤ Xj}Kn(Zk −Zj)

f(Zj)
.

(59)

In applying step (ii), there are two cases to consider, namely, the case Uj = U1j and the case

Uj 6= U1j . We analyze the former case. Analysis of the latter case is similar. Note that when

Uj = U1j , then X̃j does not depend on Uj . Make the change of variable r = (Uj − u)/τn. After

applying step (ii), the integrand in (58) equals

1

αnσnτn
Kn(Xjβ(u)) × h(u)X̃ ′

j

{Xk ≤ Xj}Kn(Zk −Zj) − IEj{Xk ≤ Xj}Kn(Zk −Zj)

f(Zj)

×
∫

g(u + τnr, Zj)f(u + τnr | Zj,Xjβ(u))K′(r)dr . (60)

where f(· | Z,Xβ(u)) is the conditional density of U given Z and Xβ(u). We now closely examine

the integral in (60). By Taylor expansions about u we get that

g(u + τnr, Zj) = g(u,Zj) + τnrg1(u
∗, Zj)

f(u + τnr | Zj,Xjβ(u)) = f(u | Zj,Xjβ(u)) + τnrf1(ū | Zj ,Xjβ(u))

where g1 is the partial derivative of g with respect to its first argument, and u∗ is between u

and u + τnr, while f1(· | Zj) is the partial derivative of f(· | Zj,Xjβ(u)) with respect to its

first argument, and ū is between u and u + τnr. Since K′(·) is an odd function integrated over a

symmetric interval, the integral of the leading constant term is annihilated:

∫

g(u,Zj)f(u | Zj ,Xjβ(u))K′(r)dr = g(u,Zj)f(u | Zj ,Xjβ(u))

∫

K′(r)dr = 0 . (61)
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Deduce that the integral in (60) equals

τn

∫

r [g(u,Zj)f1(ū | Zj ,Xjβ(u)) + f(u | Zj,Xjβ(u))g1(u
∗, Zj) + rτnf1(ū | Zj ,Xjβ(u))g1(u

∗, Zj)]K′(r)dr .

(62)

Let In(Zj ,Xjβ(u), u) denote the integral in (62). Thus, after applying step (ii), the integrand in

(58) equals

1

αnσn
Kn(Xjβ(u))h(u)X̃ ′

j

[{Xk ≤ Xj}Kn(Zk −Zj) − IEj{Xk ≤ Xj}Kn(Zk −Zj)]

f(Zj)
In(Zj ,Xjβ(u), u) .

(63)

We see that in applying step (ii), the two τn factors have been accounted for. Define In(Zj) =

IEj{Xk ≤ Xj}Kn(Zk −Zj). Apply step (iii). Make the change of variable s = (Zj −Zk)/αn. After

applying step (iii) the integrand in (58) equals

1

σn
Kn(Xjβ(u))

∫

h(u)X̃ ′
jIn(Zk+τns,Xjβ(u), u)

{Xk ≤ Xj}K(s) − In(Zk + τns)

f(Zk + τns)
f(Zk+τns | Xjβ(u))ds .

(64)

where f(· | Xjβ(u)) is the conditional density of Z given Xβ(u) = Xjβ(u). Let In(Wk,Xjβ(u), u)

denote the integral in (64). Then the integrand in (58) equals

1

σn
Kn(Xjβ(u))In(Wk,Xjβ(u), u) . (65)

We now apply step (iv). Make the change of variable t = Xjβ(u)/σn. After applying step (iv) the

integrand in (58) equals
∫

In(Wk, σnt, u)f(σnt | u)K(t)dt (66)

where f(· | u) is the density of Xjβ(u). Finally, we average out over u to get that the expression
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in (58) equals
∫
[
∫

In(Wk, σnt, u)f(σnt | u)K(t)dt

]

f(u)du (67)

where f(·) denotes the marginal density of U . That is, f
(1)
n (P,P,Wk) in (57) is equal to this last

expression. We see that the expression in (57) is an average of zero mean iid random vectors.

Moreover, because all components of f
(1)
n are bounded and the density of Z is bounded away from

zero on {|Z| ≤ κ}, these variables have finite variance as well. Deduce from a standard CLT that

the expression in (57) is
√

n-consistent and asymptotically normally distributed. This takes care

of the first term in (43).

Now we analyze the second term in (43). This term is much easier to analyze than the first

term in (43) because it does not involve estimated Ui’s. By (26), we get that

1

n

n
∑

i=1

[

β̄(Ui) − β(Ui)
]

=
1

n

n
∑

i=1

[

Hn(β̄∗(Ui) | Ui)
]−1

Gn(β(Ui) | Ui) . (68)

By (27), (34), and (40), we get that as n → ∞,

1

n

n
∑

i=1

[

Hn(β̄∗(Ui) | Ui)
]−1

Gn(β(Ui) | Ui) =
1

n

n
∑

i=1

[H(β(Ui) | Ui)]
−1 Gn(β(Ui) | Ui) + Op(1/nσ3

nτ2
n) .

(69)

Provided σ3
nτ2

n ≫ n−1/2, the Op(1/nσ3
nτ2

n) term has order op(1/
√

n). Consider the main term on

the RHS of equation (69). Recall that Wi = (Yi,Xi, Zi, Ui) and h(u) = [H(β(u) | u)]−1. Define

fn(Wi,Wj) =
1

σnτn
h(Ui)(2Yj − 1)Kn(Xjβ(Ui))X̃

′
jKn(Uj − Ui) . (70)

where, as before, to save space we have suppressed the trimming function τκ(Xi,Zi)τκ(Zj). We get
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that the main term on the RHS of (69) is equal to

1

n2

n
∑

i=1

n
∑

j=1

fn(Wi,Wj) . (71)

There are only n terms in the double sum for which i = j. Provided σnτn ≫ n−1/2, as n → ∞,

1

n2

n
∑

i=1

n
∑

j=1

fn(Wi,Wj) =
1

n(2)

∑

i2

fn(Wi,Wj) + op(1/
√

n) . (72)

The first term on the RHS of this last equality is a U -statistic of order 2. By the Hoeffding

decomposition, we get that

1

n(2)

∑

i2

fn(Wi,Wj) = fn(P,P ) +
1

n

n
∑

i=1

[fn(Wi, P ) + fn(P,Wi) − 2fn(P,P )] (73)

+
1

n(2)

∑

i2

[fn(Wi,Wj) − fn(Wi, P ) − fn(P,Wj) + fn(P,P )] . (74)

The term in (74) is a degenerate U -statistic of order 2 having order Op(1/nσnτn) as n → ∞.

Provided σnτn ≫ n−1/2, this term has order op(1/
√

n) and so can be ignored. Consider (73). Note

that fn(Wi, P ) = h(Ui)IEGn(β(Ui) | Ui). It follows from (32) that both fn(Wi, P ) and fn(P,P )

have order op(1/
√

n) as n → ∞. Deduce that the only term in the last expression that makes a

contribution to the first order asymptotic behavior of β̂κ is

1

n

n
∑

i=1

[fn(P,Wi) − fn(P,P )] . (75)

75



For convenience, we will write this term as

1

n

n
∑

j=1

[fn(P,Wj) − fn(P,P )] . (76)

In order to evaluate fn(P,Wj), we will fix Wj in fn(Wi,Wj) and then average over Wi in 2 steps: (i)

average over Ui given Xjβ(Ui) and (ii) average over Xjβ(Ui). Step (i) involves a change of variable

argument and a rescaling by τn. Step (ii) involves a change of variable argument and a rescaling

by σn. As before, we get that the term in (76) is an average of zero-mean iid random vectors with

finite variance. A standard CLT shows this term to be
√

n-consistent and asymptotically normally

distributed. This proves Lemma 4. 2

LEMMA 5 (the term in (11)). If assumptions A1 through A19 hold, then

1

n

n
∑

i=1

δ̂(Û∗
i )(Ûi − Ui)τκ(Xi,Zi) =

1

n

n
∑

i=1

f (4)
n (Wi) + op(1/

√
n)

as n → ∞ where f
(4)
n (Wi) = fn(P,Wi) + fn(P,P,Wi) with fn(Wi,Wj) and fn(Wi,Wj ,Wk) defined

in (20) and (21), respectively.

Proof. To save space, we suppress τκ(Xi,Zi). We get that

1

n

n
∑

i=1

δ̂(Û∗
i )(Ûi − Ui) =

1

n

n
∑

i=1

δ(Ui)(Ûi − Ui) (77)

+
1

n

n
∑

i=1

[

δ̂(Û∗
i ) − δ(Û∗

i )
]

(Ûi − Ui) (78)

+
1

n

n
∑

i=1

[

δ(Û∗
i ) − δ(Ui)

]

(Ûi − Ui) . (79)

We will show that the first term on the RHS is
√

n-consistent and asymptotically normally dis-
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tributed, while the remaining two terms have order op(1/
√

n) and so can be neglected.

We start by analyzing the expression in (77). As in the proof of Lemma 4, averages associated

with the first two terms in (51) lead to nondegenerate first order asymptotic contributions. Averages

associated with the remaining terms make degenerate contributions and are ignored. We analyze

the first of the two averages that make nondegenerate contributions. The analysis of the second

such term is very similar and so is omitted.

We replace Ûi − Ui in (77) with

1

nαn

n
∑

j=1

[{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di} − IEi{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di}]/f(Zi,Di) .

(80)

Substitute (80) into (77), then combine sums to get that the expression in (77) equals

1

n2

n
∑

i=1

n
∑

j=1

δ(Ui) [{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di} − IEi{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di}] /αnf(Zi,Di) .

(81)

As before, we may neglect the diagonal terms and take the term in (77) to equal the zero-mean

second order U -statistic

1

n(2)

∑

i2

δ(Ui) [{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di} − IEi{Xj ≤ Xi}Kn(Zj −Zi){Dj = Di}] /αnf(Zi,Di) .

(82)

Define fn(Wi,Wj) to be equal to the (i, j)th summand in (82). Note that fn(Wi, P ) = fn(P,P ) = 0.

By the Hoeffding composition,

1

n(2)

∑

i2

fn(Wi,Wj) =
1

n

n
∑

i=1

fn(P,Wi) +
1

n(2)

∑

i2

[fn(Wi,Wj) − fn(P,Wj)] . (83)
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Standard U -statistic results show that the second term on the RHS of (83) has order Op(1/nαn)

as n → ∞. This term has order op(1/
√

n) provided αn ≫ n−1/2. The usual change of variable

argument shows that the first term on the RHS of (83) is an average of zero-mean iid random vectors

with finite variance. A standard CLT shows that this term is
√

n-consistent and asymptotically

normally distributed.

Next, we analyze (79). Let γ(u) denote the partial derivative of δ(u) with respect to U . By a

Taylor expansion of each δ(Û∗
i ) about Ui, we have that

1

n

n
∑

i=1

[

δ(Û∗
i ) − δ(Ui)

]

(Ûi − Ui) =
1

n

n
∑

i=1

γ(Û∗∗
i )(Û∗

i − Ui)(Ûi − Ui) (84)

=
1

n

n
∑

i=1

γ(Û∗∗
i )(U∗

i − Ûi)(Ui − Ûi) . (85)

where, for each i, Û∗∗
i is between Ui and Û∗

i . Since γ(·) is a continuous function on the compact set

Uκ, γ(u) is uniformly bounded over Uκ. It follows from this and Lemma 2 that the expression in

(79) has order Op(1/nα2
n). Thus, this term has order op(1/

√
n) as n → ∞ provided α2

n ≫ n−1/2.

Finally, we analyze the expression in (78). Recall the definition of γ(u) above. Let γ̂(u) denote

the partial derivative of δ̂(u) with respect to U . By a Taylor expansion of δ̂(Û∗
i ) − δ(Û∗

i ) about Ui

we get that

1

n

n
∑

i=1

[

δ̂(Û∗
i ) − δ(Û∗

i )
]

(Ûi − Ui) =
1

n

n
∑

i=1

[

δ̂(Ui) − δ(Ui)
]

(Ûi − Ui) (86)

+
1

n

n
∑

i=1

[

γ̂(Û∗∗
i ) − γ(Û∗∗

i )
]

(Ui − Û∗
i )(Ui − Ûi) (87)

where Û∗∗
i is between Û∗

i and Ui. Start with (87). Just as integrating kernel functions with respect

to u results in a rescaling by a factor of τn, differentiating kernel functions with respect to u
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results in a rescaling by a factor of τ−1
n . This principle can be applied together with (36), (45),

and (47) to get that uniformly over i, as n → ∞, γ̂(Û∗∗
i ) − γ(Û∗∗

i ) has order Op(1/
√

nαnσnτ4
n).

Combine this result with Lemma 2 to see that the term in (87), uniformly over i, as n → ∞, has

order Op(1/n
3/2α3

nσnτ4
n). Deduce that this term has uniform asymptotic order op(1/

√
n) provided

α3
nσnτ4

n ≫ n−1.

We now analyze the term in (86). Differentiate both sides of (36) with respect to u applying

the product rule to get that

δ̂(u) − δ(u) =
∂

∂u

[

−[Ĥn(β̂∗(u) | u)]−1Ĝn(β(u) | u)
]

= −[Ĥn(β̂∗(u) | u)]−1 ∂

∂u

[

Ĝn(β(u) | u)
]

(88)

+
∂

∂u

[

−[Ĥn(β̂∗(u) | u)]−1
]

Ĝn(β(u) | u) . (89)

Start with (89). Focus first on −[Ĥn(β̂∗(u) | u)]−1. Recall (36). Since the LHS of (36) is

continuously differentiable in u and Ĝn(β(u) | u) is continuously differentiable in u, it follows that

−[Ĥn(β̂∗(u) | u)]−1 is continuously differentiable in u. Thus, for each fixed n, ∂
∂u

[

−[Ĥn(β̂∗(u) | u)]−1
]

is continuous in u on the compact set Uκ and so is bounded. Deduce from this together with

(45) and the fact that −[H(β(u) | u)]−1 does not depend on n and is bounded on Uκ, that

−[Ĥn(β̂∗(u) | u)]−1 = Op(1) uniformly over u as n → ∞. This, together with (47) imply that

the term in (89) has order Op(1/
√

nαnσnτ2
n) uniformly over u as n → ∞. Combine this with

Lemma 2 and (86) to see that the contribution of (89) to (78) is Op(1/nα2
nσnτ2

n) as n → ∞.

Provided α2
nσnτ2

n ≫ n−1/2, this contribution has order op(1/
√

n) as n → ∞.

Finally, consider (88). Argue as in the previous paragraph to see that −[Ĥn(β̂∗(u) | u)]−1 =
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Op(1) uniformly over u as n → ∞. Note that by (38),

∂

∂u

[

Ĝn(β(u) | u)
]

=

[

∂

∂u
Gn(β(u) | u) − IE

∂

∂u
Gn(β(u) | u)

]

+
∂

∂u
IEGn(β(u) | u) (90)

+
∂

∂u





1

nσnτn

n
∑

j=1

Λn(Û∗
j , u)(Ûj − Uj)τκ(Zj)



 (91)

where for the middle term in (90) we have used the fact that integration and differentiation can be

interchanged. By (31) and the fact that differentiation results in a rescaling by τ−1
n , we get that the

term in brackets on the RHS of (90) has order Op(1/
√

nσnτ2
n) uniformly over u as n → ∞. By (32)

and the fact that differentiation results in a rescaling by τ−1
n , we get that the second term on the

RHS of (90) has order op(1/
√

nτn) uniformly over u as n → ∞. These facts and Lemma 2 imply that

the contribution of the term in (90) to (78) is Op(1/nαnσnτ2
n) + op(1/nαnτn) = Op(1/nαnσnτ2

n)

as n → ∞. Provided αnσnτ2
n ≫ n−1/2, this contribution has order op(1/

√
n) as n → ∞. Now

consider the term in (91). By (38), (39), and Lemma 2, and the fact that differentiation results

in a rescaling by τ−1
n , we get that this term has order Op(1/

√
nαnσnτ3

n) as n → ∞. This fact

and another application of Lemma 2 imply that the contribution of the term in (91) to (78) is

Op(1/nα2
nσnτ3

n) as n → ∞. Provided α2
nσnτ3

n ≫ n−1/2, this contribution has order op(1/
√

n) as

n → ∞. This proves Lemma 5. 2

Recall the definitions of f
(j)
n (Wi), j = 1, 2, 3, 4 given just prior to the statement of Theorem 1

in the main text.

THEOREM 1. (
√

n-Consistency and Asymptotic Normality) Let e = c = 1 with k

and m arbitrary. If A1 through A19 hold, then, as n → ∞,

√
n(β̂κ − βκ) ; N(0,Σ)
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where Σ = IEfn(Wi)fn(Wi)
′ with fn(Wi) = f (1)(Wi) + f

(2)
n (Wi) + f

(3)
n (Wi) + f

(4)
n (Wi).

Proof. Put everything together. Apply a standard CLT for the second term in (9) together

with Lemma 4 and Lemma 5 to get that

β̂κ − βκ =
1

n

n
∑

i=1

fn(Wi) + op(1/
√

n)

where fn(Wi) = f (1)(Wi) + f
(2)
n (Wi) + f

(3)
n (Wi) + f

(4)
n (Wi). This proves Theorem 1. 2
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Appendix B: Trimming and Local Polynomial Estimation

This appendix explains how our trimming scheme prevents boundary bias and ratio bias. It also

explains why, in general, we choose a trimmed mean, rather than the mean of B, as the estimand of

the localize-then-average estimation procedure. Finally, we explain why we do not estimate Ui with

higher-order local polynomial estimators, despite their ability to automatically prevent boundary

bias.

Recall that XC denotes the vector of continuous endogenous components of X and ZC denotes

the vector of continuous components of Z. For simplicity, in the following discussion we assume

that both XC and ZC are scalar random variables with joint support IR2. We write X for XC and

Z for ZC . We also assume for simplicity that X is the only endogenous component of X and Z is

the only component of Z. The parameter of interest is the trimmed mean

βκ = IEβ(U)τκ(X ,Z) (92)

which we estimate with

β̂κ =
1

n

n
∑

i=1

β̂(Ûi)τκ(Xi,Zi) (93)

where, for each u ∈ SU = [0, 1], β̂(u) = argmax
b∈Bu

Ŝn(b | u) and

Ŝn(b | u) =
1

nτn

n
∑

j=1

(2Yj − 1)K∗
n(Xjb)Kn(Ûj − u)τκ(Zj) . (94)

Note that there are two trimming functions: τκ(Xi,Zi) = {|Xi| ≤ κ}{|Zi| ≤ κ} and τκ(Zj) =

{|Zj | ≤ κ}. We discuss the role of each in preventing various types of bias.

Start with τκ(Xi,Zi). This trimming function prevents boundary bias and ratio bias. Start
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with boundary bias. The standard kernel regression estimator Ûi is an asymptotically biased

estimator of Ui when Ui is within the bandwidth τn of the boundary of SU = [0, 1]. We call

this boundary bias. It occurs for any fixed kernel used in standard kernel regression. Recall that

Ui = U(Xi,Zi) = IP{X ≤ Xi | Z = Zi} and Ûi = Û(Xi,Zi) = ÎP{X ≤ Xi | Z = Zi}. Define

U = sup
|x|≤κ,|z|≤κ

U(x, z) Û = sup
|x|≤κ,|z|≤κ

Û(x, z)

L = inf
|x|≤κ,|z|≤κ

U(x, z) L̂ = inf
|x|≤κ,|z|≤κ

Û(x, z) .

Since the support of (X ,Z) is IR2 and κ < ∞, 0 < L < U < 1. By Lemma 2, L̂ converges in

probability to L and Û converges in probability to U . It follows that with probability tending to

one as n → ∞, τκ(Xi,Zi) trims β̂(Ûi) when Ûi is within τn of 0 or 1− τn of 1. This guarantees that

the only β̂(Ûi) values that play a role in the asymptotic analysis of β̂κ are those whose Ûi values

are at least τn from the boundary of SU where they are not subject to boundary bias.

The factor {|Zi| ≤ κ} in τκ(Xi,Zi) also prevents so-called ratio bias. Consider the term in (11).

This term involves the factors Ûi−Ui. In analyzing Ûi−Ui, terms of the form [f(Zi)− f̂(Zi)]/f(Zi)

(and powers thereof) arise, where f̂(Zi) is a kernel density estimator of f(Zi), the density of Z at

Zi. (See, for example, the geometric expansion of Û(x, z) in the proof of Lemma 2.) Note that

[f(Zi) − f̂(Zi)]/f(Zi) = [f(Zi) − IEf̂(Zi)]/f(Zi) + [IEf̂(Zi) − f̂(Zi)]/f(Zi) . (95)

Conditional on Zi, the first term in this decomposition is a deterministic bias term and the second

term is a zero-mean stochastic average. Both terms cause problems because of the presence of the

density value f(Zi) in their denominators. A bias reducing kernel of high enough order can make

the numerator of the bias term arbitrarily small, but the ratio can still be large when f(Zi) is
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small. The stochastic term can cause even more serious problems. It’s numerator cannot be made

arbitrarily small, but rather has stochastic order no smaller than Op(1/
√

n). Its ratio can be very

large when f(Zi) is small. However, since Z has support IR, these problems can only occur when

Zi is in one of the tails of the distribution of Zi. The trimming factor {|Zi| ≤ κ} prevents this from

happening, by trimming the summand in (11) when |Zi| gets too big. This prevents ratio bias.

Next, consider the trimming function τκ(Zj) = {|Zj | ≤ κ} in (94). Asymptotic analysis of (10)

involves Taylor expansions of the Ûjs about the corresponding Ujs and so leads to analyses of the

terms Ûj − Uj . By the same reasoning as given in the last paragraph, the function τκ(Zj) trims

the jth summand in (10) when |Zj | gets too big, thus preventing ratio bias in these terms.

We note that it is not necessary to do fixed trimming. Provided β exists, we can replace the

fixed trimming constant κ with κn where κn → ∞ as n → ∞. The speed at which κn converges to

infinity must be linked to assumptions about the tail behavior of f(Z). However, such trimming

implies that the estimand βκn converges to β as n → ∞. Practically speaking, the same effect is

achieved by choosing a large fixed κ, and so for the sake of simplicity, we do fixed trimming.

While asymptotically negligible trimming of the sort just described is possible, it is not pos-

sible, in general, to take β itself as the estimand and still achieve
√

n-consistency. Establishing

√
n-consistency with β as the estimand would require showing that the difference βκn − β has or-

der O(1/
√

n). A straightforward calculation shows that this would require that IP{|Z| > κn} =

O(1/
√

n). This, in turn, would require that the density of Z at ±κn be converging to zero very

rapidly. However, this same density appears in the denominator of the terms in (95). To prevent

ratio bias in these terms it is necessary that the density of Z at ±κn be converging to zero very

slowly. It is easy to show that in general, these two conflicting demands cannot be met simulta-

neously. The real culprit is the stochastic term in decomposition (95). Even if the bias term is
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identically zero, the stochastic term prevents these conflicting demands from being met. It follows

that, apart from special cases when βκ = β for all κ > 0 or when Z is discrete so that instrument

trimming is unnecessary, if we want to achieve a
√

n-consistent estimator, we must live with a

trimmed mean of the distribution of B as an estimand. This is true no matter what estimator

we use to estimate Ui. For example, this is true even if we were to replace the standard kernel

regression estimators of Ui with general local polynomial (LP) estimators (Fan and Gijbels, 1996).

We estimate Ui with the standard kernel regression estimator, also known as the Nadaraya-

Watson (NW) estimator. This is a local polynomial estimator where the local polynomial is a

constant. While the NW estimator with bias reducing kernels of high enough order can achieve an

arbitrary degree of bias reduction on the interior of the support of the localizing variable, it is an

asymptotically biased estimator near the boundaries of the support. We trim on Xi as well as Zi in

(93) to prevent this bias, as explained above. However, a comparable higher-order local polynomial

estimator can achieve the same degree of bias reduction on the interior as well as near or at the

boundary of the support. There is no need to trim on Xi and Zi to prevent boundary bias. So why

not use the higher-order LP estimator instead of the NW estimator with bias reducing kernels?

We cite two reasons. First, it is not known (to the authors, at least) whether the known

pointwise bounds on the bias of LP estimators at the boundaries of the support of the localizing

variable are uniform in the localizing variable. This uniformity is needed to show that remainder

terms in asymptotic arguments are small in the appropriate sense.

Secondly, even if the uniformity conditions hold, formally establishing
√

n-consistency and

asymptotic normality of β̂κ when Ui is estimated with a general local polynomial estimator would

be extraordinarily complicated. To see why, assume once again for simplicity that Ui is scalar. A
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local polynomial estimator of Ui of degree p can be written as the weighted average

n
∑

a=1

{Xa ≤ Xi}w(p)
a /

n
∑

a=1

w(p)
a

where, for p > 0, the weights w
(p)
a depend on all the Zi. For any positive integer m, define

sm =
∑n

a=1(Za − Zi)
mKn(Za − Zi). For simplicity, we suppress the dependence of sm on n.

Consider the cases p = 0, 1, 2, corresponding to the NW, local linear, and local quadratic estimators,

respectively. It is straightforward (though tedious) to show that

w(0)
a = Kn(Za −Zi)

w(1)
a = Kn(Za −Zi)[s2 − (Za −Zi)s1]

w(2)
a = Kn(Za −Zi)

[

[s2s4 − s2
3] − (Za −Zi)[s1s4 − s2s3] + (Za −Zi)

2[s1s3 − s2
2]
]

.

Recall that the use of the NW estimator of Ui leads to a complicated analysis of U -statistics of

orders 2, 3, and 4 in the proof on Lemma 4. Each of these U -statistics is painstakingly analyzed by

means of the Hoeffding decomposition to extract its nonnegligible contribution to the asymptotic

distribution of β̂κ. Now consider local linear estimation. The weight w
(1)
a for the local linear

estimator is itself a sum and would lead to an analysis of U -statistics of orders 3, 4, and 5 in the

proof of Lemma 4. The weight w
(2)
a for the local quadratic estimator is a double sum and would

lead to an analysis of U -statistics of orders 4, 5, and 6. In general, the weight w
(p)
a is a sum over p

indices and would lead to the analysis of U -statistics of order p + 2, p + 3, and p + 4. And this is

only for scalar Ui. The analysis would be far more complicated for vector-valued Ui.

To avoid this added complexity, we use the NW estimator with higher-order bias reducing

kernels. By doing so, we achieve the same order of bias reduction on the interior of the support of
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the localizing variable as we would by using comparable higher-order local polynomial estimators.

By trimming on Xi (as well as Zi) we eliminate the problems with bias near the boundary of the

support of the localizing variable.
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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Figure 6:
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